MAE 340 – Vibrations

Modal Analysis

What we did on the computers last class Sec. 4.2-4.6

Free Vibration Solution

In Sec. 4.1 we solved the system differential matrix equation:

• by assuming:

• resulting in the equation:

• which was used to solve for natural frequencies:

• and mode shapes:

MAE 340 – Vibrations

Institute of Technology

West Virginia University.

3

Eigenvalues and Eigenvectors

- In Linear Algebra, the Eigenvalue problem
 - is:
 - Given:
 - Matrix A
 - Matrix equation $\mathbf{A} \mathbf{v} = \lambda \mathbf{v}$
 - Find solutions for:

 A lot of knowledge is available in mathematics about Eigenvalue problems.

1. Solve for L such that $\mathbf{M} = \mathbf{L} \mathbf{L}^{\mathsf{T}}$

- This can be done using a "Cholesky decomposition"
- This is like solving for the square-root of
 M.

4

- Let's use $M^{1/2'}$ to refer to L.
- 2. Solving for inverse of L:
 - $M^{-1/2} = inverse(L)$

5

- 3. Introduce new function of time **q**(*t*) such that:
 - q(t) = M x(t) or $x(t) = M^{-1/2} q(t)$
- 4. Substituting into system differential equation and pre-multiplying by M^{-1/2}:

6

5. Assume solution $\mathbf{q}(t) = \mathbf{v} e^{j\omega t}$. Therefore:

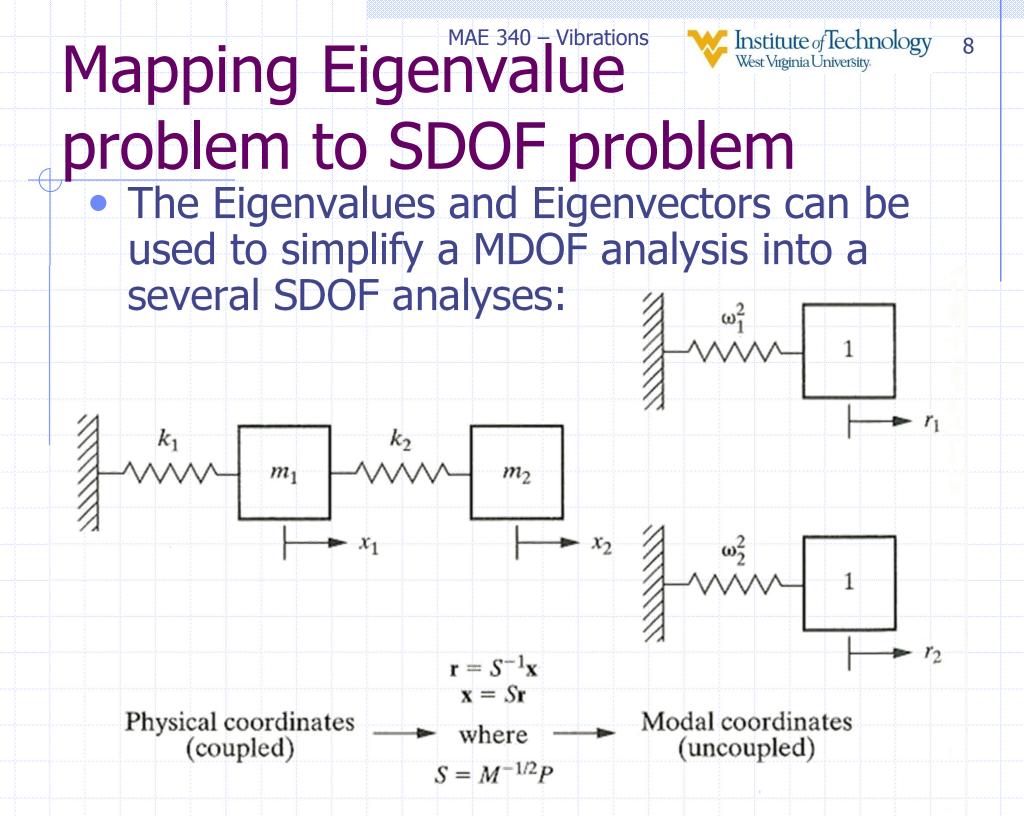
7

Therefore, to map the system equation to an Eigenvalue problem:

- After solving for λ and **v**:
 - ω_{ni} =

• U; =

-A =



MAE 340 - Vibrations MAE 340 - Vibrations West Virginia University. 9 problem to SDOF problem Define matrix of eigenvectors: $\mathbf{P} = \begin{bmatrix} \mathbf{V}_1 \ \mathbf{V}_2 \ \mathbf{V}_3 \ \dots \ \mathbf{V}_n \end{bmatrix}$ • Matrix of mode shapes is: $S = [u_1 \ u_2 \ u_3 \ \dots \ u_n] = ___P$ • Define modal coordinates r such that:

 $\mathbf{q}(t) = \mathbf{P} \mathbf{r}(t)$

Mapping Eigenvalue
 Problem to SDOF problem
 Substituting P r(t) for q(t) in system equation and pre-multiplying by P^T yields:

MAE 340 - Vibrations MAE 340 - Vibrations West Virginia University. West Virginia University.

We therefore have a nice set of SDOF equations:

11

Modal Analysis

- To solve with initial conditions x(0) and x(0), use:
 - **r**(0) =
 - **r**(0) =
- To get back x(t) from r(t), use:

Institute of Technology West Virginia University

13

- 1. Calculate $M^{-1/2}$.
- 2. Calculate $\widetilde{K} = M^{-1/2} K M^{-1/2}$, the mass normalized stiffness matrix.
- 3. Calculate the symmetric eigenvalue problem for \widetilde{K} to get ω_i^2 and \mathbf{v}_i .
- 4. Normalize \mathbf{v}_i and form the matrix $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix}$.
- 5. Calculate $S = M^{-1/2}P$ and $S^{-1} = P^T M^{1/2}$.
- 6. Calculate the modal initial conditions: $\mathbf{r}(0) = S^{-1}\mathbf{x}_0$, $\dot{\mathbf{r}}(0) = S^{-1}\dot{\mathbf{x}}_0$.
- 7. Substitute the components of $\mathbf{r}(0)$ and $\dot{\mathbf{r}}(0)$ into equations (4.66) and (4.67) to get the solution in modal coordinate $\mathbf{r}(t)$.
- 8. Multiply $\mathbf{r}(t)$ by S to get the solution $\mathbf{x}(t) = S\mathbf{r}(t)$.

Note that S is the matrix of mode shapes and P is the matrix of eigenvectors.

ComparingMAE 340 - VibrationsInstitute of Technology14System Representations

Eigenvalue Prob. **Original Problem** Modal Problem $I\ddot{q}+\widetilde{K}q=0$ $M\ddot{x} + Kx = 0$ $I\ddot{r} + \Lambda r = 0$ System D.E. $\boldsymbol{x}(t) = \boldsymbol{u}e^{i\omega_n t}$ $q(t) = v e^{i\omega_n t}$ $\boldsymbol{r}(t) = \boldsymbol{A} e^{i\omega_n t}$ Form of sol. $\widetilde{\boldsymbol{K}}\boldsymbol{\boldsymbol{\nu}}=\omega_n^2\boldsymbol{\boldsymbol{\nu}}$ $(\boldsymbol{K}-\omega_n^2\boldsymbol{M})\boldsymbol{u}=\boldsymbol{0}$ A is from I.C. After sub. $\widetilde{K} = M^{-1/2} K M^{-1/2} \qquad \Lambda = \begin{bmatrix} \omega_{n1}^2 & 0 & 0 \\ 0 & \omega_{n2}^2 & 0 \\ 0 & 0 & \omega_{n3}^2 \end{bmatrix}$ $\boldsymbol{u}_i = \boldsymbol{M}^{-1/2} \boldsymbol{v}_i$ $\boldsymbol{r}(0) = \boldsymbol{S}^{-1}\boldsymbol{x}(0)$ $S = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$ $\boldsymbol{x}(t) = \boldsymbol{S}\boldsymbol{r}(t)$

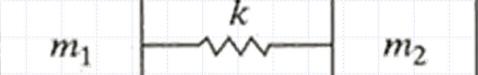
"Nodes" of a Mode

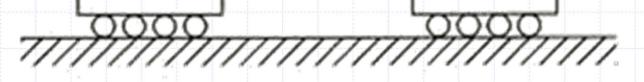
• These are places where the mode shape is zero.

- Not a good place to mount a sensor or actuator for body motion.
- Good place to mount devices that shouldn't receive or transmit vibrations at the given natural frequency.

Rigid-Body Modes

Appear as natural frequencies with value of zero





 Require special treatment when evaluating motion from initial conditions (see p. 314 in text)

Viscous Damping

- It is relatively difficult to model individual dampers in a Modal Analysis.
- Some "tricks" are available:
 - "Modal damping" (apply damping ζ_i to system equation for each mode in modal coordinates r(t))
 - "Proportional damping" ($\mathbf{C} = \alpha \mathbf{M} + \beta \mathbf{K}$, with α and β chosen freely)

$$\zeta_i = \frac{\alpha}{2\omega_i} + \frac{\beta\omega_i}{2} \qquad i = 1, 2, \dots, n$$

Forced Response

Forces can be mapped to modal equations $M\ddot{\mathbf{x}} + C\dot{\mathbf{x}} + K\mathbf{x} = B\mathbf{F}(t)$

- $B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{F}(t) = \begin{bmatrix} F_1(t) \\ F_2(t) \\ F_3(t) \\ F_4(t) \end{bmatrix}$
- ^{2.} $I\ddot{\mathbf{q}}(t) + \widetilde{C}\ddot{\mathbf{q}}(t) + \widetilde{K}\mathbf{q}(t) = M^{-1/2}B\mathbf{F}(t)$
 - $\widetilde{C} = M^{-1/2} C M^{-1/2}.$
- 3. $\ddot{\mathbf{r}}(t) + \operatorname{diag}[2\zeta_i\omega_i]\dot{\mathbf{r}}(t) + \Lambda \mathbf{r}(t) = P^T M^{-1/2} B \mathbf{F}(t)$
 - $\ddot{r}_i(t) + 2\zeta_i \omega_i \dot{r}_i(t) + \omega_i^2 r_i(t) = f_i(t)$