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Modal Analysis

What we did on the computers last class

Sec. 4.2-4.6

I
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Free Vibration Solution

N
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e In Sec. 4.1 we solved the system differential matrix
equation:

e by assuming:

e resulting in the equation:

e which was used to solve for natural frequencies:

e and mode shapes:
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Eigenvalues and Eigenvectors

N

e In Linear Algebra, the Eigenvalue problem
IS:

= Given:
+ Matrix A
+ Matrix equation Av=AvV

s Find solutions for:

* A lot of knowledge is available in
mathematics about Eigenvalue problems.
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Equation to Eigenvalue problem
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1. Solve forLsuchthat M =LLT

This can be done using a "Cholesky
decomposition”

This is like solving for the square-root of
M.

Let’s use ‘M2’ to refer to L.

2. Solving for inverse of L.:
M-1/2 = jnverse(L)
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Mapping System it
Equation to Eigenvalue problem

N

3. Introduce new function of time q(¢) such
that:

q)=Mx(f or x(§=MY2q()
4. Substituting into system differential

equation and pre-multiplying by M-1/2;
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Mapping System et
Equation to Eigenvalue problem
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5. Assume solution q(t) = v elet,
Therefore:
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Mapping System it
Equation to Eigenvalue problem
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Therefore, to map the system equation
to an Eigenvalue problem:

n A=

After solving for A and v:
m Oy =
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Mapping Eigenvalue™ * %+
problem to SDOF problem
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e The Eigenvalues and Eigenvectors can be
used to simplify a MDOF analysis into a
several SDOF analyses:

w

— 2

s '——’ fl
k, k,
m FAAMAA m
) /
l—-> Xy |—> X9 mg’
1
e} l——' f:
r=35'x%
X = Sr

Modal coordinates
(uncoupled)

Physical coordinates
(coupled)

— where —»

S=M12p
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Mapping Eigenva I ue West Virginia Universiy.

N

problem to SDOF problem

e Define matrix of eigenvectors:
P=[viv,Vv;..V]
e Matrix of mode shapes is:

S=[u;u,u;...u]= P

e Define modal coordinates r such that:
q() = P r()
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Mapping Eigenvalue ***
problem to SDOF problem

N

e Substituting P r(?) for q(?) in system
equation and pre-multiplying by PT
yields:
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Mapping Eigenvalue * %
problem to SDOF problem

N

e \We therefore have a nice set of SDOF
equations:
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Modal Analysis

N
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e To solve with initial conditions x(0)
and x(0), use:

r(0) =
r(0) =

e To get back x(¢) from r(?), use;
x({) =
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Modal Analysis Procedure

Calculate M1/,

Calculate K = M '2KM™ 2 the mass normalized stiffness matrix.
Calculate the symmetric eigenvalue problem for K to get o7 and v;.
Normalize v; and form the matrix P = [vl vﬂ.

Calculate S = M'2P and 7' = PTM'”,

Calculate the modal initial conditions: r(0) = S™'x,, £(0) = S7'%,.
Substitute the components of r(0) and i(0) into equations (4.66) and
(4.67) to get the solution in modal coordinate r(1).

Multiply r(z) by S to get the solution x(t) = Sx(1).

Note that S is the matrix of mode shapes and P is the matrix of eigenvectors.




Comparing
System Representations

N

System D.E.
Form of sol.

After sub.

Original Problem
Mx+ Kx=0
x(t) = uel®nt

(K- w,’M)u=20
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Eigenvalue Prob.

Ig+Kq=0
q(t) = ve'ont
Kv = w,%v
(Wny

K=M1Y2KkmM-1/2 A= 0

Uu; = M_l/zvi

S=[u u; ug]

r(0) = S~ 1x(0)
x(t) = Sr(t)

Modal Problem

Ir+ Ar =20
r(t) = Aet®nt
A is from I. C.
0 0
wny? 0
0 wnsz_
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“"Nodes” of a Mode

N
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e These are places where the mode shape is
Zero.

* Not a good place to mount a sensor or
actuator for body motion.

e Good place to mount devices that shouldn't
receive or transmit vibrations at the given
natural frequency.
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Rigid-Body Modes

N

"~ Institute of Technology 16

© West Virginia University

e Appear as natural frequencies with value of

l—-b X?'
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e Require special treatment when evaluating
motion from initial conditions (see p. 314 in text)
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Viscous Damping

e It is relatively difficult to model
individual dampers in a Modal Analysis.

e Some “tricks” are available:

= "Modal damping” (apply damping ¢ to system
equation for each mode in modal coordinates
r(t))
= Proportional damping” (C = aM + BK,
with o and B chosen freely)
@ Bo

g: 2(1),‘ 2
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Forced Response

Forces can be mapped to modal equations
. MX + Cx + Kx = BF(!)

1.0 0 0 F(t)
o100 _ | ()
5100 1 o ¥ F(t)
00 0 1_ | F(1) _

> I§(1) + C(t) + Kq(1) = M7'/2BF(1)

C = M'PCM2,
3. ¥(t) + diag[2¢;]E(t) + Ax(t) = PPM'?BF(1)

Fi(t) + 2Lw,7(1) + ofn(t) = fi(1)



