Motivation & Objectives

- Due to wall friction, propagation speeds of flames in tubes/channels can grow by several orders of magnitude. Such a flame acceleration may subsequently result in a deflagration-to-detonation transition (DDT). The DDT stays behind countless disasters in mines and power plants; and it can be utilized, constructively, in novel energy efficient setups such as pulse-detonation engines.
- For decades, there was a limited theoretical understanding of the DDT mechanism because of the common opinion that flame acceleration is impossible without turbulence: the lack of knowledge about turbulence and turbulent flames prevented a rigorous DDT formulation to be developed.
- It was next realized that turbulence plays a supplementary role in the acceleration scenario such that even laminar flames can accelerate and initiate detonation due to wall friction [1,2].
- Based on this constructive idea, conceptually-laminar, rigorous formulations to quantify the flame acceleration scenario in channels and tubes have eventually been developed and validated [3,4].
- However, the formulations [3,4] employ a set of assumptions; this thereby leads to the intrinsic limitations of the formulations, which have not been properly identified so far.
- Identification of the intrinsic limitations and accuracy of the formulations [3,4] and quantification of their validity domains constitute the overall goal of the present work.

Analytical Formulations of Flame Acceleration in Channels/Tubes

- The formulations [3,4] are based on the following approximations: (i) zero flame thickness; (ii) incompressible, near-isobaric combustion process; (iii) plane parallel flame generated flow in the fuel mixture; (iv) the average flame-generated flow velocity is related to the total burning rate as: \(U_w = \Theta(1-U_\infty) \), and \(S_l \), the normal flame velocity
- The exponential state of the flame acceleration is exhibited \(U_w \propto \exp(\Theta_s t/l) \).
- Flame evaluation equation: \(w_0(0, r) - w_1(q, \tau) = \frac{1}{1 + \frac{U_\infty}{U_w}} \left(\frac{\partial w}{\partial \tau} + \frac{1}{\Theta} \frac{\partial w}{\partial r} + \frac{1}{\Theta} \frac{\partial w}{\partial \Phi} \right) \)
- Plane-parallel Navier-Stokes equation, 2D and cylindrical-axisymmetric

Flame Acceleration in Cylindrical Tubes

- The major result of the 2D formulation [3] is a coupling of the flame acceleration rate \(\sigma \) to the thermal expansion ratio \(\Theta = \gamma_i / \gamma_o \), and a flame propagation Reynolds number \(Re = RS_l/l_v \), where \(\mu = \mu_0 - \sinh(\mu_0 - \Theta_0) \), \(\eta = \eta_0 - \sinh(\eta_0 - \Theta_0) / (2(\mu_0 + \sigma)) \)
- This equation can be solved analytically in the limit of \(\mu \gg 1 \), and \(\Theta > 1 \) with the acceleration rate

Flame Acceleration in 2-D channels

- The major result of the 2D formulation [3] is a coupling of the flame acceleration rate \(\sigma \) to the thermal expansion ratio \(\Theta = \gamma_i / \gamma_o \), and a flame propagation Reynolds number \(Re = RS_l/l_v \), where \(\mu = \mu_0 - \sinh(\mu_0 - \Theta_0) \), \(\eta = \eta_0 - \sinh(\eta_0 - \Theta_0) / (2(\mu_0 + \sigma)) \)
- This equation can be solved analytically in the limit of \(\mu \gg 1 \), and \(\Theta > 1 \) with the acceleration rate

Conclusion

- Formulations [3,4] are revisited. Their intrinsic limitations are identified in the form of domains in a Re-\(\Theta \) diagram. While the formulations are accurate for large Re and \(\Theta \), the accuracy deteriorates at other conditions. Finally, this analysis is supported by numerical simulations; see the figure on the right. Here, the exponential (circles) regime of flame acceleration is separated from a non-exponential regime (triangles) by the solid line associated with a threshold thermal expansion ratio.

Acknowledgements

References

We thank Prof. V. Bychkov of Umea University, Dr. D. Valiev and Prof. C.K. Law of Princeton University, and Profs. H. Li and I. Celik of West Virginia University for useful discussions.