
MAE 340 – Vibrations

Harmonic Excitation of 
Undamped Systems

Section 2.1

Forced Vibration!



Motorcycle Engine Vibration Problem

• A motorcycle engine turns 
(and vibrates) at 5000 rpm 
with a harmonic force of 
20 N.

MAE 340 – Vibrations 2

• What is the amplitude of the vibration with respect 
to the frame (assumed to be stationary) and phase of the 
response (with respect to the force), if:

• the mass of the engine is 40 kg, 

• the stiffness of the mounts is 40 kN/m?

k

Figure P1. Motor vibrating in motorcycle

m
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Undamped Spring-Mass 
System with Forced Vibration
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Solving for X
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Differentiating xp (t) with respect to t :

Substituting back into D.E.:

Solving for X :
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Solving for A and Φ
• The particular solution must also be 
accounted for when solving for A and Φ.  
Therefore new equations are needed.

• To make things easier, we use A1 and A2

instead of A and Φ :
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Solving for A and Φ
• Solving for A1 and A2 and inserting into             
x(t) = xh(t) + xp(t) yields:
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Explaining “Beat” Phenomena
• What “beat” looks like:
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• Start with overall solution to D.E.:
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• Let x0 = 0 and v0 = 0:
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Explaining “Beat” Phenomena
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• If ωn – ω is small (i.e., ω is close to ωn ), then 2 
components are observed:

• Since: 
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• Low frequency component that produces beat at a 
frequency of ωbeat = |ωn – ω|.

• High frequency oscillation component that produces 
vibration at a frequency of ωosc = (ωn + ω)/2 ≈ ω ≈ ω n .



Explaining “Resonance” Phenomena

• What “resonance” looks like:
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Explaining “Resonance” Phenomena
• We must therefore use a solution of the form:
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• Therefore
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