

HOMEWORK 9, DUE FRIDAY, NOVEMBER 14

Please turn in well-written solutions for the following:

- (1) (a) Give an example of sequences (a_n) and (b_n) that do not converge but such that $(a_n + b_n)_{n \in \mathbb{Z}^+}$ does converge.
(b) Give an example of sequences (a_n) and (b_n) that do not BOTH converge (one of them may) but such that $(a_n b_n)_{n \in \mathbb{Z}^+}$ does converge.
(c) Prove that if (a_n) converges to $A \neq 0$ and (b_n) is a sequence such that $(a_n b_n)$ converges, then (b_n) must also converge.
- (2) (a) Let $(b_n)_{n \in \mathbb{Z}^+}$ be a sequence such that (b_n) converges to B , and $B \neq 0$. Prove that there exists $M > 0$ and $N \in \mathbb{Z}^+$ such that if $n \geq N$, then $|b_n| \geq M$.
(b) Suppose (a_n) converges to A and (b_n) converges to B , with $B \neq 0$ and $b_n \neq 0$ for all n . Prove that $\left(\frac{a_n}{b_n}\right)_{n=1}^{\infty}$ converges to $\frac{A}{B}$.
- (3) Let (s_n) be a convergent sequence with the property that exactly one trillion terms in the sequence have absolute value strictly greater than 1 (not necessarily the first one trillion terms, they are scattered throughout the sequence). Let $L = \lim_{n \rightarrow \infty} s_n$. Prove that $|L| \leq 1$.
- (4) Let $S \neq \emptyset$ be a set of real numbers, and suppose that $\sup(S) = M$ exists. Prove that there exists a sequence $(s_n)_{n \in \mathbb{Z}^+}$ such that $s_n \in S$ for each $n \in \mathbb{Z}^+$ and such that $M = \lim_{n \rightarrow \infty} s_n$. (That is, M is an *accumulation point* of S .)