MAE 423 – HEAT AND MASS TRANSFER EXAM 3 Practice Questions

Name: _____

You are allowed three sheets of notes.

 A 20 mm diameter spherical ice cube (at 0° C) is placed in a drink (mostly water) which is at room temperature (20° C). What is the heat transfer rate if the ice cube is fully immersed without any shaking or stirring?

15

55

2. A 5 mm diameter, 100 mm long straw is used to draw up the drink at a rate of 0.25 liters/minute. If the straw is at 20° C for its full length and the drink is at 10° C when it enters the straw, what is the temperature when it exits the straw? (Ignore entrance effects.)

3. Name the five geometric factors (or parameters) that are important to radiation heat transfer between two planar faces.

4. What is the "Reciprocity Theorem"?

5. What is the difference between counter-current flow and parallel (or co-current) flow heat exchangers?

6. Why is $T_f = \frac{T_{\infty} + T_s}{2}$ used for looking up fluid properties for external flow problems but not for flow in a duct?

2

- 7. Compute the length of tubing required for a refrigerator condenser heat exchanger, if:
 - the required heat transfer rate is 250 W
 - the refrigerant is condensing along the length of the tube at 45° C with a convection coefficient of 2000 W/m²K and fouling factor of 0.0002 m²K/W
 - the air is heated through natural convection from 20° C to 40° C with a convection coefficient of $10 \text{ W/m}^2\text{K}$ and fouling factor of 0.0004 m²K/W
 - the tube has an outside diameter of 10 mm and a wall thickness of 0.5 mm, with negligible thermal resistance
 - correction factor F = 0.7

tnatnouseontnecorner.com

Surface Area of Sphere: $A = \pi D^2$ 1 litre = 0.001 m³ -

_

 $\overline{Nu}_D = 2 + 0.392(Gr_D)^{1/4}$

 $1 < {\rm Gr}_{\rm D} < 10^5$

Temper	ature,	Density, p (kg/m ³)	Coefficient of Thermal Expansion, $\beta \times 10^4$ (1/K)	Specific Heat, (J/kg K)	Thermal Conductivity, <i>k</i> (W/m K)	Thermal Diffusivity, $\alpha \times 10^{6}$ (m^{2}/s)	Absolute Viscosity, $\mu \times 10^{6}$ (N s/m ⁶)	Kinematic Viscosity, $\nu \times 10^{6}$ (m^{2}/s)	Prandtl Number, Pr	$\frac{g\beta}{\nu^2} \times 10$ (1/K m ³)
4.	0 °	$\times 6.243 \times 10^{-2}$ = (lb _m /ft ³)	× 0.5556 = (1/R)	$\times 2.388 \times 10^{-4}$ = (Btu/lbm °F)	× 0.5777 = (Btu/h ft °F)	$\times 3.874 \times 10^{4}$ = (ft ² /h)	\times 0.6720 = (lb _m /ft s)	$\times 3.874 \times 10^{4}$ = (ft ² /h)		× 1.573 × 1 = (1/R ft ²
20 0	0 0	000 0	-0.7	4226	0.558	0.131	1794	1.789	13.7	I
2 17		1000	5	4206	0.568	0.135	1535	1.535	11.4	I
2 03	01 52	000 7	0.95	4195	0.577	0.137	1296	1.300	9.5	0.551
2 02	20 15	1.000		4187	0.585	0.141	1136	1.146	8.1	I
689	03 20	998.2	2.1	4182	0.597	0.143	666	1.006	7.0	2.035
17 25	30 25	007.1	1	4178	0.606	0.146	880.6	0.884	6.1	I
86 3	03 30	005.7	3.0	4176	0.615	0.149	792.4	0.805	5.4	4.540
05	35 35	1.266	1	4175	0.624	0.150	719.8	0.725	4.8	I
104 3	13 40	002.2	3.9	4175	0.633	0.151	658.0	0.658	4.3	8.833
113 3	18 45	990.2	I	4176	0.640	0.155	605.1	0.611	3.9	1
2 2 2 2	23 50	988.1	4.6	4178	0.647	0.157	555.1	0.556	3.55	14.59
167 3	48 76	974.9	I	4190	0.671	0.164	376.6	0.366	2.23	I
210 2	73 100	958.4	7.5	4211	0.682	0.169	277.5	0.294	1.75	85.09
2 070	121 20	043 5	8.5	4232	0.685	0.171	235.4	0.244	1.43	140.0
043	12 140	2006 3	9.7	4257	0.684	0.172	201.0	0.212	1.23	211.7
1007	191 66	007.6	10.8	4285	0.680	0.173	171.6	0.191	1.10	290.3
2000	101 00	986 6	12.1	4396	0.673	0.172	152.0	0.173	1.01	396.5
000	JUC CL	862.8	13.5	4501	0.665	0.170	139.3	0.160	0.95	517.2
340	100 000	0.27.0	15.2	4605	0.652	0.167	124.5	0.149	0.90	671.4
075	27 66	0.000	17.2	4731	0.634	0.162	113.8	0.141	0.86	848.5
505	157 CT	0.000	20.0	4082	0.613	0.156	104.9	0.135	0.86	1076
2000	00 00 00	750.0	23.8	5234	0.588	0.147	98.07	0.131	0.89	1360
572	73 30	712.5	29.5	5694	0.564	0.132	92.18	0.128	0.98	1766

System Description	Recommended Correlation	Equation in Text
Friction factor for laminar flow in long tubes and ducts	Liquids: $f = (64/\text{Re}_D)(\mu_s/\mu_b)^{0.14}$ Gases: $f = (64/\text{Re}_D)(T_s/T_b)^{0.14})$	(6.44) (6.45)
Nusselt number for fully developed laminar flow in long tubes with uniform heat flux, $Pr > 0.6$	$\overline{Nu}_D = 4.36$	(6.31)
Nusselt number for fully developed laminar flow in long tubes with uniform wall temperature, $\Pr > 0.6$	$\overline{Nu}_D = 3.36$	(6.32)
Average Nusselt number for laminar flow in tubes and ducts of intermediate length with uniform wall temperature, $(\text{Re}_{D_N}\text{Pr}D_H/L)^{0.33}(\mu_b/\mu_s)^{0.14} > 2$, $0.004 < (\mu_b/\mu_s) < 10$, and $0.5 < \text{Pr} < 16,000$	$\overline{Nu}_{D_H} = 1.86 (\text{Re}_{D_H} \text{Pr} D_H / L)^{0.33} (\mu_b / \mu_s)^{0.14}$	(6.42)
Average Nusselt number for laminar flow in	$\overline{Nu}_{D_{\mu}} = 3.66$	
short tubes and ducts with uniform wall temperature, $100 < (Re_{D_H}PrD_H/L) < 1500$ and $Pr < 0.7$	+ $\frac{0.0668 \text{Re}_{D_H} \text{Pr} D/L}{1 + 0.045 (\text{Re}_{D_H} \text{Pr} D/L)^{0.66}} \left(\frac{\mu_b}{\mu_s}\right)^{0.66}$	(6.41)
Friction factor for fully developed turbulent flow through smooth, long tubes and ducts	$f = 0.184/{ m Re}_{D_H}^{0.2}(10,000 < { m Re}_{D_H} < 10^6)$	(6.56)
Average Nusselt number for fully developed turbulent	$\overline{Nu}_{D_{H}} = 0.027 \ \text{Re}_{D_{H}}^{0.8} \text{Pr}^{1/3} (\mu_{b}/\mu_{s})^{0.14}$	(6.61)
flow through smooth, long tubes and ducts, 6000 $< Re_{\mathcal{D}_H} < 10^7,0.7 < Pr < 10,000,$ and $L/D_H > 60$	or Table 6.3 or the Gnielinski correlation, Eq. (6.65) for Re _D > 2300	(6.63)
Average Nusselt number for liquid metals in turbulent, fully developed flow through smooth tubes with uniform heat flux,	$\overline{Nu}_{D} = 4.82 + 0.0185 (Re_{D}Pr)^{0.827}$	(6.68)
$100 < \text{Re}_{D}\text{Pr} < 10^{4} \text{ and } L/D > 30$		
Same as above, but in thermal entry region when $Re_D Pr < 100$	$Nu_D = 3.0 Re_D^{0.0833}$	(6.69)
Average Nusselt number for liquid metals in turbulent fully developed flow through smooth tubes with uniform surface temperature, $Re_D Pr > 100$ and $L/D > 30$	$\overline{Nu}_{D} = 5.0 + 0.025 (Re_{D}Pr)^{0.8}$	(6.70)

TABLE 6.4	Summary of forced	convection	correlations	for	incompressible	flow	inside	tubes	and	ducts ^{a, a, c}

^{*a*}All physical properties in the correlations are evaluated at the bulk temperature T_b except μ_s , which is evaluated at the surface temperature T_s . ^{*b*}Re_{D_H} = $D_H \bar{U} \rho / \mu$, $D_H = 4A_c / P$, and $\bar{U} = \dot{m} / \rho A_c$.

Incompressible flow correlations apply when average velocity is less than half the speed of sound (Mach number <0.5) to gases and vapors.

Name (reference)	Formula ^a	Conditions	Equation
Dittus-Boelter [35]	$\overline{\mathrm{Nu}}_{D} = 0.23 \mathrm{Re}_{D}^{0.8} \mathrm{Pr}^{n}$	0.5 < Pr < 120	(6.60)
	$n \begin{cases} = 0.4 \text{ for heating} \\ = 0.3 \text{ for cooling} \end{cases}$	$6000 < \text{Re}_{D} < 10^7$	
Sieder-Tate [16]	$\overline{\mathrm{Nu}}_{D} = 0.027 \mathrm{Re}_{D}^{0.8} \mathrm{Pr}^{0.3} \left(\frac{\mu_{b}}{\mu_{s}}\right)^{0.14}$	$\begin{array}{l} 6000 < Re_{\text{D}} < 10^7 \\ 0.7 < \ Pr < 10^4 \end{array}$	(6.61)
Petukhov-Popov [36]	$\overline{Nu}_D = \frac{(f/8) \text{Re}_D \text{Pr}}{K_1 + K_2 (f/8)^{1/2} (\text{Pr}^{2/3} - 1)}$	$0.5 < {\rm Pr} < 2000$ $10^4 < {\rm Re}_{D} < 5 imes 10^6$	(6.63)
	where $f = (1.82 \log_{10} \text{Re}_B - 1.64)^{-2}$ $K_1 = 1 + 3.4f$		
Sleicher-Rouse [37]	$\kappa_{z} = 11.7 + \frac{1}{Pr^{1/3}}$ $\overline{Nu}_{D} = 5 + 0.015 Re_{D}^{a} Pr_{s}^{b}$	$\begin{array}{ll} 0.1 < \mbox{ Pr } < 10^5 \\ 10^4 < \mbox{ Re}_D < 10^6 \end{array}$	(6.64)
	where $a = 0.88 - \frac{0.24}{4 + Pr_s}$ $b = 1/3 + 0.5e^{-0.6Pr_s}$		

TABLE 6.3 Heat transfer correlations for liquids and gases in incompressible flow through tubes and pipes

"All properties are evaluated at the bulk fluid temperature except where noted. Subscripts b and s indicate bulk and surface temperatures, respectively.