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Forced Vibration with Coulomb Damping

e A single degree-of-freedom system with mass 10 kg,
spring stiffness of 1000 N/m and a Coulomb
damping coefficient of 0.3 is excited by a harmonic
force of 100 N amplitude at 100 rad/s.

e Plot the EXACT response X(t). Assume x, = -0.8683 mm and
Vo = 35 mm/s.
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Section 2.8 Wi Uy
Numerical Simulation & Design

e Recall that the “state-space” formulation for
free vibration mix+ci+kx=0
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Numerical Simulation & Design

o If we include the harmonic force term
mx+cx+kx = F, cos at

it becomes:
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Section 2.9 Wi Uy
Non-linear Response Properties

'« General formulation for any spring and damper forces:

#(6)+ fIx(t),x(t)] = f, cos @t

e Setting up “state space” numerical time-integration:
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Zz(t):x(t) wrt time 2, =x=—=flz,,2,]+ fycosax

Putting into {21 (t)} _{ <y (1) } { 0 :|
matrix form — > | . = +
@) | |—f(z,2)]| | f,cosax
2=F(z)+f ()
> 2(t,,) = 2(t,) + Flz(1,) 1At +£(1,) At

Approximating

- z(t,,)—z(t;)

#t;) At

MAE 340 — Vibrations Institute ofTechnology 6
West Virginia University.

Non-linear Response Properties

"o For Coulomb damping:
mx(t) + uN sgn(x) + kx = F, cos wt

e Setting up “state space” numerical time-integration
solution:

» Zl =x= 2,
z, (1) = x(1) taking derivative
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Numerical (Actual) Nonlinear Response

~compared with Linearized Response

U
* Actual problem using £, = 4mgsgn(x) solved numerically

4umg

* Linearized problem using €., = <,
P 9 e T rax

solved algebraically.

Forced Vibration with Coulomb Damping
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Numerical (Actual) Nonlinear Response

D

compared with Linearized Response
e Same as above with higher friction coefficient.

Forced Vibration with Coulomb Damping
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Comparing Actual Nonlinear
Response with Linearized Response

e Non-linear spring (Fopring = kx — kyx3) versus linear spring (Fgyn, = &X)

T - w=wn/2.964
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Comparing Actual Nonlinear
"Response with Linearized Response

e Non-linear spring (Fopring = kx — kyx3) versus linear spring (Fg,ny = &X)

Displacement
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Comparing Actual Nonlinear
Response with Linearized Response

e Displacement-squared damping (F tamping = O¥8N(X)X?)
versus use of o (¢, = dax )
" 3w
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Comparing Actual Nonlinear
Response with Linearized Response

e Displacement-squared damping (F tamping = O¥8gN(X)X?)
versus use of o (¢, = dax )
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