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Bending of Beams — Definition of Problem

Beam with a straight axis (x-axis), with varying cross-section
(A(x)), loaded transversely (qx) in y direction) with transverse
deflections (v(x) in y direction).
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Bending of Beams — Definition of Problem
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Bending of Beams — Definition of Problem
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Bending of Beams — Definition of Problem

Summary
d4
Field equation: E1& ) = q(x)
dx*
dv
Slope: O(x)=—
dx
, d’v
Bending Moment: M (x)=El—
dx
d’v
Shear Force: V(x)=—El—
dx
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Bending of Beams — Definition of Problem

Boundary Conditions: Four boundary conditions are
necessary to solve a bending problem. Boundary
conditions can be:

deflection: v(0),v(L)
slope: 6(0),6(L)
bending Moment: M (0), M (L)
shear force: V(0),V(L)
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Beam Element — Shape Functions
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» Recall that shape functions are uded to interpolate displacements.




Beam Element — Shape Functions
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* There are two degrees of freedom (displacements)
at each node: v and 6..

« Each shape function corresponds to one of the
displacements being equal to ‘one’ and all the
other displacements equal to ‘zero'.

» Note that everything we do in this course
assumes that the dlsplacements are small.
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Beam Element — Shape Functions
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» Recall that the B row vector is used to interpolate stresses & strains.




Beam Element — Formal Derivation

* The formal beam element stiffness matrix
derivation is much the same as the bar element
stiffness matrix derivation. From the minim-
ization of potential energy, we get the formula:

{.
k = JBTEI B dx
]

« As with the bar element, the strain energy of the
element is given by 1d'kd.
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Beam Element — Formal Derivation

The result Is:
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which operatesond =[v,, 0., v,, 0,,]".
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Beam Element — Formal Derivation

* The moment along the element is given by:

M=El%Y w EI Bd
dy
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» The stress is given by:

M
o, = Iy — —yEBd
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Beam Element w/Axial Stiffness

 [f we combine the bar and beam stiffness
matrices, we get a general beam stiffness
matrix with axial stiffness.
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Uniformly Distributed Loads

Laterally:

Element
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Equivalent Loadings

TABLE 4.2 Equivalent nodal loading of beams

Loading

Equivalent Nodal Loading
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Orientating Element in 3-D Space

 Transformation matrices are used to transform
the equations in the element coordinate system
to the global coordinate system, as was shown
for the bar element.
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