
MAE 340 – Vibrations

Numerical Simulation 
of Time Response

Section 1.9



Introduction
• So far all of the vibration problems could be 

represented by linear differential equations 
of the form:

• Non-linear differential equations do not 
have such simple solutions:

• These problems can be solved using numerical methods.
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The “Euler Method”

• Several numerical methods are available.  

We will use the “Euler Method.”

• Assume:

• If we use time steps:
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The “Euler Method”

then:

• As an example, to solve the D.E.:

then

• All we need is the initial displacement x0 and to 

choose a good value for ∆t.  Then we can 

compute an estimate of x(t) for each time step.  

• The smaller we set ∆t, the better the estimate 

will be.
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2nd Order Differential Equations

• How about the D.E.:                               ?

• Split it into two problems:

• Taking derivatives with respect to time:
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2nd Order Differential Equations

• In matrix form:

• Use Euler equation to solve numerically:
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2nd Order Differential Equations

• To use this method, we need to:

1) Create the A matrix.

2) Initialize

3) Set ∆t to a good value.

4) Repeatedly compute

for
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Other Numerical Methods

• Other, more accurate methods are 
available, some that even calculate ∆t
automatically (E.g., Runge-Kutta method).

• These methods are available as 
functions in Matlab and MathCAD.
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Accuracy of Numerical Simulation

MAE 340 – Vibrations 9

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0 0.5 1 1.5 2 2.5 3 3.5 4

x
(t

) 
(m

)

t (sec)

Actual

Numerical ∆t=0.01

Numerical ∆t=0.1

m 0.1kg x0 0m ωn 3.16228rad/s A 0.031623m

k 1N/m v0 0.1m/s Φ 0rad

Smaller time steps generally yield more accurate solutions.



Linearization of Non-Linear System
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In this case, the linearization under-predicts the amplitude and period.
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