
Weave: An Architecture for Tailoring Urban
Sensing Applications across Multiple Sensor Fabrics

Vinod Kulathumani, Mukundan Sridharan, Rajiv Ramnath, Anish Arora
Deptartment of Computer Science and Engineering, The Ohio State University

{vinodkri, sridhara, ramnath, anish}@cse.ohio-state.edu

Abstract—A characteristic of urban sensing is that applications
need to compose the operations and fuse information from
sensing fabrics extant in the environment, to meet requirements
for which the fabrics were not designed a priori. We propose an
architecture, WEAVE, that allows tailoring of application s across
one or more urban sensing fabrics. Key to the architecture is
use of standard application programming interfaces (including
vertical or domain dependent ones). We propose such interfaces
for sensing fabrics that support the class of search applications,
and show how these interfaces are used to compose example
applications in operation scenarios that we have implemented at
the Ohio State University.

I. I NTRODUCTION

The domains of urban sensing applications are many and
varied, ranging from security to entertainment. Unlike for
example scientific applications where an “optimal” sensor
network may be designed and then deployed, the urban en-
vironment consists of loosely-coupled (or even un-coupled)
sensor fabrics that are already “out there”. We characterize
the urban sensing problem as one where, in response to a
specific requirement (such as tracking and subsequent capture
of an assailant), an application needs to be developed where
(a) the operations of varied, independent sensor networks are
integrated and (b) the information from these networks suitably
retrieved, analyzed and fused to meet the application, either
while an event is in progress or post facto after the event
has taken place. Also, the exact sequence or pattern of events
may not be known to completely automate a client application.
In other words, often a human may (or even, must) exist in
the loop to interpret outputs from a given fabric and involve
followup fabric actions based on the outputs.1

In this paper, we discuss issues relevant to the architecture
of urban sensing applications, and present key elements of
an architecture, which we callWeave. In this architecture, we
view individual sensor networks as programmable fabrics that
can be leased by multiple high-level applications. To be used
as such a fabric, these loosely coupled networks are trusted
by their clients, conform to a shared information model, and
provide services with standard interfaces.

This paper is organized as follows: In Section 2, we describe
our concept of operations for urban sensing applications and
use them to motivate architectural requirements. In Section
3, we outline theWeavearchitecture. We then, in Section

1This human intervention and inferencing requirement is often due to
privacy regulations that require that automated inferencing, such as by using
data-mining techniques, may not be made without legal approval of probable
cause.

4, describe the standard application programming interfaces
(API) for a class of search applications. Next, in Section 5,
we present example search applications that are composed
using the WeaveAPIs. The applications are chosen from
operation scenarios that we have implemented at the Ohio
State University (OSU): The first is related to an urban
surveillance scenario where multiple sensor fabrics are used
to detect and track suspicious persons entering a building.The
second and third are location service applications for objects or
people of interest within a building in the same fabric or across
multiple sensing fabrics. In Section 6, we present related work,
and finally, in Section 7, we discuss future work and make
concluding remarks.

II. EXAMPLE APPLICATION SCENARIOS

To motivate our characterization of urban sensing and identify
requirements for our architecture, let us consider concepts
of operations and specific application scenarios in two sub-
domains of urban sensing: campus surveillance and social
networking.

Campus Surveillance ConOps: In collaboration with do-
main specialists at the Air Force Research Laboratory, the
Homeland Security Program at OSU and the Ohio Association
of Chiefs of Police, we identified the following representative
scenarios for this domain.

Scenario: Suspicious persons need to be tracked across a
campus, including through buildings. Monitoring outdoorsis
via a network of building-mounted video cameras and indoors
is via motion sensor and camera network fabrics deployed
inside buildings. To support low power operation and mitigate
concerns about citizen privacy, the indoor network should not
be activated for all moving persons, but be cued instead to
operate when the outdoor video camera network tags some
activity as suspicious and its tracking of people suggests that
they are entering a building.

Social Networking ConOps: Motivated by scenarios where
users have expressed interest in locating friends and finding
out about objects of interest within a locality, we have imple-
mented PeopleNet, a network of mobile stations, as well as
multiple static sensor networks at OSU.

Each mobile unit in a PeopleNet fabric consists of a cell phone
connected to a (Intel-developed, 802.15.4 radio equipped)psi-
mote. Mobile units connect to a central access point in the
building that they are in, as well as a set of infrastructure
nodes that aid in localizing the mobile units. We are presently
deploying an instance of PeopleNet within the CSE building
and another instance is planned for the Recreation and Physical



2

Activity Center (RPAC) that is a few blocks away.

We have also designed and implemented 3 fabrics of static
PIR sensors, (1) one of these is deployed within the CSE
building to assist with indoor tracking and monitoring status
of conference rooms, (2) a second one to be deployed in the
RPAC to monitor availability of squash courts, and (3) a third
one to be deployed at the nearby Oxley’s Cafe that monitors
the queue at the cafe. Apart from these PIR sensing fabrics,
there is also an Elevator sensing fabric designed using low
power radios that monitors the position and status of elevators
inside the CSE building.

Fig. 1 shows each mobile unit of the PeopleNet fabric that
consists of a cell phone integrated with a802.15.4 equipped
psi-mote. Fig. 2 shows the deployment within the CSE build-
ing corresponding to the PeopleNet sensing fabric and the PIR
sensing fabric. In the Peoplenet fabric there are two types
of nodes, infrastructure nodes and mobile nodes. Each floor
consists of a set of infrastructure nodes (shown by green dots)
to assist with localization and programming of the mobile
nodes. The mobile nodes are shown by blue dots.

Fig. 1. A mobile unit in PeopleNet

Fig. 2. Layout of CSE building with PIR fabric and PeopleNet fabric

Scenarios: Representative application scenarios in this case
consist of users issuing ad-hoc locality specific queries such
as “Is Mukundan already at the RPAC?”, “Is any squash court
in RPAC empty?”, “Where is the elevator?”, or “How long
is the queue at Oxley?” via their PeopleNet mobile devices.
Resolving these queries would typically require routing the
query to the central point in the building where the user is and
somehow accessing the desired data from the sensor fabric in
question.

Common to these conops are the following architecture-
relevant elements:

� No “best” sensor: Different sensor fabrics may suit for
different environments (e.g., indoor and outdoor) even if
the objects to be sensed are identical. The right detectors
to deploy may not be known until a high-probability
threat has been identified or an event occurs. Following
the threat or attack and as part of the response, sensor
fabrics may be re-targeted and re-purposed accordingly.

� “Dual-use” fabrics: Information and intelligence may
be needed at multiple layers of the safety response
system, i.e., to local, state and federal law and safety
enforcement, each investigating situations with different
objects and at different scales. In other words, fabrics
should have the ability to support multiple clients oper-
ating independently.

� Resource management: The architecture must support
the different fabrics to cope with their resource con-
straints, while still supporting their ability to federate.

� Human-in-the-loop: A primary mode of sensor fusion is
human-driven, i.e., sensor streams are typically fed back
to a command console and cross-stream inferences made
by humans. Thus, support is desirable for letting autho-
rized personnel readily access and search data sensed
by the fabric, and conversely, for letting people add
human “sensor” information such as “beat cops” report-
ing on suspicious activity, informants providing tips, etc.
to databases that can be fused with data automatically
collected via fabrics.

III. T HE WeaveARCHITECTURE

Weave has four key architectural elements: Sensing fabric,
Object and Client and an Access manager.

Sensing fabric: A fabric is an independent, decoupled,
network, capable of sensing, storing, and communicating some
physical phenomena. Examples include networks of motion
sensors, surveillance cameras, netted microphones, and soon.
A fabric need not in general share state or cooperate with
others fabrics, as a result of policy or of platform ability.

A fabric offers its services to clients via an application
programming interface (API). Some fabric services may be
generic, others may be tailored to the application domain(s)
that the fabrics support. We refer to the latter set as vertical
services. Standardizing vertical services is desirable, so that
applications can be readily composed and ported across fabrics
geared to support a particular application domain. In general,
a fabric need not make guarantees about its quality of service,
delivering its results based only on a “best-effort”.

Later, in Section4, given the context of the “search” appli-
cation scenarios described in Section 2, we detail a proposed
standard API for the services offered by sensing fabrics that
support search.

Object: A fabric enables measurement of physical phenom-
ena to detect and classify physical objects such as humans,
vehicles, weapons and explosives. Each type of object is
characterized as a predicate on physical phenomena; all objects
that satisfy the corresponding predicate belong to an object
type. Objects may be identified (or associated) by the fabricor



3

Fig. 3. WeaveArchitecture

remain anonymous (or non-associated). Some objects may be
known a priori to the fabric (for example, “blue force” objects
that advertise their presence to the network or permanent
elements in the environment such as “Elevator 2” or “Squash
court B”). Other objects are not known a priori, but are
detected and then associated by the fabric. Objects have type-
specific attributes, such as location and velocity, associated
with them.

Associated with each object type is adetector. Detectors may
be implemented by the fabric designer or by clients. In order
to load and run a detector on the fabric, a client needs to access
some fabric services (such as the Instantiate service, which is
discussed in Section 4).

Client: A client is an application that can use the services
provided by one or more sensing fabrics. We assume a client
can access a fabric, but how it does so (i.e. the medium for
connectivity) is outside the scope of the architecture. Likewise,
we assume that the client knows the services offered by a
fabric through anaccess managerdscribed next, but how it
discovers or looks up this information is outside scope.

A client may choose to trust the fabric, or it may not
(preferring instead to validate the fabric-provided information
by cross-referencing it with information provided by other
fabrics or sources). The access rights of a client may vary
from fabric to fabric. Moreover, if a client has the rights to
instantiate new detector capabilities within a fabric, it may
choose to make these shareable with other clients. We do not
elaborate on how security and trust between clients and fabrics
is realized.

To begin use of a fabric, a client registers with the fabric. It
may then choose to instantiate detectors on the fabric. It would
then invoke fabric services: In the case of search services,
the client may selectively search for particular object types,
specific objects, or objects in certain segments of the fabric.
Operation invocations could be one-time, time-bounded or
persistent. A client may therefore terminate time-boundedand
persistent invocations.

Access manager: We assume that the client knows the
services offered by a fabric through a directory maintained
by an access manager. How the client discovers or looks
up this information is outside the scope of this architecture.
An access manager may manage multiple fabrics if they

belong to the same administrative domain. The access manager
maintains a directory of object types supported by fabrics
and their semantics. The access manager also grants access
permissions to a client for using a fabric. Fig. 3 shows the
Weavearchitecture.

IV. V ERTICAL API FOR SEARCH

In this section, we describe the standard APIs provided by ur-
ban sensing fabrics that support application scenarios stated in
Section2. These fabrics support two generic APIsRegisterand
Instantiate, and a vertical APISearchspecific to the “search”
application domain. We propose the following specificationfor
Register, InstantiateandSearchAPIs.

Register: To use a sensing fabric, a client first registers with
the fabric and is provided a network handle which is then used
in subsequent invocations of the services offered by the fabric.
The Register service is a generic fabric service that handles
the security and authentication aspects for the fabric.

FabricSession Register(
Fabric F, Client C)

The Fabric data structure contains the name of the fabric
being accessed. The Client data structure contains credentials
such as id and password assigned to the client by the fabric
administrator. A FabricSession is returned to the client. This
may contain an expiration date and will encapsulate access
rights for the client on the fabric.

Instantiate: The Instantiate service is a generic fabric
service that provides the client the capability to program the
fabric with its own detector. Instantiate is invoked with a
FabricSession and the Detector to be downloaded to the fabric.
Note that in order to create a Detector, the user has to be aware
of the internal API of the fabric.

Boolean Instantiate(

FabricSession, Detector, Shareable)

A detector that is implemented by a client may be made
available to another client through the Shareable parameter.

Search: Once a client has registered, it can useSearch in



4

order to find objects in the fabric .

SearchSession Search(

FabricSession, ObjectType, Object,
Locations, Parameters, Persistence,

Duration, Periodicity, SearchListener)

The return value ofSearch specifies whether the call is a
success or a failure. If the call fails, SearchSession is NULL.
The result of the search on the other hand is returned througha
separate call on the SearchSession to map to the actual Search
call. The result of a search contains the status of all objects
that match the search. SearchListener is a function specified
by the client which theSearch service can call back to return
the results of the search.

We now discuss the parameters of the Search API.
� ObjectType: This specifies the object type for which the
Search is invoked. The fabric uses this to invoke the
appropriate detector.
� Object: If the client is interested in searching for a
specific object of the type, this can be specified by
providing the identifier of the particular instance,Object
(which must have been returned as part of a priorSearch
if the object is non cooperative). If the object is one of
the cooperative types, then the id is known a priori to the
client.
� Locations: If the fabric allows selective execution of the
detector on a section of the network, the Locations field
specifies those sections
� Parameters: These are the set of parameters exposed by
the fabric for a particular object type (i.e. the correspond-
ing Detector).
� Persistence: This parameter specifies whetherSearch
has been invoked as a one shot or a persistent operation.
� Duration: This field specifies the interval over which
objects that match theSearch should be returned. The
duration of aSearch can be DURATIONPAST, which
means that theSearch is for objects detected in the
past. Note that the fabric may not implement any history
capability, in which case,Search will fail if called with
DURATIONPAST.
� Periodicity: A persistentSearch invocation corresponds
to tracking the status of an object. The semantics of
the persistentSearch invocation could be either that
a new result is returned every time the status of an
object changes or it could be that the status of an
object is reported periodically at the interval specified
by Periodicity.
� SearchListener: This field specifies the listener function
initiated by the Client which theSearch service can call
back to return the results of the search.

We do not require that a fabric implement all possible param-
eters. However, the fabric must return a “failed” result if the
parameters supplied are not supported.

The status of an object contains the current values of the
attributes associated with the object. One example of an
object attribute is location. There can also be other attributes

associated with objects. For example, if a fabric implements a
detector for object type “Elevator”, the attributes of an object
could be location and the direction of motion. Each call back
to a SearchListener function will contain one record of an
object containing the value of all its attributes.

Search can be thus invoked in the following modes of
operationin combination:

� Find: One may invokeSearch to simply find out if an
object exists.

� Search temporally: Objects could be searched for a
period of time that spans the future or the past. Thus
Search can be used for tracking an object or a set of
objects.

� Search spatially: Search may be invoked to only look
for objects at a specified location or all the locations.

As part of implementation of the sensing fabric,Search may
internally be supported by services for association and power
management. By an association service, we mean identifying
new objects of a certain type, assigning an identifier to
them and associating subsequent detections of an object with
previously existing identifiers in the fabric. Power management
services may be used to selectively activate or deactivate
detectors within the sensing fabric. For example, a detector
may be activated only when the firstSearch for that object
type has been invoked. On the other hand the semantics of
a fabric could be to keep detectors always active irrespective
of whether aSearch has been issued. Such fabrics could,
for instance, supportSearch over a past duration. Similarly,
if Search is invoked to track a particular object, power
management services can selectively activate the detectors in
the vicinity of the current location of the object.

Terminate: Corresponding to each of theRegister, Search
and Instantiate operations is a destructorTerminate. A
persistentSearch that has been invoked or a detector that
has been instantiated or a new network handle can be revoked
using theTerminate API. Terminating an active detector
removes allSearch invocations on that object type.

V. I LLUSTRATING SEARCH APPLICATIONSCOMPOSED

USING Weave

In this section, we describeSearch applications related to the
urban surveillance and social networking scenarios of Section
2 that we have composed based on theWeavearchitecture.

A. Urban Surveillance Scenario

We monitor suspicious activity using our building-mounted
video camera outdoor fabric and camera and motion sensor
indoor fabric. The outdoor video camera fabric is instantiated
with detectors to detect unusual events, such as people getting
out of illegally stopped cars, atypical individual motion,crowd
formation, or repeatedly circulating vehicles. Any person(s)
tagged as suspicious and headed towards a building lead to
cueing of the indoor sensor fabrics. The following example
showcases tracking of people getting out of an illegally
stopped car.

The client registers itself to the building camera fabric.



5

FabricSession_m =
Register(OutdoorCameraFabric,

Client)

The client is assumed to be aware of the object types detected
by the fabric. In this case, it invokesSearch on object type
‘StoppedCar’.

Result_m = Search(FabricSession m,
StoppedCar, NULL, LOCATIONALL,

Parameters, PERSISTENT,
DURATIONFOREVER, 0, SearchListener)

ObjectT ype refers to the ‘StoppedCar’ detector, activated in
the entire fabric, whileParameters could be settings (such
as semantics for a stopped car) exposed by the underlying
detector.Search will return every new instance of a stopped
car with a different id.Periodicity is set to0 to indicate that
a result should be returned only when a new stopped vehicle
is detected.

The client also registers itself with the indoor photo camera
fabric. Upon detection of a suspicious stopped car, it issues a
Search to the indoor motion triggered photo camera fabric,
as follows.Duration is set to the next30 seconds (during
which the object is likely to enter the building) and resultsare
returned at a periodicity of1 second.Locations is set to the
region near the entrance of the building.

FabricSession_ca = Register(
camera_network, Client)

Result_ca = Search(FabricSession_ca,

NULL, NULL, Locations, PERSISTENT

30, 1, SearchListener)

Fig. 4(a) shows a snapshot of a person getting out of a
car stopped at a curb outside the CSE building (3 video
cameras cover this particular area) and heading towards the
CSE building with a bag. After this detection, the indoor
camera fabric is activated by the client. Fig. 4(b), shows a
photograph from the indoor motion-triggered camera fabric,
of the same person tagged as suspicious, entering the CSE
building with the bag. (These snapshots were taken during a
trial run of the above scenario at OSU staged by AFRL as part
of a layered sensing experiment that included airborne sensors
in addition to the fabrics described in this example).

In addition, the indoor motion sensor fabric can track any
suspicious person entering the building. TheSearch is-
sued to the motion sensor fabric using a session handle
FabricSession mo is shown below.

Result_mo = Search(

FabricSession_mo, Human, NULL,

Locations, PERSISTENT, 10, 1,
SearchListener)

The object type is set to Human for which a detector is

implemented in the fabric.Object is set to NULL because
the object type is non advertised and an identifier has not
been assigned.Duration is set to the next10 seconds when
the object is likely to enter the building and the results are
returned at a periodicity of1 second.Locations is set to the
region near the entrance of the building.

If the suspicious person enters the building, a new object
instance is created by the motion sensing fabric and returned
to the client. The client then terminates the previously issued
Search operation and invokes a newSearch with the returned
id.

Result_mo = Search

(FabricSession_mo, Human,
"SuspiciousPerson", LOCATIONALL,

PERSISTENT, DURATIONFOREVER, 5,

SearchListener)

Note that in the previous call, “SuspiciousPerson” is actually
an instance of the object type ’Human’ returned by the motion
sensing fabric. The first invokation ofSearch is performed by
specifying the parameter as NULL as the id of any individual
obejcts is not known. This invokation of Search returns every
new instance of object type HUMAN with a separate identifier.
When any person enters the building,“SuspiciousPerson” is
actually the identifier assigned to this object. The previous
Search is terminated and a newSearch is invoked with this
identifier to track the person that just entered. If the fabric
cannot clearly associate an id with an object all the way, it
tracks all candidate objects.

B. Social Networking Scenarios

We now describe Weave-based application associated with
two locality specific query scenarios, that are composed to
originate from the PeopleNet mobile fabric and to be realized
using other sensing fabrics mentioned in Section2.

Example 1 (Where is Vinod?): Client Anish in the CSE
building, who is scheduled to play squash with Vinod in RPAC,
wishes to find out if Vinod is still in the CSE building or
has already reached the RPAC. In this case, the supporting
application to determine if Vinod is in the CSE building or in
RPAC connects to the instances of the PeopleNet networks
in CSE and in RPAC, and invokes theSearch for the id
associated with Vinod’s mobile device (the application is
assume to know the id) in both networks. The PeopleNet fabric
supports Search operations on cooperative objects, and can
provide a more precise location as well.

The following is the sequence ofSearchinvocations in the
client application. (We omitRegisteroperations.)

Result_cse = Search(
FabricSession_cse, ADVERTISED, Vinod,

LOCATIONALL, ONCE, NOW,
NULL, SearchListener)

Result_rpac = Search(

FabricSession_rpac, Advertised, Vinod,



6

(a) Person getting out of stopped car, tagged as suspect(b) Picture of person tagged as suspicious, entering CSE
building

Fig. 4. Campus surveillance scenario

LOCATIONALL, ONCE, NOW,
NULL, SearchListener)

ObjectT ype is set to ADV ERTISED and Vinod is the
object specified. The search is invoked as a one shot operation,
and Periodicity is set to NULL.

Fig. 5 shows localization of mobile units in PeopleNet in an
early trial run, using a combination of static anchor nodes
and collaboration among mobile units themselves. This sort
of service supports the response to client issuedSearchon
self advertised objects.

Fig. 5. Localization of Mobile Units in PeopleNet

Example 2 (Is there an empty squash court?):Anish then
wishes to find out if any squash court in RPAC is free. The
PIR sensing fabric in the RPAC building implements a detector
for object type ‘SquashCourt’. The detector returns one of two
values,full or empty, for every instance of squash court.
These are cooperative objects that belong to the sensing fabric
itself. Each squash court itself has an id associated with itand
the application to answer Anish’s query can invoke aSearch
operation on an individual court also.

Result_pir = Search(

FabricSession_cse_rpac, SquashCourt,
NULL, LOCATIONALL, ONCE, NOW,

NULL, SearchListener)

Search is invoked in this example to return the status of all
squash courts by setting the id to NULL.

Note that in both examples, we have abstracted from the client

the issue of the underlying communication. In other words,
the client is oblivious to communication network that ensures
connection with the RPAC PeopleNet fabric and the RPAC
PIR fabric and that ensures retrieval of information from these
fabrics .

VI. RELATED WORK

Two notable aspects of our proposed Weave architecture are
(i) it simplifies design of applications across heterogeneous
sensor networks that are independently managed and(ii) it
views a sensor fabric as providing an extensible database of
queryable objects. SenseWeb [1] and GENI [2] are related
to (i) in that they propose architectures for heterogeneous
networks. TinyDB [3], SemanticStreams [4] and ASAP [5]
are frameworks related to(ii).

SenseWeb:SenseWeb, an architecture proposed by Microsoft
Research, allows sensing applications to be developed which
use contributing sensor networks from across the globe. A
(presently centralized) engine provides a uniform set of APIs,
to which applications and sensor networks from different
domains connect to subscribe/visualize and publish data re-
spectively.

Weave, in contrast, is distributed in that applications directly
access individual sensor network fabrics. The fabrics provide
applications with the services themselves, as opposed to
simply publishing data, unlike SenseWeb where application
process data acquired from the engine. And the fabric APIs
need not all be identical.

GENI: GENI proposes a framework for experimentation
across different types of networks, including wireless subnets
and sensor networks. GENI has a notion of user services,
services available for researchers or users of a particular
network to access its underlying resources. The services that
we propose may indeed be viewed as an instance of GENI user
service; for instance, they allow users to instantiate their own
programs on the underlying network resources and to access
the associated results.

Note that Weave services also allow users to access data
generated by other network services or other user-supplied
programs. This contrasts with the default GENI virtualization
requirement that different user programs be isolated from each



7

other. We assume that some users may opt-in to share the
object data resulting from their programs with other users.
(It is up to the latter to decide whether or not to trust the
data.) For instance, a user can instantiate a network with a new
detector for objects of type car and another user can query the
network for objects of that type. In this sense multiple users
of a network are not isolated from each other.

TinyDB: TinyDB is a query processing system for extract-
ing data from within a sensor network. Users specify data
requirements as TinyDB queries, the data is then extracted
from the network using appropriate aggregation and filtering
mechanisms.

Weave also views each sensor fabric as a database, but its
queries (which can be TinyDB-like) are posed on objects,
which are semantic values exposed by the fabric potentially
via user supplied programs, as opposed to raw sensor data.
Weave allows composing applications such as tracking across
different networks, which are much more complex than those
with TinyDB. TinyDB does not focus on extracting data from
multiple independent networks.

SemanticStreams: SemanticStreams provides a framework
for describing and composing applications on semantic values
inferred over sensor data, such as person, car or truck. A
primary contribution is an interpreter for concurrent high-level
applications executing on a single network that optimizes the
design optimum design of underlying network services while
satisfying the requirements of all the applications.

By contrast, we expect that user services be already im-
plemented for the sensor fabric and available to different
applications. At run time, upon invocation by an application, a
user service is allowed to optimize its operation but this isnot
a goal of the fabric design. Our goal is to provide a standard set
of APIs that allow applications to be tailored across different
sensor fabrics.

ASAP: ASAP focuses on optimizing urban sensor network
applications based on priority and situation awareness. The
focus of that paper is on designing an ASAP agent, which
implements a query provided by the user on the underlying
sensor networks based on the knowledge of underlying net-
work interfaces in an optimized manner. This is complemen-
tary to our architecture, where we focus on a standardized
interface for sensing fabrics so that composing applications is
facilitated.

Other related work: In [6], the authors propose4 architec-
tural requirements for urban participatory sensing, namely in-
network verification of location and time context, provisions
for operating on physical context based on sensor readings,
enabling selective sharing of information and services for
naming, dissemination and aggregation. In this paper, we have
proposed an architecture that allows aggregation of data in
space and time and allows individuals to coordinate activities
and thus partially address their requirements on sharing of
information and aggregation.

Handling location is a basic requirement for theWeavear-
chitecture (as for most pervasive computing systems). [7]
provides a comprehensive taxonomy of location that will be
of great use in structuring extensions to the handling of this
concept inWeave, such as the Locations parameter of Search.

Urban sensing applications are a subset of the pervasive
computing applications considered in [8] which presents a
taxonomy for characterizing, and providing a controlled vo-
cabulary for thinking about, such applications. Essentially this
taxonomy will provide additional architectural requirements to
Weaveas we develop it further.

VII. C ONCLUSIONS ANDFUTURE WORK

We have presented theWeave architecture for composing
applications that use across one or more urban sensing fabrics.
The architecture leans towards the use of standard APIs for
sensing fabrics. Some of these are generic to all urban sensing
application domains, while the rest are vertical APIs specific to
an application domain. Standardizing even the vertical services
is desirable so that applications can be readily composed for
and ported across fabrics that support a particular application
domain. In this paper, we detailed an API to support the class
of search applications that we have encountered in diverse
setting. We have validated ourSearch API by showing its
use in the composition of sample applications in operation
scenarios that we have implemented at OSU.

While sensing fabrics for urban sensing applications belong to
one class of fabrics, similar vertical APIs can be standardized
for other classes of sensing fabrics. An example is that of
testbed fabrics, and we have in other work been outlining a
vertical API for this class.

We plan to build upon this work in three directions. The
first is to design and implement efficient lower level services
necessary to support the fabric model. Design and imple-
mentation of these services is a current focus. Examples
include power management services that efficiently manage
resources across requirements of multiple clients (including
user supplied detectors) and scheduling services that ensure
fairness and security.

The second direction of work is security. In our implementa-
tion of Kansei [9], a static wireless sensor network testbed
at Ohio State University, we have the following security
features: (1) client authentication with a trusted manager, and
(2) running each client program on a different wireless channel
to prevent interference. We are currently working on other
security features such as detection and prevention of jamming
and forming a restricted set of hardware APIs that can be
accessed by client code to operate on the network.

Implicit in the Weavestandard is a standardization of the
entities within the fabric, namely, Objects, and their attributes,
namely, Identity and Location. The Location attribute also
served as a relationship between the object and the fabric.
Building on this, a third direction is towards a framework
for knowledge-based urban sensing. We plan to develop a
richer ontology for urban sensing that builds up from physical
phenomena, sensing signatures, detectors, and richer classes of
objects. Our goal is to then use this ontology to enable queries
with richer semantics, as well as model-driven application
monitoring, management, composition and generation.

VIII. A CKNOWLEDGEMENTS

We thank the students and faculty of the newly formed Institute
for Sensing Systems at OSU and Dr. Todd Stewart, Director



8

of OSUs Homeland Security Program for several insightful
discussions. We also acknowledge the help provided by the
Air Force Research Laboratories in Dayton, and Brett Gerke,
Ohio Association of Chiefs of Police.

REFERENCES

[1] A. Kansal, S. Nath, J. Liu, and F. Zhao, “SenseWeb: An Infrastructure
for Shared Sensing,”IEEE Multimedia, vol. 14, no. 4, pp. 8–13, 2007.

[2] “Global Environment for Network Innovations: GENI System Overview,”
Prepared by GENI Project Office, Document ID: GENI-SE-SY-SO-01.1.
[Online]. Available: http://www.geni.net/doc/GENISysOvrvw1.1.pdf

[3] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,“TinyDB:
An Acqusitional Query Processing System for Sensor Networks,” ACM
Transactions on Distributed Systems, vol. 30, no. 1, pp. 122–173, 2005.

[4] K. Whitehouse, F. Zhao, and J. Liu, “Semantic Streams: A Framework
for Composable Semantic Interpretation of Sensor Data,” inEWSN, 2006,
pp. 5–20.

[5] J. Shin, R. Kumar, D. Mohapatra, U. Ramachandran, and M. Ammar,
“ASAP: A Camera Sensor Network for Situation Awareness,” inInter-
national Conference On Principles Of Distributed Systems (OPODIS),
2007.

[6] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan,S. Reddy, and
M. B. Srivastava, “Participatory sensing,” inWorld Sensor Web Workshop,
ACM Sensys, 2006.

[7] S. Dobson, “Where’s Waldo? - or - A taxonomy for thinking about
location in pervasive computing,” Trinity College Dublin,Tech. Rep.
TCD-CS-2004-05, 2004.

[8] K. Dombroviak and R. Ramnath, “A Taxonomy for Pervasive and Ubiq-
uitous Computing Applications,” inSymposium for Applied Computing,
2007.

[9] A. Arora, E. Ertin, R. Ramnath, M. Nesterenko, and W. Leal, “Kansei: A
high fidelity sensing testbed,”IEEE Internet Computing, vol. 10, no. 2,
pp. 35–47, March 2006.


