Mechanism Analysis

Creating Motion!

Elements of a Mechanism Analysis

- 1. Scenario
- 2. Rigid Bodies
- 3. Markers
- 4. Joints
- 5. Input Motions/Forces

1. Scenario

- Scenarios contain all the information of a single mechanism motion analysis.
- To perform a mechanism analysis select the "Motion" application.
- To create a new scenario:
 - move the mouse over the assembly in the "Scenario Navigator."
 - Press the RMB
 - Select "New Scenario."

2. Rigid Bodies

- Rigid bodies (or links) are bodies that experience motion.
- Each rigid body adds 6 degrees-offreedom to the system
- To create a rigid body
- Press
 Pick assembly components (or an object) to create a rigid body with that geometry.

3. Markers

- Markers specify the position and orientation of joints on a rigid body.

Markers

- There are always two markers per joint one on each body.
- Created automatically when creating joints.
- Make sure that the Z axes of both markers of a joint are in the same direction.

Snapping

- If two joined links are not lined up in the assembly you will need to use "Snap links" when creating joints.
- Normally you only need to specify the marker location on one link. With "Snap links" checked, you will need to pick marker locations on both links.

4. Joints

- Joints restrain degrees-of-freedom.
- Types of Joints:

West Virginia University.

Creating Joints

- 1. Press 🐑 . Pick type of joint.
- 2. Pick first link.
- 3. Pick joint location. Specify "Point" and "Vector."
- 4. Pick second link or press OK for ground.
- Joints are drawn in the graphics window. If they don't show the correct position or orientation, you will need to re-specify the origin and orientation.

The Gruebler Count

- The number/type of joints required is determined by the "Gruebler count":

G = #links x 6 – #joint_constraints – #input_motions

- If:
 - G < 0: over-constrained mechanism kinematic analysis G = 0: well-constrained mechanism – kinematic analysis G > 0: under-constrained mechanism – dynamic analysis
- In kinematic analysis, motion is totally controlled by input motions. Any input forces are counter-acted by reactions at motion input.
- In dynamic analysis, motion is controlled by forces and masses of links.

Creating Joints

<u>Joint</u> <u>#Con</u>	<u>straints</u>	Fixed Revolute	Revolute	Fixed Slider	Slider
Revolute	5	H.	de la		
Slider	5	Fixed Cylindrical	Cylindrical	Fixed Screw	Screw
Cylinder	4	A			
Screw	1	777			
Planar	3	Universal :	Spherical I	Fixed Planar	Planar
Sphere	3	~V	0 -	7792.	
Gear	1	Gear	Rack and Pinio	n Curve/Curve	Point/Curve
Rack/Pinion	1		$\left(\right)$	E	9 Lo
Point/Curve	2	\bigcirc		_	Q.
Curve/Curve	2	Fixed Poin	t Point/Curve	Fixed Curve Po	int/Curve
Universal	4)		The state	
(Motion)	1	Ø	G	, Teck	
MAE 455 – Computer-Aided Design and Drafting					recommentationy

5. Motion/Force Input

- Motion input

- in NX motions are input with joints
- specifies second link with respect to first link
- "Constant Driver" motion follows:

 $x(TIME) = Displacement + Velocity \times TIME + \frac{1}{2} Acceleration \times TIME^{2}$

where *x*(*TIME*) is the angular or lateral displacement.

"General" motion driver allows arbitrary expressions to control the displacement. A useful Adams function is:
 STEP(x, x0, h0, x1, h1).

Motion/Force Input

- In a **KINEMATIC** analysis, the motion is **controlled by the input motions**. The input forces simply allow you to measure reactions.
- In a **DYNAMIC** analysis, the motion is **determined by the input forces**, link mass properties, and joint locations.

Creating Graphs

Graphs can be created to plot:

- Displacement, velocity and/or acceleration as function of time step.
- Reaction forces and/or moments as a function of time step.

- -Lateral or angular quantity.
- -Magnitude or X, Y, Z components.

Interference Checking

NX provides three types of geometric analysis as the motion proceeds:

- -Solid body interference
- -Clearance distance infringement
- -Motion tracing

Motion File Management

- NX Motion automatically uses a "master model" approach to manage analysis files. The design (assembly) part is the master part which drives the analysis.
- When you create a new scenario, NX:
 - creates a new assembly part file with scenario name,
 - adds the design part as a component of scenario.
- This allows someone to do the mechanism analysis without write access to the design.

Motion File Management

