
MAE 340 – Vibrations

Numerical Simulation and Design
Section 2.8

Non-linear Response Properties
Section 2.9



Forced Vibration with Coulomb Damping

• A single degree-of-freedom system with mass 10 kg, 
spring stiffness of 1000 N/m and a Coulomb 
damping coefficient of 0.3 is excited by a harmonic 
force of 100 N amplitude at 100 rad/s.

• Plot the EXACT response x(t).  Assume x0 = -0.8683 mm and 
v0 = 35 mm/s.
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taking derivative 
wrt time

Section 2.8

Numerical Simulation & Design
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• Recall that the “state-space” formulation for 
free vibration
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taking derivative 
wrt time

Numerical Simulation & Design

• If we include the harmonic force term
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it becomes:
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taking derivative 
wrt time

Section 2.9

Non-linear Response Properties

• General formulation for any spring and damper forces:
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• Setting up “state space” numerical time-integration:
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taking derivative 
wrt time

Non-linear Response Properties

• For Coulomb damping:
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• Setting up “state space” numerical time-integration 
solution:
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Numerical (Actual) Nonlinear Response 
compared with Linearized Response

• Actual problem using                             solved numerically

• Linearized problem using                    solved algebraically.
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Numerical (Actual) Nonlinear Response 
compared with Linearized Response

• Same as above with higher friction coefficient.
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Comparing Actual Nonlinear
Response with Linearized Response
• Non-linear spring (Fspring = kx – k1x 

3) versus linear spring (Fspring = kx)

ω=ωn/2.964
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Comparing Actual Nonlinear
Response with Linearized Response
• Non-linear spring (Fspring = kx – k1x 

3) versus linear spring (Fspring = kx)

ω=ωn/1.09
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Comparing Actual Nonlinear
Response with Linearized Response

• Displacement-squared damping (                           ) 

versus use of ceq (                  ) 

2)sgn( xxFdamping
&&α=

πω3

4dX
ceq =

α=0.005
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Comparing Actual Nonlinear
Response with Linearized Response

• Displacement-squared damping (                           ) 

versus use of ceq (                  ) 

2)sgn( xxFdamping
&&α=

πω3

4dX
ceq =

α=0.5


