HOMEWORK 2, DUE FRIDAY, SEPTEMBER 5

Please turn in well-written solutions for the following:

- (1) Let A and B be non-empty bounded subsets of \mathbb{R} .
 - (a) Prove that if $\sup(A) < \inf(B)$, then A and B are disjoint.
 - (b) Prove that if $\inf(B) < \sup(A)$, then there exist $a \in A$ and $b \in B$ such that b < a.
- (2) Recall that a number r is rational if there exist $a, b \in \mathbb{Z}$ such that $r = \frac{a}{b}$. We say $r \in \mathbb{Q}$.
 - (a) Prove that if $r, q \in \mathbb{Q}$, then $r + q \in \mathbb{Q}$.
 - (b) Prove that if $r \in \mathbb{Q}$ and $s \notin \mathbb{Q}$, then $r + s \notin \mathbb{Q}$. (That is, the sum of a rational and an irrational is irrational.)
- (3) Prove that the irrational numbers are dense in \mathbb{R} . That is, prove that for any $x,\,y\in\mathbb{R}$ with x< y, there exists $s\in\mathbb{R}\backslash\mathbb{Q}$ such that x< s< y. (Hint: You may use without proof the fact that the rational numbers are dense in \mathbb{R} , as well as the results of the previous problem.)
- (4) (GRE Problem) For any nonempty sets A and B of real numbers, let $A \cdot B$ be the set defined by

$$A \cdot B = \{xy : x \in A \text{ and } y \in B\}.$$

If A and B are nonempty bounded sets of real numbers and if $\sup(A) > \sup(B)$, then $\sup(A \cdot B) =$

- (A) $\sup(A)\sup(B)$
- (B) $\sup(A)\inf(B)$
- (C) $\max\{\sup(A)\sup(B),\inf(A)\inf(B)\}$
- (D) $\max\{\sup(A)\sup(B),\sup(A)\inf(B)\}$
- (E) $\max\{\sup(A)\sup(B),\inf(A)\sup(B),\inf(A)\inf(B)\}$