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Numerical Simulation
of Time Response
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Introduction

e So far all of the vibration problems could be
represented by linear differential equations
of the form:

e Non-linear differential equations do not
have such simple solutions:

6+Ssind=0
I

mi+kx+k,x’ =0

e These problems can be solved using numerical methods.
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The “Euler Method”

e Several numerical methods are available.
We will use the “Euler Method.”

e Assume: dx

_~
~

dt

e If we use time steps: t,=0 x, < given
t,=At x, =7
t,=2At  x,=?
t,=3At x,=?
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The “Euler Method”
T . dx < i T
then: 7 AL

e As an example, to solve the D.E.: X=ax

then Zw—%i_, =2 | = X, + Atax,
At 1+ 1 l

e All we need is the initial displacement x; and to
choose a good value for At. Then we can
compute an estimate of x({) for each time step.

e The smaller we set At the better the estimate
will be.
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2" Order Differential Equations

|« How about the D.E.:  mi+ci+kx=02?
e Split it into two problems:

z, (1) = x(1)

Z, (1) = x(1)

e Taking derivatives with respect to time:

Z.1(t) = .X(l) = &n

. . R c k
Zo(B) =X (E) = Kot X T

m m m m
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2" Order Differential Equations

e In matrix form:

: 0 1
<n m m <n
Z= AZ ~———— “state vector”

\ “State matrix”
e Use Euler equation to solve numerically:

Z,,=27 +ArAz,

“State variables”
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2" Order Differential Equations

e To use this method, we need to:
1) Create the A matrix.

Xo
2) Initialize Z, =
Vo

3) Set Afto a good value.
4 Repeatedly compute Z,,, =Z, + AtAzZ,

l final

At

for i=1to
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Other Numerical Methods

e Other, more accurate methods are
available, some that even calculate At
automatically (E.g., Runge-Kutta method).

e These methods are available as
functions in Matlab and MathCAD.
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Accuracy of Numerical Simulation
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Smaller time steps generally yield more accurate solutions.

MAE 340 — Vibrations

Linearization of Non-Linear System

D

Now that we know how to get an accurate simulation, let’s

compare the numerical (“actual”) solution of 6 + %sin(e) =0

with the linearized solution 6 + Ze =0. -l ol e
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In this case, the linearization under-predicts the amplitude and period.




