
Chapter 7 Overview 

Introduc4on: 
As we discussed in Chapter 6, it is important to remember the chain of information:

{unknown probability density function f(x)} 

  ↓ (experimentation) 

{sample data set} 

 ↓ (statistical inference) 

{estimate properties of f(x)} 

That is, a certain random variable has some probability distribution that is unknown to us.  We assemble 
a data set out of values “generated” by this random variable.  We then study the data set to do our best 
to figure out what that unknown probability distribution looks like.  We define different terms to distinguish 
between information about the data set and information about the unknown probability distribution. 

A sta4s4c is a characteristic or measure obtained by using the data values from a sample. 
A parameter is a quantity that is a property of the original probability distribution.

So while the sample mean, sample median, sample variance, and sample quantiles from Chapter 6 are 
statistics, the unknown probability distribution has an actual mean, median, variance, and quantiles as 
defined in Chapter 2.  The actual mean, median, variance and quantiles are all parameters.  

In practice, since parameters are generally unknown, we must use statistical inference to estimate 
parameters.  So essentially, statistics are what we know based on observations we make, while 
parameters are what we try to figure out as close as we can.  Our first approach to estimating 
parameters is using point estimates.

7.1 Point Es4mates 

Examples:

• The unknown probability distribution has a mean, µ.  Then our sample mean  is a point estimate of µ.

• The unknown probability distribution has a standard deviation, σ.  Then our sample standard deviation 
s is a point estimate of σ.

A point es4mate of an unknown parameter θ is a statistic  that represents a “best guess” at the value 
of θ.  There may be more than one sensible point estimate of a parameter. (For example, either the 
trimmed sample mean or the sample mean could be used to estimate the population mean, but one of 
these point estimates may be “better” than the other.)
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One extra very important thing to remember is that since our statistics are built on data that is random, 
this means that statistics are also random variables themselves!  We’ve already seen this a bit in 
Chapter 2, when we studied , which we defined as the arithmetic average of a collection of i.i.d. random 
variables.  Similarly, we have that  is the arithmetic average of a collection of multiple observations of 
the same random variable.  In principle, these things are different, but mathematically, we focus on the 
similarities, since two observations of the same random variable functions the same way as one 
observation each from two different (but identical) random variables.

7.2  Proper4es of Point Es4mates 

Note that we can (often) figure out the bias of a point estimate without knowing the exact value of the 
parameter!  But we do usually need a little information, such as the general type of random variable 
we’re dealing with (i.e.: binomial, Poisson, normal, exponential, etc.) even if we don't know the actual 
values of the parameters.

The book illustrates this well with a Bernouilli random variable.  In each trial, we either get success or 
failure.  The parameter needed to completely define the random variable is p, the probability of success 
in each trial.  We can take n observations from this random variable.  Let X be the number of successes 
we observe.  In this case, the sample mean is just , so this should give us a point estimate of the 
unknown parameter p.  Therefore, we’ll call this point estimate .  But we note that X is itself a binomial 
random variable, since it is the number of successes in a fixed number of Bernoulli trials!  Since E(X) = np, 
this tells us that .  Therefore, the point estimate is unbiased! 

This same principle will work for situations other than Bernoulli trials to estimate the unknown mean µ.
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Unbiased and Biased Point Es4mates 

A point estimate  for a parameter θ is said to be unbiased if E(  = θ.  Unbiasedness is a good 
property for a point estimate to possess.
If a point estimate is not unbiased, then its bias can be defined to be bias = E(  - θ. 
All other things being equal, the smaller the absolute value of the bias of a point estimate, the better.  
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Point Es4mate of a Success Probability 

Suppose that X ∼ Bin(n, p).  Then  is an unbiased point estimate of the success probability p.  p̂ =  
X
n

Point Es4mate of a Popula4on Mean 

If X1, . . . , Xn is a sample of observations from a probability distribution with a mean µ, then the sample 
mean  is an unbiased point estimate of µ.μ̂ =  X̄



In particular, when the underlying probability distribution is not symmetric:

1) a trimmed sample mean is in general not an unbiased point estimate of the population mean

2) a sample median is in general not an unbiased point estimate of the population median.

This does not mean these estimates should never be used, as they may still have a relatively small bias. 

We have seen that a good point estimate should have an expectation that is the same as the population 
parameter (unbiased).  We also want one with as small a variance as possible.  That is we want Var( ) to 
be as small as possible in order to be more confident that we have an estimate closer to the true value θ.  
An unbiased point estimate that has a smaller variance than any other unbiased point estimate is called 
a minimum variance unbiased es4mate (MVUE).

It is important to note that if X1, . . . , Xn is a sample of observations that are independently normally 
distributed with mean µ and variance σ2, then the sample mean  is a minimum variance unbiased 
estimate of the mean µ.

To save time, we will omit relative efficiency and mean square error from this class, though you are free 
to read about them in the book, even though you won’t be tested on them.

7.3  Sampling distribu4ons 

As we’ve men,oned, sta,s,cs are random variables themselves, so they have their own probability 
distribu,ons.  In this sec,on, we inves,gate what the distribu,ons are for some of the basic sample 
sta,s,cs we defined in Chapter 6.  We’ll call these sampling distribu4ons.  
To start, let’s revisit the Bernoulli trial/Binomial random variable situation from the last section.  We saw 

that if X ∼ Bin(n, p), then   is an unbiased point estimate of the success probability p.  We also 

saw in Chapter 2 that Var(X) = np(1-p), which means that 

.  So we know the mean and variance of the 

sample proportion , but we still wish to know more about what kind of distribution  has.  

But from the Central Limit Theorem from Chapter 5, we get the following.

Point Es4mate of a Popula4on Variance 

If X1, . . . , Xn is a sample of observations from a probability distribution with a variance , then the 

sample variance . 

is an unbiased point estimate of the population variance . 
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Since we don’t actually know the real value of p, we don’t actually know exactly what s.e.( ) is.  Like 
other statistics, it is also a random variable. However, we can approximate it by replacing p with , 

where x is the observed number of successes.  This gives us the estimation .  

The standard error will be used in the future to indicate the accuracy of a point estimation   Smaller 
values of the standard error indicate less variability and thus more accurate estimates.  Increasing the 
sample size generally reduces the standard error.

Sample Mean: 
We generalize beyond Bernoulli trials to suppose that X1, . . . , Xn are independent, identically distributed 
RVs with a mean µ.  (We can think of these as observations from a single RV.)  We saw last section that 
the sample mean  is an unbiased point estimate of the population mean µ.  Once again, the 
Central Limit Theorem tells us how we can approximate  as a random variable.

Note again that the larger the sample size, the smaller the standard error becomes.

We end just by mentioning two more sampling distributions given in this section of the book, which will be 
used more in Chapter 8.  

Sample propor4on 

If X ∼ B(n, p), then the sample proportion   has the approximate distribution

  

Furthermore, the standard deviation of  is called its standard error and is denoted by s.e.( ).    That is, 

. 
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Sample Mean 

If X1, . . . , Xn are observations from a population with mean µ and variance , then the sample mean 
 has the approximate distribution

The standard error of the sample mean is .
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Then since  , we can convert  to a standard normal by subtracting the mean and dividing 

by the standard deviation.  Thus, .  Combining this with the above to replace σ 

with , we have

 
We’ll skip Section 7.4 in this class, so this is the end of Chapter 7.

Sample Variance

If X1, . . . , Xn are normally distributed with a mean µ and a variance σ2, then the sample 
variance  has the distribution (note below χ is used for the chi-square distribution).S2

S2 ∼ σ2 χ2
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If X1, . . . , Xn are normally distributed with a mean µ, then

.

The quantity  is called a t-statistic.
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