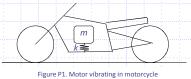
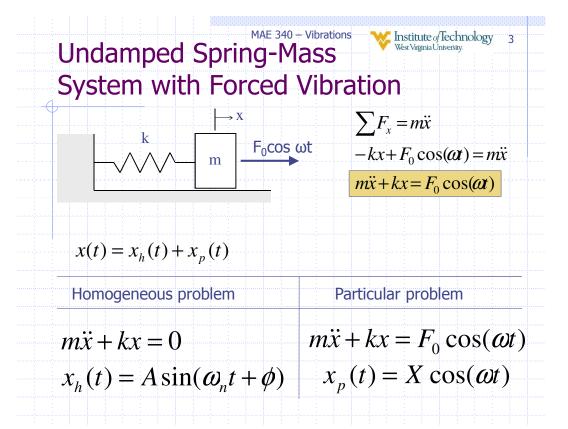


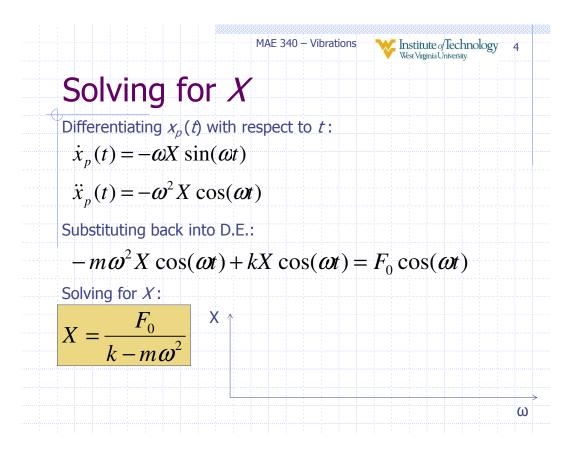
Motorcycle Engine Vibration Problem

A motorcycle engine turns
 (and vibrates) at 5000 rpm
 with a harmonic force of 20 N.



- What is the amplitude of the vibration with respect to the frame (assumed to be stationary) and phase of the response (with respect to the force), if:
 - the mass of the engine is 40 kg,
 - the stiffness of the mounts is 40 kN/m?





Solving for A and ϕ

- The particular solution must also be accounted for when solving for A and ϕ . Therefore new equations are needed.
- To make things easier, we use A_1 and A_2 instead of A and φ :

$$x(t) = A_1 \sin \omega_n t + A_2 \cos \omega_n t + \frac{F_0}{k - m\omega^2} \cos \omega t$$

$$x_0 = x(0) = A_2 + \frac{F_0}{k - m\omega^2}$$

$$v_0 = \dot{x}(0) = \omega_n A_1$$

MAE 340 - Vibrations

Institute of Technology

Solving for A and Φ

• Solving for A_1 and A_2 and inserting into $x(t) = x_p(t) + x_p(t)$ yields:

$$x(t) = \frac{v_0}{\omega_n} \sin \omega_n t + \left(x_0 - \frac{F_0}{k - m\omega^2}\right) \cos \omega_n t + \frac{F_0}{k - m\omega^2} \cos \omega t$$

Explaining "Beat" Phenomena

What "beat" looks like:

t

Start with overall solution to D.E.:

$$x(t) = \frac{v_0}{\omega_n} \sin \omega_n t + \left(x_0 - \frac{F_0}{k - m\omega^2}\right) \cos \omega_n t + \frac{F_0}{k - m\omega^2} \cos \omega t$$

• Let $x_0 = 0$ and $v_0 = 0$:

$$x(t) = \frac{F_0}{k - m\omega^2} (\cos \omega t - \cos \omega_n t)$$

MAE 340 - Vibrations

8

Explaining "Beat" Phenomena

• Since: $\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$

$$x(t) = \frac{2F_0}{k - m\omega^2} \sin\left(\frac{\omega_n - \omega}{2}t\right) \sin\left(\frac{\omega_n + \omega}{2}t\right)$$

- If $\omega_n \omega$ is small (i.e., ω is close to ω_n), then 2 components are observed:
 - High frequency oscillation component that produces vibration at a frequency of $\omega_{osc} = (\omega_n + \omega)/2 \approx \omega \approx \omega_n$.

$$x(t) = \frac{2F_0}{k - m\omega^2} \sin\left(\frac{\omega_n - \omega}{2}t\right) \sin\left(\frac{\omega_n + \omega}{2}t\right)$$

• Low frequency component that produces beat at a frequency of $\omega_{beat} = |\omega_n - \omega|$.

Explaining "Resonance" Phenomena

What "resonance" looks like:

Χ

t

• If $\omega = \omega_n$, the particular solution to $m\ddot{x} + kx = F_0 \cos(\omega_n t)$ can not be $x_p(t) = X \cos(\omega_n t)$ because that is also a solution to the homogeneous problem.

MAE 340 – Vibrations

10

Explaining "Resonance" Phenomena

• We must therefore use a solution of the form:

$$x_p(t) = tX \sin(\omega_n t) \Rightarrow x_p(t) = \frac{F_0}{2m\omega_n} t \sin(\omega_n t)$$

Therefore

$$x(t) = A_1 \sin \omega_n t + A_2 \cos \omega_n t + \frac{F_0}{2m\omega_n} t \sin \omega_n t$$
$$= \frac{v_0}{\omega_n} \sin \omega_n t + x_0 \cos \omega_n t + \frac{F_0}{2m\omega_n} t \sin \omega_n t$$