

HOMEWORK 10, DUE FRIDAY, DECEMBER 5

Please turn in well-written solutions for the following:

- (1) The Fibonacci sequence is defined by $f_0 = 0$, $f_1 = 1$, and for any $n \geq 2$, we define f_n recursively by $f_n = f_{n-1} + f_{n-2}$. We use this to define a new sequence by $r_n = \frac{f_{n+1}}{f_n}$.
 - (a) Use some simple algebra to show that $r_{n+1} = 1 + \frac{1}{r_n}$ for every n .
 - (b) Assume that (r_n) is a convergent sequence. (This is true, but we may not have time to get through all the steps needed to show it.) In this case, use (a) to show that $\lim_{n \rightarrow \infty} r_n = \frac{\sqrt{5} + 1}{2}$, the golden ratio.
- (2) Prove that $\limsup |s_n| = 0$ if and only if $\lim s_n = 0$.
- (3) For each of the following sequences, compute $\limsup s_n$ and $\liminf s_n$.
 - (a) $s_n = \frac{n-1}{n+1} \cos\left(\frac{n\pi}{3}\right)$
 - (b) $s_n = \sqrt[n]{1 + 2^{n(-1)^n}}$
- (4) Let (s_n) be a sequence of nonnegative numbers. For each n , we define the arithmetic average of the first n terms, $A_n = \frac{1}{n}(s_1 + s_2 + s_3 + \dots + s_n)$.
 - (a) For any M and N with $M > N$, show that

$$\sup\{A_n : n > M\} \leq \frac{1}{M}(s_1 + \dots + s_N) + \sup\{s_n : n > N\}.$$
 - (b) Use part (a) to show that

$$\liminf s_n \leq \liminf A_n \leq \limsup A_n \leq \limsup s_n.$$
 - (c) Give an example of a sequence (s_n) such that $\lim A_n$ exists but $\lim s_n$ does not exist.