Please turn in solutions for the following problems:

- (1) Each of the following functions has a singular point at z = 0. Decide if the singular point is isolated or not, and if it is isolated, determine if it is removable, essential, or a pole.
 - (a) $f(z) = \frac{3z^2 4}{z^3}$
 - (b) $f(z) = ze^{1/z}$
 - (c) $f(z) = \text{Log}\left(\frac{1}{z}\right)$ (d) $f(z) = \frac{\sin(z)}{z}$ (e) $f(z) = \frac{\cos(z)}{z}$
- (2) Find the residue at z = 0 of each of the following functions: (a) $f(z) = e^{1/z^2}$
 - (b) $f(z) = \frac{\sin(z)}{z^3}$ (c) $f(z) = \frac{\cot(z)}{z^4}$ (for bonus points)
- (3) Let C be the positively oriented circle |z| = 3. Compute each integral. (a) $\int_C \frac{1}{z+z^3} dz$
 - (b) $\int_C \frac{e^z 1}{z^2} dz$
- (4) Let f(z) = 2z² + 1/(z + 1)(z² + 4). Compute each integral:
 (a) ∫_C f(z) dz, where C is the positively oriented circle |z − i| = 2
 (b) ∫_C f(z) dz, where C is the positively oriented circle |z| = 3

In addition, I suggest that you work these problems from the Brown/Churchill textbook (but do not turn in):

- Page 239, problems 1, 2, 3
- Page 243, problems 1, 2
- Page 248, problems 1, 2, 3, 4, 5, 6
- Page 255, problems 1, 2, 3, 4