
Trail: A Distance Sensitive WSN Service

For Distributed Object Tracking

Vinodkrishnan Kulathumani1, Anish Arora1, Murat Demirbas2, and Mukundan
Sridharan1

1 Dept. of Computer Science and Engineering, The Ohio State University
{vinodkri,anish,sridhara}@cse.ohio-state.edu

2 Dept. of Computer Science and Engineering, SUNY at Buffalo
demirbas@cse.buffalo.edu

Abstract. Distributed observation and control of mobile objects via static
wireless sensors demands timely information in a distance sensitive manner:
information about closer objects is required more often and more quickly
than that of farther objects. In this paper, we present a wireless sensor
network protocol, Trail, that supports distance sensitive tracking of mobile
object by in-network subscribers upon demand. Trail achieves a find time
that is linear in the distance from the subscriber to the object, via a distrib-
uted data structure that is updated only locally when objects move. Trail
seeks to minimize the size of the data structure. Moreover, Trail is reliable,
fault-tolerant and energy-efficient, despite the network dynamics that are
typical of wireless sensor networks. We evaluate the performance of Trail by
simulations in a 90-by-90 sensor network and report on 105 node experiments
in the context of a pursuer-evader control application.

1 Introduction

Tracking of mobile objects has received significant attention in the context of cellular
telephony, mobile computing, and military applications [1–4]. In this paper, we focus
on the tracking of mobile objects using a network of static wireless sensors. Examples
of such applications include those that monitor objects [5–7], as well as applications
that “close the loop” by performing tracking-based control; an example is a pursuer-
evader tracking application, where a controller’s objective is to minimize the catch
time of evaders.

We are particularly interested in large scale WSN deployments. Large networks mo-
tivate several tracking requirements. First, queries for locations of objects in a large
network should not be answered from central locations as the querier may be close
to the object but still have to communicate all the way to a central location. Such a
solution not only increases the latency but also depletes the intermediate nodes of
their energy. Plus, answering queries locally may also be important for preserving
the correctness of applications deployed in large WSNs. As a specific example, con-
sider an intruder-interceptor application, where a large number of sensor nodes lie
along the perimeter that surrounds a valuable asset. Intruders enter the perimeter
with the intention of crossing over to the asset and the objective of the interceptors
is to “catch” the intruders as far from the asset as possible. In this case, it has
been shown [8] that there exist Nash equilibrium conditions which imply that, for
satisfying optimality constraints, the latency with which an interceptor requires in-
formation about the intruder it is tracking depends on the relative locations of the

two: the closer the distance, the smaller the latency. This requirement is formalized
by the property of distance sensitivity for querying, i.e, the cost in terms of latency
and number of messages for returning the location of a mobile object grows linearly
in terms of the distance between the object and the querier.

Second, tracking services for large networks must eschew solutions with dispropor-
tionate update costs that update object locations across the network even when the
object moves only by a small distance. This requirement is formalized by the prop-
erty of distance sensitivity for updates, i.e., the cost of an update is proportional to
the distance moved by the object.

Third, for large networks it is critical that object locations or pointers to the objects
be maintained across only a minimum set of nodes across the network. Longer tracks
have a higher cost of initialization and given that network nodes may fail due to
energy depletion or hardware faults, longer tracks increase the probability of a failed
node along a track as well as increase the cost of detecting and correcting failures
in the track. This requirement motivates us to eschew solutions that hierarchically
partition the network into a fixed number of levels [1, 3, 4] Hierarchical partitions
not only yield longer track lengths, these solutions also tend to be sensitive to the
failures of nodes higher up in the hierarchy.

Finally, even though solutions should designed to accommodate large networks,
they should also be simple, energy-efficient and robust for use in small or medium
networks.

Contributions: In this paper, we use geometric ideas to design an energy-efficient,
fault-tolerant and hierarchy-free WSN service, Trail, that supports tracking-based
WSN applications. The specification of Trail is to return the location of a particular
object in response to an in-network subscriber issuing a find query regarding that
object. To this end, Trail maintains a tracking data structure by propagating mobile
object information only locally, and satisfying the distance sensitivity requirement.
Trail avoids the need for hierarchies by determining anchors for the tracking paths
on-the-fly based on the motion of objects; this allows for minimizing the length
of tracking paths. Trail maintains tracks from each object to only one well-known
point, namely, the center of the network; these tracks are almost straight to the
center, with a stretch factor close to 1. We analytically compare the performance of
Trail with that of other hierarchy based solutions for tracking objects and as seen
in Fig. 11 in Section 7, Trail is more efficient than other solutions. Trail has about
7 times lower updates costs at almost equal find costs. By using a tighter tracking
structure, we are also able to decrease the upper bound find costs at larger distances
and thereby decrease the average find cost across the network. By not relying on
hierarchies Trail can tolerate faults more locally as well.

Trail is a family of protocols. Refinements of a basic Trail protocol are well suited
for different network sizes and find/update frequency settings: One refinement is to
tighten its tracks by progressively increasing the rate at which the tracking structure
is updated; while this results in updating a large part of the tracking structure per
unit move, which is for large networks still update distance sensitive, it significantly
lowers the find costs for objects at larger distances. Another refinement increases
the number of points along a track, i.e, progressively loosens the tracking structure

2

in order to decrease the find costs and be more find− centric when object updates
are less frequent or objects are static; as an extreme case, the find can simply follow
a straight line to the center. Moreover, Trail increasingly centralizes update and
find as the network size decreases.

Organization of the paper: In Section 2, we describe the system model and
problem specification. In Section 3, we design a basic Trail for a 2-d real plane.
Then, in Section 4, we present an implementation of the basic Trail protocol for
a 2-d sensor network grid. In Section 5, we discuss refinements of the basic Trail
protocol. In Section 6, we present results of our performance evaluation. In Section
7, we discuss related work and, in Section 8, we make concluding remarks and
discuss future work.

2 Model and Specification

The system consists of a set of mobile objects, and a network of static nodes that
each consist of a sensing component and a radio component. Tracking applications
execute on the mobile objects and use the sensor network to track desired mobile
objects. Object detection and association services execute on the nodes, as does the
desired Trail network tracking service. The object detection service is an orthogonal
service to object tracking. The object detection service assigns a unique id, P ,
to every object detected by nodes in the network and stores the state of P at
the node j that is closest to the object P . This node is called the agent for P
and can be regarded as the node where P resides. The association service can be
implemented in a centralized [9] or distributed [10] fashion; the latter approach
would suit integration with Trail.

Trail Network Service: Trail maintains an in-network tracking structure, trailP ,
for every object P . Trail supports two functions: find(P, Q), that returns the state
of the object P , including its location at the current location of the object Q issuing
the query and move(P, p’, p) that updates the tracking structure when object P
moves from location p′ to location p.

Definition 1 (find(P, Q) Cost). The cost of the find(P, Q) function is the total
communication cost of reaching the current location of P starting from the current
location of Q.

Definition 2 (move(P, p’, p) Cost). The cost of the move(P, p′, p) function is
the total communication cost of updating trailP to the new location p and deleting
the tracking structure to the old location p′.

To simplify our presentation, we first describe Trail in a 2-d real plane. We then
refine the Trail protocol to suitably implement in a dense connected grid model of
a WSN. We describe this model in Section 4.

3 Trail

In this section, we use geometric ideas to design Trail for a bounded 2-d real plane.
Let C denote the center of this bounded plane.

3.1 Tracking Data Structure

We maintain a tracking data structure for each object in the network. Let P be
an object being tracked, and p denote its location on the plane. Let dpC be the

3

distance of p from the center C. We denote the tracking data structure for object P
as trailP . Before we formally define this tracking structure, we give a brief overview.

Overview: If trailP is defined as a straight line from C to P , then every time
the object moves, trailP has to be updated starting from C. This would not be a
distance sensitive approach. Hence we form trailP as a set of trail segments and
update only a portion of the structure depending upon the distance moved. The
number of trail segments in trailP increases as dpC increases. Note that we do
not partition the network into a hierarchy and assign roles to specific nodes in
the network. Rather, the end points of the trail segments serve as marker points
to update the tracking structure when an object moves. The point from where the
update is started depends on the distance moved. Only, when P moves a sufficiently
large distance, trailP is updated all the way from C. We now formally define trailP .

Definition 3 (trailP). The tracking data structure for object P ,trailP , for dpC ≥ 1
is a path obtained by connecting any sequence of points (C, Nmax, ..., Nk, ..., N1, p)
by line segments, where max ≥ 1, and there exist auxiliary points c1..cmax that
satisfy the properties (P1) to (P4) below.

For brevity, let Nk be the level k vertex in trailP ; let the level k trail segment in
trailP be the segment between Nk and Nk−1 ; let Seg(x, y) be any line segment
between points x and y in the network.

– (P1): dist(ck, Nk) = 2k, (max ≥ k ≥ 1).
– (P2): Nk−1, (max ≥ k ≥ 1), lies on Seg(Nk, ck−1); Nmax lies on Seg(C, cmax).
– (P3): dist(p, ck) < 2k−b, (max ≥ k ≥ 1) and b ≥ 1 is a constant.
– (P4): max = d(log2(dist(C, cmax)))e − 1.

If (dpC = 0), trailP is C; and if (0 ≤ dpC < 1), trailP is Seg(C, p). ut

(a) Eg.1 (b) Eg.2 (c) Eg.3

Fig. 1. Examples of Trail to an Object P

Observations about trailP : From the definition of trailP , we note that the aux-
iliary points c1..cmax are used to mark vertices N1..Nmax of trailP . P1 and P2
describe the relation between the auxiliary points and the vertices of trailP . Given
trailP , points c1..cmax are uniquely determined using P1 and P2. Similarly given p

4

and c1, ..cmax, trailP is uniquely determined. By property P3, the maximum sepa-
ration between p and any auxiliary point ck decreases exponentially as k decreases
from max to 1. By changing parameter b in property P3, we can tune the rate at
which the tracking structure is updated. We discuss these refinements in Section 5.
Note that we do not partition the network into a fixed number of levels. Rather,
the value of max which denotes the number of trail segments in trailP , depends on
the distance of P from C.

We now show 3 examples of the tracking structure in Fig. 1. In this figure, b = 1.
Fig. 1(a) shows trailP when c3, ..c1 are collocated. When P moves away from this
location, trailP is updated and Fig. 1(b) shows an example of trailP where c2, ..c1

are displaced from c3. In Fig. 1(b), dist(c3, c2) = 2 units, dist(c2, c1) = 1 unit,
dist(p, c1) < 1 units. Moreover, N3 lies on Seg(C, c3), N2 lies on Seg(N3, c2) and
so on. In Fig. 1(c) we show an example of a zig zag trail to an object P , when P
moves away from c3 and then moves back in the opposite direction.

3.2 Updating the trail

We now describe a procedure to update the tracking structure when object P moves
from location p′ to p such that the properties of the tracking structure are main-
tained and the cost of update is distance sensitive.

Overview: When an object moves distance d away, if the distance dist(c1, p) is less
than 1, then the trail is updated by replacing segment(N1, p

′) with segment(N1, p).
Otherwise, we find the minimal index m, along trailP such that dist(p, cj) < 2j−b

for all j such that max ≥ j ≥ m and trailP is updated starting from Nm. In order
to update trailP starting from Nm, we find new vertices Nm−1...N1 and a new set of
auxiliary points cm−1...c1. Let N ′

m−1...N
′
0 and c′m−1...c

′
1 denote the old vertices and

old auxiliary points respectively. Starting from Nm, we follow a recursive procedure
to update trailP . This procedure is stated below:

Fig. 2. Updating trailP

Update Algorithm:

1. If dist(p, c1) ≥ 1, then let m be the minimal
index on the trail such that dist(p, cj) < 2j−b

for all j such that max ≥ j ≥ m.
2. k = m
3. while k > 1

(a) ck−1 = p; Now obtain Nk−1 using prop-
erty P2 as follows: the point on segment
Nk, ck−1, that is 2k−1 away from ck−1.

(b) k = k − 1

If no indices exist such that dist(ck, p) < 2k−1,
then the trail is created starting from C. This could
happen if the object is new or if the object has
moved a sufficiently large distance from its original
position. In this case, max is set to (dlog2(dp)e)−1.
cmax is set to p. Nmax is marked on segment(C, p) at distance 2max from cmax.
Step 1 is executed with k = max. ut
Fig. 2 illustrates an update operation, when b = 1. In Fig. 2a, dist(p, p′) is 2 units.
Hence update starts at N3. Initially c3, c′2, c′1 are at p′. We use the update algorithm

5

to determine new c2, c1 and thereby the new N2, N1. Using step (3a) of the update
algorithm, the new c2 and c1 lie at p. The vertex N2 then lies on segment(N3, c2)
and N1 lies on segment(N2, c1). In Fig. 2b, P moves further one unit. Hence update
now starts at N2. Using step (3a) of the update algorithm, the new c1 lies at p and
N1 lies on segment(N2, c1).

Lemma 1. The update algorithm for Trail yields a path that satisfies trailP .

Proof. 1. Let m be the index at which update starts. By the condition in step 1,
dist(cj , p) < 2j−b for all max ≥ j ≥ m. Now, for m > j ≥ 1, cj = p. Therefore
for m > j ≥ 1, dist(cj , p) < 2j−b. Thus property P3 is satisfied.

2. Properties P2 and P1 are satisfied because m ≥ k > 1, we obtain Nk−1 as the
point on Seg(Nk, ck−1), that is 2k−1 away from ck−1.

3. max is defined for trailP , when trailP is created or updated starting from C.
When max is (re)defined for trailP , cmax is the position of the object and max
is set to (dlog2(dp)e) − 1. Thus the update algorithm satisfies property P4. ut

Definition 4 (Trail Stretch Factor). Given trailP to an object p, we define the
trail stretch factor for any point x on trailP as the ratio of the length along trailP
from x to p, to the Euclidean distance dist(x, p).

Lemma 2. The maximum Trail Stretch Factor for any point along trailP , denoted
as TSp is sec(α) ∗ sec(α

2) where α = arcsin(1
2b).

Proof Sketch: We first show that the maximum Trail Stretch Factor occurs when
point Nmax..N1 lie on a logarithmic spiral with origin p and the angle between
the radius of the spiral and tangent to any point on the spiral being equal to
α = arcsin(1

2b) [11]. We then use the property of logarithmic spirals that the ratio
of length along spiral from any point on the spiral to the origin over the Euclidean
distance of that point to the origin is sec(α). ut

Lemma 3. The length of trailP for an object P starting from a level k(0 < k ≤
max) vertex, denoted as Lk is bounded by (2k + 2k−b) ∗ TSp.

Proof Sketch: dist(ck, p) < 2k−b. Therefore, dist(Nk, p) < 2k + 2k−b. Then using
lemma 2, the result follows. ut

Theorem 1. The upper bound on the amortized cost of updating trailP when object
P moves distance dm(dm > 1) is 4 ∗ (2b + 1) ∗ TSp ∗ dm ∗ log(dm).

Proof. Note that in update whenever trailP is updated starting at the level k vertex,
we set ck−1 = p. P can now move a distance of 2k−1−b before another update starting
at the level k vertex. Thus, between any two successive updates starting from a level
k vertex, the object must have moved at least a distance of 2k−1−b. The total cost
to create a new path and delete the old path starting from a level k vertex costs at
most 2 ∗ Lk.

Over a distance dm where dm > 1 , the update can start at level (blog2(dm)c+b+1)
vertex at most once. This is because, update starts at level (blog2(dm)c + b + 1)
vertex, only when P has moved at least dm distance. Similarly, update can start at
level (b + 1) vertex atmost dm times, update can start at level (b + 2) vertex can at
most bdm/2c times, and so on. Adding the total cost, Theorem 1 follows. ut

6

b Trail Stretch Update Cost
1 1.2 14 ∗ dm ∗ logdm

2 1.05 20 ∗ dm ∗ logdm

> 3 Approaches 1 4 ∗ (2b + 1) ∗ dm ∗ logdm

Fig. 3. Effect of b on Update Cost

For illustration, we summarize the
Trail Stretch factor and update
costs for different values of b in
Fig. 3. We explain the significance
of the refinement of Trail by vary-
ing b in Section 5.

3.3 Basic Find algorithm

Given trailP exists for an object P in the network, we now describe a basic find
algorithm that is initiated by object Q at point q on the plane. We use a basic ring
search algorithm to intersect trailP starting from Q in a distance sensitive manner.
We then show from the properties of the Trail tracking structure that starting from
this intersection point, the current location of P is reached in a distance sensitive
manner.

Basic find Algorithm:

1. With center q, successively draw circles of radius 20, 21, ...2blog(dqC)c−1, until
trailP is intersected.

2. If trailP is intersected, follow it to reach object P ; else follow trailP from C
(note that if object exists, trailP will start from C).

(a) find Path (b) Farthest Find Point

Fig. 4. Basic Find Algorithm in Trail

Theorem 2. The cost of finding an object P at point p from object Q at point q is
O(df) where df is dist(p, q).

Proof. Note that as q is distance df away from p, a circle of radius 2dlog(df)e will
intersect trailP . Hence the total length traveled along the circles before intersecting

trailP at point s is bounded by 2 ∗ π ∗
∑dlog(df)e

j=1 2j, i.e., 8 ∗ π ∗ df . The total cost
of connecting segments between the circles is bounded by 2 ∗ df .

Now, when the trail is intersected by the circle of radius 2dlog(df)e, the point s at
which the trail is intersected can be at most 3 ∗ df away from the object p. This is
illustrated in Fig. 4(b). In this figure, q is df +∇ away from p. Hence the trail can
be missed by circle of radius 2df . From lemma 3, we have that distance along the
trail from s to p is at most 3 ∗ TSp ∗ df . Thus, the cost of finding an object P at
point p from object Q at point q is O(df) where df is dist(p, q). ut

7

4 Implementing Trail in a WSN

In this section, we describe how to implement the Trail protocol in a WSN, that is a
discrete plane as opposed to a continuous plane as described in the previous section.
Trail can be implemented under any random deployment of a WSN aided by some
approximation for routing along a circle. For reasons of exposition, in this section
we describe the implementation of Trail specifically in a WSN grid. In this model,
each node is assigned some grid location x, y and is aware of that location. We refer
to unit distance as the one hop communication distance. dist(i, j) now stands for
distance between motes i and j in these units. We also assume the existence of an
underlying geographic routing protocol such as GPSR [12], aided by an underlying
neighborhood service that maintains a list of neighbors at each mote. In the WSN
grid, we assume that nodes in the network can fail due to energy depletion or
hardware faults and there can be a bounded error in the placement of motes with
respect to their ideal grid locations, thus leading to holes in the network. However,
we assume that the network may not be partitioned; there exists a path between
every pair of nodes in the network.

When implementing on a WSN grid, Trail is affected by the following factors:(1)
discretization of points to nearest grid location; (2) Overhead of routing between
any two points on the grid; and (3) holes in the network. We discuss these issues in
this section.

Routing Stretch Factor: When using geographic routing to route on a grid,
the number of hops to communicate across a distance of d units will be more than
d. We measure this stretch in terms of the routing stretch factor, defined as the
ratio of the communication cost (number of transmissions) between any two grid
locations, to the euclidean distance d between two grid locations. It can be shown
that the upper bound on the routing stretch factor for the WSN unit grid is

√
2.

The routing stretch factor will decrease in the denser grids because there are more
nodes and routes will be increasingly closer to the segment between two grid points.

4.1 Implementing find on WSN Grid

We now describe how to implement the find algorithm in the WSN grid. As seen
in Section 3, during a find, exploration is performed using circles of increasing radii
around the finder. However, in the grid model, we approximate this procedure and
instead of exploring around a circle of radius r, we explore along a square of side
2 ∗ r. The perimeter of the square spans a distance 8 ∗ r instead of 2 ∗ π ∗ r. We
could use tighter approximations of the circle, but approximating with a square is
simple for a grid.

Lemma 4. The upper bound on the cost of finding an object P at point p from
object Q at point q is 38 ∗ d where d is dist(p, q).

4.2 Implementing Update on WSN Grid

We use three types of messages in the update actions. Initially, when an object is
detected at a node, it sends an explore message that travels in around the square
perimeters of increasing levels until it meets trailP or it reaches the center. Note
that if the object is updated continuously as it moves, then the explore message will

8

(a) find in a WSN grid (b) update in a WSN grid

Fig. 5. Find and Update Algorithm in a WSN grid

intersect the trail within a 1 hop distance. As before, the trail update is started from
the level m vertex node where m is the minimal index such that dist(cm, p) < 2m−1

for all j such that max ≥ j ≥ m.

Starting from the level m node where update is started, a new path is created
by sending a grow message towards cm−1. Geographic routing is used to route the
message towards cm−1. On this route, the node closest to, but outside a circle of
radius 2m−1 around cm−1 is marked as Nm−1. This procedure is then repeated at
subsequent vertex motes and the path is updated. Fig. 5(b) shows how a trail is
updated in the grid model with the grid spacing set equal to the unit communication
distance. The vertex pointers N3, ...N1 are shown approximated on the boundary of
the respective circles. Also, starting from the level k node where update is started,
a clear message is used to delete the old path. We formally state the update and
find algorithms in guarded command notation that for reasons of space have been
relegated to our anonymous technical report [11]. We also implement the algorithms
in Java, which we use in Section 6, to study the performance of Trail.

4.3 Fault-Tolerance

Due to energy depletion and faults, some nodes may fail leading to holes in the WSN
grid. A hole consists of a contiguous set of nodes that have failed in the network.
Trail uses minimal infrastructure and does not require expensive constructions such
as hierarchical partitioning and in contrast to such solutions that are vulnerable to
failures of nodes higher in the hierarchy, Trail supports a graceful degradation in
performance in the presence of node failures. As the number of failures increase,
there is only a proportional increase in find and update costs as the tracking data
structure and the find path get distorted, as opposed to completely breaking down.
We discuss the robustness of Trail under three scenarios: during update, maintaining
an existing trail and during find.

Tolerating node failures during update: A grow message is used to update a
trail starting at a level k mote and is directed towards the center of circle k − 1.
In the presence of holes, we use a right hand rule, such as in [12], in order to route
around the hole and reach the destination. As indicated in the update algorithm
for WSN grid, during routing the node closest to, but outside a circle of radius
2k−1 around ck−1 is marked as Nk−1. Since we assume that the network cannot be
partitioned, eventually such a node will be found. (If all nodes along the circle have
failed, the network is essentially partitioned).

9

Maintaining an existing trail: Nodes may fail after a trail has been created.
Also, in some cases, clear messages may fail thereby not deleting an old trail. In
order to stabilize from these faulty states, we use periodic heartbeat actions along the
trail. We state the stabilizing actions in guarded command notation and explain how
they restore the invariants. For reasons of space, we have relegated this discussion
to the technical report.

Tolerating failures during a find: We now describe how the find message ex-
plores in squares of increasing levels. When a find message comes across a hole, it
is rerouted only radially outwards of the square and we do not allow back tracking.
If all nodes in the forward direction of the explore have failed, then the level of
search is incremented and routed towards a node in the next level. Thus, in the
presence of larger holes, we abandon the current level and move to the next level,
instead of routing around the hole back to the current level of exploration. Finally,
if even that fails, the destination is marked as C and message is routed towards C.
In the worst case, find may reach C.

5 Refinements to Trail

In this section, we discuss two techniques to refine the basic Trail network protocol:
(1) tuning how often to update a Trail tracking structure, and (2) tuning the shape
of a Trail tracking structure.

5.1 Tightness of Trail Tracking Structure

The frequency at which trailP is updated depends on parameter constant b in
property P3 of trailP . As seen in Section 3, for values of b > 1, trailP is updated
more and more frequently, hence leading to larger update costs. However, trailP
becomes tighter and increasingly tends to a straight line with the trail stretch factor
approaching 1. We exploit this tightness of trailp to optimize the find strategy.

Fig. 6. Optimized find

The intuition behind this optimization is that
since the trail to any object P originates at C, the
angle formed by p with C and the higher level ver-
tices is small and bounded. Hence as the levels of
explorations increase in find, we can progressively
decrease the size of exploration from full circles
to cones of smaller angles. As an example, when
b = 2, we prove that at the three highest levels
of search, a conical pattern of search as shown in
Fig. 6 is sufficient to guarantee distance sensitiv-
ity. In Fig. 6, b = 2, the object q is at distance 48

units from C. The levels of exploration are in the range 0..4. Exploration is along
circles until level 1 and then along cones at levels 2 to 4. By increasing b, the an-
gles formed by P with C and vertices Nmax..N1, start getting smaller. Therefore
as b increases, the number of levels at which this optimization can be performed
increases [11].

Impact of the Optimization: When using the optimized find strategy, the upper
bound on find(P, Q) costs remains the same when dpq is small. However, we exploit
the fact that trails to objects converge at C and therefore decrease the size of

10

exploration at higher levels of search. Hence the upper bound costs for find decrease
when dpq increases. In other words, when dpq is large, we mitigate the cost of Q
having to explore at the lower levels. As an example, when b = 2 we show that
the upper bound find costs decrease from 38 ∗ d to 14 ∗ d as dpq increases [11]. The
optimization of find at higher levels is thus significant in that it yields: (1) smaller
upper bounds for objects that are far away from the finder; and (2) lower average
cost of find(p, q) over all possible locations of q and p.

We note that there are limits to tuning the frequency of updates, because for extreme
values of b distance sensitivity may be violated. For example, for large values of b,
that cause dist(p, ck) < y where y is a constant we end up with having to update the
entire trailP when an object moves only a constant distance y. Similarly, for values
of b < 0, the Trail Stretch Factor becomes unbounded with respect to distance from
an object. Thus an object could be only δ away from a point on trailP , yet the
distance along trailP from this point to the p could travel across the network.

5.2 Modifying Trail Segments

Fig. 7. Find Centric Trail

A second refinement to Trail is by varying the
shape of the tracking structure by generalizing
property P2 of trailP . Instead of trail segment
k between vertex Nk and Nk−1 being a straight
line, we relax the requirement on trail segment
k to be of length at most (2 ∗ π + 1) ∗ 2k. By
publishing information of P along more points,
the find path can be more straight towards
C. An extreme case is when trail segment k
is a full circle of radius 2k centered at ck and
segment(Nk, Nk−1). We call this variation of
Trail the Find-centric Trail.

Find-Centric Trail: In this refinement, the find procedure eschews exploring the
circles (thus traversing only straight line segments) at the expense of the update
procedure doing more work. This alternative data structure is used when objects
are static or when object updates are less frequent than that of find queries in a
system. Let trailP for object P consist of segments connecting C, Nmax, .., N1, p as
described before and, additionally, let all points on the circles Circk of center ck

and radius 2k contain pointers to their respective centers, where max ≥ k > 0.

Starting at q, the find path now is a straight line towards the center. If a circle with
information about object P is intersected then, starting from this point, a line is
drawn towards the center of the circle. Upon intersecting the immediate inner circle
(if there is one), information about its respective center is found, with which a line
is drawn to this center. Object P is reached by following this procedure recursively.

Lemma 5. In Find Centric Trail, when b = 1, the total cost of finding an object P
at point p from object Q at point q is 14 ∗ df where df = dist(p, q). ut

6 Performance Evaluation

In this section, we evaluate the performance of Trail using simulations in JProwler
[13]. The goals of our simulation are: (1) to study the effect of routing stretch and

11

discretization errors on the trail stretch factor, (2) to study the effect of uniform
node failures on the performance of Trail and (3) to compare the average costs for
find and update, as opposed to the upper bounds we derived earlier. Our simula-
tion involves a 90 by 90 Mica2 mote network arranged on a grid. We implement
geographic routing on a grid to route messages in the network. In the presence of
failures we use a left hand rule to route around the failure [12]. We assume an un-
derlying link maintenance layer because of which the list of up neighbors is known
at each node.

Routing Stretch: We first study the effect of holes in the network on the routing
stretch factor. We simulate two different density models and inject node failures
from 1% to 20% that are uniformly distributed across the network. We consider
a grid separation of unit distance and 0.5 unit distance. We randomly select any
two points in the network and measure the average routing stretch factor to route
between 300 such pairs. From Fig. 8(a), we see that the routing stretch factor is a
small constant factor over the actual distance between two nodes. The stretch factor
decreases as expected when density increases. As the fault percentages increase, the
number of disconnections in the network increase. The average route stretch factors
shown are for the instances when the network is actually connected, and in these
instances the average stretch factor does not increase significantly.

(a) Routing Stretch Factor (b) Disconnection %

Fig. 8. Routing Stretch Factor in a Grid Network

Performance of Update Operations: We determine the number of messages
exchanged for object updates over different distances when an object moves con-
tinuously in the network. We consider the unit grid separation, where each node
has at most 4 communication neighbors. The number of neighbors may be lesser
due to failures. We calculate the amortized cost by moving an object in different
directions and then observing the cumulative number of messages exchanged up
to each distance from the original position to update the tracking structure. The
results are shown in Fig. 9(a). The jumps visible at distances 4 and 8 show the logd
factor in the amortized cost. At these distances, the updates have to be propagated
to a higher level. We also study the effect of uniform failures in the network on the
increase in update costs. We consider fault percentages upto 20. We see from the
figure that even with failures the average communication cost increases log linearly.
This indicates that the failures are handled locally.

Trail Stretch Factor: From Section 3, we note that in the continuous model,
for an object P at distance dpC from C, trailP is less than 1.2 × dpC . We now

12

(a) Trail Update Cost (Amortized) (b) Trail Stretch Factors

Fig. 9. Trail Update Costs and Trail Stretch

study the effect of routing overhead and the discretization factor on the length of
the tracking structure that is created. We measure the trail length in terms of the
number of hops along the structure. Fig. 9(b) shows the average ratio of distance
from C to the length of the trail during updates over different distances from the
original position. The parameter b = 1 in these simulations.

When the trail is first created, the trail stretch is equal to the routing stretch from
C to the original location. In the absence of failures, we notice that the trail stretch
increases to 1.4 at updates of smaller distances and then starts decreasing. This can
be explained by the fact the trail for an object starts bending more uniformly when
the update is over a large distance. Even in the presence of failures, the trail stretch
factor increases to only about 1.6 times the actual distance.

Performance of find: We now compare the average find costs with upper bounds
derived. We fix the finder at distance 40 units from C. We vary the distance of object
being found from 2 to 16. We evaluate using the basic find algorithm with b = 1 and
the optimized find algorithm discussed in Section 5 using b = 2. In the optimized
find, at levels 2 to 4, we do not explore the entire circle.

Fig. 10. Average find Cost

The results are shown in Fig. 10; the upper bound
38 ∗ d is indicated using dotted lines and we see
that the number of messages exchanged during
find operations are significantly lower. The jumps
at distances 3, 5 and 9 are due to increase in levels
of exploration at these distances.

7 Related Work

In this section, we discuss related work and also
compare the performance of Trail with other pro-
tocols designed for distance sensitive tracking and
querying.

Tracking: As mentioned earlier, mobile object tracking has received significant
attention [3, 4, 6] and we have focused our attention on WSN support for tracking.
Some network tracking services [2] have nonlocal updates, where update cost to a
tracking structure may depend on the network size rather than distance moved.
There are also solutions such as [1,3,4] that provide distance sensitive updates and
location.

13

Locality Aware Location Services (LLS) [1] is a distance sensitive location service
designed for mobile adhoc networks. In LLS, the network is partitioned into hi-
erarchies and object information is published in a spiral structure at well known
locations around the object, thus resulting in larger update costs whenever an ob-
ject moves. The upper bound on the update cost in LLS is 128 ∗ dm ∗ logdm, where
dm is the distance an object moves, as opposed to the 14 ∗ dm ∗ logdm cost in Trail;
the upper bounds on the find cost are almost equal. Moreover, as seen in Section
5, we can further reduce the upper bound on the find cost at higher levels in Trail.

Fig. 11. Trail: Analytical Comparison

The Stalk protocol [4] uses hierarchical
partitioning of the network to track ob-
jects in a distance sensitive manner. The
hierarchical partitioning can be created
with different dilation factors (r ≥ 3).
For r = 3 and 8 neighbors at each level,
at almost equal find costs, Stalk has an
upper bound update cost of 96 ∗ d ∗ logd and this increase occurs because of having
to query neighbors at increasing levels of the partition in order to establish lateral
links for distance sensitivity [4].

Both Stalk and LLS use a partitioning of the network into hierarchical clusters which
can be complex to implement in a WSN, whereas Trail is cluster-free. Moreover,
in Stalk, the length of the tracking structure can span the entire network as the
object keeps moving and, in LLS, the information about each object is published
in a spiral structure across the network. In comparison, Trail maintains a tighter
tracking structure (i.e., with more direct paths to the center) and is thus more
efficient and locally fault-tolerant.

In [3], a hierarchy of regional directories is constructed and the communication cost
of a find for an object df away is O(df ∗ log2N) and that of a move of distance
dm is O(dm ∗ logD ∗ logN) (where N is the number of nodes and D is the network
diameter). A topology change, such as a node failure, however, necessitates a global
reset of the system since the regional directories depend on a non-local clustering
program that constructs sparse covers.

Querying and storage: Querying for events of interest in WSNs has also received
significant attention [14–16] and some of them focus on distance sensitive querying.
We note that Trail, specifically the Find-centric approach can also be used in the
context of static events.

Distance Sensitive Information Brokerage [17] protocol performs a hierarchical clus-
tering of the network and information about an event is published to neighboring
clusters at each level. DSIB has a querying cost of 4 ∗ d to reach information about
an event at distance d away. Using Find-centric Trail we can query information
about a static event at a cost of 2 ∗ d. We also note that when events are static, the
publish strategy can be further optimized and we study this in a recent work.

Geographic Hash tables [15] is a lightweight solution for the in-network-querying
problem of static events. The basic GHT is not distance sensitive since it can hash
the event information to a broker that is far away from a subscriber. The distance
sensitivity problem of GHT can be alleviated to an extent by using geographically

14

bounded hash functions at increasing levels of a hierarchical partitioning as used in
DIFS protocol. Still, attempting such a solution suffers from a multi-level partition-
ing problem: a query event pair nearby in the network might be arbitrarily far away
in the hierarchy. However, we do note that GHT provides load balancing across the
network, especially when the types of events are known and this is not the goal of
Trail.

In [16], a balanced push-pull strategy is proposed that depends on the query fre-
quency and event frequency; given a required query cost, the advertise operation
is tuned to do as much work as required to satisfy the querying cost. In contrast,
Trail assumes that query rates depend on each subscriber (and potentially on the
relative locations of the publisher and subscriber), and it also provides distance
sensitivity during find and move operations, which is not a goal of [16]. In directed
diffusion [14], a tree of paths is created from all objects of interest to the tracker. All
these paths are updated when any of the objects move. Also, a controller initiated
change in assignment would require changing the paths. By way of contrast, in Trail,
we impose a fixed tracking structure, and tracks to all objects are rooted at one
point. Thus, updates to the structure are local and any object can find the state of
any other object by following the same tracking structure. Rumor routing [18] is a
probabilistic algorithm to provide query times proportional to distance; the goal of
this work is not to prove a deterministic upper bound. Moreover, its algorithm does
not describe how to update existing tracks locally and yet retain distance sensitive
query time when objects move.

8 Conclusions and Future Work

We have presented Trail, a family of protocols for distance sensitive distributed
object tracking in WSNs. Trail avoids the need for hierarchical partitioning by
determining anchors for the tracking paths on-the-fly, and is more efficient than
other hierarchy based solutions for tracking objects: it allows 7 times lower updates
costs at almost equal find costs and can tolerate faults more locally as well.

Importantly, Trail maintains tracks from object locations to only one well-known
point, the center of the network, which we claim is necessary to minimize the to-
tal track length for objects. Well-known points are necessary for distance sensitive
tracking and, as we prove in the associated technical report of this paper [11], mul-
tiple well-known points cannot yield shorter total track length of objects. Moreover,
since its tracks are almost straight to the center with a stretch factor close to 1,
Trail tends to achieve the lower bound on the total track length. By using a tight
tracking structure, Trail also able to decrease the upper bound find costs at larger
distances and thereby decrease the average find cost across the network.

We have shown that refinements of the basic Trail protocol are well suited for
different network sizes and query frequency settings. We have validated the distance
sensitivity and fault tolerance properties of Trail in a simulation of 90 by 90 network
using JProwler. We have also succesfully implemented a Trail protocol in the context
of a pursuer evader application for a medium size (over 100 node) mote network.

Trail operates in an environment where objects can generate updates and queries
asynchronously. We note that in such an environment, due to the occurrence of col-
lisions, there can be an increase in the message complexity for querying and updates

15

especially when the objects are densely located in the network. As future work, we
are considering a push version of the network tracking service where snapshots of
objects are published to subscribers in a distance sensitive manner, both in time and
information, in order to increase the reliability and energy efficiency of the service
when the density of objects in the network is high.

References

1. I. Abraham, D. Dolev, and D. Malkhi. LLS: A locality aware location service for
mobile ad hoc networks. DIALM-POMC, 2004.

2. S. Dolev, D. Pradhan, and J. Welch. Modified tree structure for location management
in mobile environments. In INFOCOM, pages 530–537, 1995.

3. B. Awerbuch and D. Peleg. Online tracking of mobile users. Journal of the Associsation
for Computing Machinery, 42:1021–1058, 1995.

4. M. Demirbas, A. Arora, T. Nolte, and N. Lynch. A hierarchy-based fault-local stabi-
lizing algorithm for tracking in sensor networks. In OPODIS, 2004.

5. A. Arora, P. Dutta, and S. Bapat et al. A line in the sand: A wireless sensor network
for target detection, classification, and tracking. Computer Networks, Special Issue on
Military Communications Systems and Technologies, 46(5):605–634, July 2004.

6. T. He, S. Krishnamurthy, and J. Stankovic et al. Vigilnet:an integrated sensor network
system for energy-efficient surveillance. ACM Transactions on Sensor Networks, 2004.

7. A. Arora and R. Ramnath et al. Exscal: Elements of an extreme wireless sensor net-
work”. In The 11th International Conference on Embedded and Real-Time Computing
Systems and Applications, 2004.

8. H. Cao, E. Ertin, and V. Kulathumani et al. Differential games in large scale sensor
actuator networks. In Information Processing in Sensor Networks (IPSN), 2006.

9. B. Sinopoli and C. Sharp et al. Distributed control applications within sensor networks.
In Proceedings of the IEEE, volume 91, pages 1235–46, Aug 2003.

10. J. Shin, L. Guibas, and F. Zhao. A distributed algorithm for managing multi-target
indentities in wireless ad hoc networks. In IPSN, 2003.

11. V. Kulathumani, A. Arora, and M. Demirbas. Trail: A distance sensitive WSN service
for distributed object tracking. Technical Report OSU-CISRC-7/06-TR67, The Ohio
State University, 2006.

12. B. Karp and H. T. Kung. Greedy perimeter stateless routing for wireless networks.
In Proceedings of MobiCom, 2000.

13. Vanderbilt University. JProwler. http://www.isis.vanderbilt.edu/Projects/nest/
jprowler/index.html.

14. C. Intanogonwiwat and R. Govindan et al. Directed diffusion for wireless sensor
networking. IEEE Transactions on Networking, 11(1):2–16, 2003.

15. S. Ratnasamy and B. Karp et al. GHT: A geographic hash table for data-centric
storage. In Wireless Sensor Networks and Applications (WSNA), 2002.

16. X. Liu, Q. Huang, and Y. Zhang. Combs, needles, haystacks: Balancing push and pull
for discovery in large-scale sensor networks. In ACM Sensys, 2004.

17. S. Funke and L. Guibas et al. Distance sensitive information brokerage in sensor
networks. In DCOSS, 2006.

18. D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In ICDCS,
2002.

16

