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Abstract

In this paper, we address the problem of still-to-video
(S2V) face recognition. Still images usually have high qual-
ities, captured from cooperative users under controlled en-
vironment, such as the mugshot photos. On the contrary,
video clips may be acquired with low resolutions and low
qualities, from non-cooperative users under uncontrolled
environment. Because of these significant differences, we
consider the S2V as a heterogeneous matching problem,
and propose to develop a method to bridge the gap between
the two heterogeneous modalities. A Grassmann manifold
learning method is developed to construct subspaces for the
purpose of bridging the gap between the two face modalities
smoothly. We conduct extensive experiments on two large
scale benchmark databases, COX-S2V and PaSC, with dif-
ferent recognition tasks: face identification and verification.
The experimental results show that the proposed approach
outperforms the state-of-the-art methods under the same ex-
perimental settings.

1. Introduction

Face recognition is one of the most important topics in
biometric and computer vision. In addition to the tradi-
tional still image based face recognition, the availability
of inexpensive cameras and increasing usage of surveil-
lance systems have driven several recent works on video
based face recognition [23, 15, 2, 27, 6], where faces cap-
tured by video cameras usually contain more variations
caused by illumination, head pose, expression, and those
due to the motion blur. More recently, the problem of
Still-to-Video (S2V) face recognition has attracted atten-
tions [13, 14, 1, 3, 4, 26, 21], since it has a wide range
of usage for many practical applications, such as identify-

Figure 1. Illustration of the proposed method. In the training stage,
still images and video clips are represented as two points on the
Grassmann manifold to learn the “transitions” between them. In
testing, the still images and video clips are projected on to a se-
quence of continuous subspaces before matching between them.

ing the criminal suspect with his video clip among a huge
mug-shot still image database, and rapid locating and track-
ing target subject with his one still image among the whole
city security surveillance video data. However, the great
disparity brought by still images and video clips poses a
huge challenge to the S2V face recognition task. In this pa-
per, we mainly focus on the S2V face recognition problem
that each subject is enrolled with only few high resolution
still images, while the query is represented as a video clip
which contains a sequence of uncontrolled image frames



with complex variations.
One of the methodologies of solving the S2V face recog-

nition considers video clip as a set of individual frames [13]
[1], and methods on still image face recognition can be nat-
urally applied to the S2V scenario. In this way, similar-
ity between still image and video clip can be expressed by
the calculations over the individual comparisons between
frames.

Metric learning is another recent popular methodology
and manifests in various forms, such as Neighborhood
Components Analysis (NCA) [10], Information Theoretic
Metric Learning (ITML) [7], Local Fisher Discriminant
Analysis (LFDA) [25] and Large Margin Nearest Neigh-
bor (LMNN) [28]. More specifically, metric learning usu-
ally intends to learn a transformation (metric) from one Eu-
clidean space to another, by pulling the samples with the
same label as closer as possible, while pushing the ones
with different labels as far as possible. More recently, point-
to-set based metric learning methods, such as Point-to-
Set Distance Metric Learning (PSDML) [31] and Learning
Euclidean-to-Riemannian Metric (LERM) [14], have been
proposed and successfully applied to the S2V face recogni-
tion problem. In these methods, metric is learned between
single samples and the set models, so that the one (still im-
age) vs. multiple (video clip) recognition can be conducted
using the minimum point-to-set measurement. These meth-
ods are regarded as a more appropriate way for the S2V
face recognition task, and the obtained performance [14]
exhibits the improvement over traditional metric learning
methods.

However, neither the former straightforward strategy
which treats video as separated frames nor the point-to-
set metric learning methods, considers the fact that the two
modalities are quite heterogeneous, especially in the S2V
scenario that enrolled still images are always of high qual-
ity yet videos often suffer from relatively low quality. In
previous approaches different heterogeneous face problems
have been studied, e.g., in [30] [29] [18] for face photo and
sketch problem, [16] [19] for face recognition in NIR and
visible. And in [22] [17] and [20] heterogeneous face recog-
nition between visible and beyond-visible domains have
been studied. More recently, a review of heterogeneous face
recognition approaches is conducted in [12]. However, lit-
tle attention has been devoted to the S2V as a heterogeneous
matching problem, attempting to reduce the differences be-
tween still images and video clips.

Different from the metric learning perspective, we
mainly focus on generating the connections between het-
erogeneous modalities, i.e., still images and video clips, in
a natural unsupervised manner. Specifically, we attempt to
explore the transition (connection) from one modality to the
other, so that the relationship between them can be mod-
eled and used for the subsequent modality representation

and distance matching. Particularly, to make full use of
the recent advantages in subspace learning, we approach the
S2V face recognition by exploring the connection of hetero-
geneous subspaces lying on Grassmann manifold [8], thus
characterizing the transition from still images to video clips,
while reducing the differences between them. Inspired by
the recent success of Geodesic Flow Kernel (GFK) [11] on
object recognition, which is one type of Grassmann mani-
fold learning methods, we explore the performance for S2V
face recognition. We think that the Grassmann manifold
based learning could be an appropriate approach to build
the relationship between still face images and video clips.

The rest of the paper is organized as following: we intro-
duce the proposed heterogeneous approach based on Grass-
mann manifold in Section 2. We conduct experiments on
two databases and the results are shown in Section 3. Fi-
nally, conclusions are drawn in Section 4.

2. Heterogeneous Approach based on Geodesic
Flow Kernel

In the problem of still-to-video face recognition, for
each subject, generally there are very limited number
(usually only 1) of high resolution still images X =
{x1, x2, · · · , xN} which are enrolled as the gallery set. And
there are low resolution video clips Y = {y1, y2, · · · , yM}
forming the probe set. The task of still-to-video face iden-
tification is formulated as: given the gallery set of still im-
ages, for each video clip in the probe set, find the matching
label (subject identity) of yk, which can be inferred as:

c = argminid(xi, yk), (1)

where d(xi, yk) is the distance between still image from
gallery and video clip from probe.

In this paper, we consider the Still-to-Video face recog-
nition problem as a heterogeneous matching problem. The
approach that we propose aims to explore the relationship
between still image and video clips, which have vast dif-
ferences in quality. By modeling the relationship between
those two data fields using Grassmann manifold [8], video
clips and still images can be mapped to common subspaces
for the matching task. Intuitively, we have the data from
both still images and the video clips, the proposed approach
constructs a “path” between the two modalities, which is
learned by exploiting the geometry of their subspaces on
Grassmann manifold. Figure 1 shows the schematic illus-
tration of the proposed method.

Specifically, we denote matrix X as N data samples
from the set of still images, where X = {xi}Ni=1,xi ∈ RD.
Y = {yi}Mi=1 denotes the data from the videos, where yi ∈
RD is the image frame from the video clip. Statistically,
those data usually can be embedded into low-dimensional
linear subspaces, where the set of all low-dimensional linear



subspaces is termed the Grassmann manifold [8], denoted
by G (d, D), where d is the dimension of the subspaces.
Principal component analysis (PCA) is one of the methods
to generate the subspaces while preserving the data char-
acteristics. Intuitively, the subspaces SI and SV which are
generated from the PCA on the still images and video clips
respectively, can be viewed as two points on a Grassmann
manifold. In our approach, the geometry properties that de-
fined on this Grassmann manifold is used to model the re-
lationship between the still images and the video clips, of
which the subspaces are two points on the Grassmann man-
ifold. The minimum length curve connecting two points on
the manifold is termed as geodesics. Inspired by the fact
that geodesics can be locally interpreted as curves of the
shortest length between subspaces, we want to find the tran-
sition from one subspace to the other, so that the still images
and the video clips can be bridged smoothly. The key idea
is to utilize the geodesic path between two points on Grass-
mann manifold, and then utilize the intermediate subspaces
to learn the feature from the one modality, i.e., still images
to the other modality i.e., video clips.

Formally, let SI ∈ RD×d denote the set of subspaces for
the data from still images, and SV ∈ RD×d the set of sub-
spaces for the data from video clips. The geodesic flow Φ is
constructed through the canonical metric on the Grassmann
manifold, which is induced by Frobenius norm on the tan-
gent space [8]. Thus the geodesic flow Φ is parameterized
as Φ(i), i ∈ (0, 1), such that Φ(0) = SI and Φ(1) = S̃I , to
compute Φ(i) [11]:

Φ(i) = SIU1Γi − S̃IU2Σi, (2)

where i is the parameter, S̃I is defined as the orthogo-
nal complement of SI , i.e., S̃I

T
SI = 0. U1 ∈ Rd×dand

U2 ∈ R(D−d)×d are orthogonal matrix which are given by
the following Singular Value Decomposition (SVDs):

ST
I SV = U1ΓV

T , ˜ST
I SV = −U2ΣV

T . (3)

Γ and Σ are d×d diagonal matrix, in which the diagonal
elements are sine and cosine value of the principal angles
[8] between SI and SV . More mathematical details about
geodesics and Grassmann manifold can be found in refer-
ences [9].

After the learning process mentioned above, the parame-
terized geodesic flow characterize the smooth changes from
still images to video clips. A series of subspaces Φ(t),
t ∈ (0, 1) is obtained between these two domains. Intu-
itively if i is close to 0, the subspace is more likely to the
still images, while if i is close to 1, the subspace Φ(i) is
more like coming from the video clip. By projecting a fea-
ture vector x or y onto the subspace Φ(i), the data from
either still image or videos can be transited into a new rep-
resentation, which is hopefully insensitive to the varieties

between still images and videos and therefore can be used
for further matching tasks.

Motivated by [11], all of the subspaces along the
geodesic path is utilized for the projection so that the pro-
jected features are robust to the variations that leans to the
two different modalities. Specifically, for two original fea-
ture vectors xi and xj , we need to compute their projected
feature vector x′

i and x′
j on Φ(t) continuously from 0 to 1.

The geodesic-flow kernel (GFK) [11] G ∈ RD×D is then
defined as the inner product between them:

1∫
0

(
Φ(t)Txi

)T (
Φ(t)Txj

)
dt = xT

i Gxj . (4)

The matrix G is computed by using the matrices in the
above:

G =
∫ 1

0

(
Φ(t)T

)T (
Φ(t)T

)
dt

=
[
SIU1 S̃IU2

] [ Λ1 Λ2

Λ2 Λ3

] [
UT
1 ST

I

UT
2 S̃T

I

]
(5)

The elements of diagonal matrices Λ1, Λ2 and Λ3 are:

λ1i =
2θi + sin(2θi)

2θi
, λ2i =

cos(2θi)− 2θi
2θi

,

λ3i =
2θi − sin(2θi)

2θi
.

(6)

In this way, still images and video clips can be mapped
onto common set of subspaces so that the varieties between
them can be reduced. It has utilized the geodesic flow ker-
nel since it is based on the integral of all the subspaces
on geodesic path other than discrete selection of subspaces,
and the only free parameter is the dimension of subspaces.
To increase the discriminative power after using GFK, LDA
[24] is then applied to the features for the recognition task.

3. Experiment
In this section, we first give a brief introduction of the

databases used in the experiment. Next we perform an ex-
tensive evaluation on two practical classification tasks, i.e.,
S2V face identification on COX-S2V [13] dataset, and S2V
face verification on PaSC [1] dataset. Results are shown and
compared with other competing approaches on these two
databases, to demonstrate the capability of the proposed ap-
proach.

3.1. Databases

3.1.1 COX-S2V Dataset

COX-S2V dataset [13] consists of both still images that col-
lected by SLR camera with cooperative user under con-
trolled conditions, and uncontrolled video clips collected



via video cameras. Totally there are 1,000 subjects in this
dataset. For each subject, there is one high resolution still
image, and three video clips denoted as Cam1, Cam2 and
Cam3, respectively, corresponding to three different instal-
lation locations. Faces in video clips contains huge appear-
ance variations, such as illumination, head pose, and motion
blurs. Some example images and video frames of COX-
S2V dataset are shown in Figure 2.

Figure 2. Example still images (first column) and video frames of
COX-S2V dataset, where still images are always with high quality
and video clips has relatively low quality.

3.1.2 Point and Shoot Face Recognition Challenge
Dataset (PaSC)

PaSC dataset [1] is collected for the point and shoot face
recognition challenge, which aims to recognize facial im-
ages from inexpensive “point and shoot” cameras. This
dataset includes 9,376 still images and 2,802 video clips,
collected from 293 subjects using different sensors. Faces
in this dataset also have different variations such as head
pose, background locations, motion blur and poor focus, for
both still images and video clips. Figure 3 shows some face
example images from the PaSC dataset.

3.2. Experimental Settings

To validate the performance of the proposed approach
for S2V face recognition, experiments are conducted on
both COX-S2V dataset and PaSC dataset. According to
the previous works on the two databases, face identification
is performed on COX-S2V dataset, and face verification is
conducted on the PaSC dataset.

Following the original protocol on COX-S2V dataset
[14], 300 subjects’ still images and the corresponding three
video clips of each subject are used for training, and the
remaining 700 subjects’ still images and the video clips
are used for testing. In the testing phase, the set of 700
still images server as the gallery set, where the corre-
sponding video clips (i.e., Cam1-3) form the probe set.

Figure 3. Example face images from the PaSC dataset. Faces show
great varieties in video clips.

The experiments are run 10 times with randomly collected
gallery/probe combinations and the recognition rates are
used as the performance measurement on this dataset.

On the PaSC dataset, according to [1], we apply the same
protocol for face verification experiments. In the training
phase, we only use the data that provided by PaSC dataset.
Specifically, 2872 still images of 484 subjects and 280 video
clips of 170 subjects for training, and 4688 still images of
293 subjects (target set) and 1401 handheld video clips of
265 subjects (query set) for testing. The comparison is con-
ducted based on the computed similarity matrix with size
4688× 1401.

In order to extract face representations from face images
on these databases, face detection and alignment is firstly
applied to get the cropped face images for both still im-
ages and video clips. All the face data are then resized to
60× 48 for both COX-S2V and PaSC. Histogram equaliza-
tion is then applied to data matrix which column data repre-
sents the gray values of each image. Finally PCA is used to
reduce the dimensionality. The resulting vectors obtained
are served as the face feature representations. We empiri-
cally choose 600 as the reduced dimension for COX-S2V
in the proposed approach, and on PaSC dataset the reduced
dimension is set to about 250. For the proposed approach,
subspaces are generated using PCA with the PCA ratio of
0.95.

3.3. Experimental Results

Table 1 shows the experimental results of face recogni-
tion rate on COX-S2V dataset. In this table we also show
the baseline algorithm, which is Nearest Neighbor Classi-
fier (NNC) [5], along with the state-of-the-art metric learn-



ing methods NCA [10], LMNN [28] and the state-of-the-art
point-to-set method LERM [14]. From the table one can see
that the best result is achieved by the proposed approach,
the recognition performance is significantly improved and
the results on all the three video sets are better than other
listed methods in Table 1. Note that for fair comparison,
the feature representation of the face images and videos are
kept the same (histogram equalization and PCA for dimen-
sionality reduction) for all the methods. This experimental
results shows the capability of matching faces from still im-
age and video clips by learning the relationship between the
two modalities, and recognition performance is better than
the other state-of-the-art methods.

Table 1. The experimental results of Still-to-Video face recogni-
tion rate (%) on COX-S2V dataset.

Method COX-S2V
Still-Video1 Still-Video2 Still-Video3

NNC 9.96± 0.61 7.14± 0.68 17.37± 6.16
NCA 39.14± 1.33 31.57± 1.56 57.57± 2.03

LMNN 34.44± 1.02 30.03± 1.36 58.06± 1.35
LERM 45.71± 2.05 42.80± 1.86 58.37± 3.31
Ours 48.96± 1.22 42.99± 2.17 69.81± 1.72

Next we conduct experiments for the other scenario:
S2V face verification on PaSC dataset. The same exper-
imental settings according to [1] are adopted and the re-
sults are shown in Table 2. Firstly we compare our results
with the state-of-the-art metric learning methods that has
been shown on the COX-S2V dataset. From the results one
can see that the performance of the proposed method out-
performs the other methods, i.e., NNC, NCA, LMNN, and
LERM. Note that the results using those methods are based
on same gray features as mentioned in Section 3.2. We also
compared the computational time that used for training us-
ing different methods and the results are shown in Table 3.
From the table we can see that our proposed method takes
least time, comparing with other methods, which further
illustrate the efficiency and effectiveness of the proposed
method.

Table 2. The experimental results (verification rate) for Still-to-
Video face verification on PaSC dataset, when FAR equals to 0.01.

Method Verification Rate
NNC [5] 0.05

NCA [10] 0.16
LMNN [28] 0.17
LERM [14] 0.17

Ours 0.22

Since PaSC dataset is also served as a face recogni-
tion competition database, we now compare our proposed
method with the results of the competition participants. The

Table 3. The computational time that used for training in our ex-
periments on COX-S2V and PaSC datasets.

Method COX-S2V PaSC
NCA [10] 11 hours 6 hours

LMNN [28] 372 sec 172 sec
LERM [14] 73 sec 52 sec

Ours 33 sec 28 sec

verification rate when FAR equals to 0.01 are shown in
Table 4. From the table one can see that our proposed
method achieved the performance 0.22, which is better than
LRPCA (0.10) and ISV-GMM (0.11) methods. Compar-
ing with PLDA-WPCA-LLR, Eigen-PEP, and LPB-SIFT-
WPCA-SILD, although the performance of our method is
slightly lower than these methods, our proposed approach
has several advantages: (1) The feature representation in
our method is the gray level feature vector, while the above
three methods used more advanced features, e.g., SIFT, Ga-
bor, 2D-DCT, and LPQ features. (2) Only the provided
training data on PaSC are used for training in our meth-
ods, while the above three methods used external data for
the training process.

Table 4. The verification rate for Still-to-Video face verification
compared with the PaSC face recognition challenge, when FAR
equals to 0.01.

Method Verification Rate
PLDA-WPCA-LLR [1] 0.26

Eigen-PEP [1] 0.24
LPB-SIFT-WPCA-SILD [1] 0.23

ISV-GMM [1] 0.11
LRPCA [1] 0.10
Our Method 0.22

4. Conclusions

In this paper, a heterogeneous matching approach is pro-
posed to deal with the still-to-video face recognition prob-
lem. Different from other works e.g., metric learning and
point-to-set schemes, which learns the distance metrics be-
tween image-to-video, the proposed approach aims at learn-
ing the “transitions” that can smoothly connect between the
two modalities, i.e., still image and video clips. This ap-
proach is based on utilizing the subspaces between two dif-
ferent modalities on Grassmann manifold, and projecting
the data from different domains onto common subspaces.
A kernel function is applied so that all the continuous sub-
spaces on geodesic flow can be used to model the relation-
ship between still images and video clips. Experimental re-
sults on two large databases demonstrate that the proposed
approach performs better than the state-of-the-art methods.
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