
Chapter 6 Overview 

Introduction: 
This chapter begins our study of statistics.  As we stated at the beginning of the course, 
probability and statistics are two different sides of the same coin.  They are, respectively, the pre-
game and post-game analysis of randomly occurring events.   

When we discussed continuous random variables, we said that certain types of distributions can 
model different types of random variables.  For example, we said that the exponential 
distribution could be used to model the lifespan of some machine.  But how do we know what 
parameter to use, and how do we even know that this is an accurate model?  If we wanted to 
think about this in the real world, what we would do is to gather information on lifespans of 
many of these machines to look for trends.  This process of gathering data, analyzing it, and 
making inferences based on it is the core of the subject of statistics. 

In this chapter, we look at the basics of gathering data, presenting data usefully, and computing 
some simple statistics. 

6.1 Experimentation 

It’s important to keep the picture in Figure 6.1 on page 268 in your mind throughout the rest of 
the course: 

{unknown probability distribution f(x)} 

  ↓ (experimentation) 

{sample data set} 

 ↓ (statistical inference) 

{estimate properties of f(x)} 

To help us, we make some definitions. 

Popula'on and Samples 

A popula&on consists of all possible observa'ons available from a par'cular probability distribu'on.  A 
sample is a par'cular subset of the popula'on that an experimenter measures.  Samples may be used 
to inves'gate the unknown probability distribu'on.  A random sample is one in which the elements of 
the sample are chosen at random from the popula'on, and should be representa've of the 
popula'on.



The data observations mentioned above can be of several different types: 

1) Categorical or nominal data is generally non-numerical in nature and groups the 
observations into non-overlapping categories.  If a Categorical variable has only two 
possible observations it is called a binary variable. 

 Examples: 

a. Observation - color of a car {white, gray, red, blue, . . .}.  The statistician must 
decide beforehand whether silver and gray are the same color or different, etc. 

b. Observation – Zip code.  This is still categorical because even though a zip code 
is a number, the number is meaningless. 

c. Observation – On or off.  This categorical variable is a binary variable. 

2) Numerical data may be either real numbers or integers.  The book calls these variables 
continuous.  (The use of this word here is a bit non-standard, and may mean something 
slightly different in other textbooks). 

 Examples: 

a. In boxes of computer chips, count the number of chips that are defective 

b. Measure the weights of newborn baby hippos 

c. Measure the lifespan of several copies of a machine 

In all these cases, we should remember the importance of the sample we get being random, 
which means we are getting enough elements of the population in the sample, and that the 
elements we get are representative of the whole population, not just a certain part.  Often, this 
means we have to think about what the population we want is.  For example, to get a sample of 
boxes of computer chips, do we want the population to be all the boxes produced in all factories?  
Only one factory?  Only a single assembly line in one factory?  If we want the population to be 
all the boxes in all factories, but we only choose boxes from a single assembly line in a single 
factory, then our sample will not be representative. 

End of 6.1.  For the exercises, note that they require you to access some datasets.  These datasets 
can be found at http://www.cengage.com/cgi-wadsworth/course_products_wp.pl?
fid=M20b&product_isbn_issn=9781111827045&token= by clicking on “Datasets” on the left.  
You can download them as a zip file, which contains all the datasets for the rest of the course, in 
a variety of formats. 

http://www.cengage.com/cgi-wadsworth/course_products_wp.pl?fid=M20b&product_isbn_issn=9781111827045&token=
http://www.cengage.com/cgi-wadsworth/course_products_wp.pl?fid=M20b&product_isbn_issn=9781111827045&token=
http://www.cengage.com/cgi-wadsworth/course_products_wp.pl?fid=M20b&product_isbn_issn=9781111827045&token=


6.2 Data Presentation 

We study a few ways to present data to make it easier to analyze.  For categorical data, we use 
bar charts, Pareto charts, and pie charts.  For numerical data, we focus on histograms.  In 6.3, 
we’ll also consider boxplots. 

Categorical Data: 

Bar chart:  Each category has a bar whose height is proportional to the frequency associated with 
that category.  Never truncate the vertical axis!  Always start at 0! 

Pareto chart:  A bar chart in which the categories are arranged in order of decreasing frequency.  
As an option a line is drawn showing the cumulative frequency over the bars. 

Pie chart:  A pie chart uses the proportion of the total data set in each category to divide the circle 
into slices that cover the same proportion of the circle.  If there are n observations of which r are 
in a specific category then the slice of pie for that category should have a central angle of 

. 

Numerical Data: 

Histograms look like bar graphs, but since they are used to represent numerical data, the x-axis 
will have numerical values instead of categories. 

A histogram is a graph that displays quantitative data by using contiguous vertical bars of various 
heights to represent the frequencies of the classes (if the frequency of the class is zero the 
“height” is zero).  The width represents a quantitative not qualitative variable (piston rod lengths 
rather than quality of a television picture).  

Example: Consider the following data, which gives corinne levels in tobacco users. 

    1     2 131 173 265 210   44 277 173 208 
  32     3   35 112 477 289 227 103     1 284 
222 149 313 491 130 234 164 198   86   48 
  17 253   87 121 266 290 123 167 245 250 

From this data, we can make a table separating the numbers into bands.  In determining the width 
of the bands (bandwidth), we have some considerations.  Making the bands too wide will result 
in fewer “classes” of data, which will make the histogram rougher, in that it will not distinguish 
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as cleanly between different data points.  Making the bands too narrow will make the histogram 
look more like the raw data, which makes it more difficult to detect trends. 

In this case, we’ll split into 8 bands of equal width.  Since the range of the data is from 1 to 491, 
our bandwidth should be about (491-1)/8 = 61.25.  We always round up, to make sure all the data 
falls in one of the 8 bands.  Thus, we’ll use bandwidth of 62.  As a rule of thumb, the boundaries 
between bands should occur between data points, though this is not always necessary.  We can 
make the following table: 

                

Then we can form the following histogram: 

 

Bands (classes) Frequency

   (0.5 , 62.5] 9

  (62.5 , 124.5] 6

(124.5 , 186.5] 7

(186.5 , 248.5] 7

(248.5 , 310.5] 8

(310.5 , 372.5] 1

(372.5 , 434.5] 0

(434.5 , 496.5] 2



Ideally, the histogram gives a rough idea of what the probability density function of the 
underlying distribution should look like.  In later chapters, we’ll try to answer the question of 
how close in shape the histogram is to the actual probability density function. 

We can try to gain some knowledge about the underlying distribution based on the shape of the 
histogram.  Is the histogram symmetric?  If not, is the tail on one side longer and flatter than the 
other?  Is there a single peak where the frequency of data is highest?  Are there two peaks?  Are 
there data points on the tails that seem out of place and don’t fit with the rest?  We have 
definitions for these situations. 
Unimodal:  One peak.  
Bimodal: two peaks. 
Symmetric: The book says symmetric when they really mean symmetric and unimodal (for 
example, bell-shaped) 
Right-skewed (positively skewed):  right-hand tail longer and flatter than left-hand tail 
Left-skewed (negatively skewed):  left-hand tail longer and flatter than right-hand tail 
Outliers:  Unusually large or small pieces of data.   One must consider whether or not they can 
be ignored. 

6.3 Sample Statistics 

From a data set, there are some basic statistics that we define.   

Sample Mean 
The sample mean of a data set is the sum of all the data values divided by the number of values 
in the sample.  This is just the arithmetic average. 

The sample mean is denoted by  and is given by the formula  

  where n represents the total number of observations.   

The mean is affected by outliers (unusual pieces of data that don’t fit the trend).  One extremely 
small or large data point can have a disproportionately large effect on the sample mean.  
However, when we want to estimate the expectation E(X) of the unknown underlying probability 
distribution, one place to start is the sample mean.   

Sample Median                
The median is the midpoint of the data array.   

To find the median 
 1)  Arrange the data in order. 
 2)  Select the middle point.  If the middle point falls between two data values add 
                 them and divide by two. 

x̄

x̄ =  
∑n

i=1 xi

n



The sample median may be used to estimate the population median.  If data is significantly 
skewed, then the median may be a better estimate of the “average” than the mean. 

Sample Trimmed Mean 
A trimmed mean is obtained from a data set by eliminating and equal number of highest and 
lowest values.  Usually this is 10% off the top and bottom, so that if you had 60 observations you 
would remove the lowest 6 and the highest 6.  This does not change the sample median, but it 
gets rid of any outliers and reduces the affect of any skewing of the data on the sample mean.  
That skewing may be important, so some thought should be given before employing this method.  
The value of a Sample Trimmed Mean is generally somewhere between the values of the sample 
mean and the sample median.  

Sample Mode 
The sample mode of a set of discrete or categorical data is the data value that occurs the most.  It 
is thus the category or value with the highest probability. 

Sample Variance 

The sample variance of a data set x1, . . ., xn is given by the formula  .  

Note that we divide by n – 1 instead of n.  This is a correction factor that is only meaningful for 
small values of n, and corresponds to the fact that samples usually vary less than populations.  
This is explained more in Chapter 7.  Similar to the alternate computational formula for the 
variance of a random variable, we are given a similar computational formula for the variance of a 
sample. 

 

Sample Quantiles 
The pth sample quantile (sample percentile) is a value that has a proportion p of the sample 
taking values smaller than it and a proportion 1 – p taking values larger than it.  Sample quantiles 
are usually values between data observations. 
The sample median is the 50th percentile of the sample, the upper quartile is the 75th percentile 
and the lower quartile is the 25th percentile.  As before the interquartile range is the difference 
between the upper quartile and the lower quartile.  The book doesn’t really give thorough details 
on how to do this precisely, so we can use the following methodology for finding quartiles: 

1. If there are an even number of data observations:  Use the median to divide the ordered 
data set into two halves.  The lower quartile value is the median of the lower half of the 
data. The upper quartile value is the median of the upper half of the data. 

   s2 =  
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2. If there are an odd number of data points then there are three methods that are sometimes 
used.  The third method is the average of the first two and is generally thought to be best, 
it is the mean of the first two methods.  First use the median to divide the ordered data set 
into two halves.   Now find the median of the lower half two ways, once including the 
median in the lower half and once excluding it.  The lower quartile is the arithmetic mean 
of these two numbers.  Now use the same process on the upper half of the data to find the 
upper quartile. 

Box Plots 
A box plot is a graph of a data set obtained by drawing a rectangle with sides at the lower 
quartile Q1 and the upper quartile Q3 and two horizontal lines from the sides of the box to the 
maximum and minimum data value.  Finally, a vertical line is drawn through the middle of the 
box at the median (Q2).    

 

Note:  The “box” represents half of the data value  

 

Coefficient of Variation 
The coefficient of variation (CV) is the standard deviation divided by the mean.   
CV =  .  Note that we can also define this for random variables: CV = .   

The CV measures the variation relative to the average.
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