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Viscous Damping
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Introduction

e All objects or systems vibrate at some
level all the time.

e The vibration of all objects or systems is
always damped by some amount by some
natural mechanism, which is why free vibrations rarely last

long (except in space).

¢ Kinetic energy lost from damping is
usually turned into heat.

e With “viscous” damping, the damping
force is proportional to the velocity
difference between the two bodies.
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SDOF System with Viscous Damping
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Image from Fox Racing Shox ATV FLOAT X EVOL Owner’s Manual
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Fox FLOAT X EVOL Shock

e Shock Cross-Section
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Fox FLOAT X EVOL Shock

e Adjustable Spring Force Characteristics

FOX FLOAT X EVOL Prograssive Air Spring Curves
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FOX FLOAT X EVOL Progressive Alr Spring Curves

1) T
1 2 3 4

Travel (in.)

1
5

|_...m-|no/n-40 ....... P12 150 /P2 = 40 —---"xzoo[pz,(.ol

T 1
4 5

]
i

Travel (in.)

[==——r=150/P2230 sussessP12150/p2240 === PI=150/P2550]

Changing EVOL Air Chamber pressure adjusts

the bottom-out resistance of the shock.
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Changing MAIN Air Chamber pressure
steadily adjusts the spring curve.
Images from Fox Racing Shox ATV FLOAT X EVOL Owner’s Manual
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Fox FLOAT X EVOL Shock

e Adjustable Compression Damping
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Characteristic graph showing the affect of
changing the HSC adjuster.

Images from Fox Racing Shox ATV FLOAT X EVOL Owner’s Manual
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Free Body Diagram
System Differential Equation:
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Solving the Differential Equation

e The 3 cases:
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The “Critical Damping Coefficient”

e Critical damping coefficient
CCI‘ -

e Damping ratio

=

e In terms of (and w,,
My =
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Case 1) Underdamped motion

4 ¢<l
A== +w\1-¢"j=—cw, + jo,

— 4 Aot
x(t)=ae™ +a,e

= q eI 4 g pSOwion!

L e—ga),,t (ale—ja)dt + a26+ja)dt)

x(t) = Ae”*" sin(w,t + @)
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‘How to calculate Aand @?

x(t) = Ae " sin(w,t + @)

x(0) = x, = Asin(¢) (1)
x(t) = g, Ae™ " sin(@,t + @)+ @, Ae " cos(w, + @)
%(0) = v, = —gw, Asin(@)+ @, A cos(¢) (2)

e Solving Eq. (1) and (2) for Aand @ yields:
A= \/(Vo + 6w, X, )2 + (xowd )2

2

a)d
¢=tan™ %%
Vo T 60, X,
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Case 2) Overdamped motion
¢>1

A =—¢0, —@,\¢" —1
A =60, +@,\¢* ~1

x(t) = a,e™ +a,e™

t
=a,e +a,e

2 2
x(t) = e_g“’"t(ale_w" Vot a,e™e _”j
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How to calculate &, and &,?

(1) = e [ale(wm@)z . aze(f;m,,w.,\/ﬁjzj

(0) = x, = a, +a, 1)
M) =—gw,e™ [ale['%‘“’"@ Y, aze[—m,wm}j

S (T M SN WS

§(0) = v, =—¢0,(a +a,)+ a -0, - a1+l g0, + 0, 1) )

e Solving Equ. (1) and (2) for g, and &, yields:

a __Vo ( §'+\/§' )a)xo
1 2w, e
_Yt (§'+\/§' )wxo
20,16’
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Case 3) Critically damped motion

¢=1
h=4=-0,

x(t) = (a1 +a,t)e ) A4

x(t) = (a, +at)e™
x(0)=x,=q, (1)
x(t) = a,e™™ +(a, + azt)(— e )
x(0)=v,=a,—m,a, (2)

e Solving Equ. (1) and (2) for g, and &, yields:

a, =X,

a, =V, + , X,




