Introduction to CAD

What Do Those Letters Mean to You?
Painting “The Big Picture”

• What is Computer-Aided Design (CAD)?
 – Creating drawings on a computer
 – Creating 3D shapes on a computer
 – Visualization
 • Checking how things fit together to make sure they don’t interfere
 • Checking how product will look to the customer
 – Doing simulations
 • Animation
 • Dynamics
 • Structural Analysis
 • Fluid Flow
 • Heat Transfer
The Design Process

- What is Computer-Aided Design (CAD)?
 Using computers to help execute the design process.
More Specific Definitions

- **Computer-Aided Design (CAD)** is the technology concerned with the use of computer systems to assist in the creation, modification, analysis, and optimization of a design. [Groover and Zimmers, 1984]

- **Computer-Aided Manufacturing (CAM)** is the technology concerned with the use of computer systems to plan, manage, and control manufacturing operations.

- **Computer-Aided Engineering (CAE)** is the technology concerned with the use of computer systems to analyze CAD geometry, allowing the designer to simulate and study how the product will behave.
Components of CAD Systems

- **Hardware**
 - Computing machine
 - Data storage devices
 - Communication devices
 - User input devices
 - User output devices

- **Software**
 - Solid Modeling
 - Assembly Modeling
 - Motion Simulation
 - Finite Element Analysis

CAD/CAM/CAE System
Components of CAD Systems

- Input Devices

Image from YouTube

Image from Mitutoyo (UK) Ltd

MAE 455 Computer-Aided Design and Drafting

Image from DesignerTechniques.com – Allan Macdonald

Image from YouTube
Components of CAD Systems

- Output Devices
Components of CAD Systems

- Integrated Input/Output Devices – Virtual Reality
Components of CAD Systems

- Integrated Input/Output Devices – Virtual Reality
SolidWorks versus other CAD software

<table>
<thead>
<tr>
<th></th>
<th>Drafting</th>
<th>Solid/Ass. Modeling</th>
<th>Parametric Solid/Ass. Modeling</th>
<th>Integrated Simulation</th>
<th>Integrated Manufacturing</th>
<th>Integrated Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemens PLM NX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro-Engineer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SolidWorks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autodesk Inventor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid Edge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AutoCAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAE 455 Computer-Aided Design and Drafting
SolidWorks vs. Autodesk
Inventor vs. Solid Edge

• Programs are similar but not equivalent:
 – Same class of software
 – Same types of tools available
 – Same general techniques used in each
 – Specific buttons, menus and input sequences different
 – Customer lists different

• Today vs. tomorrow
 – User interfaces will change
 – Fundamentals will stay the same
Course Goals

• Basic and Advanced Shape Modeling
• Parametric Modeling
• Working in Teams
• Advanced Top-Down Design Methodology
• Use of Solid Models for Downstream Applications
 – Design Documentation
 – Mechanism Analysis
 – Finite Element Analysis/Shape Optimization
 – Computer-Aided Manufacturing
Course Expectations

• Learning through doing (hands-on learning)
• Learning by studying theory
• Benefits from course
 – How to model products well, using state of the art CAD software
 – Understanding how computer is leveraged in design process