EE 327 Signals and Systems 1 Homework 2

- 1. Sketch the following discrete-time signals.
 - a. x[n] = u[n-5] u[n-6]
 - b. x[n] = 10u[-n+2] 5u[n-2]
 - c. $x[n] = 4\delta[n+5] + (n+5)u[n+3] nu[n]$
 - d. $x[n] = (0.1)^n (u[n] u[n-5])$
- 2. A discrete-time signal, x[n], is shown below. Sketch each of the following signals.

3. The following continuous-time signal is to be discretized. Determine the minimum sampling frequency required to prevent aliasing from occurring.

 $x(t) = 1 + 5\cos(20\pi t) + 10\cos(200\pi t)$

4. Determine if the following system properties are valid.

a.	y(t) = x(-t)	Causal?
b.	y(t) = (t+5)x(t)	Memoryless?
c.	y(t) = x(5)	Memoryless?
d.	y(t) = 2x(t)	Stable (BIBO)?

5. Determine if the following system properties are valid.

a.	y(t) = x(t) + a	Linear?
b.	y(t) = tx(2t)	Linear?
c.	$y(t) = \int_{0}^{T} x(t-\tau) d\tau$	Time Invariant?
d.	y(t) = x(2t)	Time Invariant?

6. Determine the following properties for the discrete-time system that is given. Properties – Causality, Memory, Stability, Linearity, Time Invariance, LTI.

$$y[n] = \left(\frac{n+0.5}{n-0.5}\right)^2 x[n]$$