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MAE 340 – Vibrations

Multi-Degree-of-Freedom 
Systems

Section 4.1

Examples of Multi-
Degree-of-Freedom (MDOF) Systems

Swaying Building
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Two DOF Spring-Mass System

• Given:

� m1 = 9 kg

� m2 = 1 kg

� k1 = 24 N/m

� k2 = 3 N/m

• Find:

� ωn1, ωn2

� x1 (t ), x2 (t )
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� x1,0 = 1 mm

� x2,0 = 0 mm

� v1,0 = 0 m/s

� v2,0 = 0 m/s

Two DOF Spring-Mass System

• Sol’n:

Step 1: Derive system differential equations
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Mass 1 Mass 2
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Two DOF Spring-Mass System
Write out coupled equations as matrix equation 
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With variables:

With numbers:

Solving Differential Equation
Step 2: Solve matrix differential equation
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Assume a solution:
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Solving Differential Equation
Substitute back into system differential equation:
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Simplify:
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u is a trivial solution; we are not interested 

in it.

Solving Differential Equation
If we could solve for                         then we
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could get

The only way to get a non-trivial solution would 
be if it were impossible to solve for
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but this is still the trivial solution!
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When is a matrix not invertible??
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Solving Differential Equation

When the determinant is zero!!
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Need to find ωn that satisfy:

Recall that the determinant of a matrix is 
computed as follows:

( ) 0det
2 =+− KM
n

ω

Solving Differential Equation
Putting in the numbers:
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Mode 1: ωn1 =

Substituting ωn1 into equation from slide 7: 
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Mode 1
These equations are not linearly independent.  
There is no single solution.  Instead there is a set 
of solutions.  But each solution must satisfy:
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We could use a scaling factor (s):

This is the “Mode Shape”.
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Mode 1
Usually s is chosen so that the largest u value is 1:
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Therefore, the equation of motion, considering 
only the first mode is:

This is the “Normalized Mode Shape”.

Mode 2: ωn2 =

Substituting ωn2 into equation from slide 7: 
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Mode 2

The normalized mode shape is:

The equation of motion, considering only 
the second mode is:
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Both Modes Together

The overall equation of motion, considering both 
modes is:
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The unknowns (A1, Φ1, A2, Φ2) must be 
determined from the initial conditions.
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Solving for A1, Φ1, A2, Φ2

• Applying the initial conditions:
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Solving for A1, Φ1, A2, Φ2

• Need to solve the nonlinear equations:
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Solving for A1, Φ1, A2, Φ2
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Solving for A1, Φ1, A2, Φ2

• Therefore, the overall equation of 
motion is:
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