(1) Use an ε argument to prove the following limit law:

Suppose $c \in \mathbb{R}$ and suppose f is a function such that $\lim_{x \to a} f(x) = A$. Then $\lim_{x \to a} (cf(x)) = cA$.

- (2) Define $f: \mathbb{R}\setminus\{2\} \to \mathbb{R}$ by $f(x)=\frac{x^2-4}{x-2}$. Use an ε argument to prove that $\lim_{x\to 2} f(x)$ exists.
- (3) Define $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ by $f(x) = \frac{|x|}{x}$.
 - (a) Use an ε argument to prove that $\lim_{x\to 0^+} f(x) = 1$.
 - (b) Use an ε argument to prove that $\lim_{x\to 0^-} f(x) = -1$.
- (4) Use the Squeeze Theorem to prove that $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right) = 0$.