Homework 2, due Friday, January 31

Please turn in solutions for the following problems:

- (1) Sketch each set and determine if each set is open, closed, connected, or bounded:
 - (a) $\operatorname{Re}(z) > \operatorname{Im}(z)$
 - (b) 1 < |z| < 2
 - (c) $|2z 4 + 6i| \le 4$
 - (d) $0 \le \arg(z) \le \pi/4$
 - (e) $(\operatorname{Re}(z))^2 + 1 = (\operatorname{Im}(z))^2$
- (2) For each of the following functions, determine the largest possible domain of definition.
 - or definition. (a) $f(z) = \frac{1}{z^2 + 1}$ (b) $f(z) = \frac{z}{z - \overline{z}}$ (c) $f(z) = \frac{1}{1 - |z|^2}$ (d) $f(z) = \operatorname{Arg}\left(\frac{1}{z}\right)$
- (3) Consider the function $f(z) = (1+i)\overline{z}$, and let S be the horizontal line Im(z) = 1. Sketch the image set f(S).
- (4) Consider the function $f(z) = \operatorname{Arg}(z)$, and let S be the horizontal line $\operatorname{Im}(z) = 1$. Sketch the image set f(S).

In addition, I suggest that you work these problems from the Brown/Churchill textbook (but do not turn in):

- Page 33, problems 1, 2, 3
- \bullet Page 44, problems 3, 4, 7