HOMEWORK 4, DUE FRIDAY, SEPTEMBER 19

Please turn in well-written solutions for the following:

- (1) Let $D \subset \mathbb{R}$ and suppose $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ are both continuous. Define $h: D \to \mathbb{R}$ by $h(x) = \max\{f(x), g(x)\}$. Prove that h is continuous on D.
- (2) Consider the function

$$f(x) = \begin{cases} |x| & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

- (a) Prove that f is continuous at 0.
- (b) Prove that if $a \neq 0$, then f is not continuous at a.
- (3) The Boundedness Theorem states that if $f:[a,b]\to\mathbb{R}$ is continuous on [a,b], then f is bounded on [a,b]. However, the fact that the interval is closed is a crucial part of this.

Give an example of a function f that is continuous on an open interval (a, b) such that f is unbounded on (a, b).

(4) The Extreme Value Principle states in part that if $f:[a,b] \to \mathbb{R}$ is continuous on [a,b], then f attains its maximum value. However, the fact that the interval is closed is once again a crucial part of this, even if the function is bounded.

Give an example of a function f that is continuous and bounded on an open interval (a, b) such that $\max\{f(x) : x \in (a, b)\}$ does not exist.