Section 3.2: Graphs of Functions

Most of the basics of graphing was already covered in Chapter 2, when we learned how to graph equations. To graph a function f, we just graph the equation $y=f(x)$ for all values of x in the domain of f. That is, the graph of f is the collection of all points $(x, f(x))$ where x is in the domain.
Example 1. (Graphs we know)

- We saw that the equation $y=m x+b$ has a graph that is a line with slope m and y-intercept b. Therefore, the function $f(x)=m x+b$ has the same graph. We call it a linear function.
- A special kind of linear function occurs when the slope is 0 , so the line is horizontal and has equation $y=b$. Therefore, the function $f(x)=b$ has this horizontal line as its graph. We call it a constant function because the output values are the same no matter what input value we use.
- More complicated functions can be graphed by plotting points, as we did in Section 2.1. (Take a look at Example 7 and Example 8 in Section 3.2 to see examples of graphing functions by plotting points.)
Graphing piecewise defined functions is a little trickier, because we have to change the rule depending on where along the x-axis we are.
Example 2. Graph the piecewise defined function given by

$$
f(x)= \begin{cases}2 x+8 & \text { if } x \leq-2 \\ x^{2} & \text { if } x>-2\end{cases}
$$

Answer. We know how to graph the line $y=2 x+8$, and we could plot points to graph $y=x^{2}$. However, the rule of the function changes at $x=-2$. We can think of the vertical line $x=-2$ as splitting the graph into two parts. On the left, the picture looks like $y=2 x+8$. On the right, the picture looks like $y=x^{2}$.

A special type of piecewise defined function is one in which all the different rules used are linear. This is called a piecewise linear function.

Example 3. Graph the piecewise linear function given by

$$
f(x)= \begin{cases}x+4 & \text { if } x<1 \\ 2 \text { if } 1 \leq x<4 \\ x-5 & \text { if } x \geq 4\end{cases}
$$

Answer. Now, the rule of the function changes at both $x=1$ and at $x=4$. On the interval $(-\infty, 1)$, the graph looks like $y=x+4$. On the interval $[1,4)$, the graph looks like $y=2$. On the interval $[4, \infty)$, the graph looks like $y=x-5$. We use closed dots to indicate a point that is on the graph, and we use open circles to indicate that a point is NOT on the graph.

Note the open circles at the points $(1,5)$ and $(4,2)$, compared with the closed dots at the points $(1,2)$ and $(4,-1)$. The reason that $(1,2)$ is included in the graph and $(1,5)$ is not is because function says that when we input $x=1$, we get the output from the second rule, so the output is 2 . This is similarly the case when $x=4$. You will have more practice graphing piecewise linear functions on the homework.

Now that we know that the graph of every function gives a curve in the $x y$-plane, we can ask whether the reverse is true. That is, we can ask whether every curve in the $x y$-plane is the graph of a function.

The answer is no! Our definition of a function said that for every value of x in the domain, there is exactly one output value $f(x)$. Therefore, if a curve contains two or more points that have the same x value but different y values, we know that this curve can NOT be the graph of a function.

Example 4. Consider the curve shown below. This circle is the graph of the equation $x^{2}+y^{2}=9$.

Then this curve has points at both $(0,3)$ and at $(0,-3)$. Those points have the same x value, but different y values. That tells us that this can't be the graph of a function. So it's important to note that even though this is the graph of an equation, it is NOT the graph of a function.

So we have an easy way of checking whether a curve in the $x y$-plane is actually the graph of a function. If there are any vertical lines that intersect the curve at two or more points, then the curve is not the graph of a function. We can see this test in the picture above. The line $x=2$ (shown in red) intersects the circle at two points, so we know the circle is not the graph of a function. This test is known as the Vertical-Line Test.

Vertical-Line Test: A curve in the $x y$-plane is the graph of a function if and only if no vertical line intersects the curve at more than one point.

If a curve IS the graph of a function, we want to be able to use that graph to tell us information about the function. Since the graph represents when $y=f(x)$, we can determine function values by considering the y-coordinates of points on the graph. Similarly, using the graph, we can determine the domain and range of the function. The domain is the set of all possible x-coordinates of points on the graph, and the range is the set of all possible y-coordinates of points on the graph.

Example 5. Consider the following graph of a function f.

Evaluate $f(-2), f(0)$, and $f(-1)$, and find the domain and range of f.
Answer. To find the value of $f(-2)$, we must find the y-coordinate of the point on the graph whose x-coordinate is -2 . So we move along the x-axis to $x=-2$. Moving down to find the point on the graph, we find that the point $(-2,-4)$ is on the graph. Therefore, we have that $f(-2)=-4$.

Similarly, to find $f(0)$, we look at $x=0$ on the x-axis. The point on the graph with x-coordinate 0 is the point $(0,0)$. This means that $f(0)=0$.

Sometimes we will need to estimate, which is the case for $f(-1)$. At $x=-1$, it looks like the point on the graph has y-coordinate that is roughly -2 , although it might be slightly different. For our purposes, it is close enough that we can say that $f(-1)=-2$.

We can find the domain by looking at which values of x are used in the graph. Note that there is an open circle at $x=-3$, which means that value of x is not included in the domain. On the right, the graph goes up to and including $x=1$. Therefore, the domain of the function is the interval $(-3,1]$.

For the range, we do the same thing except that we look at which values of y are used in the graph. So now, we're looking up and down instead of looking left to right. The smallest value of y that is used on the graph is $y=-4$. The largest value of y that is used on the graph is $y=0$. Note that even though we have an open circle at $(-3,0)$, we also have the point $(0,0$ which IS included in the graph, which means that $y=0$ IS included in the range. Therefore, the range of the function is $[-4,0]$.

SUMMARY:

- The graph of a function is the set of all points in the $x y$-plane such that $y=f(x)$.
- To sketch the graph of a function, we can use the same techniques we used to graph equations.
- A curve in the $x y$-plane can only be the graph of a function if it passes the Vertical-Line Test.
- From the graph of a function we can determine:
(1) Function values
(2) Domain of the function
(3) Range of the function

