

1. Solve the differential equation $x^2 \frac{dy}{dx} = (x + 1)y$.
2. Solve the differential equation $\frac{dy}{dx} = e^y x^2$.
3. Solve the initial-value problem $\frac{dy}{dx} = y^2(x + 1)$, with $y(0) = 2$.
4. Solve the initial-value problem $\frac{dy}{dx} = e^{y-x}$, with $y(0) = 0$.
5. Find the area of the region bounded by the polar curve $r = e^{-\theta/4}$ from $\theta = \pi/2$ to $\theta = \pi$.
6. Find the area of the region enclosed by the polar curve $r = 3 + 2 \cos(\theta)$.
7. Find the area of the region enclosed by one loop of the curve $r = 4 \sin(3\theta)$.

For problems 8 to 14, determine whether each integral is convergent or divergent and evaluate those that are convergent.

8.
$$\int_0^\infty \frac{x^2}{\sqrt{1+x^3}} dx$$

9.
$$\int_{-\infty}^\infty x e^{-x^2} dx$$

10.
$$\int_1^\infty \frac{\ln(x)}{x} dx$$

11.
$$\int_0^1 \frac{1}{x} dx$$

12.
$$\int_{-2}^3 \frac{1}{x^4} dx$$

13.
$$\int_0^9 \frac{1}{\sqrt[3]{x-1}} dx$$

14.
$$\int_0^{\pi/2} \sec^2(x) dx$$

Evaluate each integral.

15.
$$\int_1^2 \frac{(x+1)^2}{x} dx$$

28.
$$\int x \sec(x) \tan(x) dx$$

16.
$$\int \frac{e^{\sin(x)}}{\sec(x)} dx$$

29.
$$\int_0^\pi x \cos^2(x) dx$$

17.
$$\int \frac{1}{2x^2 + 3x + 1} dx$$

30.
$$\int e^{x+e^x} dx$$

18.
$$\int_0^{\pi/2} \sin^3(x) \cos^2(x) dx$$

31.
$$\int \tan^{-1}(\sqrt{x}) dx$$

19.
$$\int \frac{\sin(\ln(x))}{x} dx$$

32.
$$\int \frac{1}{1+e^x} dx$$

20.
$$\int_1^2 \frac{\sqrt{x^2-1}}{x} dx$$

33.
$$\int \frac{e^{2x}}{1+e^x} dx$$

21.
$$\int \frac{x-1}{x^2+2x} dx$$

34.
$$\int \frac{1}{x\sqrt{4x+1}} dx$$

22.
$$\int \frac{1}{x\sqrt{x^2+1}} dx$$

35.
$$\int \frac{1}{x\sqrt{4x^2+1}} dx$$

23.
$$\int \frac{x^2}{(4-x^2)^{3/2}} dx$$

36.
$$\int \frac{1}{x+x\sqrt{x}} dx$$

24.
$$\int \frac{\cos(x)}{1-\sin(x)} dx$$

37.
$$\int \sqrt{x}e^{\sqrt{x}} dx$$

25.
$$\int_1^4 \sqrt{x} \ln(x) dx$$

38.
$$\int \frac{1}{\sqrt{x+1}+\sqrt{x}} dx$$

26.
$$\int_{-1}^1 \frac{e^{\tan^{-1}(x)}}{1+x^2} dx$$

39.
$$\int \frac{1}{x \ln(x)-x} dx$$

27.
$$\int \frac{1}{x^3\sqrt{x^2-1}} dx$$

40.
$$\int \frac{\sqrt{x}}{1+x^3} dx$$

For problems 41 through 49, write an integral that gives the arc length of each given curve. Compute the integral if possible.

41. the curve $y = \frac{x^3}{3} + \frac{1}{4x}$, where $1 \leq x \leq 2$

42. the curve $y = \ln(\sec(x))$, where $0 \leq x \leq \pi/4$

43. the curve $y = x - \ln(x)$, where $1 \leq x \leq 4$

44. the curve parametrized by $x = 1 + 3t^2$, $y = 4 + 2t^3$, where $0 \leq t \leq 1$

45. the curve parametrized by $x = t + e^{-t}$, $y = t - e^{-t}$, where $0 \leq t \leq 2$

46. the curve parametrized by $x = t \sin(t)$, $y = t \cos(t)$, where $0 \leq t \leq 1$

47. the polar curve $r = 2 \cos(\theta)$, where $0 \leq \theta \leq \pi$

48. the polar curve $r = \sin(6 \sin(\theta))$, where $0 \leq \theta \leq \pi$

49. the polar curve $r = \theta^2$, where $0 \leq \theta \leq 2\pi$

50. Find the eccentricity of the conic $r = \frac{2}{3 + 3 \sin(\theta)}$ and identify the type of conic.

51. Find the eccentricity of the conic $r = \frac{3}{4 - 8 \cos(\theta)}$ and identify the type of conic.

52. Find the eccentricity of the conic $r = \frac{4}{5 - 4 \sin(\theta)}$ and identify the type of conic.

For each curve given in problems 53 through 60, write one integral that gives the surface area resulting from rotating the curve about the x -axis. Then, write another integral that gives the surface area resulting from rotating the curve about the y -axis. Compute all integrals that are possible to solve.

53. the curve $y = x^3$, where $0 \leq x \leq 2$

54. the curve $x = y + y^3$, where $0 \leq y \leq 1$

55. the curve $x = \frac{1}{3}(y^2 + 2)^{3/2}$, where $1 \leq y \leq 2$

56. the curve $y = xe^x$, where $0 \leq x \leq 5$

57. the curve $y = \frac{1}{x}$, where $1 \leq x \leq 2$

58. the curve parametrized by $x = t \sin(t)$, $y = t \cos(t)$, where $0 \leq t \leq \pi/2$

59. the curve parametrized by $x = t^3$, $y = t^2$, where $0 \leq t \leq 1$

60. the curve parametrized by $x = t + e^t$, $y = e^{-t}$, where $0 \leq t \leq 1$

61. Find the area enclosed by the x -axis and the parametric curve $x = t^3 + 1$, $y = 2t - t^2$.

62. Find the area enclosed by the y -axis and the parametric curve $x = t^2 - 2t$, $y = \sqrt{t}$.

For each curve given in problems 63 through 66, find all points where the curve has a vertical tangent line or a horizontal tangent line.

63. the parametric curve $x = t^3 - 3t$, $y = t^2 - 3$

64. the parametric curve $x = \cos(\theta)$, $y = \cos(3\theta)$

65. the parametric curve $x = 1 + \ln(t)$, $y = t^2 + 2$

66. the parametric curve $x = 2 + \sin(2\theta)$, $y = \cos(2\theta) - 1$

67. Find a power series representation for the function $f(x) = \frac{2}{3-x}$ and determine the interval of convergence.

68. Find a power series representation for the function $f(x) = \frac{x^2}{x^4 + 16}$ and determine the interval of convergence.

69. Find a power series representation for the function $f(x) = \frac{x}{(1+4x)^2}$ and determine the radius of convergence.

70. Find a power series representation for the function $f(x) = \tan^{-1}(x^4)$ and determine the radius of convergence.

71. Find a power series representation for the function $f(x) = \ln\left(\frac{1+x}{1-x}\right)$ and determine the radius of convergence.

For each series, determine convergence or divergence. For convergent alternating series, also determine absolute convergence or conditional convergence.

72.
$$\sum_{n=0}^{\infty} \frac{n^2 - 1}{n^3 + 1}$$

83.
$$\sum_{n=0}^{\infty} \frac{n!}{e^{n^2}}$$

73.
$$\sum_{n=0}^{\infty} (-1)^n \frac{n^2 - 1}{n^3 + 1}$$

84.
$$\sum_{n=0}^{\infty} \frac{n \ln(n)}{(n+1)^3}$$

74.
$$\sum_{n=1}^{\infty} \frac{e^n}{n^2}$$

85.
$$\sum_{n=0}^{\infty} \frac{5^n}{3^n + 4^n}$$

75.
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln(n)}}$$

86.
$$\sum_{n=0}^{\infty} \left(\frac{n}{n+1} \right)^n$$

76.
$$\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n}}{(2n)!}$$

87.
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}}$$

77.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n^3} + \frac{1}{3^n} \right)$$

88.
$$\sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1 \right)^n$$

78.
$$\sum_{n=0}^{\infty} \frac{3^n n^2}{n!}$$

89.
$$\sum_{n=0}^{\infty} \frac{e^n + 1}{n e^n + 1}$$

79.
$$\sum_{n=0}^{\infty} \frac{2^{n-1} 3^{n+1}}{n^n}$$

90.
$$\sum_{n=0}^{\infty} n e^{-n}$$

80.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln(n)}{\sqrt{n}}$$

91.
$$\sum_{n=0}^{\infty} \frac{n^{100} 100^n}{n!}$$

81.
$$\sum_{n=1}^{\infty} (-1)^n \cos(1/n^2)$$

92.
$$\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{(\ln(n))^n}$$

82.
$$\sum_{n=1}^{\infty} \tan(1/n)$$

For each power series given in problems 93 through 98, find the radius of convergence and interval of convergence.

$$93. \sum_{n=1}^{\infty} \frac{x^n}{2n-1}$$

$$94. \sum_{n=1}^{\infty} \frac{x^n}{n^4 4^n}$$

$$95. \sum_{n=0}^{\infty} \frac{n}{2^n(n^2+1)} x^n$$

$$96. \sum_{n=2}^{\infty} \frac{(x+2)^n}{2^n \ln(n)}$$

$$97. \sum_{n=0}^{\infty} \frac{(x-2)^n}{n^n}$$

$$98. \sum_{n=0}^{\infty} \frac{(5x-4)^n}{n^3}$$

99. Find the Taylor series for $f(x) = (1-x)^{-2}$ centered at $a = 0$, and find the radius of convergence.

100. Find the Taylor series for $f(x) = 2^x$ centered at $a = 0$ and find the radius of convergence.

101. Find the Taylor series for $f(x) = \ln(x)$ centered at $a = 2$, and find the radius of convergence.

102. Find the Taylor series for $f(x) = e^{2x}$ centered at $a = 3$, and find the radius of convergence.