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MAE 456 Finite Element Analysis

Bending of Beams – Definition of Problem

Beam with a straight axis (x-axis), with varying cross-section

(A(x)), loaded transversely (q(x) in y direction) with transverse 

deflections (v(x) in y direction).
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Bending of Beams – Definition of Problem
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Bending of Beams – Definition of Problem
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Continued from previous slide.
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Bending of Beams – Definition of Problem

Summary
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Bending of Beams – Definition of Problem

Boundary Conditions: Four boundary conditions are 

necessary to solve a bending problem. Boundary 

conditions can be:

deflection:

bending Moment:

shear force:

slope:
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Beam Element – Shape Functions

• Recall that shape functions are used to interpolate displacements.
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Beam Element – Shape Functions

• There are two degrees of freedom (displacements)

at each node: v and θz.  

• Each shape function corresponds to one of the 

displacements being equal to ‘one’ and all the 

other displacements equal to ‘zero’.

• Note that everything we do in this course 

assumes that the displacements are small.
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Beam Element – Shape Functions

Bd

d
NNd

Ey

dx

d
Ey

dx

d
Ey

dx

vd
EyE

−=









−=








−=

−==

2

2

2

2

2

2

εσ

9• Recall that the B row vector is used to interpolate stresses & strains.
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Beam Element – Formal Derivation

• The formal beam element stiffness matrix 

derivation is much the same as the bar element 

stiffness matrix derivation.  From the minim-

ization of potential energy, we get the formula:

• As with the bar element, the strain energy of the 

element is given by           .kdd
T
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Beam Element – Formal Derivation

The result is:

which operates on d = [v1, θz1, v2, θz2]
T.
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Beam Element – Formal Derivation

• The moment along the element is given by:

• The stress is given by:
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Beam Element w/Axial Stiffness

• If we combine the bar and beam stiffness 

matrices, we get a general beam stiffness 

matrix with axial stiffness. 
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Uniformly Distributed Loads

Laterally:
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Equivalent Loadings
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Orientating Element in 3-D Space

• Transformation matrices are used to transform 

the equations in the element coordinate system 

to the global coordinate system, as was shown 

for the bar element.
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