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Modal Analysis

What we did on the computers last class

Sec. 4.2-4.6
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Free Vibration Solution

e In Sec. 4.1 we solved the system differential matrix
equation:

e by assuming:

e resulting in the equation:

e which was used to solve for natural frequencies:

¢ and mode shapes:
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Eigenvalues and Eigenvectors

e In Linear Algebra, the Eigenvalue problem
is:

= Given:

+ Matrix A

+ Matrix equation Av =L v
= Find solutions for:

e A lot of knowledge is available in
mathematics about Eigenvalue problems.

Mapping System™~ """ Vi
Equation to Eigenvalue problem

1. Solve for Lsuchthat M =L LT

This can be done using a “Cholesky
decomposition”

This is like solving for the square-root of
M.

Let’s use ‘M2’ to refer to L.

2. Solving for inverse of L:
M-1/2 = inverse(L)
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Mapping System e
Equation to Eigenvalue problem

3. Introduce new function of time q(?9 such
that:

q®=Mx() or x()=M"q()

4. Substituting into system differential
equation and pre-multiplying by M-1/2;
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Mapping System i
Equation to Eigenvalue problem

5. Assume solution q(t) = v eiot,
Therefore:
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Mapping System e
Equation to Eigenvalue problem

Therefore, to map the system equation
to an Eigenvalue problem:
[ | A =

After solving for A and v:
[ | (Dni =
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Mapping Eigenvalue
problem to SDOF problem

( e The Eigenvalues and Eigenvectors can be
used to simplify a MDOF analysis into a

several SDOF analyses: 4 |
/ k, k, |——> n
my FAANANNA S ms

l—-b Xq |—> X2 7 (D%

1

r=S"lx I-—. e

X = Sr
Modal coordinates
(uncoupled)

Physical coordinates
(coupled)

— where —»

S=Mm"12p
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Mapping Eigenvalug™ **
_problem to SDOF problem

e Define matrix of eigenvectors:
P=[v,v,v;..V,]
e Matrix of mode shapes is:

S=[u;u,u;..u]= P

e Define modal coordinates r such that:
q() =Pr()
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Mapping Eigenvalue "~ **

_problem to SDOF problem

e Substituting P r(£) for q(¢) in system
equation and pre-multiplying by PT
yields:
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Mapping Eigenvalue "
_problem to SDOF problem

e We therefore have a nice set of SDOF
equations:
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Modal Analysis

Ie To solve with initial conditions x(0)
and x(0), use:

r(0) =
r(0) =

e To get back x(?) from r(?), use:
x(f) =
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1. Calculate M2,
2. Calculate K = M~ 2K M ', the mass normalized stiffness matrix.
3, Calculate the symmetric eigenvalue problem for K to get oF and v;.
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4. Normalize v; and form the matrix P = [vl vz].
5. Calculate S = M 2P and ™' = P"M'".
6. Calculate the modal initial conditions: r(0) = S7x,,#(0) = 57'%,.

Modal Analysis Procedure

7. Substitute the components of r(0) and ¢(0) into equations (4.66) and
(4.67) to get the solution in modal coordinate r(t).

8. Multiply r(t) by S to get the solution x(1) = Sr(t).

Note that S is the matrix of mode shapes and P is the matrix of eigenvectors.

Comparing
\/System Representations

System D.E.
Form of sol.

After sub.

Original Problem
Mx+Kx =0
x(t) = uet@nt

(K — w,?M)u=0

K=M"12KM™'? A=

u; = M "%y,

S = [u1 Uy u3]

MAE 340 — Vibrations

Eigenvalue Prob.
I§+Kq=0
q(t) = ve'®n!

Kv = w,*v

0
0

r(0) = $71x(0)
x(t) = Sr(t)
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Modal Problem
Ir+Ar =20

r(t) = Ae'®nt

A is from L. C.

0 0
wn?2 0
2

0 Wn3
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“"Nodes” of a Mode

e These are places where the mode shape is
Zero.

e Not a good place to mount a sensor or
actuator for body motion.

e Good place to mount devices that shouldn’t
receive or transmit vibrations at the given
natural frequency.
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Rigid-Body Modes

e Appear as natural frequencies with value of

Zero
'—le l—. X2

k
m AAA m,

Al

e Require special treatment when evaluating
motion from initial conditions (see p. 314 in text)
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Viscous Damping

e It is relatively difficult to model
individual dampers in a Modal Analysis.

e Some “tricks” are available:
= "Modal damping” (apply damping ¢,to system
equation for each mode in modal coordinates
r(t))
= "Proportional damping” (C = aM + BK,
with a and B chosen freely)

o Bw; .
- - ! 1 = 1, 2 ey T
i ’
2(!.),' 2
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Forced Response

Forces can be mapped to modal equations
. M% + Cx + Kx = BF(1)

100 0 X0
1o 100 | B
B=loo0 10 FO =1 )

000 1 Ei(1)

2 (1) + C(t) + Kq(t) = M™2BF(¢)
C = M'PCM2
5. #(t) + diag[2¢w;]i(r) + Ax(r) = PTM'?BF(t)

Fi(t) + 2Lwi7i(t) + wir(t) = fi(t)



