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High-Order Conditional Quantile Estimation Based on
Nonparametric Models of Regression
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We consider the estimation of a high order quantile associated with the conditional
distribution of a regressand in a nonparametric regression model. Our estimator is inspired
by Pickands (1975) where it is shown that arbitrary distributions which lie in the domain
of attraction of an extreme value type have tails that, in the limit, behave as generalized
Pareto distributions (GPD). Smith (1987) has studied the asymptotic properties of maximum
likelihood (ML) estimators for the parameters of the GPD in this context, but in our paper
the relevant random variables used in estimation are standardized residuals from a first
stage kernel based nonparametric estimation. We obtain convergence in probability and
distribution of the residual based ML estimator for the parameters of the GPD as well
as the asymptotic distribution for a suitably defined quantile estimator. A Monte Carlo
study provides evidence that our estimator behaves well in finite samples and is easily
implementable. Our results have direct application in finance, particularly in the estimation
of conditional Value-at-Risk, but other researchers in applied fields such as insurance will
also find the results useful.

Keywords Conditional quantile; Extreme value theory; Generalized Pareto distribution;
Nonparametric regression.

JEL Classification C10; C14; C21.

1. INTRODUCTION

Consider the nonparametric regression model

Y = m(X) + �1/2U , (1)

Address correspondence to Prof. Carlos Martins-Filho, Department of Economics, University of Colorado,
Boulder, CO 80309-0256, USA; E-mail: carlos.martins@colorado.edu
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 907

where m is a real valued function that belongs to a suitably restricted class (see
Section 3), 0 < � < ∞ is an unknown parameter, E(U | X = x) = 0, and V (U | X = x) =
1. We assume that U has a strictly increasing absolutely continuous distribution F(u)
which belongs to the domain of attraction of an extremal distribution (Leadbetter et al.,
1983; Resnick, 1987). In this case, for a ∈ (0, 1), the conditional a-quantile associated with
the conditional distribution of Y given X, denoted by qY | X=x(a), is given by qY | X=x(a) =
m(x) + �1/2q(a), where q(a) is the a-quantile associated with F . If U were observed, q(a)
could be estimated from a random sample �Ui�

n
i=1 and combined with estimators for m

and � to obtain an estimator for qY | X=x(a). In general, U is not observed, but given a
random sample �(Yi, Xi)�

n
i=1 and estimators m̂(x) and �̂ for m(x) and �, it is possible to

obtain a sequence of standardized nonparametric residuals

Ûi = Yi − m̂(Xi)

�̂1/2
for i = 1, � � � , n, (2)

that can be used to produce an estimator q̂(a) for q(a). Then, we can define q̂Y | X=x(a) =
m̂(x) + �̂1/2q̂(a) as an estimator for qY | X=x(a).

In this article, we are particularly interested in cases where a is very large, i.e., in the
vicinity of 1. These high order conditional quantiles have become particularly important
in empirical finance where they are called conditional Value-at-Risk (VaR) (see (McNeil
and Frey, 2000; Martins-Filho and Yao, 2006b; Cai and Wang, 2008). It is interesting
that the information that a is in the vicinity of 1 proves helpful in the estimation of q(a).
The seminal result comes from Pickands (1975), who showed that if F is in the domain
of attraction of an extremal type distribution, denoted by F(x) ∈ D(E), for some fixed k
and function �(�),

F(x) ∈ D(E) ⇐⇒ lim�→u∞sup0<u<u∞−�

∣∣F�(u) − G(u; 0, �(�), k)
∣∣ = 0, (3)

where F�(u) = F(u+�)−F(�)
1−F(�)

, u∞ = sup�x : F(x) < 1� ≤ ∞ is the upper endpoint of F , u∞ >

� ∈ �, G is a generalized Pareto distribution (GPD), i.e.,

G(y; �, �, k) =
{

1 − (1 − k(y − �)/�)1/k if k 	= 0, � > 0

1 − exp(−(y − �)/�) if k = 0, � > 0

with � ≤ y < ∞ if k ≤ 0, � ≤ y ≤ � + �/k if k > 0. It is evident that F�(u) is the
conditional distribution of exceedances over a threshold � of a random variable U given
that U > �.

The equivalence in (3) shows that G is a suitable parametric approximation for the
upper tail of F provided that F belongs to the domain of attraction of an extremal type
distribution. Therefore, it is intuitively appealing to obtain an estimator for q(a) from the
estimation of the parameters k and �(�). Smith (1987) provides a comprehensive study
of a maximum likelihood (ML) type estimator for k and �(�) when the sequence �Ui�

n
i=1

D
ow

nl
oa

de
d 

by
 [

W
es

t V
ir

gi
ni

a 
U

ni
ve

rs
ity

] 
at

 0
8:

08
 0

8 
Fe

br
ua

ry
 2

01
5 



908 C. MARTINS-FILHO ET AL.

is observed. In this article, we extend Smith’s results and study the asymptotic properties
of ML type estimators for k and �(�) based on a sequence �Ûi�

n
i=1 obtained from first

stage estimators m̂(x) and �̂. The extension is desirable as many stochastic models of
interest, in particular those used in insurance and finance, exhibit the conditional location-
scale structure of Eq. (1) (see (Embrechts et al., 1997) rather than the simpler formulation
treated by Smith.

We have shown that, for the case where F(x) belongs to the domain of attraction of
a Fréchet distribution, the ML estimator for the parameters of the generalized pareto
distribution (GPD) based on the sequence �Ûi�

n
i=1 converges at a parametric rate to a

normal distribution when suitably centered. The asymptotic distribution is similar to that
obtained by Smith (1987), but although the use of standardized nonparametric residuals
does not impact the estimator’s rate of convergence, it does increase its variance. We also
study the asymptotic behavior of the estimator q̂(a) constructed from the ML estimators
for the parameters of the GPD. In particular, we show that q̂(a)

q(a) − 1 also converges in
distribution to a normal at the parametric rate. These results, combined with known
properties for suitably defined m̂(x) and �̂, provide weak consistency of q̂Y | X=x(a) as an
estimator for qY | X=x(a).

Besides the introduction, this article has four more sections and two appendices.
Section 2 provides definitions and discussions of the specific estimators we will consider.
Section 3 provides the asymptotic characterization of our proposed estimators and the
assumptions we used in our results. Section 4 contains a Monte Carlo study that sheds
some light on the finite sample properties of the estimator under study and a comparison
with a commonly used estimator proposed by Hill (1975) for the parameter k of the GPD
distribution. Section 5 provides a conclusion and gives directions for further study. The
appendices contain all proofs, supporting lemmas, tables, and figures that summarize the
Monte Carlo simulations.

2. ESTIMATION

Our proposed estimation procedure has two main stages. First, the definition of Ûi

in (2) requires specific estimators for m(x) and �. We consider the local linear (LL)
estimator m̂(x) ≡ 	̂ where (	̂, 
̂) ≡ argmin	,


∑n
i=1(Yi − 	 − 
(Xi − x))2K1

(
Xi−x
h1n

)
based

on a random sample �(Yi, Xi)�
n
i=1 of observations on (Y , X) ∈ �2 and �̂ = 1

n

∑n
i=1(Yi −

m̂(Xi))
2. Here, K1(·) is a kernel function satisfying some standard properties (see Section

3), and 0 < h1n is a bandwidth.1 It should be clear from what follows that other
nonparametric estimators for m(x) could be used to define Ûi. What is important is

1The case where (Y , X) ∈ �1+D with X ∈ �D and D > 1 can be analyzed with arguments that are similar
to those we have used. The only differences reside on how the kernel function is defined and the speed of
convergence of the relevant bandwidths to zero.
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 909

that they are uniformly asymptotically close to m(x) in probability at a suitable rate. In
particular, under our assumptions, the LL estimator satisfies

sup
x∈G

∣∣m̂(x) − m(x)
∣∣ = Op

((
nh1n

log n

)−1/2

+ h2
1n

)
, (4)

where G ⊂ � is the compact support of m (see Assumption A5 in Subsection 3.2).
It is worth mentioning that, if the regression model in (1) is parametric, i.e., m(x) =
m(x; 
) for 
 ∈ B ⊂ �D where D is finite, then any estimator for 
 that converges at the
parametric rate (

√
n) will satisfy (4), therefore preserving the asymptotic characterizations

of Theorems 1 and 2 in Section 3.
Also critical is that �̂ converges to � sufficiently fast (but not necessarily at a parametric

rate). Under our assumptions and given (4), it can be easily obtained that

�̂ − � = Op

((
nh1n

log n

)−1/2

+ h2
1n

)
, (5)

which will prove sufficient for our asymptotic results. The second stage of estimation,
which is based on the equivalence in (3), is more intricate and requires some additional
notation and motivation. We first discuss estimation for the case where Ui is observed.
Since the GPD is a suitable approximation for the upper tail of F , it is intuitively
reasonable to use only sufficiently large values of Ui to estimate its parameters. Therefore,
a key aspect of the estimation is the determination of a threshold value such that only its
exceedances are used to estimate the parameters of the GPD. For any given sample size
n, a specific threshold selection implicitly defines a number N of exceedances to be used
in the second stage estimation. Alternatively, by choosing N an implicit threshold (not
unique) is defined.

For an observed sequence �Ui�
n
i=1, we define the order statistics �U(i)�

n
i=1 where U(1) ≤

U(2) ≤ · · · ≤ U(n). For a fixed N < n, we define the excesses over U(n−N ) by �Zj�
N
j=1 =

�U(n−N+j) − U(n−N )�
N
j=1. Ascending order statistics can be viewed as estimators for a-

quantiles associated with empirical distributions. As such, we can write

qn(a) =
{

U(na) if na ∈ �
U([na]+1) if na ��,

where � represents the set of positive integers and qn(a) is the a-quantile associated
with the empirical distribution Fn(u) = n−1

∑n
i=1 ��Ui≤u� with �A denoting the indicator

function for the set A. Consequently, for an = 1 − N
n , we can write �Zj�

N
j=1 =

�U(n−N+j) − qn (an)�
N
j=1. Thus, for a given sample size n and N (and consequently an),

we can estimate the threshold qn(an) which will be exceeded by exactly the N largest
elements of �Ui�

n
i=1. The sequence �Zj�

N
j=1 could then be used to estimate the parameters

of the GPD. Here, the threshold � in equivalence (3) is estimated by qn(an) which, given
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910 C. MARTINS-FILHO ET AL.

a sample of size n, determines the order statistics to be used in estimating the parameters
of the GDP.

Since in our case we only observe �Ûi�
n
i=1, we must produce an estimated sequence

of exceedances with typical element given by Z̃j . Perhaps the most natural procedure
would be to define Z̃j = Û(n−N+j) − q̂n (an), where q̂n(an) is the an-quantile associated
with the empirical distribution of the nonparametric standardized residuals �Ûi�

n
i=1.

However, it is well known from the unconditional distribution and quantile estimation
literature (Azzalini, 1981; Falk, 1985; Yang, 1985; Bowman et al., 1998; Martins-Filho
and Yao, 2008) that smoothing beyond that attained by the empirical distribution
can produce significant gains in finite samples with no impact on asymptotic rates
of convergence. Consequently, we define q̃(z) as the solution for F̃(q̃(z)) = z, where
F̃(u) = ∫ u

−∞
1

nh2n

∑n
i=1 K2

(
y−Ûi
h2n

)
dy, K2(·) is a symmetric kernel function and 0 < h2n is

a bandwidth satisfying certain regularity conditions. Therefore, we define the observed
sequence of exceedances to be used in the estimation of the parameters of the GPD
in the second stage as �Z̃j�

Ns
j=1 = {

Û(n−Ns+j) − q̃(an)
}Ns

j=1
. Note that here the number of

residuals Ns that exceeds q̃(an) may be different from N for any finite n. As will be seen
in Section 3, this finite sample difference will be of no asymptotic consequence for the
estimation.

Given the sequence �Z̃j�
Ns
j=1, we consider maximum likelihood estimators for � and

k based on the density g(z; �, k) = 1
�

(
1 − kz

�

)1/k−1
associated with the GPD distribution

when � = 0. In particular, we obtain a solution (�̃N , k̃) for the following likelihood
equations:

�

��

1
Ns

Ns∑
j=1

log g(Z̃j ; �̃N , k̃) = 0 and
�

�k
1

Ns

Ns∑
j=1

log g(Z̃j ; �̃N , k̃) = 0� (6)

Now, if �Ui�
n
i=1 were observed, for a threshold � = qn(an) we could write, based on (3),

Fqn(an)(y) = F(y + qn(an)) − F(qn(an))

1 − F(qn(an))
≈ 1 −

(
1 − ky

�N

)1/k

,

where � has a subscript N to make explicit the fact that it depends on the threshold
qn(an). Without loss of generality, we can write for a ∈ (0, 1) that q(a) = qn(an) + yN ,a,
where by construction F(qn(an) + yN ,a) = a. Hence, we have

1 − a
1 − F(qn(an))

≈
(

1 − kyN ,a

�N

)1/k

� (7)

If F is approximated by the empirical distribution Fn, then 1 − F(qn(an)) ≈ N
n ,

which suggests yN ,a ≈ �N
k

(
1 − (

(1−a)n
N

)k
)

and q(a) ≈ qn(an) + �N
k

(
1 − (

(1−a)n
N

)k
)

. The last
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 911

approximation is the basis for our proposed estimator q̂(a) for q(a), which is given by

q̂(a) = q̃(an) + �̃N

k̃

(
1 −

(
(1 − a)n

N

)k̃
)
� (8)

Lastly, the estimator for qY | X=x(a) is given by q̂Y | X=x(a) = m̂(x) + �̂1/2q̂(a). In the next
section, we discuss the existence and provide asymptotic properties for (�̃N , k̃), q̂(a), and
q̂Y | X=x(a).

3. ASYMPTOTIC PROPERTIES OF THE PROPOSED ESTIMATORS

3.1. Preliminaries

We start by discussing some seminal results from Smith (1987) as they are helpful in
understanding our strategy for proving the main theorems. As mentioned above, contrary
to our setting where the variables Y and X are related through a location-scale model, in
Smith (1987) the estimation of q(a) is conducted under the assumption that the sequence
�Zj�

N
j=1 is observed. As such, he proposes estimators (�̂N , k̂) that satisfy the first order

conditions

�

��

1
N

N∑
j=1

log g(Zj ; �̂N , k̂) = 0 and
�

�k
1
N

N∑
j=1

log g(Zj ; �̂N , k̂) = 0 (9)

associated with the likelihood function LN (�, k) = 1
N

∑N
j=1 log g(Zj ; �, k). Following Smith

(1985), it will be convenient to reparametrize the likelihood function and represent
arbitrary values � and k as �N (1 + tN ), k0 + �N for t, � ∈ �, N → 0 as N → ∞ and
some �N and k0. Hence, we can rewrite the likelihood function LN (�, k) as LTN (t, �) =
1
N

∑N
j=1 log g(Zj ; �N (1 + tN ), k0 + �N ). It is evident that a) LTN (0, 0) = LN (�N , k0) and b)

choosing (�̂N , k̂) such that Eq. (9) is satisfied is equivalent to choosing t∗ and �∗ that satisfy

1
�NN

�LTN

�t
(t∗, �∗) = 0 and

1
N

�LTN

��
(t∗, �∗) = 0� (10)

By a Taylor’s Theorem expansion of the left-hand side of the derivatives in (10) about
(0, 0), we have for �1, �2 ∈ [0, 1]

1

2
N

�

�t
LTN (t, �) = 1

N

N∑
i=1

�

��
log g(Zi; �N , k0)

�N

N

+ 1
N

N∑
i=1

�2

��2
log g(Zi; �N (1 + N t�1), k0 + N ��2)�

2
N t

+ 1
N

N∑
i=1

�2

���k
log g(Zi; �N (1 + N t�1), k0 + N ��2)�N � = I1N + I2N + I3N
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912 C. MARTINS-FILHO ET AL.

and

1

2
N

�

��
LTN (t, �) = 1

N

N∑
i=1

�

�k
log g(Zi; �N , k0)

1
N

+ 1
N

N∑
i=1

�2

�k��
log g(Zi; �N (1 + N t�1), k0 + N ��2)�N t

+ 1
N

N∑
i=1

�2

�k2
log g(Zi; �N (1 + N t�1), k0 + N ��2)� = I4N + I5N + I6N ,

where the terms IlN for l = 1, � � � , 6 denote the corresponding average in the preceding
equality. The existence and characterization of a solution (t∗, �∗) for Eq. (10) as maxima
for LTN depends on obtaining expressions for the expected value of the score vector and
its derivative with respect to the unknown distribution F� where � → ∞. Smith (1987) has
shown that, if the class to which F belongs is restricted to satisfy,

FR1: F ∈ D(�	), that is, F belongs to the domain of attraction of a Fréchet distribution
with index 	 > 0,

FR2: L(x) = x	(1 − F(x)) satisfies L(tx)
L(x) = 1 + k(t)�(x) + o(�(x)) as x → ∞ for each t >

0, where 0 < �(x) → 0 as x → ∞ is regularly varying with index � ≤ 0 and k(t) =
C

∫ t
1 u�−1du, for a constant C,

then for a nonstochastic positive sequence uN → ∞ as N → ∞ and for
�N = uN/	, 0 < 	 = −1/k0 and k0 < 0, we have E(�N

�
��

log g(Z; �N , k0)) = C�(uN )

(1+	−�)
+

o(�(uN )), E( �
�k log g(Z; �N , k0)) = − 	C�(uN )

(	−�)(1+	−�)
+ o(�(uN ), E(�2

N
�2

��2 log g(Z; �N , k0)) =
− 	

2+	
+ O(�(uN )), E( �2

�k2 log g(Z; �N , k0)) = − 2	2

(1+	)(2+	)
+ O(�(uN )), and E(�N

�2

���k log g(Z;

�N , k0)) = 	2

(1+	)(2+	)
+ O(�(uN )), where all expectations are taken with respect to the

unknown distribution FuN . Evidently, these approximations are based on a sequence
of thresholds uN that approach the end point of the distribution F as the N → ∞.
In addition, it can easily be shown that I1N = Op(N −1/2−1

N ), I4N = Op(N −1/2−1
N ) and

provided N 1/2N → ∞ and N 1/2�(uN ) = O(1), we have I1N , I4N = op(1). Furthermore,
I2N = − 	

1+	
+ op(1), I3N = 	2

(1+	)(2+	)
+ op(1), I5N = 	2

(1+	)(2+	)
+ op(1), I6N = − 2	2

(1+	)(2+	)
+

op(1) uniformly on ST = �(t, �) : t2 + �2 < 1�. Consequently, 1
2

N

�
�t LTN (t, �)

p→ t
(− 	

1+	

) +
�
(

	2

(1+	)(2+	)

)
, 1

2
N

�
��

LTN (t, �)
p→ t

(
	2

(1+	)(2+	)

)
+ �

(
− 2	2

(1+	)(2+	)

)
, which combined with the

fact that H = −
(

− 	
1+	

	2
(1+	)(2+	)

	2
(1+	)(2+	) − 2	2

(1+	)(2+	)

)
is assumed to be positive definite gives

(
t �

) (
1
2

N

�
�t LTN (t, �)

1
2

N

�
��

LTN (t, �)

)
p→ (

t �
)
(−H)

(
t
�

)
≤ 0 on ST � (11)
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 913

By Lemma 5 in Smith (1985), we can then conclude that 1
2

N
LTN (t, �) has, with

probability approaching 1, a local maximum (t∗, �∗) on ST = �(t, �) : t2 + �2 < 1� at which
1
2

N

�
�t LTN (t∗, �∗) = 0 and 1

2
N

�
��

LTN (t∗, �∗) = 0. Put differently, there exists, with probability

approaching 1, a local maximum (�̂N = �N (1 + t∗N ), k̂ = k0 + �∗N ) on SR = �(�, k) :
‖( �

�N
− 1, k − k0)‖ < N � that satisfies the first order conditions in Eq. (9).2 Our first

result (Lemma 1) shows that the solution for the first order conditions given in
Eq. (6) corresponds to a local maximum of L̃N (�, k) = 1

N

∑Ns
j=1 log g(Z̃j ; �, k). We do

so by showing that the first order conditions given in (6) are asymptotically uniformly
equivalent in probability to those in (9). However, given that we must deal with estimated
sequences Z̃j , additional assumptions are needed.

3.2. Assumptions

As in Smith (1987), we retain FR2 and the assumption that �Ui�
n
i=1 forms an independent

and identically distributed sequence of random variables with absolutely continuous and
strictly increasing distribution F . However, additional assumptions are needed. The first
set of additional assumptions results from the fact that given Eq. (1) we must conduct
nonparametric estimation of m, � and q. Therefore, we need the following assumption.

Assumption A1. The kernel functions Ki(x) for i = 1, 2 are bounded, symmetric,
twice continuously differentiable functions Ki(x) : � → � with compact support. They
satisfy

∫
Ki(s)ds = 1,

∫
sKi(s)ds = 0,

∫
s2K1(s)ds = �2

K1
< ∞ and

∫
sjK2(s)ds = 0 for j =

1, � � � , m, where m > 2. Furthermore, we assume that for any u, v ∈ � with u 	= v, we have
|Ki(u) − Ki(v)| ≤ C|u − v| for some constant C > 0.

The higher order m for K2 is necessary in the proof of Lemma 2 in Appendix 1. All
other assumptions are common in the nonparametric estimation literature and are easily
satisfied by a variety of commonly used kernels.

Assumption A2. The bandwidths 0 < hin → 0 as n → ∞ for i = 1, 2. In addition, we
assume that h1n ∝ n−1/5, h2n ∝ n−1/5+ for  > 0, and n√

N
hm+1

2n → 0 as n → ∞, where
m > 2.

The last condition puts a restriction on the relative speed of N and h2n as n → ∞.
Given the orders of h1n and h2n, it suffices to choose N ∝ n4/5−. In this case, all orders
in A2 are satisfied and, as needed in Smith (1987), N 1/2N → ∞ and N 1/2�(uN ) = O(1),
where uN is a positive nonstochastic sequence such that uN → ∞ as N → ∞.

2‖x‖ denotes the Euclidean norm of the vector x.
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914 C. MARTINS-FILHO ET AL.

Assumption A3. F(u) is absolutely continuous with density 0 < f(u) for all u <

u∞ = sup�u : F(u) < 1�. f is m-times continuously differentiable with derivative function
satisfying |f (j)(u)| < C for some constant C and j = 1, � � � , m.

The differentiability restrictions on f are necessary in the proof of Lemma 2.

Assumption A4. �(Xi, Ui)�i=1,���,n is a sequence of independent and identically
distributed random vectors with density equal to that of the vector (X, U) and given
by fXU (x, u). We denote the marginal density of X by fX(x) and the conditional
density of U given X by fU | X=x(u | x). We assume that E(U | X) = 0, E(U 2 | X) = 1,
E(U 4 | X) = �4 < ∞, and that limu→∞

fU | X=x(u | x)
f(u) = 1 almost surely.

The requirement that limu→∞
fU | X=x(u | x)

f(u) = 1 almost surely implies that U and X are
asymptotically independent in the tail of U .

We note that strong moment requirements on U are needed since we estimate
conditional quantiles via the estimation of m(x) and �. An alternative approach, that
bypasses these requirements, would be to extend the parametric quantile regression of
Chernozhukov (2005) to a nonparametric setting.

Assumption A5. m(x) and fX(x) are twice continuously differentiable with compact
support given by G and infx∈GfX(x) > 0.

Assumptions A1, A2, A4, and A5 are sufficient for Eq. (4) to hold for both the LL
and Nadaraya-Watson (NW) estimators, but can be relaxed at some cost. They are,
however, standard in the nonparametric literature (Masry, 1996; Fan and Yao, 2003; Li
and Racine, 2007).

The second additional assumption we need relates to the fact that, as mentioned
in Section 2, our estimation procedure hinges on the estimation of the threshold uN

which appears in Section 3.1 by q̃(·). As a result, contrary to Smith (1987) (see his
Theorem 3.2), we explicitly account for the stochastic nature of the estimated threshold.
This added difficulty requires a further restriction on the class of distributions F we
consider. Specifically, as in Davis and Resnick (1984), we assume

FR1’: F has a strictly positive density denoted by f and for some 	 > 0 we have
limx→∞ xf(x)

1−F(x) = 	.

We note that by Corollary 1.12 and Proposition 1.15 c) in Resnick (1987), FR1’ implies
FR1, assuring that under FR1’ F ∈ D(�	), with 	 = −1/k0 and k0 < 0. Finally, let us
note that restricting F to D(�	) is not entirely arbitrary. If F ∈ D(�	), the domain of
attraction of a (reverse) Weibull distribution, then it must be that u∞ is finite, a restriction
which is not commonly placed on the regression error U . The only other possibility is F
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 915

in the domain of attraction of a Gumbel distribution, F ∈ D(�). In this case, whenever
u∞ is not finite, we have that 1 − F is rapidly varying, a case we will avoid.

3.3. Existence of �̃N and k̃

We now establish the existence of �̃N and k̃. The strategy of the proof is to show
that the first order conditions associated with the likelihood function L̃TN (t, �) =
1
N

∑Ns
j=1 log g(Z̃j ; �N (1 + tN ), k0 + �N ) are asymptotically uniformly equivalent in

probability to those associated with LTN on the set ST . Formally, we have the following
lemma.

Lemma 1. Assume FR1’ with 	 > 1, FR2, and Assumptions A1–A5. Let t, � ∈ �, 0 <

N → 0, N N 1/2 → ∞ as N → ∞, and denote arbitrary � and k by � = �N (1 + tN ) and
k = k0 + �N . We define the log-likelihood function

L̃TN (t, �) = 1
N

Ns∑
j=1

log g(Z̃j ; �N (1 + tN ), k0 + �N ),

where Z̃j = Û(n−N+j) − q̃(an), an = 1 − N
n , q̃(·), and Û(n−N+j) are as defined in Section 2.

Then, as n → ∞ 1
2

N
L̃TN (t, �) has, with probability approaching 1, a local maximum

(t∗, �∗) on ST = �(t, �) : t2 + �2 < 1� at which 1
2

N

�
�t L̃TN (t∗, �∗) = 0 and 1

2
N

�
��

L̃TN (t∗, �∗) = 0.

The vector (t∗, �∗) implies values �̃N and k̃ which are solutions for the likelihood
equations

�

��

1
N

N∑
j=1

log g(Z̃j ; �̃N , k̃) = 0 and
�

�k
1
N

N∑
j=1

log g(Z̃j ; �̃N , k̃) = 0�

Hence, there exists, with probability approaching 1, a local maximum (�̃N = �N (1 +
t∗N ), k̃ = k0 + �∗N ) on SR = �(�, k) : ‖( �

�N
− 1, k − k0)‖ < N � that satisfies the first

order conditions in Eq. (6). The proof of Lemma 1 depends critically on two auxiliary
results. First, there is a need for m̂ to be uniformly asymptotically close to m at a certain
order. Specifically, we need on the compact set G that qn(an)

−1supx∈G|m̂(x) − m(x)| =
op(N −1/2) and that �̂ − � = Op

((
nh1n
log n

)−1/2 + h2
1n

)
. This assures that the residuals Ûi are

in some sense close to the unobserved Ui. Second, in Lemma 2 q̃(an) is shown to be
asymptotically close to qn(an) by satisfying q̃(an)−qn(an)

q(an)
= Op(N −1/2). It is in Lemma 2 that

the stochasticity of the threshold q̃(·) is explicitly handled and where assumption FR1’ is
used. It is important to emphasize that Lemma 1 (as Theorem 3.2 in (Smith, 1987)) does
not provide a “consistency" result for the ML estimator. In fact, since the distribution
Fq(an) is only approximately a GPD, there are no true values for the parameters of the
GPD to which �̃ and k̃ are approaching in probability. What the lemma does state is that
the solutions for the first order conditions listed in (6) correspond to a local maximum
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916 C. MARTINS-FILHO ET AL.

of the likelihood associated with the GPD in a shrinking neighborhood of the arbitrary
point (�N , k0).

3.4. Asymptotic Normality of �̃′ = (�̃N , k̃)

Smith (1987, Theorem 3.2) showed that given conditions FR1, FR2 and provided
�Zj�

N
j=1 is an independent and identically distributed sequence from FuN , N → ∞ and

C
	−�

N 1/2�(uN ) → � ∈ �, the local maximum (�̂N , k̂) of the GPD likelihood function, is
such that for k0 = − 1

	
and �N = uN

	

√
N

(
�̂N
�N

− 1

k̂ − k0

)
d→ N

((
�(1−k0)(1+2k�)

1−k0+k0�
�(1−k0)k0(1+�)

1−k0+k0�

)
, H−1

)
,

where H = 1
(1−2k0)(1−k0)

(
1−k0 −1
−1 2

)
.3 Our first theorem provides a similar asymptotic result

for the estimators (�̃N , k̃). A main difference between our result and Smith’s derives
from the fact that, as in Lemma 1, our Theorem 1 accounts for the stochasticity of the
threshold q̃(an) used to define the exceedances in our estimation. It is the stochasticity
of the threshold that requires the stronger FR1’ instead of FR1. In fact, even if the Ui

were observed, given that exceedances Zj depend on the stochastic qn(an), Theorem 3.2
as stated is not valid as it treats the threshold uN as a nonstochastic sequence.

Theorem 1. Suppose FR1’ with 	 > 1, FR2, A1–A5 hold, and that C
	−�

N 1/2�(q(an)) →
� ∈ �. The local maximum (�̃N , k̃) of the GPD likelihood function is such that for k0 =
− 1

	
and �N = q(an)

	

√
N

( �̃N
�N

− 1
k̃ − k0

)
d→ N

((
�(1−k0)(1+2k0�)

1−k0+k0�
�(1−k0)k(1+�)

1−k0+k0�

)
, H−1V2H−1

)
,

where V2 =
⎛⎝ k2

0−4k0+2

(2k0−1)2
−1

k0(k0−1)

−1
k0(k0−1)

2k3
0−2k2

0+2k0−1

k2
0(k0−1)2(2k0−1)

⎞⎠.

It is important to emphasize that the equivalence in (3) requires the parameter � on
the GPD to be dependent on the threshold � that must be approaching the endpoint u∞
of the distribution F . In our setting, the threshold is q(an) (a function of N since an =
1 − N

n ). Note that, as required, q(an) → u∞ (u∞ = ∞ when F belongs to the domain of
attraction of a Fréchet distribution) if (N/n) → 0. This observation justifies the notation
�N = �(q(an)). The fact that �N = q(an)/	 in Lemma 1 and Theorem 1, where 	 is the
coefficient of regular variation and the indexing parameter of a Fréchet distribution
derives from the fact that we have restricted our study to a class of distributions F that
are in the domain of attraction of a Fréchet distribution.

3Substituting k0 = −	−1 shows that H is identical to the homonymous matrix in Eq. (11).
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 917

The use of Z̃j instead of Zj in the estimation impacts the variance of the asymptotic
distribution. It is easy to verify that H−1V2H−1 − H−1 is positive definite, implying an
(expected) loss of efficiency that results from estimating Ui nonparametrically. However,
any additional bias introduced by the nonparametric estimation is of second order effect
as the asymptotic bias derived in Smith (1987) is precisely the same as the one we obtain
in Theorem 1. An important note on the proof is that the fact that Z̃j is not iid as Zj

does not require the use of a Central Limit Theorem (CLT) for dependent processes as
justified in Lemma 3 in the Appendix.

3.5. Asymptotic Normality of q̂(a)

The asymptotic distribution of the ML type estimators given in Theorem 1 is the basis for
obtaining a normality result for q̂(a) given in Eq. (8). The basic idea is to define, without
loss of generality, q(a) = q(an) + yN ,a for an = 1 − N/n < a and to estimate q(an) by
q̃(an) and yN ,a based on the estimated parameters of the GPD. It is important to note
that, in Theorem 2, as n → ∞ both an and a approach 1.

Theorem 2. Suppose FR1’ with 	 > 1, FR2, and assumptions A1–A5 hold. In addition,
assume as follows:

(i) N 1/2�(q(an))
C

(	−�)
→ � with k0 = − 1

	
and �N = q(an)/	;

(ii) n(1 − a) ∝ N . Then, for some za > 0,

√
n(1 − a)

(
q̂(a)
q(a)

− 1
)

d→ N
(
(−k0)

(
−−(z�

a − 1)�(	 − �)

�
− c′

bH−1 lim
n→∞

√
N

(
b�

bk

))
,

k2
0

(
c′

bH−1V2H−1cb + 2c′
b

(
2 − k0

1 − k0

)
+ 1

))
,

where c′
b = ( −k−1

0 (z−1
a −1) k−2

0 log(za)+k−2
0 (z−1

a −1) ), b� = E
(

�
��

log g(Zj ; �N , k0)�N

)
, and bk =

E
(

�
�k log g(Zj ; �N , k0)

)
.

Under the assumptions of Theorems 1 and 2, it is a direct consequence of the linear
properties of limits that for a → 1 with a ∈ (an, 1) we have q̂Y | X=x(a) = m̂(x) + q̂(a)

p→
m(x) + q(a) = qY | X=x(a).

It is worth mentioning that the proofs of Theorems 1 and 2 depend only on
nonparametric uniform convergence rates for m̂ and �̂. Specifically, even though �̂

converges to � at a parametric rate (Doksum and Samarov, 1995; Martins-Filho and
Yao, 2006a), we have constructed our proofs using only lower speed in Eq. (5). This
is encouraging as it points towards the possibility of obtaining a version of Theorem 2
based on the more flexible model Y = m(X) + �1/2(X)U , where �(X) is estimated
nonparametrically.
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918 C. MARTINS-FILHO ET AL.

The estimation of qY | X=x(a) when a is in the vicinity of 0 (low order conditional
quantile) has been considered by Chernozhukov (2005) when qY | X=x(a) = x
(a), 
(a) ∈
�d. In this case, he provides a complete asymptotic characterization of the quantile
regression estimator of 
(a) proposed by Koenker and Bassett (1978) for F in the
domain of attraction of any extreme value distribution. Furthermore, his asymptotic
results are obtained when the quantile order approaches 0 at a speed that is slower
than or proportional to the sample size. Since our model for qY | X=x(a) is nonparametric,
it is in this sense more general than the one considered by Chernozhukov. However,
our asymptotic results on the parameters of the GPD are limited to the case where F
belongs to the domain of attraction of a Fréchet distribution and the quantile order
(a) approaches 1 at a speed that is slower than the sample size (n(1 − a) ∝ N → ∞ in
Theorem 2). Furthermore, similar to Smith (1987) and Hall (1982), our proofs require the
specification of the speed at which the tail 1 − F(x) behaves asymptotically as a power
function. Condition (i) in Theorem 2 specifies this speed to be proportional to

√
N .

4. SIMULATIONS

We conduct a simulation study to implement our parameter estimators �̃′ = (�̃N , k̃) and
quantile estimator q̂, and compare them with some alternatives available in the literature.
We generate data independently from

Yi = m(Xi) + �1/2Ui, i = 1, � � � , n,

where Xi is uniformly distributed on [−2, 2]. We consider two nonlinear functions for
m(·), m1(x) = 3 sin(3x) and m2(x) = x2. Vi = �1/2Ui is generated independently from a
distribution with density f that is in the domain of attraction of the Fréchet distribution
�	 with index 	 = −1/k0.

The first distribution we considered is the log-gamma distribution, whose density is
given by

f(u) = (log(u))	1−1 u− 1

 −1


	1�(	1)
, for u > 1, 	1, 
 > 0�

It is easy to see that Vi is log-gamma distributed for Vi > 1 if and only if
log(Vi) > 0 is gamma distributed with parameters 	1, 
 > 0. Furthermore, one can
show that E(Vi) = ( 1

1−

)	1 , V (Vi) = � = ( 1

1−2
 )
	1 − ( 1

1−

)2	1 , and k0 = −
. The log-gamma

distribution includes the Pareto distribution as a special case when 	1 = 1. We specifically
let (	1, 
) = (1, 0�25), and (1, 0�4), which correspond to k0 = −0�25 and −0�4 respectively.
The variance of Vi when (	1, 
) = (1, 0�4) is ten times the variance of Vi when (	1, 
) =
(1, 0�25). Vi is demeaned since we use it as an error term in the regression model.

The second distribution we considered is the student-t distribution with v degrees of
freedom. It can be shown that k0 = − 1

v , which is k0 = −1/3 for v = 3, and −1/2�25 for
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 919

v = 2�25, respectively. V (Vi) = � = v
v−2 , so the variance of Vi for v = 2�25 is three times

that the variance of Vi for v = 3. We expect that the estimation will be relatively more
difficult when the variance is larger.

Implementation of our estimator requires the choice of bandwidths h1n and h2n.
We select them using the rule-of-thumb bandwidths ĥ1n = 1�25 S(X)n− 1

5 and ĥ2n =
0�79 R(Û)n− 1

5 +0�01, with a robust estimation for the variability of data as in (2.52) of
Pagan and Ullah (1999), where S(X) and R(Û) are the standard deviation of X and the
sample interquartile range of Û , respectively. We choose the second order Epanechnikov
kernel for both the estimation of m(x) and the smoothed sample quantile. The choice
of bandwidths satisfies the restrictions imposed to obtain the asymptotic properties in
Theorems 1 and 2. Our assumptions also call for the use of a higher order kernel in
estimating the smoothed sample quantile. Here we investigate the robustness of our
estimator with the popular second order Epanechnikov kernel for its simplicity.

In estimating the parameters, we include our estimator �̃, Smith’s estimator �̂′ =
(�̂N , k̂), which utilizes the true Ui available in the simulation, and k̂h for k0, the estimator
proposed by Hill (1975). Hill’s estimator is designed for data from a heavy-tailed
distribution with k0 < 0 and has been studied extensively in the literature (Embrechts
et al., 1997). It is generally the most efficient estimator of k0 for sensible choices of N ,
though it is generally not the most efficient nor the most stable quantile estimator (McNeil
and Frey, 2000). Since Ui is unknown in practice, we use Ûi = Yi−m̂(xi)

�̂1/2 to construct k̂h =
− 1

N

∑N
j=1(ln(Û(n−N+j)) − ln(Û(n−N ))). The theoretical properties of k̂h, are unknown, and

here we investigate its finite sample performance relative to the estimator we propose. In
estimating the a-quantile, we include our estimator q̂, Smith’s (infeasible) estimator qs,
the Hill type estimator qh, and the empirical quantile estimator qe. Following (6.30) in
Embrechts et al. (1997), we construct qh as qh = Û(n−N )(

1−a
N/n)

k̂h
. qe is simply the empirical

quantile estimator based on �Ûi�
n
i=1. To give the reader a vivid picture of these estimators

in practice, we provide in Fig. 1 a plot of different quantile estimates against different
values of a, where qs is omitted for ease of illustration. We let a range from 0�95
to 0�995 as we are interested in higher order quantiles. The data are generated with
m(x) = 3 sin(3x), �1/2Ui is from the log-gamma distribution with (	1, 
) = (1,0�4), and we
select n = 1,000 and N = round( 1

2 n0�8−0�01) = 117, where round(·) gives the nearest integer.
Both q̂ and qh are smooth functions of a, while qe is not. All three estimators seem to
capture the low order quantile well, though differences start to be more noticeable for a
approaching one.

We fix the sample sizes n to be 500 and 1,000 in our simulation. We choose N =
round(c n0�8−0�01), where c is simply set to be 1

2 , and the choice of N satisfies the
assumptions in our asymptotic analysis. Thus, N is 68 for n = 500 and 117 for n = 1,000,
and the effective sample size N in the second stage estimation is increased, but it is less
than doubled. Our proposed estimator seems to be relatively robust to the choice of N . On
the other hand, the choice of N is critical for qh, as its performance deteriorates quickly
with N , as seen in Figs. 2 and 3 and in the discussion below. Each experiment is repeated
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920 C. MARTINS-FILHO ET AL.

FIGURE 1 Plot of quantile estimates across different a, with n = 1000, N = 117, m(x) = 3sin(3x), and
log-gamma distributed �

1
2 U with (	1, 
) = (1,0�4). 1 : true quantile, 2 : q̂, 3 : qh, and 4 : qe

5,000 times. We summarize the performance of parameter estimators in terms of their bias
(B), standard deviation (S), and root mean squared error (R) in Table 1 for both m(x) =
3sin(3x) and m(x) = x2 with log-gamma distributed U , and in Table 2 with student-t
distributed U . We provide the performance for quantile estimators of q(a) where a =
0�95, 0�99 and 0�995 by examining the bias (B), standard deviation (S), and root mean
squared error (R) in Tables 3–6. Specifically, results for log-gamma distributed U with
(	1, 
) = (1, 0�25) are detailed in Table 3, for log-gamma distributed U using (	1, 
) =
(1, 0�4) in Table 4, and for student-t distributed U using v = 3 and v = 2�25 in Tables 5
and 6.

In the case of estimating the parameters, we notice that �̂ and �̃ tend to overestimate
(�N , k0), while �̂h carries a negative bias. As N increases, the performance of all estimators
improves, in the sense that they exhibit smaller bias and standard deviation, which
seems to confirm the asymptotic result in previous section. As k0 decreases (larger 
 in
Table 1 and smaller v in Table 2), we find the biases of all estimators decrease with some
exceptions for k̂h. The standard deviations of all estimators generally increase except for
�̂N , whose standard deviation decreases. The performance of estimators for �N in terms
of root mean squared error actually improves as k0 decreases. We think this is related
to the bias and variance trade-off for the parameter estimation. As we have mentioned
above, the variance of Vi is larger for the log-gamma distributions with 
 = 0�4 in Table 1
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 921

FIGURE 2 Bias and standard deviation of 99% quantile estimators with different N , with n = 1000, m(x) =
3sin(3x) and log-gamma distributed �

1
2 U with (	1, 
) = (1, 0�4). 1 : qs , 2 : q̂, 3 : qh, and 4 : qe

and for student-t distribution with v = 2�25 in Table 2. The distribution of Vi starts to
exhibit heavier tail behavior, thus more representative extreme observations have a higher
probability to show up in a sample, which explains lower bias. �̃’s performance is very
similar to that of �̂, with slightly larger standard deviation and bias. Among the three
estimators for k, k̂h is worst in log-gamma distributed U in terms of the largest root mean
squared error with largest bias and smallest standard deviation, but k̂h outperforms the
other two in student-t distributed U in terms of smallest root mean squared error, again
with largest bias and smallest standard deviation. Relative to k̂ which does not have to
estimate m(·) and �, k̃ exhibits larger standard deviation, similar or slightly smaller bias,
and larger root mean squared error, though the difference is fairly small. It seems to
suggest that our proposed estimator �̃ is well supported by the local linear estimator for
the function m(·) and �.

In the case of estimating the quantiles, we notice that most estimators carry positive
bias, except that for large k0 (k0 = −0�25 for log-gamma distributed Vi and k0 = −1/3
for student-t distributed Vi), qh is negatively biased in estimating 95% quantile, and qe is
negatively biased in estimating larger order (99% and 99�5%) quantiles. As N increases, all
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922 C. MARTINS-FILHO ET AL.

FIGURE 3 Root mean squared error of 99% quantile estimators with different N , with n = 1000, m(x) =
3sin(3x) and log-gamma distributed �

1
2 U with (	1, 
) = (1, 0�4). 1 : qs , 2 : q̂, 3 : qh, and 4 : qe

TABLE 1
Bias (B), Standard Deviation (S), and Root Mean Squared Error (R) for Parameter Estimators with

Log-Gamma Distributed �
1
2U with �1 = 1, k0 = −�, n(×1000)

m(x) = 3sin(3x) m(x) = x2

�N k0 �N k0


 �N n B S R B S R B S R B S R

�̂ 0.25 0.166 0.5 0.747 0.185 0.770 0�039 0.167 0.172 0.739 0.185 0.762 0�037 0.163 0.167
�̃ 0.25 0.166 0.5 0.750 0.226 0.784 0�030 0.170 0.172 0.766 0.224 0.798 0�029 0.165 0.168
k̂h 0.25 0.166 0.5 −0�539 0.093 0.547 −0�561 0.097 0.570

�̂ 0.25 0.200 1 0.726 0.140 0.740 0�020 0.121 0.123 0.727 0.142 0.741 0�021 0.121 0.123
�̃ 0.25 0.200 1 0.733 0.175 0.754 0�015 0.121 0.122 0.744 0.179 0.765 0�016 0.122 0.123
k̂h 0.25 0.200 1 −0�478 0.064 0.482 −0�490 0.065 0.495

�̂ 0.4 0.149 0.5 0.470 0.132 0.489 0�029 0.182 0.184 0.474 0.133 0.492 0�036 0.180 0.184
�̃ 0.4 0.149 0.5 0.633 0.266 0.686 0�019 0.186 0.187 0.643 0.268 0.697 0�026 0.184 0.186
k̂h 0.4 0.149 0.5 −0�555 0.124 0.568 −0�564 0.126 0.578

�̂ 0.4 0.186 1 0.461 0.104 0.472 0�021 0.134 0.135 0.460 0.103 0.472 0�018 0.134 0.135
�̃ 0.4 0.186 1 0.606 0.219 0.644 0�015 0.135 0.136 0.604 0.223 0.644 0�012 0.135 0.136
k̂h 0.4 0.186 1 −0�474 0.084 0.481 −0�481 0.084 0.488
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 923
TABLE 2

Bias (B), Standard Deviation (S), and Root Mean Squared Error (R) for Parameter Estimators with
Student-T Distributed �

1
2U, k0 = −1/v, n(×1000)

m(x) = 3sin(3x) m(x) = x2

�N k0 �N k0

v �N n B S R B S R B S R B S R

�̂ 3 0.258 0.5 0.281 0.104 0.299 0�132 0.167 0.213 0.281 0.104 0.299 0�135 0.170 0.217
�̃ 3 0.258 0.5 0.296 0.127 0.323 0�128 0.170 0.213 0.296 0.127 0.322 0�130 0.171 0.215
k̂h 3 0.258 0.5 −0�181 0.061 0.191 −0�182 0.061 0.192

�̂ 3 0.286 1 0.254 0.079 0.266 0�102 0.125 0.161 0.255 0.079 0.267 0�106 0.123 0.162
�̃ 3 0.286 1 0.263 0.100 0.282 0�098 0.126 0.160 0.266 0.099 0.284 0�102 0.124 0.161
k̂h 3 0.286 1 −0�156 0.044 0.163 −0�157 0.044 0.163

�̂ 20.25 0.214 0.5 0.149 0.075 0.167 0�108 0.182 0.212 0.151 0.075 0.168 0�112 0.182 0.214
�̃ 20.25 0.214 0.5 0.269 0.147 0.307 0�107 0.186 0.214 0.270 0.143 0.305 0�107 0.186 0.214
k̂h 20.25 0.214 0.5 −0�139 0.076 0.159 −0�140 0.077 0.159

�̂ 20.25 0.239 1 0.133 0.059 0.146 0�083 0.136 0.159 0.133 0.058 0.145 0�080 0.135 0.157
�̃ 20.25 0.239 1 0.240 0.122 0.269 0�080 0.138 0.159 0.236 0.122 0.266 0�075 0.137 0.156
k̂h 20.25 0.239 1 −0�118 0.056 0.130 −0�119 0.056 0.132

estimators’ performances improve in terms of smaller bias, standard deviation, and root
mean squared error, with some exceptions in bias. The distribution of Vi exhibits a heavier
tail with 
 = 0�4 (Table 4) relative to 
 = 0�25 (Table 3) in the log-gamma distribution,
with v = 2�25 (Table 6) relative to v = 3 (Table 5) in the student-t distribution. As we
have mentioned above, the random variable Vi has a larger variance in these cases. We
find it more difficult for almost all to estimate the quantiles across all experiment designs.
The only exception is on qs. When Vi has larger variance, qs performs better in terms of
smaller bias, standard deviation and root mean squared error when estimating the 95%
and the 99% quantiles at least for the student distributed Vi, and qs performs better in
terms of smaller bias when estimating the 99�5% quantile. Without having to estimate
m(·) and �, qs clearly benefits more from the presence of the more representative extreme
observations. As expected, when we estimate higher order a-quantiles, all estimators’
performances deteriorate, with some exceptions in bias. When we estimate the 95%
quantile, which is relatively closer to the center of the distribution, qs outperforms the
others in terms of smallest bias, standard deviation, and root mean squared error. The
second best is qh, followed by qe and q̂. The advantage of the Hill type estimator does
not seem to carry through in estimating the higher order-99%, and 99�5% quantiles, as qh

always carries the largest bias and standard deviation relative to the others. q̂ and qs are
consistently the best with the smallest standard deviation and root mean squared error
with some exceptions in small sample. In terms of root mean squared error and in large
samples, for smaller k0, qs outperforms q̂, which has larger bias and standard deviation.
For larger k0, q̂ seems to have slightly larger bias, but smaller root mean squared error
relative to qs.
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924 C. MARTINS-FILHO ET AL.

TABLE 3
Bias (×0�1) (B), Standard Deviation (S), and Root Mean Squared Error (R) for Quantile Estimators with
m1(x) = 3sin(3x), m2(x) = x

2, and Log-Gamma Distributed �
1
2U with �1 = 1, � = 0�25 (k0 = −0�25)

a = 0�95 a = 0�99 a = 0�995

m n B S R B S R B S R

qs m1 500 0.013 0.199 0.199 −0�028 0.609 0.610 −0�047 10.060 10.061
q̂ m1 500 0.066 0.248 0.257 0�003 0.289 0.289 −0�039 0.467 0.469
qh m1 500 −0.126 0.193 0.231 10�594 0.870 10.816 40�390 20.009 40.828
qe m1 500 0.033 0.255 0.257 −0�076 0.556 0.562 −0�226 0.731 0.765

qs m1 1000 0.006 0.144 0.144 −0�016 0.425 0.425 −0�028 0.725 0.725
q̂ m1 1000 0.043 0.201 0.206 0�018 0.264 0.264 −0�005 0.343 0.343
qh m1 1000 −0.136 0.160 0.210 10�034 0.556 10.174 30�017 10.160 30.232
qe m1 1000 0.024 0.203 0.204 −0�021 0.449 0.449 −0�122 0.625 0.636

qs m2 500 0.006 0.204 0.204 −0�047 0.604 0.606 −0�074 10.033 10.036
q̂ m2 500 0.067 0.244 0.252 0�045 0.277 0.281 0�024 0.454 0.455
qh m2 500 −0.132 0.189 0.231 10�777 0.923 20.002 40�877 20.218 50.357
qe m2 500 0.033 0.247 0.249 −0�043 0.540 0.542 −0�173 0.723 0.744

qs m2 1000 0.004 0.146 0.146 −0�022 0.433 0.433 −0�038 0.733 0.734
q̂ m2 1000 0.040 0.202 0.205 0�037 0.256 0.258 0�026 0.331 0.332
qh m2 1000 −0.144 0.159 0.215 10�105 0.569 10.242 30�208 10.208 30.428
qe m2 1000 0.023 0.202 0.203 −0�007 0.446 0.446 −0�084 0.644 0.650

TABLE 4
Bias (×0�1) (B), Standard Deviation (S), and Root Mean Squared Error (R) for Quantile Estimators with
m1(x) = 3sin(3x), m2(x) = x

2, and Log-Gamma Distributed �
1
2U with �1 = 1, � = 0�4 (k0 = −0�4)

a = 0�95 a = 0�99 a = 0�995

m n B S R B S R B S R

qs m1 500 0.010 0.159 0.159 0�012 0.640 0.640 0�049 10.247 10.248
q̂ m1 500 0.323 0.359 0.483 0�729 0.596 0.942 0�999 0.816 10.290
qh m1 500 0.146 0.294 0.329 20�689 10.407 30.035 60�911 30.396 70.700
qe m1 500 0.298 0.362 0.469 0�654 0.860 10.081 0�727 10.091 10.311

qs m1 1000 0.005 0.114 0.114 −0�010 0.447 0.447 −0�011 0.848 0.848
q̂ m1 1000 0.268 0.304 0.406 0�632 0.564 0.847 0�859 0.711 10.115
qh m1 1000 0.107 0.253 0.275 10�806 0.948 20.040 40�580 10.942 40.975
qe m1 1000 0.253 0.303 0.395 0�596 0.742 0.952 0�721 10.044 10.268

qs m2 500 0.012 0.158 0.159 0�001 0.644 0.644 0�020 10.242 10.242
q̂ m2 500 0.329 0.358 0.486 0�741 0.588 0.946 10�005 0.800 10.284
qh m2 500 0.148 0.292 0.328 20�782 10.412 30.120 70�167 30.419 70.941
qe m2 500 0.305 0.362 0.473 0�658 0.850 10.075 0�751 10.109 10.339

qs m2 1000 0.004 0.112 0.112 −0�004 0.439 0.439 0�004 0.838 0.838
q̂ m2 1000 0.258 0.312 0.405 0�624 0.598 0.865 0�856 0.761 10.145
qh m2 1000 0.096 0.260 0.277 10�814 0.984 20.063 40�636 20.000 50.049
qe m2 1000 0.244 0.311 0.395 0�592 0.774 0.974 0�726 10.076 10.298
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 925

TABLE 5
Bias (×0�1) (B), Standard Deviation (S), and Root Mean Squared Error (R) for Quantile Estimators with

m1(x) = 3sin(3x), m2(x) = x
2, and Student-T Distributed �

1
2U with v = 3 (k0 = −1/3)

a = 0�95 a = 0�99 a = 0�995

m n B S R B S R B S R

qs m1 500 0.006 0.114 0.114 0�012 0.358 0.358 −0�018 0.622 0.622
q̂ m1 500 0.072 0.162 0.178 0�102 0.297 0.314 0�081 0.481 0.488
qh m1 500 -0.010 0.132 0.133 0�478 0.425 0.640 10�077 0.758 10.317
qe m1 500 0.043 0.164 0.169 0�008 0.389 0.389 −0�055 0.590 0.593

qs m1 1000 0.003 0.082 0.082 0�028 0.261 0.263 0�015 0.454 0.455
q̂ m1 1000 0.047 0.140 0.148 0�089 0.248 0.263 0�085 0.370 0.380
qh m1 1000 -0.023 0.119 0.121 0�322 0.317 0.452 0�771 0.529 0.935
qe m1 1000 0.031 0.140 0.143 0�028 0.317 0.318 −0�011 0.484 0.484

qs m2 500 0.004 0.114 0.114 0�004 0.365 0.365 −0�031 0.639 0.639
q̂ m2 500 0.068 0.162 0.176 0�092 0.292 0.307 0�067 0.479 0.483
qh m2 500 -0.014 0.133 0.134 0�471 0.418 0.630 10�068 0.746 10.303
qe m2 500 0.040 0.164 0.168 −0�002 0.386 0.386 −0�066 0.585 0.589

qs m2 1000 0.002 0.082 0.082 0�018 0.255 0.256 −0�003 0.439 0.439
q̂ m2 1000 0.047 0.136 0.144 0�087 0.246 0.261 0�079 0.370 0.378
qh m2 1000 -0.024 0.115 0.118 0�323 0.315 0.451 0�776 0.530 0.940
qe m2 1000 0.031 0.136 0.140 0�023 0.321 0.322 −0�018 0.491 0.491

TABLE 6
Bias (×0�1) (B), Standard deviation (S), and Root Mean Squared Error (R) for quantile estimators with

m1(x) = 3sin(3x), m2(x) = x
2, and student-T distributed �

1
2U with v = 2�25 (k0 = −1/2�25)

a = 0�95 a = 0�99 a = 0�995

m n B S R B S R B S R

qs m1 500 0.006 0.088 0.088 0�017 0.353 0.353 0�004 0.675 0.674
q̂ m1 500 0.325 0.246 0.408 0�655 0.483 0.814 0�836 0.736 10.114
qh m1 500 0.258 0.214 0.336 0�988 0.643 10.179 10�758 10.113 20.081
qe m1 500 0.296 0.244 0.384 0�566 0.590 0.818 0�681 0.874 10.108

qs m1 1000 0.003 0.065 0.066 0�019 0.251 0.251 0�009 0.473 0.473
q̂ m1 1000 0.278 0.215 0.352 0�592 0.423 0.728 0�770 0.603 0.978
qh m1 1000 0.224 0.192 0.295 0�792 0.510 0.942 10�385 0.827 10.614
qe m1 1000 0.264 0.213 0.339 0�533 0.496 0.728 0�664 0.743 0.996

qs m2 500 0.007 0.089 0.090 0�015 0.356 0.357 −0�002 0.682 0.682
q̂ m2 500 0.326 0.238 0.404 0�658 0.473 0.810 0�842 0.736 10.119
qh m2 500 0.259 0.208 0.332 0�993 0.627 10.174 10�768 10.094 20.079
qe m2 500 0.297 0.237 0.380 0�570 0.586 0.817 0�696 0.874 10.117

qs m2 1000 0.002 0.064 0.064 0�023 0.249 0.250 0�019 0.474 0.474
q̂ m2 1000 0.269 0.218 0.347 0�584 0.441 0.732 0�768 0.634 0.996
qh m2 1000 0.216 0.196 0.292 0�781 0.524 0.940 10�374 0.850 10.615
qe m2 1000 0.254 0.216 0.333 0�530 0.518 0.741 0�665 0.767 10.015

D
ow

nl
oa

de
d 

by
 [

W
es

t V
ir

gi
ni

a 
U

ni
ve

rs
ity

] 
at

 0
8:

08
 0

8 
Fe

br
ua

ry
 2

01
5 



926 C. MARTINS-FILHO ET AL.

The choice of N could be important since the number of residuals exceeding the
threshold is based on q̃(an). We need to choose large q̃(an) to reduce the bias from
approximating the tail distribution with GPD, but we need to keep N large (small q̃(an))
to control the variance of parameter estimates. We illustrate the impact from different N ’s
on the performance of different estimators for the 99% quantile of U with a simulation,
where we set n = 1,000, m(x) = 3sin(3x), and use a log-gamma distributed U . The bias
and standard deviation of the estimators qs, q̂, qh, and qe are plotted against N =
20, 25, � � � , 200 in Figures 2, and the root mean squared error (RMSE) are provided in
Fig. 3. We notice that qs is negatively biased and always has the smallest bias, while
q̂ and qe carry relatively small and positive biases of similar magnitudes. These three
estimators’ biases are fairly stable across N . qh’s bias is positive and is influenced heavily
by N , being small when N ranges from 20 to 50, largest with N greater than 50. qs’s
standard deviation is always smallest across different N , and it is decreasing with larger
N . The standard deviation of q̂ decreases similarly with larger N , being slightly larger than
that of qs but always smaller than that of qe except for N smaller than 25. The standard
deviation of qh is heavily influenced by N and increases with N . Though it starts to be
smaller than that of q̂ when N is smaller than 50, and smaller than qe when N is smaller
than 90, its magnitude quickly outgrows the others when N is larger than 90. The strong
dependence of qh’s performance on N also exhibits in RMSE in Fig. 3. Between N = 20
and 50, qh performs better than q̂ and qe, but its performance deteriorates quickly and
it is outperformed by the others when N is larger than 50. qs always carries the smallest
and stable RMSE across different N . As expected, q̂’s RMSE decreases with N due to its
decreasing standard deviation, but when N is larger than 110, its RMSE is stable. For N
greater than 50, q̂ always dominate qe, which did not utilize the extreme value theory, and
qh. The result indicates qh’s performance is sensitive to the choice of N , requiring a small
N to control its bias and standard deviation, while qs and q̂ work well and outperform
qe in a broader range of N ’s.

5. SUMMARY AND CONCLUSIONS

The estimation of higher order quantiles associated with the distribution of a random
variable Y is of great interest in many applied fields. It is also common for researchers in
these fields to specify location-scale models that relate Y to a set of covariates X. As such,
they are often interested in the estimation of high order conditional quantiles associated
with the conditional distribution of Y given X, i.e., qY | X=x(a) = m(x) + �1/2q(a). The
main difficulty in obtaining an estimator for qY | X=x rests on the fact that the regression
errors which could be used to estimate q(a) are not observed. In this article we have
expanded the seminal work of Smith (1987), which considered the estimation of q(a)
when the associated random variable is observed, to the case where only standardized
regression residuals are available for the estimation of q(a). Our results are based on a
nonparametric estimation of the regression and a ML estimation of the distribution tail

D
ow

nl
oa

de
d 

by
 [

W
es

t V
ir

gi
ni

a 
U

ni
ve

rs
ity

] 
at

 0
8:

08
 0

8 
Fe

br
ua

ry
 2

01
5 



HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 927

based on a GPD. We provide a full asymptotic characterization of the ML estimators
for the parameters of the GPD and for the estimator q̂(a) for q(a). It is encouraging
to see that the asymptotic normality results of Smith are preserved albeit with a loss of
estimation precision.

It should be emphasized that richer location-scale models than the one we considered
is an important extension of our work. For example, in empirical finance, the evolution
of returns of a financial asset is normally modeled by dynamic location-scale models
that require the estimation of both a regression and a conditional skedastic function.
Furthermore, in this context the independent and identically distributed assumption we
used throughout is normally inadequate. However, we are encouraged that our work has
provided a framework in which these richer stochastic specifications can be studied.

APPENDIX 1 - PROOFS

Throughout the proofs, C will represent an inconsequential and arbitrary constant that
may take different values in different locations. �A denotes the indicator function for the
set A, and P(A) denotes the probability of event A from the probability space (�,� , P).

Proof of Lemma 1. Given the results described in Subsection 3.1 and Taylor’s Theorem,
for �1, �2 ∈ (0, 1), we have

1

2
N

�

�t
L̃TN (t, �) = 1

N

Ns∑
i=1

�

��
log g(Z̃i; �N , k0)

�N

N

+ 1
N

Ns∑
i=1

�2

��2
log g(Z̃i; �N (1 + N t�1), k0 + N ��2)�

2
N t

+ 1
N

Ns∑
i=1

�2

���k
log g(Z̃i; �N (1 + N t�1), k0 + N ��2)�N �= Ĩ1N + Ĩ2N + Ĩ3N

and

1

2
N

�

��
L̃TN (t, �) = 1

N

Ns∑
i=1

�

�k
log g(Z̃i; �N , k0)

1
N

+ 1
N

Ns∑
i=1

�2

�k��
log g(Z̃i; �N (1 + N t�1), k0 + N ��2)�N t

+ 1
N

Ns∑
i=1

�2

�k2
log g(Z̃i; �N (1 + N t�1), k0 + N ��2)� = Ĩ4N + Ĩ5N + Ĩ6N �

Note that ĨjN is defined as IjN with Zi replaced by Z̃i for j = 1, � � � , 6.
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928 C. MARTINS-FILHO ET AL.

Let an = 1 − N
n , Ẽi = �Ûi > q̃ (an)�, Ei = �Ui > qn (an)�, Zi = Ui − qn(an), and Z̃i =

Ûi − q̃(an) for i = 1, � � � , n. Then, from Subsection 3.1, we have

Ĩ1N − I1N = 1
N

(
1 − Ns

N

)
+ 1

N
(k−1

0 − 1)

×
(

1
N

n∑
i=1

((
1 − k0Z̃i

�N

)−1
k0Z̃i

�N
−

(
1 − k0Zi

�N

)−1 k0Zi

�N
�Ei

)
�Ẽi

+ 1
N

n∑
i=1

(
1 − k0Zi

�N

)−1 k0Zi

�N
�Ei

(
�Ẽi

− �Ei

))= op(1)+ 1
N

(k−1
0 − 1)(I11n + I12n),

since N − Ns = Op(N 1/2) (see Lemma 2) and N N 1/2 → ∞. We first study I11n, which can
be written as

I11n = 1
N

n∑
i=1

((
1 − k0Z̃i

�N

)−1
k0Z̃i

�N
−

(
1 − k0Zi

�N

)−1 k0Zi

�N

)

× �Ei∩Ẽi
+ 1

N

n∑
i=1

(
1 − k0Z̃i

�N

)−1
k0Z̃i

�N
�Ẽi−Ei

= I111n + I112n where i ∈ Ẽi − Ei implies that i ∈ Ẽi and i � Ei�

By the mean value theorem, for some �i ∈ (0, 1) and Z∗
i = Zi + �i(Z̃i − Zi), we have∣∣∣∣∣

(
1 − k0Z̃i

�N

)−1
k0Z̃i

�N
�Ei∩Ẽi

−
(

1 − k0Zi

�N

)−1 k0Zi

�N
�Ei∩Ẽi

∣∣∣∣∣ = |k0|/�N(
1 − k0Z∗

i
�N

)2 |Z̃i − Zi|�Ei∩Ẽi

= 1(
1 + Z∗

i
q(an)

)2

|Z̃i − Zi|
q(an)

�Ei∩Ẽi
,

where the last equality follows from �N = −q(an)k0 and k0 < 0. Note that |Z̃i−Zi|
q(an)

≤
�1/2|�̂−1/2 − �−1/2| |Ui|

q(an)
+ |�̂−1/2| |m̂(Xi)−m(Xi)|

qn(an)

qn(an)

q(an)
+ |q̃(an)−qn(an)|

q(an)
. From Lemma 2, q̃(an)−qn(an)

q(an)
=

Op(N −1/2). Furthermore, provided that N ∝ n4/5−, h1n ∝ n−1/5, and given that qn(an) →
∞ as n → ∞ and Eq. (4) we have 1

qn(an)
supx∈G|m̂(x) − m(x)| = op(N −1/2). Eq. (5)

and the fact that � > 0 imply that �̂−1/2 − �−1/2 = Op(L1n) and �̂−1/2 = Op(1), where

L1n =
(

nh1n
log n

)−1/2 + h2
1n. Consequently, since qn(an)/q(an) = 1 + op(1), we have Z̃i−Zi

q(an)
≤

|Ui|
q(an)

Op(L1n) + Op(N −1/2). Also, since Ui = Zi + qn(an) direct substitution gives

Z∗
i

q(an)
= Zi

q(an)
(1 + �i�

1/2(�̂−1/2 − �−1/2)) + �i

(
�1/2(�̂−1/2 − �−1/2)

qn(an)

q(an)

− �̂−1/2 (m̂(Xi) − m(Xi))

qn(an)

qn(an)

q(an)
− q̃(an) − qn(an)

q(an)

)
,
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 929

and since �i < 1 for all i, we have Z∗
i

q(an)
= Zi

q(an)
(1 + op(1)) + op(1) uniformly and

I111n ≤ 1
N

n∑
i=1

1(
1 + Zi

q(an)
(1 + op(1))+ op(1)

)2

((
Zi

q(an)
+ Op(1)

)
Op(L1n)+ Op(N −1/2)

)
�Ei∩Ẽi

�

Given that Zi > 0 whenever i ∈ �Ei∩Ẽi
and x

(1+x)2 < 1 for x > 0, we have I111n ≤ (Op(L1n) +
Op(N −1/2)) 1

N

∑n
i=1 �Ei∩Ẽi

= Op(L1n) + Op(N −1/2) since 1
N

∑n
i=1 �Ei∩Ẽi

= Op(1). We now

consider I112n, which can be written as I112n = 1
N

∑n
i=1

(
1 − k0Z̃i

�N

)−1
k0Z̃i
�N

(
�Ẽi

− �Ei

)
�Ẽi−Ei

.

For 1, 2 > 0, we define the events A =
{
� : |Ûi−Ui|

qn(an)
< 1

}
and B =

{
� : |q̃(an)−qn(an)|

qn(an)
< 2

}
and note that Cc ⊆ Ac ∪ Bc, where C = �� : �Ẽi

− �Ei = 0�. Hence, �Cc ≤ �Ac + �Bc and

I112n ≤ 1
N

n∑
i=1

∣∣∣∣∣
(

1 − k0Z̃i

�N

)−1
k0Z̃i

�N

∣∣∣∣∣ �Ac�Ẽi−Ei
+ 1

N

n∑
i=1

∣∣∣∣∣
(

1 − k0Z̃i

�N

)−1
k0Z̃i

�N

∣∣∣∣∣ �Bc�Ẽi−Ei

= I1121n + I1122n�

Since for 1, 2 > 0, we have |Ûi−Ui|
1qn(an)

> 1 on Ac and |q̃(an)−qn(an)|
2qn(an)

> 1 on Bc. Therefore,

I1121n <
1
N

n∑
i=1

∣∣∣∣∣
(

1 − k0Z̃i

�N

)−1
k0Z̃i

�N

∣∣∣∣∣ |Ûi − Ui|
1qn(an)

�Ẽi−Ei
and

I1122n <
1
N

n∑
i=1

∣∣∣∣∣
(

1 − k0Z̃i

�N

)−1
k0Z̃i

�N

∣∣∣∣∣ |q̃(an) − qn(an)|
2qn(an)

�Ẽi−Ei
�

Since k0 < 0, �N > 0, and Z̃i > 0 whenever i ∈ Ẽi − Ei, we have that

∣∣∣∣(1 − k0Z̃i
�N

)−1
k0Z̃i
�N

∣∣∣∣ <
C. From Lemma 2 we can immediately conclude that I1122n ≤ 1

2
Op(N −1/2) 1

N

∑n
i=1 �Ẽi−Ei

,

and since 1
N

∑n
i=1 �Ẽi−Ei

= Op(1), we have I1122n = Op(N −1/2). Now, |Ûi−Ui|
qn(an)

≤ |Ui|
qn(an)

Op(L1n)

+op(N −1/2), and therefore, I1121n ≤ Op(L1n)
1

N1

∑n
i=1

|Ui|
qn(an)

�Ẽi−Ei
+ op(N −1/2) 1

N1

∑n
i=1 �Ẽi−Ei

.

The second term following the inequality is op(N −1/2) since 1
N1

∑n
i=1 �Ẽi−Ei

= Op(1).

For the first term, note that
∣∣∣ Ui

qn(an)

∣∣∣ =
∣∣∣ Zi

qn(an)
+ 1

∣∣∣ and for i ∈ Ẽi − Ei, Ui ≤ qn(an) and

consequently if Ui > 0, we have | Zi
qn(an)

| < |Ui|
qn(an)

+ 1 < 2. If Ui ≤ 0 for i ∈ Ẽi − Ei, then

Ûi = m(Xi)−m̂(Xi)

�̂1/2 + �1/2

�̂1/2 Ui ≥ 0. Since, supx
|m(Xi)−m̂(Xi)|

�̂1/2 = op(1) and �1/2

�̂1/2 = 1 + op(1), it must

be that Ui > 0 with probability approaching 1. Consequently, for N sufficiently large and

i ∈ Ẽi − Ei, we have | Zi
qn(an)

| < 2 and I1121n = Op(L1n) + op(N −1/2). Combining the orders
of I1121n and I1122n, we have I112n = Op(L1n) + Op(N −1/2) and I11n = Op(L1n + Op(N −1/2).
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930 C. MARTINS-FILHO ET AL.

We now consider I12n and note that

I12n ≤ 1
N1

n∑
i=1

∣∣∣∣∣
(

1 − k0Zi

�N

)−1 k0Zi

�N

∣∣∣∣∣ |Ûi − Ui|
qn(an)

�Ei

+ 1
N2

n∑
i=1

∣∣∣∣∣
(

1 − k0Zi

�N

)−1 k0Zi

�N

∣∣∣∣∣ |q̃(an) − qn(an)|
qn(an)

�Ei �

By Lemma 2 and the fact that

∣∣∣∣(1 − k0Zi
�N

)−1
k0Zi
�N

∣∣∣∣ < C, the second term following

the inequality is Op(N −1/2) given that 1
N

∑n
i=1 �Ei = Op(1). Again, using |Ûi−Ui|

qn(an)
=

|Ui|
qn(an)

Op(L1n) + op(N −1/2) we have that the first term after the inequality is bounded by

Op(L1n)
1

N1

∑n
i=1

|Ui|
qn(an)

�Ei + op(N −1/2) 1
N1

∑n
i=1 �Ei . Since 1

N

∑n
i=1 �Ei = Op(1), we need only

investigate the order of 1
N

∑n
i=1

|Ui|
qn(an)

�Ei . Note that 1
N

∑n
i=1

|Ui|
qn(an)

�Ei ≤ C 1
N

∑n
i=1

Zi
q(an)

�Ei +
Op(1) since q(an)

qn(an)
= Op(1), Zi > 0 whenever i ∈ Ei and 1

N

∑n
i=1 �Ei = Op(1). Furthermore,

E
(

Zi
q(an)

�Ei

)
= E

(
Zi

q(an)
�Ei |�Ei = 1

)
P(�Ei = 1) = (

1
	−1 + O(�(q(an)))

)
Op(

N
n ) for 	 > 1.

Thus, 1
N

∑n
i=1

|Ui|
qn(an)

�Ei = Op(1), and we conclude that I12n = Op(L1n) + Op(N −1/2).
Combining the orders of I11n and I12n we have Ĩ1N − I1N = 1

N
(k−1

0 − 1)(Op(L1n) +
Op(N −1/2)). Since N N 1/2 → ∞ and

√
N L1n → 0 as n → ∞ whenever N ∝ n4/5− for

0 <  and h1n ∝ n−1/5, we have Ĩ1N − I1N = op(1).
We now turn to establishing that Ĩ4N − I4N = op(1). We write

Ĩ4N − I4N = 1
N

(
1
N

n∑
i=1

(
− 1

k2
0

log
(

1 − k0Z̃i

�N

)
+ 1

k0

(
1 − 1

k0

) (
1 − k0Z̃i

�N

)−1
k0Z̃i

�N

−
(

− 1

k2
0

log
(

1 − k0Zi

�N

)
+ 1

k0

(
1 − 1

k0

) (
1 − k0Zi

�N

)−1 k0Zi

�N

)
�Ei

)
�Ẽi

+ 1
N

n∑
i=1

(
− 1

k2
0

log
(

1 − k0Zi

�N

)
+ 1

k0

(
1 − 1

k0

)(
1 − k0Zi

�N

)−1 k0Zi

�N

))
�Ei(�Ẽi

− �Ei)

= 1
N

(I41n + I42n)�

First, note that

I41n = − 1

k2
0

(
1
N

n∑
i=1

(
log

(
1 − k0Z̃i

�N

)
− log

(
1 − k0Zi

�N

))
�Ei∩Ẽi

+ 1
N

n∑
i=1

log
(

1 − k0Z̃i

�N

)
�Ẽi−Ei

)

+ 1
k0

(
1 − 1

k0

)
I11n = − 1

k2
0

(I411n + I412n) + 1
k0

(
1 − 1

k0

)
I11n�
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 931

Since we have already established that I11n = Op(L1n) + Op(N −1/2), it suffices to
investigate the order of I411n and I412n. By the mean value theorem for some �i ∈ (0, 1)
and Z∗

i = Zi + �i(Z̃i − Zi), we have∣∣∣∣log
(

1 − k0Z̃i

�N

)
− log

(
1 − k0Zi

�N

)∣∣∣∣ �Ei∩Ẽi
=

(
1 + Z∗

i

q(an)

)−1 |Z̃i − Zi|
q(an)

�Ei∩Ẽi
,

where Z̃i−Zi
q(an)

≤ |Ui|
q(an)

Op(L1n) + Op(N −1/2) and Z∗
i

q(an)
= Zi

q(an)
(1 + op(1)) + op(1) uniformly.

Consequently,

I411n <
1
N

n∑
i=1

(
1 + Zi

q(an)
(1 + op(1)) + op(1)

)−1

×
((

Zi

q(an)
+ Op(1)

)
Op(L1n) + Op(N −1/2)

)
�Ei∩Ẽi

,

Given that Zi > 0 whenever i ∈ �Ei∩Ẽi
and x

(1+x) < 1 for x > 0, we have I411n ≤ (Op(L1n) +
Op(N −1/2)) 1

N

∑n
i=1 �Ei∩Ẽi

= Op(L1n) + Op(N −1/2) since 1
N

∑n
i=1 �Ei∩Ẽi

= Op(1). Given that
�Ẽi−Ei

= �Ẽi
(�Ẽi

− �Ei) and �A = �2
A, we have for 1, 2 > 0

I412n ≤ 1
N

n∑
i=1

log
(

1 − k0Z̃i

�N

) ( |Ûi − Ui|
1qn(an)

+ |q̃(an) − qn(an)|
2qn(an)

)
�Ẽi−Ei

≤ Op(L1n)
1

1N

n∑
i=1

log
(

1 − k0Z̃i

�N

) |Ui|
qn(an)

�Ẽi−Ei
+ Op(N −1/2)

1
N

n∑
i=1

log
(

1 − k0Z̃i

�N

)
�Ẽi−Ei

�

Note that by the mean value theorem,
∣∣∣log

(
1 − k0Z̃i

�N

)∣∣∣ =
∣∣∣∣(1 − k0Z∗

i
�N

)−1 −k0Z̃i
�N

∣∣∣∣ < −k0
�N

Z̃i since

Z̃i > 0 whenever i ∈ Ẽi − Ei, Z∗
i = �iZ̃i > 0 for some 0 < �i < 1. Hence,

I412n ≤ Op(L1n)
1

1N

n∑
i=1

−k0

�N
Z̃i

|Ui|
qn(an)

�Ẽi−Ei
+ Op(N −1/2)

1
N

n∑
i=1

−k0

�N
Z̃i�Ẽi−Ei

�

Since q(an)

qn(an
= 1 + op(1),

|Ui|
qn(an)

≤ |Zi|
qn(an)

+ 1, and Z̃i
q(an)

≤ |Zi|
qn(an)

(1 + Op(L1n)) + Op(N −1/2), we
have for the first term following the inequality

1
N

n∑
i=1

−k0

�N
Z̃i

|Ui|
qn(an)

�Ẽi−Ei
≤ 1

N

n∑
i=1

( |Zi|
qn(an)

(1 + Op(L1n))+ Op(N −1/2)

) (
1 + |Zi|

qn(an)

)
�Ẽi−Ei

�

Given that |Zi|
qn(an)

< 2 whenever i ∈ Ẽi − Ei for N sufficiently large, we have that
1
N

∑n
i=1

|Zi|2
qn(an)2 �Ẽi−Ei

≤ 4
N

∑n
i=1 �Ẽi−Ei

= Op(1). The second term following the inequality can
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932 C. MARTINS-FILHO ET AL.

be bounded using the similar arguments, and we obtain I412n = Op(L1n) + Op(N −1/2). We
now investigate the order of I42n. Note that

I42n <
1
N

n∑
i=1

∣∣∣∣∣− 1

k2
0

log
(

1 − k0Zi

�N

)
+ 1

k0

(
1 − 1

k0

) (
1 − k0Zi

�N

)−1 k0Zi

�N

∣∣∣∣∣ |Ûi − Ui|
1qn(an)

�Ei

+ 1
N

n∑
i=1

∣∣∣∣∣− 1

k2
0

log
(

1 − k0Zi

�N

)
+ 1

k0

(
1 − 1

k0

) (
1 − k0Zi

�N

)−1 k0Zi

�N

∣∣∣∣∣ |q̃(an) − qn(an)|
2qn(an)

�Ei

= I421n + I422n�

Since |Ûi−Ui|
qn(an)

≤ |Ui|
qn(an)

Op(L1n) + op(N −1/2), we write

I421n ≤ Op(L1n)
1

k2
01N

n∑
i=1

∣∣∣∣log
(

1 − k0Zi

�N

)∣∣∣∣ |Ui|
qn(an)

�Ei

+ Op(L1n)

∣∣∣∣ 1
k0

(
1 − 1

k0

)∣∣∣∣ 1
1N

n∑
i=1

∣∣∣∣∣
(

1 − k0Zi

�N

)−1
∣∣∣∣∣
∣∣∣∣k0Zi

�N

∣∣∣∣ |Ui|
qn(an)

�Ei

+ op(N −1/2)
1

k2
01N

n∑
i=1

∣∣∣∣log
(

1 − k0Zi

�N

)∣∣∣∣ �Ei

+ op(N −1/2)

∣∣∣∣ 1
k0

(
1 − 1

k0

)∣∣∣∣ 1
1N

n∑
i=1

∣∣∣∣∣
(

1 − k0Zi

�N

)−1
∣∣∣∣∣
∣∣∣∣k0Zi

�N

∣∣∣∣ �Ei �

Since k0 < 0 and Zi > 0 for all i ∈ Ei, we have that

∣∣∣∣(1 − k0Zi
�N

)−1
∣∣∣∣ ∣∣∣ k0Zi

�N

∣∣∣ < C, and the

second and fourth terms following the inequality are Op(L1n) and op(N −1/2) since
1
N

∑n
i=1

|Ui|
qn(an)

�Ei = Op(1) (see the order of I12n) and 1
N

∑n
i=1 �Ei = Op(1).

Note that for all i ∈ Ei and given that q(an)

qn(an)
= 1 + op(1) we have that

1
N

∑n
i=1

∣∣∣log
(

1 − k0Zi
�N

)∣∣∣ |Ui|
qn(an)

�Ei ≤ 1
N

∑n
i=1 log

(
1 − k0Zi

�N

) (
1 − k0Zi

�N
Op(1)

)
�Ei . In addition,

if 	 > 1, E
(

log
(

1 − k0Zi
�N

) (
1 − k0Zi

�N

))
= 	

(	−1)2 + O(�(q(an))) = O(1) and, consequently,
1
N

∑n
i=1 log

(
1 − k0Zi

�N

) (
1 − k0Zi

�N

)
�Ei = Op(1), which establishes that the first term after the

inequality is Op(L1n). Similarly, for 	 > 1, E
(

log
(

1 − k0Zi
�N

))
= 1

	
+ O(�(q(an))) = O(1)

which establishes that 1
N

∑n
i=1 log

(
1 − k0Zi

�N

)
�Ei = Op(1) and the order of the third term

to be Op(N −1/2).
We now examine the order of I422n. Given q̃n(an)−qn(an)

qn(an)
= Op(N −1/2)

and

∣∣∣∣(1 − k0Zi
�N

)−1
k0Zi
�N

∣∣∣∣ <C, we write I422n ≤ 1
2

Op(N −1/2)( 1
k2

02

1
N

∑n
i=1

∣∣log(1− k0Zi
�N

)
∣∣

�Ei + C
∣∣ 1

k0
(1 − 1

k0
)
∣∣ 1

N

∑n
i=1 �Ei). Since we have already established that 1

N

∑n
i=1
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 933

∣∣∣log
(

1 − k0Zi
�N

)∣∣∣ �Ei = Op(1) and 1
N

∑n
i=1 �Ei = Op(1), we conclude that I422n = Op(N −1/2).

Combining all orders obtained, we have that I41n + I42n = Op(L1n) + Op(N −1/2) and,
consequently, Ĩ4N − I4N = op(1), since N N 1/2 → ∞ as n → ∞.

We now investigate the order of Ĩ2N − I2N . Consider arbitrary �̇N = �N (1 + N t�1) and
k̇ = k0 + N ��2, and write

Ĩ2N − I2N = 1
(1 + tN�1)2

⎛⎝(−2)
(

1

k̇
− 1

)
1
N

Ns∑
j=1

⎛⎝(
1 − k̇Z̃j

�̇N

)−1
k̇Z̃j

�̇N
+ 1

2

(
1 − k̇Z̃j

�̇N

)−2 (
k̇Z̃j

�̇N

)2
⎞⎠

+
⎛⎝2

(
1

k̇
− 1

)
1
N

N∑
j=1

⎛⎝(
1 − k̇Zj

�̇N

)−1
k̇Zj

�̇N
+ 1

2

(
1 − k̇Zj

�̇N

)−2 (
k̇Zj

�̇N

)2
⎞⎠⎞⎠ �

Hence, it suffices to examine

1
N

Ns∑
j=1

(
1 − k̇Z̃j

�̇N

)−l(
k̇Z̃j

�̇N

)l

− 1
N

N∑
j=1

(
1 − k̇Zj

�̇N

)−l (
k̇Zj

�̇N

)l

= 1
N

n∑
i=1

⎛⎝(
1 − k̇Z̃i

�̇N

)−l (
k̇Z̃i

�̇N

)l

−
(

1 − k̇Zi

�̇N

)−l(
k̇Zi

�̇N

)l

�Ei

⎞⎠ �Ẽi
+ 1

N

n∑
i=1

(
1 − k̇Zi

�̇N

)−l (
k̇Zi

�̇N

)l

�Ei(�Ẽi
− �Ei) = Inl1 + Inl2

for l = 1, 2. First, note that Inl1 = Inl11 + Inl12, where

Inl11 = 1
N

n∑
i=1

⎛⎝(
1 − k̇Z̃i

�̇N

)−l (
k̇Z̃i

�̇N

)l

−
(

1 − k̇Zi

�̇N

)−l (
k̇Zi

�̇N

)l
⎞⎠ �Ei∩Ẽi

and

Inl12 = 1
N

n∑
i=1

(
1 − k̇Z̃i

�̇N

)−l (
k̇Z̃i

�̇N

)l

�Ẽi−Ei
�

By the mean value theorem, there exists Z∗
i = Z̃i + �i(Z̃i − Zi) for �i ∈ (0, 1) such that

Inl11 ≤ l
1
N

n∑
i=1

∣∣∣∣∣∣
(

1 − k̇Z∗
i

�̇N

)−l−1
k̇
�̇N

(
k̇Z∗

i

�̇N

)l−1

qn(an)

∣∣∣∣∣∣
(

Op(L1n)

(
Zi

qn(an)
+ 1

)
+ Op(N −1/2)

)
�Ei∩Ẽi

�

(12)

Since q(an) = −�N/k0 and q(an)

qn(an)
= Op(1), we have

sup
ST

1
N

n∑
i=1

∣∣∣∣∣∣
(

1 − k̇Z∗
i

�̇N

)−l−1
k̇
�̇N

(
k̇Z∗

i

�̇N

)l−1
Zi

qn(an)
qn(an)

∣∣∣∣∣∣ �Ei∩Ẽi
≤ Op(1) sup

ST

∣∣∣∣∣ k̇
k0

�N

�̇N

∣∣∣∣∣
× 1

N

n∑
i=1

�Ei∩Ẽi
sup

ST

∣∣∣∣∣∣
(

k̇Z∗
i

�̇N

)l−1 (
1 − k̇Z∗

i

�̇N

)−l−1
Zi

qn(an)

∣∣∣∣∣∣ �
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934 C. MARTINS-FILHO ET AL.

Now, given that N → 0 we have for N sufficiently large supST

∣∣∣ k̇
k0

�N
�̇N

∣∣∣ < C and

supST

∣∣∣∣( k̇Z∗
i

�̇N

)l−1 (
1 − k̇Z∗

i
�̇N

)−l
∣∣∣∣ < C. Hence, to establish the order of the left-hand side of

the inequality, it suffices to obtain the order of �n = 1
N

∑n
i=1 �Ei∩Ẽi

supST

∣∣∣∣(1 − k̇Z∗
i

�̇N

)−1
Zi

qn(an)

∣∣∣∣.
Note that

�n ≤ C
1
N

n∑
i=1

�Ei∩Ẽi
sup

ST

∣∣∣∣∣∣
(

1 − k̇Z∗
i

�̇N

)−1 (
− k̇Zi

�̇N

)∣∣∣∣∣∣ sup
ST

(
− k̇

�̇N

)−1
1

qn(an)

≤ C
1
N

n∑
i=1

�Ei∩Ẽi
sup

ST

∣∣∣∣∣∣
(

1 − k̇Z∗
i

�̇N

)−1 (
− k̇Zi

�̇N

)∣∣∣∣∣∣ since sup
ST

(
− k̇

�̇N

)−1
1

qn(an)
< C

≤ C
1
N

n∑
i=1

�Ei∩Ẽi
sup

ST

∣∣∣∣∣∣
(

1 − k̇
�̇N

q(an)

(
Zi

q(an)
(1 + op(1)) + op(1)

))−1 (
− k̇Zi

�̇N

)∣∣∣∣∣∣ = Op(1)

since Z∗
i

q(an)
=

(
Zi

q(an)
(1 + op(1)) + op(1)

)
, supST

∣∣∣∣(1 − k̇
�̇N

q(an)
(

Zi
q(an)

(1 + op(1)) + op(1)
))−1

(
− k̇Zi

�̇N

)∣∣∣ < C, and 1
N

∑n
i=1 �Ei∩Ẽi

= Op(1). Consequently, Inl11 = Op(L1n) + Op(N −1/2) as
all remaining terms in (12) are Op(1). Now, we write

Inl12 ≤ 1
N

n∑
i=1

∣∣∣∣∣∣
(

1 − k̇Z̃i

�̇N

)−l(
k̇Z̃i

�̇N

)l
∣∣∣∣∣∣ �Ẽi−Ei

(
Op(L1n)

1
1

( |Ui|
qn(an)

+ 1
qn(an)

)
+ 1

2
Op(N −1/2)

)

and obtain the order of �n = 1
N

∑n
i=1

∣∣∣∣(1 − k̇Z̃i
�̇N

)−l (
k̇Z̃i
�̇N

)l
∣∣∣∣ |Ui|

qn(an)
�Ẽi−Ei

. Note that

�n ≤ 1
N

n∑
i=1

sup
ST

∣∣∣∣∣∣
(

1 − k̇Z̃i

�̇N

)−l (
k̇Z̃i

�̇N

)l
∣∣∣∣∣∣ |Ui|

qn(an)
�Ẽi−Ei

≤ C
1
N

n∑
i=1

|Ui|
qn(an)

�Ẽi−Ei
= Op(1)

from the study of the order of I1121n. Consequently, Inl12 = Op(L1n) + Op(N −1/2) which

combined with the order of Inl11 gives Inl1 = Op(L1n) + Op(N −1/2). Now, as argued

previously, we can write

Inl2 ≤ 1
N

n∑
i=1

⎛⎝(
1 − k̇Zi

�̇N

)−l (
k̇Zi

�̇N

)l
⎞⎠ (

Op(L1n)
1
1

( |Ui|
qn(an)

+ 1
qn(an)

)
+ 1

2
Op(N −1/2)

)
�Ei �

(13)
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 935

Letting Tn = 1
N

∑n
i=1

((
1 − k̇Zi

�̇N

)−l (
k̇Zi
�̇N

)l
)

|Ui|
qn(an)

�Ei , we note that

Tn ≤ 1
N

n∑
i=1

⎛⎝(
1 − k̇Zi

�̇N

)−l (
k̇Zi

�̇N

)l
⎞⎠ ⎛⎝− k̇Zi

�̇N

(
− k̇

�̇N

)−1
1

qn(an)
+ 1

⎞⎠ �Ei

≤ 1
N

n∑
i=1

⎛⎝(
1 − k̇Zi

�̇N

)−l(
k̇Zi

�̇N

)l
⎞⎠(

− k̇Zi

�̇N
Op(1) + 1

)
�Ei , since

(
− k̇

�̇N

)−1
1

qn(an)
= Op(1),

and given that N → 0, for N sufficiently large, we have k̇ < 0, �̇N > 0 and∣∣∣∣(1 − k̇Zi
�̇N

)−l (
k̇Zi
�̇N

)l
∣∣∣∣ < C. Thus, it suffices to establish the order of 1

N

∑n
i=1 − k̇Zi

�̇N
�Ei ≤

C 1
N

∑n
i=1

Zi
q(an)

�Ei , which is Op(1) from the study of I12n. Consequently, Tn = Op(1)
uniformly on ST and Inl2 = Op(L1n) + Op(N −1/2), since all other terms in inequality (13)

are Op(1) given

∣∣∣∣(1 − k̇Zi
�̇N

)−l (
k̇Zi
�̇N

)l
∣∣∣∣ < C and the fact that 1

N

∑n
i=1 �Ei = Op(1). Combining

the orders of Inl1 and Inl2, we conclude that Ĩ2N − I2N = op(1) uniformly on ST . Now, note

that Ĩ3N − I3N = Ĩ5N − I5N and

Ĩ3N − I3N = 1
1 + N t�1

1
N

Ns∑
j=1

⎛⎝−1

k̇

(
1 − k̇Z̃j

�̇N

)−1
k̇Z̃j

�̇N
+ 1

k̇

(
1

k̇
− 1

) (
1 − k̇Z̃j

�̇N

)−2 (
k̇Z̃j

�̇N

)2
⎞⎠

+ 1
1 + N t�1

1
N

N∑
j=1

⎛⎝1

k̇

(
1 − k̇Zj

�̇N

)−1
k̇Zj

�̇N
− 1

k̇

(
1

k̇
− 1

) (
1 − k̇Zj

�̇N

)−2(
k̇Zj

�̇N

)2
⎞⎠ ,

and using the same arguments as in the case of Ĩ2N − I2N , we have Ĩ3N − I3N = op(1) and

Ĩ5N − I5N = op(1) uniformly on ST .

Lastly, we investigate the order of Ĩ6N − I6N , which can be written as

Ĩ6N − I6N = 1
N

Ns∑
j=1

⎛⎝ 2

k̇3
log

(
1 − k̇Z̃j

�̇N

)
+ 1

k̇

(
1 − k̇Z̃j

�̇N

)−1 (
k̇Z̃j

�̇N

)
+ 1

k̇3

(
1 − k̇Z̃j

�̇N

)−1(
k̇Z̃j

�̇N

)

− 1

k̇2

(
1

k̇
− 1

) (
1 − k̇Z̃j

�̇N

)−2 (
k̇Z̃j

�̇N

)2
⎞⎠

− 1
N

N∑
j=1

⎛⎝ 2

k̇3
log

(
1 − k̇Zj

�̇N

)
+ 1

k̇

(
1 − k̇Zj

�̇N

)−1 (
k̇Zj

�̇N

)
+ 1

k̇3

(
1 − k̇Zj

�̇N

)−1(
k̇Zj

�̇N

)
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936 C. MARTINS-FILHO ET AL.

− 1

k̇2

(
1

k̇
− 1

) (
1 − k̇Zj

�̇N

)−2 (
k̇Zj

�̇N

)2
⎞⎠

= 2

k̇3

⎛⎝1
N

Ns∑
j=1

log

(
1 − k̇Z̃j

�̇N

)
− 1

N

N∑
j=1

log

(
1 − k̇Zj

�̇N

)⎞⎠+ op(1) uniformly in ST � (14)

The last equality follows form the arguments used above when investigating the order
of Ĩ2N − I2N . The first term in Eq. (14) can be written as (excluding the constant 2/k̇3)
I61n + I62n, where

I61n = 1
N

n∑
i=1

(
log

(
1 − k̇Z̃i

�̇N

)
− log

(
1 − k̇Zi

�̇N

)
�Ei

)
�Ẽi

and

I62n = 1
N

n∑
i=1

log

(
1 − k̇Zi

�̇N

)
�Ei(�Ẽi

− �Ei)�

Now,

I62n ≤ 1
N

n∑
i=1

∣∣∣∣∣log

(
1 − k̇Zi

�̇N

)∣∣∣∣∣ �Ei

(
Op(L1n)

1

( |Ui|
qn(an)

+ 1
)

+ 1
2

Op(N −1/2)

)
,

and we consider 1
N

∑n
i=1

∣∣∣log
(

1 − k̇Zi
�̇N

)∣∣∣ |Ui|
qn(an)

�Ei . Note that Zi > 0 whenever i ∈ Ei and as

N → ∞ N → 0, k̇ → k0 and �̇N
�N

→ 1. Consequently, given that q(an)

qn(an)
= Op(1), we have

1
N

n∑
i=1

∣∣∣∣∣log

(
1 − k̇Zi

�̇N

)∣∣∣∣∣ |Ui|
qn(an)

�Ei

≤ 1
N

n∑
i=1

∣∣∣∣∣log

(
1 − k̇Zi

�̇N

)∣∣∣∣∣
(

1 − k0Zi

�N
Op(1)

)
�Ei

= 1
N

n∑
i=1

∣∣∣∣log
(

1 − k0Zi

�N

)∣∣∣∣ (1 − k0Zi

�N
Op(1)

)
�Ei + op(1) = Op(1),

where the last equality follows from the order of I421n. Hence, I62n = Op(L1n) + Op(N −1/2)

uniformly on ST . We write I61n = I611n + I612n, where I611n = 1
N

∑n
i=1

(
log

(
1 − k̇Z̃i

�̇N

)
−

log
(

1 − k̇Zi
�̇N

))
�Ei∩Ẽi

, and I612n = 1
N

∑n
i=1 log

(
1 − k̇Z̃i

�̇N

)
�Ei−Ẽi

. Then,

I611n = 1
N

n∑
i=1

(
1 − k̇Z∗

i

�̇N

)−1
k̇
�̇N

(Z̃i − Zi)�Ei∩Ẽi
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 937

≤ 1
N

n∑
i=1

∣∣∣∣∣∣
(

1 − k̇Z∗
i

�̇N

)−1
∣∣∣∣∣∣
∣∣∣∣∣ k̇
�̇N

qn(an)

∣∣∣∣∣
(

Op(L1n)

(
Zi

qn(an)
+ 1

)
+ Op(N −1/2)

)
�Ei∩Ẽi

≤ sup
ST

∣∣∣∣∣ k̇
�̇N

qn(an)

∣∣∣∣∣ 1
N

n∑
i=1

sup
ST

∣∣∣∣∣∣
(

1 − k̇Z∗
i

�̇N

)−1
∣∣∣∣∣∣
(

Op(L1n)

(
Zi

qn(an)
+ 1

)
+ Op(N −1/2)

)
�Ei∩Ẽi

= Op(1)
1
N

n∑
i=1

sup
ST

∣∣∣∣∣∣
(

1 − k̇Z∗
i

�̇N

)−1
∣∣∣∣∣∣
(

Op(L1n)

(
Zi

qn(an)
+ 1

)
+ Op(N −1/2)

)
�Ei∩Ẽi

= Op(L1n) + Op(N −1/2) uniformly on ST given the order of �n�

Since Z̃i > 0 whenever i ∈ Ẽi − Ei and since as N → ∞ N → 0, k̇ → k0, and �̇N
�N

→ 1, we

have I612n = 1
N

∑n
i=1 log

(
1 − k0Z̃i

�N

)
�Ẽi−Ei

+ op(1). From the order of I412n, we have I612n =
Op(L1n) + Op(N −1/2) and, consequently, I61n = Op(L1n) + Op(N −1/2), which combined
with the order of I62n gives Ĩ6N − I6N = op(1) uniformly on ST .

Lemma 2. Under Assumptions A1–A5 and conditions FR1’ and FR2, if 	 ≥ 1, we have

√
N

(
q̃ (an) − qn (an)

q (an)

)
= Op(1), where an = 1 − N

n
�

Proof. We write

√
N

(
q̃ (an) − qn (an)

q (an)

)
= √

N
(

q̃ (an) − q (an)

q (an)

)
− √

N
(

qn (an) − q (an)

q (an)

)
= T1n − T2n�

We first show that T2n converges in distribution, which implies T2n = Op(1). Note that

P(T2n ≤ z) = P
(

nk0√
N

(F(yn) − an) ≤ − nk0√
N

(Fn(yn) − F(yn))

)

with yn = q(an) + z�n and �n = q(an)√
N

. By the mean value theorem, F(yn) = an +
f(q∗(an))�nz, where q∗(an) = q(an) + ��nz = q(an)(1 + �zN −1/2) for some � ∈ (0, 1).
Thus,

nk0√
N

(F(yn) − an) = nk0

N
f(q∗(an))q(an)z = k0

(1 − F(q∗(an)))n
N

q(an)f(q∗(an))

1 − F(q∗(an))
z�

Since q∗(an) = q(an)(1 + o(1)), we have that limn→∞ (1−F(q∗(an)))n
N = 1. In addition, given

FR1’ and by Proposition 1.15 in Resnick (1987) we have limn→∞ q(an)f(q∗(an))

1−F(q∗(an))
= − 1

k0
, and

hence limn→∞ − nk0√
N
(F(yn) − an) = z. We now show that n√

N
(Fn(yn) − F(yn))

d→ N (0, 1).
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938 C. MARTINS-FILHO ET AL.

First, we observe that n√
N

−
√

n(1−F(yn))

1−F(yn)
= o(1). Hence we show that

√
n(1 − F(yn))

1 − F(yn)
(Fn(yn) − F(yn)) =

n∑
i=1

Zin
d→ N (0, 1), (15)

where Zin = (1−F(yn))
−1/2√

n

(
��Ui≤yn� − E(��Ui≤yn)�

)
. It is readily verified that E(Zin) = 0 and

V (Zin) = n−1F(yn). Hence, given that
∑n

i=1 E(|Zin|3) ≤ 2(n(1 − F(yn)))
−1/2 = o(1), we

have by Liapounov’s CLT that n√
N
(Fn(yn) − F(yn))

d→ N (0, 1). Hence, T2n
d→ N (0, k2

0).
We now show that T1n = Op(1) by establishing that T1n converges in distribution. As

above,

P(T1n ≤ z) = P
(

nk0√
N

(F(yn) − an) ≤ − nk0√
N

(F̃(yn) − F(yn))

)
, (16)

and we establish that n√
N
(F̃(yn) − F(yn))

d→ N (0, 1). We start by noting that for some
�i ∈ (0, 1)

F̃(yn) =
∫ yn

−∞

1
nh2n

n∑
i=1

K2

(
y − Ui

h2n

)
dy −

∫ yn

−∞

1

nh2
2n

n∑
i=1

K(1)
2

(
y − Ui

h2n

)
dy(Ûi − Ui)

+ 1
2

∫ yn

−∞

1

nh3
2n

n∑
i=1

K(2)
2

(
y − U ∗

i

h2n

)
dy(Ûi − Ui)

2 = Q1n − Q2n + Q3n,

where U ∗
i = �iUi + (1 − �i)Ûi. Therefore, n√

N
(F̃(yn) − F(yn)) = n√

N
((Q1n − F(yn)) +

Q2n + Q3n)� Letting L1n =
(

log n
nh1n

)1/2 + h2
1n, we observe that under Assumptions A1–A5,

�̂ − � = Op (L1n), and consequently, given that � > 0, �̂−1/2 − �1/2 = Op (L1n). Since
Ûi − Ui = �1/2(�̂−1/2 − �−1/2)Ui − �̂−1/2(m̂(Xi) − m(Xi)), we have

|Ûi − Ui| ≤ (1 + �1/2|Ui|) Op (L1n) and (Ûi − Ui)
2 ≤ (1 + 2�|Ui| + �U 2

i ) Op

(
L2

1n

)
�

(17)

We now examine the orders of Qjn, j = 2, 3. Given A1 and (17), we have
Q3n ≤ Op

(
L2

1n
h2n

) ∑3
j=1 Q3jn, where Q3jn = 1

2nh2n

∑n
i=1

∣∣∣K(1)
2

(
yn−U∗

i
h2n

)∣∣∣ |Ui|j−1. Using Taylor’s
Theorem, we can write for some �i ∈ (0, 1) and U ∗∗

i = �iUi + (1 − �i)U ∗
i that

Q31n ≤ 1
nh2n

n∑
i=1

∣∣∣∣K(1)
2

(
yn − Ui

h2n

)∣∣∣∣ + 1

nh2
2n

n∑
i=1

∣∣∣∣K(2)
2

(
yn − U ∗∗

i

h2n

)∣∣∣∣ |Ûi − Ui|�
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 939

Since |K(1)
2 (x)| < C by (A1) and given that f(yn) → 0 as n → ∞, we have

1
nh2n

∑n
i=1

∣∣∣K(1)
2

(
yn−Ui

h2n

)∣∣∣ = op(1). Given (17)

1

nh2
2n

n∑
i=1

∣∣∣∣K(2)
2

(
yn − U ∗∗

i

h2n

)∣∣∣∣ |Ûi − Ui| ≤ 1

nh2
2n

n∑
i=1

∣∣∣∣K(2)
2

(
yn − U ∗∗

i

h2n

)∣∣∣∣ (1 + �1/2|Ui|
)

Op(L1n)

≤ 1

h2
2n

Op(L1n)

(
1 + �1/2 1

n

n∑
i=1

|Ui|
)

= Op

(
L1n

h2
2n

)
,

where the last inequality follows from the fact that |K(2)
2 | < C by (A1) and the last equality

follows from A4 by using Kolmogorov’s law of large numbers to obtain 1
n

∑n
i=1 |Ui| =

Op(1). Consequently, Q31n = op(1) + Op

(
L1n

h2
2n

)
which is bounded in probability provided

h1n = O(h2n) and nh1nh4
2n = O(log n). These orders are satisfied by taking h1n ∝ n−1/5 and

h2n ∝ n−1/5+ for  > 0. Using Taylor’s Theorem again, we can write for some �i ∈ (0, 1)
and U ∗∗

i = �iUi + (1 − �i)U ∗
i that

Q32n ≤ �1/2

nh2n

n∑
i=1

∣∣∣∣K(1)
2

(
yn − Ui

h2n

)∣∣∣∣ |Ui| + �1/2

nh2
2n

n∑
i=1

∣∣∣∣K(2)
2

(
yn − U ∗∗

i

h2n

)∣∣∣∣ |Ui||Ûi − Ui|

= Q321n + Q322n� (18)

We note that Q321n is op(1) since

E (Q321n) = �1/2

∫
|yn − �h2n||K(1)

2 (�)|f(yn − �h2n)d�

= �1/2(1 − F(yn))

∫ |yn − �h2n|f(yn − �h2n)

1 − F(yn − �h2n)

1 − F(yn − �h2n)

1 − F(yn)
K(1)

2 (�)|d�= o(1)

by Lebesgue’s dominated convergence theorem, Proposition 1.15 in Resnick (1987), the
fact that 1 − F(yn) → 0 as n → ∞ and

∫ |K(1)
2 (�)|d� < C. Given (17)

Q322n ≤ �1/2

nh2
2n

n∑
i=1

∣∣∣∣K(2)
2

(
yn − U ∗∗

i

h2n

)∣∣∣∣ |Ui|(1 + �1/2|Ui|)Op(L1n)

= Op(L1n)

(
�1/2 1

nh2
2n

n∑
i=1

∣∣∣∣K(2)
2

(
yn − U ∗∗

i

h2n

)∣∣∣∣ |Ui| + �
1

nh2
2n

n∑
i=1

∣∣∣∣K(2)
2

(
yn − U ∗∗

i

h2n

)∣∣∣∣ U 2
i

)

≤ Op

(
L1n

h2
2n

)
C

(
�1/2 1

n

n∑
i=1

|Ui| + �
1
n

n∑
i=1

U 2
i

)
since |K(2)

2 (�)| < C

= Op

(
L1n

h2
2n

)
,
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940 C. MARTINS-FILHO ET AL.

where the last equality follows from A4 by using Kolmogorov’s law of large numbers
to obtain 1

n

∑n
i=1 |Ui| = Op(1) and 1

n

∑n
i=1 U 2

i = Op(1). Consequently, Q32n = op(1) +
Op

(
L1n

h2
2n

)
= Op(1) given h1n ∝ n−1/5 and h2n ∝ n−1/5+ for  > 0. A similar use of Taylor’s

Theorem gives

Q33n ≤ �

2
1

nh2n

n∑
i=1

∣∣∣∣K(1)
2

(
yn − Ui

h2n

)∣∣∣∣ U 2
i + �

2
1

nh2
2n

n∑
i=1

∣∣∣∣K(2)
2

(
yn − U ∗∗

i

h2n

)∣∣∣∣ U 2
i |Ûi − Ui|

= Q331n + Q332n� (19)

We note that Q331n is Op(1) since

E (Q331n) = �

2

∫
(yn − �h2n)

2|K(1)
2 (�)|f(yn − �h2n)d�

= �

2
(1 − F(yn))yn

×
∫ |yn − �h2n|

yn

|yn − �h2n|f(yn − �h2n)

1 − F(yn − �h2n)

1 − F(yn − �h2n)

1 − F(yn)
K(1)

2 (�)|d� = O(1)

by Lebesgue’s dominated convergence theorem, Proposition 1.15 in Resnick (1987), the
fact that yn(1 − F(yn)) → C as n → ∞ when 	 ≥ 1 and

∫ |K(1)
2 (�)|d� < C. Given (17)

Q332n ≤ �

2
1

nh2
2n

n∑
i=1

∣∣∣∣K(2)
2

(
yn − U ∗∗

i

h2n

)∣∣∣∣ U 2
i (1 + �1/2|Ui|)Op(L1n)

= Op(L1n)

(
�

2
1

nh2
2n

n∑
i=1

∣∣∣∣K(2)
2

(
yn − U ∗∗

i

h2n

)∣∣∣∣ U 2
i + �3/2

2
1

nh2
2n

n∑
i=1

∣∣∣∣K(2)
2

(
yn − U ∗∗

i

h2n

)∣∣∣∣ |Ui|3
)

≤ Op

(
L1n

h2
2n

)
C

(
�

2
1
n

n∑
i=1

U 2
i + �3/2

2
1
n

n∑
i=1

|Ui|3
)

since |K(2)
2 (�)| < C

= Op

(
L1n

h2
2n

)
,

where the last equality follows from A4 by using Kolmogorov’s law of large numbers
to obtain 1

n

∑n
i=1 |Ui| = Op(1) and 1

n

∑n
i=1 |Ui|3 = Op(1). Consequently, Q33n = Op(1) +

Op

(
L1n

h2
2n

)
= Op(1) given h1n ∝ n−1/5 and h2n ∝ n−1/5+ for  > 0. Hence,

n√
N

Q3n = n√
N

Op

(
L2

1n

h2n

)
= op(1), provided N ∝ n4/5−� (20)
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 941

Q2n = 1
n

n∑
i=1

1
h2n

K2

(
yn − Ui

h2n

)
(Ûi − Ui)

= �1/2(�̂−1/2 − �−1/2)
1

nh2n

n∑
i=1

K2

(
yn − Ui

h2n

)
Ui

− 1

�̂1/2

1
nh2n

n∑
i=1

K2

(
yn − Ui

h2n

)
(m̂(Xi) − m(Xi))

= Q21n + Q22n�

Since m̂(x) − m(x) − 1
nh1nfX(x)

∑n
t=1 K1

(
Xt−x
h1n

)
Y ∗

t = Op

(
L2

1n

)
4 uniformly over the compact

set G, with Y ∗
t = 1

2 m(2)(x∗)(Xt − x)2 + �1/2Ut, x∗ = �Xt − (1 − �)x for � ∈ (0, 1), and
�̂−1/2 = Op(1), we can write

Q22n = Op(1)

(
1
n2

n∑
i=1

n∑
t=1

1
h2nfX(Xi)

K2

(
yn − Ui

h2n

)
1

h1n
K1

(
Xt − Xi

h1n

)
1
2

m(2)(X∗
t )(Xt − Xi)

2

+ �1/2 1
n2

n∑
i=1

n∑
t=1

1
h2nfX(Xi)

K2

(
yn − Ui

h2n

)
1

h1n
K1

(
Xt − Xi

h1n

)
Ut

)
+ Op

(
L2

1n

)
= Op(1)(Q221n + �1/2Q222n) + Op

(
L2

1n

)
�

We will obtain the order of each Q22jn for j = 1, 2 separately. Let

�n(Zi, Zt) = 1
fX(Xi)h2n

K2

(
yn − Ui

h2n

)
1

h1n
K1

(
Xt − Xi

h1n

)
Ut,

for Zi = (Xi, Ui), and write Q222n = 1
2n2

∑n
i=1

∑n
t=1(�n(Zt, Zi) + �n(Zi, Zt)) =

1
2n2

∑n
i=1

∑n
t=1 �n(Zi, Zt), where �n(Zt, Zi) is a symmetric function. The partial sum for

the case where i = t is denoted by Q′
222n = K1(0)

n2h2nh1n

∑n
i=1

1
fX(Xi)

K2

(
yn−Ui

h2n

)
Ui, and given that

fU | X=x(u|x)
f(u) → 1 as u → ∞, FR1’, and 1−F(yn−h2nu)

1−F(yn)
→ 1 as n → ∞, we have by Lebesgue’s

dominated convergence theorem that n√
N

Q′
222n = op(1). For the case where i 	= t, we write

the remaining partial sums as

Q′′
222n = 1

n

n∑
t=1

E(�n(Zt, Zi)|Zt) − 1
2

E(�n(Zt, Zi)) + Op

(
n−1(E(�2

n(Zt, Zi)))
1/2

)
�

4If m were estimated by a Nadaraya–Watson estimator then Y ∗
t = m(1)(x)(Xt − x) + 1

2 m(2)(x∗)(Xt − x)2 +
�1/2Ut . The additional terms that involve m(1)(x)(Xt − x) can be shown to be negligible in probability at the
desired rate n√

N
.
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942 C. MARTINS-FILHO ET AL.

Given that E(Ui|Xi) = 0, we have E(�n(Zt, Zi)) = 0 and

1
n

n∑
t=1

E(�n(Zt, Zi)|Zt) = 1
n

n∑
i=1

E
(

1
fX(Xi)

1
h1n

K1

(
Xt − Xi

h1n

)
1

h2n
K2

(
yn − Ui

h2n

)
|Xt

)
Ut

= 1
n

n∑
i=1

Ztn�

with E(Ztn) = 0. As above, using A4, FR1’, and Lebesgue’s dominated convergence
theorem, we have that E

( nyn
N Z2

tn

) → −k−1
0 �. Using similar arguments, we have

n−1E
(
�2

n(Zt, Zi)
)1/2 = O

(
n−1

(
N

nynh1nh2n

)1/2
)

. Consequently,

n√
N

Op

(
n−1E

(
�2

n(Zt, Zi)
)1/2

)
= Op

((
1

nh1nh2nyn

)1/2
)

= op

(
(nh1nh2n)

−1/2
) = op(1)

since yn → ∞ and nh1nh2n → ∞. Hence, we can write that n√
N

√
ynQ′′

222n =
n√
N

1
n

∑n
i=1 Ztn

√
yn + op (1). Since E(Ztn

√
yn) = 0 and E

( nyn
N Z2

tn

) → −k−1
0 �, by Liapounov’s

CLT, we have n√
N

√
ynQ′′

23n
d→ N (0, −k−1

0 �), and since
√

yn → ∞ as n → ∞, we have that
n√
N

Q′′
222n = op(1).

Using similar arguments and manipulations, we obtain n√
N

Q221n = op

(
h2

1n

√
N

)
+

op (1). Hence, combining the orders for Q221n and Q222n, we have

n√
N

Q22n = op

(
h2

1n

√
N

)
+ op(1) + n√

N
Op

(
L2

1n

) = op(1), (21)

where the last equality holds provided that h1n ∝ n−1/5 and h2n ∝ n−1/5+ for  > 0 and
N ∝ n4/5−.

Since �̂−1/2 − �1/2 = Op(L1n), Q21n = Op(L1n)
1

nh2n

∑n
i=1 K2

(
yn−Ui

h2n

)
Ui. Note that

E
(

1
h2n

K2

(
yn − Ui

h2n

)
Ui

)
= (1 − F(yn))

∫
K2(�)

(yn − h2n�)f(yn − h2n�)

1 − F(yn − h2n�)

1 − F(yn − h2n�)

1 − F(yn)
d�,

and by Lebesgue’s dominated convergence theorem, Proposition 1.15 in Resnick (1987),
and the fact that

∫
K2(�)d� = 1, we have Q21n = Op(L1n)(1 − F(yn)). Consequently,

n√
N

Q21n = n√
N

(1 − F(yn))Op(L1n)

=
(

n√
N

(
1 − F(yn) − N

n

)
+ √

N
)

Op(L1n)�

D
ow

nl
oa

de
d 

by
 [

W
es

t V
ir

gi
ni

a 
U

ni
ve

rs
ity

] 
at

 0
8:

08
 0

8 
Fe

br
ua

ry
 2

01
5 



HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 943

Note that n√
N

(
1 − F(yn) − N

n

) = O(1) and
√

N L1n =
(

Nlog n
nh1n

)1/2 + N 1/2h2
1n = o(1) given

that h1n ∝ n−1/5 and N ∝ n4/5− for 0 <  < 4/5. Hence, we have that n√
N

Q21n = op(1) and
combined with (21) gives n√

N
Q2n = op(1).

We now show that n√
N
(Q1n − F(yn))

d→ N (0, 1). First, we put q1in =
1

h2n

∫ yn

−∞ K2

(
y−Ui
h2n

)
dy and write

n√
N

(Q1n − F(yn)) =
n∑

i=1

1√
n(1 − F(yn))

(q1in − E(q1in))

+
n∑

i=1

1√
n(1 − F(yn))

(E(q1in) − F(yn)) = I1n + I2n�

Clearly, E
(

1√
n(1−F(yn))

(q1in − E(q1in))

)
= 0 and V

(
1√

n(1−F(yn))
(q1in − E(q1in))

)
=

s2
n

n(1−F(yn))
, where

s2
n =

∫
1

h2n
b

(
yn − u

h2n

)
F(u)du −

(∫
1

h2n
K2

(
yn − u

h2n

)
F(u)du

)2

and b(x) = 2K2(x)
∫ x

−∞ K2(y)dy. Define s2 = F(yn)(1 − F(yn)), and write s2
n

(1−F(yn))
=

s2
n−s2

1−F(yn)
+ F(yn). Since, s2

n−s2

1−F(yn)
= o(h2n) and F(yn) → 1 as n → ∞, we have s2

n
1−F(yn)

→ 1. By

Liapounov’s CLT, I1n
d→ N (0, 1) provided that E(

∣∣Zin

∣∣3
) → 0 as n → ∞, where

Zin = 1√
n(1 − F(yn))

(
1

h2n

∫ yn

−∞
K2

(
y − Ui

h2n

)
dy − E

(
1

h2n

∫ yn

−∞
K2

(
y − Ui

h2n

)
dy

))
�

The condition is verified by noting that∣∣∣∣( 1
h2n

∫ yn

−∞
K2

(
y − Ui

h2n

)
dy − E

(
1

h2n

∫ yn

−∞
K2

(
y − Ui

h2n

)
dy

))∣∣∣∣ ≤ 2

since 1
h2n

∫ yn

−∞ K2

(
y−Ui
h2n

)
dy ≤ 1. Consequently, |Zin| ≤ 2√

n(1−F(yn))
and

E(|Zin|3) ≤ 2√
n(1 − F(yn))

s2
n

n(1 − F(yn))
→ 0 as n → ∞�

Integrating by parts, we have∣∣E (q1in) − F(yn)
∣∣

=
∣∣∣∣∣∣
∫

(−h2n)�K2(�)f(yn) +
m−1∑
j=1

(−h2n�)j+1

(j + 1)! f (j)(yn) + (−h2n�)m+1

(m + 1)! f (m)(y∗
n)d�

∣∣∣∣∣∣ ,

D
ow

nl
oa

de
d 

by
 [

W
es

t V
ir

gi
ni

a 
U

ni
ve

rs
ity

] 
at

 0
8:

08
 0

8 
Fe

br
ua

ry
 2

01
5 



944 C. MARTINS-FILHO ET AL.

where y∗
n = �(yn − h2n�) + (1 − �)yn for some � ∈ (0, 1). Since K2 is an mth-order kernel

and |f (m)(u)| < C, we have that
∣∣E (q1in) − F(yn)

∣∣ ≤ hm+1
2n

(m+1)!
∫ |�m+1K2(�)|d� = O(hm+1

2n ).

Hence, I2n = O
(

n√
N

hm+1
2n

)
= o(1) and

n√
N

(Q1n − F(yn))
d→ N (0, 1)� (22)

Equations (20), (21), and (22) show that n√
N
(F̃(yn) − F(yn))

d→ N (0, 1), and by
consequence, T1n = Op(1) which completes the proof.

Proof of Theorem 1. Let r̃N = �̃N
�N

= 1 + N t∗, k̃ = k0 + N �
∗ and note that(

1
2

N

�
�t LTN (t∗, �∗)

1
2

N

�
��

LTN (t∗, �∗)

)
= 1

N N

(∑Ns
j=1

�
�rN

log g(Z̃j ; r̃N�N , k̃)∑Ns
j=1

�
�k log g(Z̃j ; r̃N�N , k̃)

)
=

(
0
0

)
� (23)

For some �1, �2 ∈ [0, 1], let k∗ = �2k0 + (1 − �2)k̃, r∗
N = �1 + (1 − �1)r̃N ,

HN (r∗
N , k∗) = 1

N

Ns∑
j=1

(
�2

�r2
N

log g(Z̃j ; r∗
N�N , k∗) �2

�k�rN
log g(Z̃j ; r∗

N�N , k∗)
�2

�k�rN
log g(Z̃j ; r∗

N�N , k∗) �2

�k�k log g(Z̃j ; r∗
N�N , k∗)

)
and

vN (1, k0) = √
N

(
1
N

∑Ns
j=1

�
�rN

log g(Z̃j ; �N , k0)
1
N

∑Ns
j=1

�
�k log g(Z̃j ; �N , k0)

)
= √

N
(
N (̃I1N − I1N ) + N I1N

N (̃I4N − I4N ) + N I4N

)
,

where Ĩ1N , I1N , Ĩ4N , I4N are as defined in Lemma 1. By a Taylor’s expansion of the first
order condition in (23) around (1, k0), we have

HN (r∗
N , k∗)

√
N

(
r̃N − 1
k̃ − k0

)
= vN (1, k0)� (24)

We start by investigating the asymptotic properties of vN (1, k0). Let b1 = − 	(1+	)
2+	

, b2 =(
− 	2(1+	)

2+	
+ 	3

1+	

)
, and observe that from Lemma 2 and the fact that qn(an)

q(an)
− 1 = op(1) we

have that

vN (1, k0) =
(

b1

√
N q̃(an)−qn(an)

qn(an)
+ N

√
N I1N + op(1)

b2

√
N q̃(an)−qn(an)

qn(an)
+ N

√
N I4N + op(1)

)

=
⎛⎝b1

√
N

(
q̃(an)−q(an)

q(an)
− qn(an)−q(an)

q(an)

)
+ N

√
N I1N + op(1)

b2

√
N

(
q̃(an)−q(an)

q(an)
− qn(an)−q(an)

q(an)

)
+ N

√
N I4N + op(1)

⎞⎠ �

By Lemma 3 and the fact that Ns − N = Op(N 1/2)(√
NN I1N√
NN I4N

)
=

(
b1

√
N qn(an)−q(an)

q(an)
+ 1√

N

∑N
j=1

�
��

log g(Z′
j ; �N , k0)�N + op(1)

b2

√
N qn(an)−q(an)

q(an)
+ 1√

N

∑N
j=1

�
�k log g(Z′

j ; �N , k0) + op(1)

)
,
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 945

where Z′
j = Uj − q(an) for Uj > q(an). Hence, letting b� = E

(
�
��

log g(Z′
j ; �N , k0)�N

)
and

bk = E
(

�
�k log g(Z′

j ; �N , k0)
)
, we have

vN (1, k0)− √
N

(
b�

bk

)
=

⎛⎜⎜⎜⎝
b1

√
N q̃(an)−q(an)

q(an)
+ 1√

N

(∑N
j=1

�
��

log g(Z′
j ; �N , k0)�N − b�

)
+ op(1)

b2

√
N q̃(an)−q(an)

q(an)
+ 1√

N

(∑N
j=1

�
�k log g(Z′

j ; �N , k0) − bk

)
+ op(1)

⎞⎟⎟⎟⎠�

Note that we can write

1√
N

⎛⎝ N∑
j=1

�

��
log g(Z′

j ; �N , k0)�N − b�

⎞⎠ =
n∑

i=1

N −1/2

(
�

��
log g(Z′

j ; �N , k0)�N − b�

)
��Ui>q(an)�

=
n∑

i=1

Zi1,

and

1√
N

⎛⎝ N∑
j=1

�

�k
log g(Z′

j ; �N , k0)�N − bk

⎞⎠ =
n∑

i=1

N −1/2

(
�

�k
log g(Z′

j ; �N , k0)�N − bk

)
��Ui>q(an)�

=
n∑

i=1

Zi2�

Also, from Lemma 2 we have that
√

N q̃(an)−q(an)

q(an)
is distributed asymptotically

as
∑n

i=1(−k0)(n(1 − F(yn)))
−1/2(q1in − E(q1in)) + op(1) = ∑n

i=1 Zi3 + op(1) where q1in =
1

h2n

∫ yn

−∞ K2

(
y−Ui
h2n

)
dy and yn = q(an)(1 + N −1/2z) for arbitrary z. It can be easily verified

that E(Zi1) = E(Zi2) = E(Zi3) = 0. In addition,

V (Zi1) = N −1E
(

�

��N
log g(Z′

j ; �N , k0)�N − b�

)2

P(�Ui > q(an)�)

= n−1E
(

�

��N
log g(Z′

j ; �N , k0)�N − b�

)2

= n−1

(
1

1 − 2k0
+ o(1)

)
,

where the last equality follows from Smith (1987). Using similar arguments, we obtain

V (Zi2) = n−1

(
2	2

(1 + 	)(2 + 	)
+ o(1)

)
,

and from Lemma 2, we have that V (Zi3) = n−1k3
0F(yn) + o(h2n). We now define

the vector �n = ∑n
i=1(Zi1, Zi2, Zi3)

′ and for arbitrary 0 	= � ∈ �3 we consider �′�n =∑n
i=1(�1Zi1 + �2Zi2 + �3Zi3) = ∑n

i=1 Zin. From above, we have that E(Zin) = 0 and
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946 C. MARTINS-FILHO ET AL.

V (Zin) = ∑3
l=1 �

2
dE(Z2

id) + 2
∑

1≤d<d′≤3 �d�d′E(ZidZid′). First, we consider E(Zi1Zi2) which
can be written as

E(Zi1Zi2) = 1
n

T1n − N
n2

b�bk,

where T1n = E
(

�
��N

log g(Z′
j ; �N , k0)�N

�
�k log g(Z′

j ; �N , k0)
)

. Since b� = C�(q(an))

1+	−�
+

o(�(q(an))) and bk = − C	�(q(an))

(	−�)(1+	−�)
+ o(�(q(an))), we have that

E(Zi1Zi2) = 1
n

T1n − O
(
(N 1/2�(q(an)))

2

n2

)
= 1

n
T1n − n−2O(1)

since N 1/2�(q(an)) = O(1). Now, note that

E (T1n) = −bk − 1
k0

(
1
k0

− 1
)2

E

((
1 − k0Z′

i

�N

)−2 (
k0Z′

i

�N

)2
)

− 1

k2
0

(
1
k0

− 1
)

E

(
log

(
1 − k0Z′

i

�N

) (
1 − k0Z′

i

�N

)−1 (
k0Z′

i

�N

))
�

From Smith (1987), we have that E
((

1 − k0Z′
i

�N

)−2 (
k0Z′

i
�N

)2
)

= 2
(1+	)(2+	)

+ O(�(q(an))) and

bk = O(�(q(an))). From Lemma 4, we have that

E

(
log

(
1 − k0Z′

i

�N

) (
1 − k0Z′

i

�N

)−1 (
k0Z′

i

�N

))
= −1

	
+ 	

(1 + 	)2
+ O(�(q(an))),

which combined with the orders obtained for the other components of the expectation
and the fact that k0 = −	−1 give

E(Zi1Zi2) = − 1
n(k0 − 1)(2k0 − 1)

+ 1
n
�(q(an))O(1) − O(n−2)�

We now turn to E(Zi1Zi3) which can be written as

E(Zi1Zi3) = T2n − E
(

N −1/2

(
�

��N
log g(Z′

j ; �N , k0)�N

)
�Ui>q(an)

)
E(q1in)(n(1 − F(yn)))

−1/2,

where T2n = E
(

N −1/2
(

�
��N

log g(Z′
j ; �N , k0)�N

)
�Ui>q(an)(n(1 − F(yn)))

−1/2q1in

)
. We note

that

E
(

N −1/2

(
�

��N
log g(Z′

j ; �N , k0)�N

)
��Ui>q(an)�

)
=

√
N

n
b� =

√
N

n
O(�(q(an))),
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 947

from Lemma 2 E(q1in) = F(yn) + O(hm+1
2n ) = O(1) and since (n(1 − F(yn)))

−1/2 is
asymptotically equivalent to N −1/2, the second term in the covariance expression is of
order

√
N

n O(�(q(an)))O(1)N −1/2 = n−1O(�(q(an))). We now turn to T2n, the first term in
the covariance expression. Since (n(1 − F(yn)))

−1/2 is asymptotically equivalent to N −1/2,
we have by the Cauchy–Schwartz inequality

T2n = 1
n

E
(

�

��N
log g(Z′

j ; �N , k0)�N q1in

)
≤ 1

n

∣∣∣∣E (
�

��N
log g(Z′

j ; �N , k0)�N q1in

)∣∣∣∣
≤ 1

n

(
E

((
�

��N
log g(Z′

j ; �N , k0)�N

)2
)

E(q2
1n)

)1/2

= n−1o(1)�

Hence, E(Zi1Zi3) = o(n−1). In a similar manner we obtain E(Zi2Zi3) = o(n−1). Hence,
nV (Zin) = �′V1� + o(1), where

V1 =

⎛⎜⎜⎜⎜⎝
1

1 − 2k0
− 1

(k0 − 1)(2k0 − 1)
0

− 1
(k0 − 1)(2k0 − 1)

2
(k0 − 1)(2k0 − 1)

0 0 k2
0

⎞⎟⎟⎟⎟⎠ �

By Liapounov’s CLT
∑n

i=1 Zni
d→ N (0, �′V1�) provided that

∑n
i=1 E(|Zin|3) → 0. To verify

this condition, it suffices to show that

(i)
n∑

i=1

E(|Zi1|3) → 0; (ii)
n∑

i=1

E(|Zi2|3) → 0; (iii)
n∑

i=1

E(|Zi3|3) → 0�

(iii) was verified in Lemma 2, so we focus on (i) and (ii).
For (i), note that

∑n
i=1 E(|Z1i|3) ≤ 1√

N
E

(∣∣(1/k0 − 1)(1 − k0Z′
i/�N )

−1k0Z′
i/�N − 1

∣∣3
)

→
0 provided E(−(1 − k0Z′

i/�N )
−3(k0Z′

i/�N )
3) < C, which is easily verified by noting that

−(1 − k0Z′
i/�N )

−3(k0Z′
i/�N )

3 < −(1 − k0Z′
i/�N )

−3(1 − k0Z′
i/�N )

3 = 1�

Lastly,

n∑
i=1

E(|Z2i|3) ≤ 1√
N

E
(∣∣−(1/k2

0)log(1 − k0Z′
i/�N )

+ (1/k0)(1 − 1/k0)(1 − k0Z′
i/�N )

−1k0z′
i/�N

∣∣3
)

→ 0
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948 C. MARTINS-FILHO ET AL.

provided E(log(1 − k0Z′
i/�N )

3) < C give the bound we obtained in case (i). By FR2 and
integrating by parts we have

E
(
log(1 − k0Z′

i/�N )
3
) = −

∫ ∞

0
log(1 − k0z/�N )

3dFq(an)(z)

= −1 − F(q(an)(1 + z/q(an)))

1 − F(q(an))
(log(1 + z/q(an)))

3|∞0

+
∫ ∞

0

L(q(an)(1 + z/q(an)))

L(q(an))
(1 + z/q(an))

−	3(log(1 + z/q(an)))
2

× (1 + z/q(an))
−1(1/q(an))dz = T1n + T2n�

Three repeated applications of L’Hôpital’s rule and FR1’ gives T1n = 0. For T2n, we have
that given FR2 and again integrating by parts and letting t = 1 + z/q(an)

T2n =
∫ ∞

1
3(log(t))2t−	−1dt + �(q(an))

∫ ∞

1
3(log(t))2t−	−1 C

�
(t� − 1)dt + o(�(q(an)))�

It is easy to verify that
∫ ∞

1 3(log(t))2t−	−1dt = 6
	3 and, consequently, T2n = 6

	3 +
O(�(q(an))), which verifies (ii). By the Cramer–Wold theorem, we have that �n

d→
N (0, V1). Consequently, for any vector � ∈ �2, we have �′

(
vN (�N , k0) − √

N
(

b�
bk

)) d→
N (0, �′V2�) where

V2 =

⎛⎜⎜⎜⎝
k2

0 − 4k0 + 2
(2k0 − 1)2

− 1
k0(k0 − 1)

− 1
k0(k0 − 1)

2k3
0 − 2k2

0 + 2k0 − 1

k2
0(k0 − 1)2(2k0 − 1)

⎞⎟⎟⎟⎠ �

Again, by the Cramer–Wold theorem
(

vN (�N , k0) − √
N

(
b�
bk

)) d→ N (0, V2). Hence, given

Eq. (24), provided that HN (�
∗
N , k∗)

p→ H , we have

√
N

(
r̃N − 1
k̃ − k0

)
− H−1

√
N

(
b�

bk

)
= H−1

(
vN (�N , k0) − √

N
(

b�

bk

))
d→ N

(
0, H−1V2H−1

)
�

To see that HN (�
∗
N , k∗)

p→ H , first observe that whenever (t, �) ∈ ST , we have (r̃N , k̃) ∈ SR

and, consequently, (r∗
N , k∗) ∈ SR. In addition, from Lemma 1 and the results from Smith

(1987), we have HN (rN , k)
p→ −H uniformly on SR. By Theorem 21.6 in Davidson (1994),

we conclude that HN (�
∗
N , k∗)

p→ H .

Lemma 3. Let an = 1 − N
n , and for j = 1, � � � , N define Zj = Uj − qn(an) whenever

Uj > qn(an), and for j = 1, � � � , N1 define Z′
j = Uj − q(an) whenever Uj > q(an).

If �� = 1
N

∑N
j=1

�
��

log g(Zj ; �N , k0)�N − 1
N

∑N1
j=1

�
��

log g(Z′
j ; �N , k0)�N and �k =
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 949

1
N

∑N
j=1

�
�k log g(Zj ; �N , k0) − 1

N

∑N1
j=1

�
�k log g(Z′

j ; �N , k0), then N 1/2�� = b1

√
N qn(an)−q(an)

q(an)
+

op(1) and N 1/2�k = b2

√
N qn(an)−q(an)

q(an)
+ op(1), where b1 = − 	(1+	)

2+	
, b2 =

(
− 	2(1+	)

2+	
+ 	3

1+	

)
.

Proof. We first consider the case where N = N1. Then

�� = 1
N

N∑
j=1

(
�

��
log g(Zj ; �N , k0)�N − �

��
log g(Z′

j ; �N , k0)�N

)

= 1
N

N∑
j=1

(
1
k0

− 1
) ((

1 − k0Zj

�N

)−1 k0Zj

�N
−

(
1 − k0Z′

j

�N

)−1 k0Z′
j

�N

)
�

By the mean value theorem, there exists �j ∈ (0, 1) and Z∗
j = Z′

j + �j(q(an) − qn(an)) such
that

�� = qn(an) − q(an)

q(an)

(
1
k0

− 1
)

1
N

N∑
j=1

(
1 − k0

�N
Z∗

j

)−2

� (25)

Again, using the mean value theorem, we have that for some �j ∈ (0, 1) there is Z∗∗
j =

�jZ′
j + (1 − �j)Z∗

j = Z′
j + �j(1 − �j)(q(an) − qn(an)) such that

1
N

N∑
j=1

(
1 − k0

�N
Z∗

j

)−2

− 1
N

N∑
j=1

(
1 − k0

�N
Z′

j

)−2

= 1
N

N∑
j=1

2k0/�N(
1 − k0

�N
Z∗∗

j

)3 (Z
∗
j − Z′

j)

= −�
q(an) − qn(an)

q(an)

2q(an)

qn(an)

1
N

N∑
j=1

(
1 − k0

�N
Z∗∗

j

)−3

= Op(N −1/2)(1 + op(1))
1
N

N∑
j=1

(
1 − k0

�N
Z∗∗

j

)−3

,

where the last equality follows from the fact that q(an)

qn(an)
= 1 + op(1) and Lemma 2. In

addition,

1
N

N∑
j=1

(
1 − k0

�N
Z∗∗

j

)−3

= 1
N

N∑
j=1

(
1 − k0

�N
Z′

j + (� − �2)(q(an) − qn(an))

)−3

= 1
N

N∑
j=1

(
1 − k0

�N
Z′

j + op(1)
)−3

= Op(1),
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950 C. MARTINS-FILHO ET AL.

using the same arguments as in the proof of Lemma 1. Hence,

1
N

N∑
j=1

(
1 − k0

�N
Z∗

j

)−2

= Op(N −1/2) + 1
N

N∑
j=1

(
1 − k0

�N
Z′

j

)−2

= 	

2 + 	
− 2C�(q(an))

(2 + 	)(2 + 	 − �)
+ o(�(q(an))) + Op(N −1/2),

where the last equality follows from Smith (1987). Consequently, since �(q(an)) =
O(N −1/2) and substituting back in Eq. (25) we have that N 1/2�� = b1N 1/2 qn(an)−q(an)

q(an)
+

op(1).
We now turn to the case where N1 > N . In this case, we can write

N 1/2�� = N 1/2 1
N

N∑
j=1

(
�

��
log g(Zj ; �N , k0)�N − �

��
log g(Z′

j ; �N , k0)�N

)

+ N 1/2 1
N

N1−N∑
j=1

�

��
log g(Z′

j ; �N , k0)�N �

The first term is b1N 1/2 qn(an)−q(an)

q(an)
+ op(1) as in the case where N = N1. As in Smith

(1987), we have that the expectation of the second term is N1−N√
N

(
C�(q(an))

1+	−�
+ o(�(q(an)))

)
which is op(1) since �(q(an)) = O(N −1/2) and N1−N√

N
= Op(1). In addition its variance is

N1−N
N O(1) = op(1). Hence, the last term is op(1), and we can write for the case where

N1 > N that N 1/2�� = b1N 1/2 qn(an)−q(an)

q(an)
+ op(1). Similar arguments give us the same order

for N 1/2�� when N > N1. The case for N 1/2�k follows, mutatis mutandis, using exactly the
same arguments.

Lemma 4. E
(

log
(

1 − k0Z′
i

�N

) (
1 − k0Z′

i
�N

)−1 (
k0Z′

i
�N

))
= − 1

	
+ 	

(1+	)2 + O(�(q(an))).

Proof. We first observe that from the results in Smith (1987)

E

(
log

(
1 − k0Z′

i

�N

) (
1 − k0Z′

i

�N

)−1 (
k0Z′

i

�N

))
= −	−1 + O(�(q(an)))

+ E

(
log

(
1 − k0Z′

i

�N

) (
1 − k0Z′

i

�N

)−1
)
�

Using the notation for L(·) in FR2 and given that Fq(an)(z)= 1 − L
((

1 + z
q(an)

)
q(an)

)
L(q(an))

(
1 + z

q(an)

)−	

,

we can write E
(

log
(

1 − k0Z′
i

�N

) (
1 − k0Z′

i
�N

)−1
)

= ∫ ∞
0 log

(
1 − k0z

�N

) (
1 − k0z

�N

)−1
dFq(an)(z).
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 951

Integrating by parts, we have

E

(
log

(
1 − k0Z′

i

�N

) (
1 − k0Z′

i

�N

)−1
)

=
∫ ∞

0

L ((1 + z/q(an)) q(an))

L(q(an))
(1 + z/q(an))

−	

×
(

1
q(an)

(1 + z/q(an))
−2

− 1
q(an)

log (1 + z/q(an)) (1 + z/q(an))
−2

)
dz�

Setting t = 1 + z/q(an), we have that

E

(
log

(
1 − k0Z′

i

�N

) (
1 − k0Z′

i

�N

)−1
)

=
∫ ∞

1

L(tq(an))

L(q(an))
(t−	−2 − log(t)t−	−2)dt,

and by FR2

E

(
log

(
1 − k0Z′

i

�N

) (
1 − k0Z′

i

�N

)−1
)

=
∫ ∞

1
(t−	−2 − log(t)t−	−2)dt

+ C�(q(an))

∫ ∞

1
(t−	−2 − log(t)t−	−2)

∫ t

1
u�−1dudt + o(�(q(an)))

= 1
	 + 1

− 1
(1 + 	)2

+ O(�(q(an))),

which combines with the order of the first equation in the proof to give the desired result.

Proof of Theorem 2. Let a ∈ (0, 1) and an = 1 − N
n < a. We are interested in estimating

q(a) which we write as q(a) = q(an) + yN ,a. Estimating q(an) by q̃(an) and based on the

GPD approximation, we define an estimator ŷN ,a for yN ,a as ŷN ,a = �̃N

k̃

(
1 − (

n(1−a)
N

)k̃
)

.

Note that, as defined, ŷN ,a satisfies

1 − F̃(q̃(an) + ŷN ,a) = N
n

(
1 − k̃ŷN ,a

�̃N

)1/k̃

� (26)

Let us pause and note that for a chosen N , Eq. (26) is satisfied with a distribution function
Ḟ that is not necessarily F̃ . However, given the continuity of F̃ , there exists N satisfying
the order relation a > 1 − N/n for which (26) is satisfied by F̃ . Hence, to avoid additional
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952 C. MARTINS-FILHO ET AL.

notation, we proceed with F̃ . We define the estimator for q(a) as q̂(a) = q̃(an) + ŷN ,a. For
�n = q(a)(n(1 − a))−1/2, arbitrary 0 < z and Vn = −k0

√
n/(1 − a)1/2, we note that

P(�−1
n (q̂(a) − q(a)) ≤ z) = P(1 − a ≥ 1 − F̃(q(an) + yN ,a + �nz)

= P(Vn((1 − a) − (1 − F(q(a) + �nz))

≥ Vn((1 − F̃(q(an) + yN ,a + �nz))

− (1 − F(q(a) + �nz)))�

In addition, from the proof of Lemma 2, we have that limn→∞Vn((1 − a) − (1 − F(q(a) +
�nz) = z. Now, let Wn = Vn((1 − F̃(q(an) + yN ,a + �nz)) − (1 − F(q(a) + �nz)) and note
that n(1−F(q(a)))

Vn(1−F(q(a)+�nz)Wn = √
n(1 − F(q(a)))

(
1−F̃(q(a)+�nz)
1−F(q(a)+�nz) − 1

)
= − 1

k0
Wn(1 + o(1)). We first

establish that

√
n(1 − F(q(a)))

(
1 − F̃(q(a) + �nz)
1 − F(q(a) + �nz)

− 1
)

is asymptotically normally distributed. Without loss of generality, consider yN =
q(an)(ZN − 1) for 0 < ZN → za < ∞. Note that if ZN = za, then yN ,a =yN =q(an)(za − 1).
Then, q(a) + �nz = q(an)za(1 + z((1 − a)n)−1/2) = q(an)ZN . By FR2

(q(an)ZN )
	

q(an)	
1 − F(q(an)ZN )

1 − F(q(an))
= Z−1/k0

N

1 − F(q(an)ZN )

1 − F(q(an))
since 	 = −1/k0

= 1 + k(ZN )�(q(an)) + o(�(q(an))),

where 0 < �(q(an)) → 0 as q(an) → ∞, k(ZN ) = C(Z�
N −1)
�

. Since we assume that
N 1/2C�(q(an))

	−�
→ �, we have that as ZN → za, k(ZN )�(q(an)) − k(za)N −1/2 �(	−�)

C → 0 and,
consequently,

Z−1/k0
N

1 − F(q(an)ZN )

1 − F(q(an))
= 1 + k(za)N −1/2 �(	 − �)

C
+ o(N −1/2)� (27)

We observe that for the function h(�, k, y) = − 1
k log

(
1 − ky

�

)
we can write

1 − F̃(q̃(an) + yN )

1 − F̃(q̃(an))
= exp(−h(�̃N , k̃, yN )),

and using the notation in Theorem 1 and the mean value theorem gives

h(�̃N , k̃, yN ) − h(�N , k0, yN ) = (
�N

�
��

h(�∗
N , k∗, yN )

�
�k h(�∗

N , k∗, yN )
) (

r̃N − 1
k̃ − k0

)
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for �∗
N = �1�̃N + (1 − �1)�N and k∗

N = �2k̃N + (1 − �2)k0 and �1, �2 ∈ [0, 1]. It follows from
�N = −k0q(an) = − k0yN

ZN −1 that yN = (1−ZN )�N
k0

and from Theorem 1 we have

�N
�

��
h(�∗

N , k∗, yN )
p→ −k−1

0 (z−1
a − 1) and

�

�k
h(�∗

N , k∗, yN )
p→ k−2

0 log(za) + k−2
0 (z−1

a − 1)�

Hence, if c′
b = ( −k−1

0 (z−1
a −1) k−2

0 log(za)+k−2
0 (z−1

a −1) ) and �′
p = (

�(1−k0)(1+2k�)
1−k0+k0�

�(1−k0)k0(1+�)
1−k0+k0�

)
, we can write

c′
b

√
N

(
r̃N − 1
k̃ − k0

)
d→ N (c′

b�p, c′
bH−1V2H−1) and

√
N (h(�̃N , k̃, yN ) − h(�N , k0, yN )) = Op(1)�

(28)

Now, we can conveniently write 1−F̃(q(an)+yN )

1−F(q(an)−yN )
= 1−F̃(q(an)+yN )

1−F̃(q̃(an))

1−F(q(an))

1−F(q(an)+yN )
Z1/k0

N Z−1/k0
N . Note that

1−F̃(q(an)+yN )

1−F̃(q̃(an))
=

(
1 − k̃yN

�̃N

)1/k̃ (
1−F̃(q(an))

1−F̃(q̃(an))

)
and Z−1/k0

N =
(

1 − k0yN
�N

)−1/k0 = exp(h(�N , k0, yN )).

Furthermore, from Eq. (27), Z1/k0
N

1−F(q(an))

(1−F(q(an)ZN ))
− 1 = N −1/2

(−k(za)
�(	−�)

C

) + o(N −1/2).
Hence,

1 − F̃(q(an) + yN )

1 − F(q(an) + yN )

= Z1/k0
N

1 − F(q(an))

(1 − F(q(an)ZN ))

1 − F̃(q(an))

(1 − F̃(q̃(an)))
exp(−h(�̃N , k̃, yN ) + h(�N , k0, yN ))�

Now, we note that 1−F̃(q(an))

1−F̃(q̃(an))
− 1 = − F̃(q(an))−F(q(an))

1−F(q(an))
, and from Eq. (15) in Lemma 2, we

have
√

n(1−F(q(an))

1−F(q(an))
(1 − F̃(q(an)) − (1 − F(q(an)))

d→ N (0, 1) as q(an) → ∞. In particular,
using the notation adopted in Lemma 2, we have that√

n(1 − F(q(an))

1 − F(q(an))
(1 − F̃(q(an)) − (1 − F(q(an)))

= −
n∑

i=1

√
n(1 − F(q(an))(q1in − E(q1in)) + op(1)

=
n∑

i=1

Zi4 + op(1)�

Hence,

1 − F̃(q(an) + yN )

1 − F(q(an) + yN )
− 1 = Z1/k0

N

1 − F(q(an))

(1 − F(q(an)ZN ))

1 − F̃(q(an))

(1 − F̃(q̃(an)))
exp(−h(�̃N , k̃, yN )

+ h(�N , k0, yN )) − 1,
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and by Eq. (28) and the mean value theorem, we have

exp(−h(�̃N , k̃, yN ) + h(�N , k0, yN )) = 1 − (h(�̃N , k̃, yN ) − h(�N , k0, yN )) + op(N −1/2)�

Therefore, we write

√
N

(
1 − F̃(q(an) + yN )

1 − F(q(an) + yN )
− 1

)
= √

N
(

Z1/k0
N

1 − F(q(an))

(1 − F(q(an)ZN ))
− 1

)
+ √

N
(

1 − F̃(q(an))

(1 − F̃(q̃(an)))
− 1

)
− √

N (h(�̃N , k̃, yN ) − h(�N , k0, yN )) + op(1)�

Since
√

N
(

Z1/k0
N

1−F(q(an))

(1−F(q(an)ZN ))
− 1

)
→ − k(za)�(	−�)

C , we focus on the joint distribution of the
last two terms. By Eq. (28), we have that

√
N (h(�̃N , k̃, yN ) − h(�N , k0, yN )) = c′

b

√
N

(
r̃N − 1
k̃ − k0

)
+ op(1), (29)

and by Theorem 1 (adopting its notation), we have

√
N

(
r̃N − 1
k̃ − k0

)
− √

N
(

b�

bk

)
= (H−1 + op(1))

(
vN (1, k0) − √

N
(

b�

bk

))
,

where the last vector in this equality depends on
√

N q̃(an)−q(an)

q(an)
which is

asymptotically distributed as
∑n

i=1 Zi3 + op(1),
∑n

i=1 Zi2, and
∑n

i=1 Zi1. Hence, we define√
N

(
1−F̃(q(an))

(1−F̃(q̃(an)))
− 1

)
= ∑n

i=1 Zi4. Let 0 	= d ∈ �4, �′
n = (

∑n
i=1 Zi1

∑n
i=1 Zi2

∑n
i=1 Zi3

∑n
i=1 Zi4 ), and

consider d′�n = ∑n
i=1

∑4
=1 Zid = ∑n

i=1 Zni. Note that Zni forms an independent and
identically distributed (iid) sequence with E(Zni) = 0 and the asymptotic behavior of∑n

i=1 Zi1,
∑n

i=1 Zi2 and
∑n

i=1 Zi3 was studied in Theorem 1. In addition the asymptotic
behavior of

∑n
i=1 Zi4 was studied in Lemma 2. Recall that E(Z2

i4) = n−1(F(yn) + o(h2n))

and from Theorem 1 E(Zi1Zi4) = o(n−1) and E(Zi2Zi4) = o(n−1). Here we examine

E(Zi3Zi4) = − k0

n((1 − F(yn))(1 − F(q(an))))1/2
E

(
q1in

1
h2n

∫ q(an)

−∞
K2

(
y − Ui

h2n

)
dy

)
− E(q1in)E

(
1

h2n

∫ q(an)

−∞
K2

(
y − Ui

h2n

)
dy

)
�

By Lemma 2, E(q1in) − F(yn) = O(hm+1
2n ), and similarly, we have

E
(

1
h2n

∫ q(an)

−∞ K2

(
y−Ui
h2n

)
dy

)
− F(q(an)) = O(hm+1

2n ). Since in Lemma 2, we have yn = q(an) +
�nz, then for �i(x) = h−1

2n

∫ x
−∞ K2

(
y−Ui
h2n

)
dy, we can write E

(
q1in

1
h2n

∫ q(an)

−∞ K2

(
y−Ui
h2n

)
dy

)
=

E(�i(q(an) + �nz)�i(q(an)))(��q(an)=yn� + ��q(an)	=yn�). For z > 0, we have that q(an) 	= yn
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HIGH-ORDER CONDITIONAL QUANTILE ESTIMATION 955

implies yn > q(an) so that

E(�i(q(an) + �nz)�i(q(an))��q(an)<yn�) ≤ C��q(an)<yn� = C (F(q(an) + �nz) − F(q(an))) �

By FR2, limn→∞ F(q(an)+�nz)−F(q(an))

1−F(q(an))
= 0, and hence

(1 − F(q(an)))
−1E(�i(q(an) + �nz)�i(q(an))��q(an)=yn�) = o(1)

and E
(

q1in
1

h2n

∫ q(an)

−∞ K2

(
y−Ui
h2n

)
dy

)
= E

(
�2

i (q(an))
) + o(1 − F(q(an))). Consequently,

E(Zi3Zi4) = − k0

n((1 − F(yn))(1 − F(q(an))))1/2
(E

(
�2

i (q(an))
)

+ o(F(q(an)))) − F 2(q(an)) + O(hm+1
2n )

= −k0

n
(F(q(an)) + o(1))

and V (Zin) = 1
n d′V3d + o(n−1) where V3 =

⎛⎝ 1
1−2k0

− 1
(k0−1)(2k0−1) 0 0

− 1
(k0−1)(2k0−1)

2
(k0−1)(2k0−1) 0 0

0 0 k2
0 −k0

0 0 −k0 1

⎞⎠. From the

verification of Liapounov’s condition in Theorem 1, we have that d′�n
d→ N (0, d′V3d) and

from the Cramer–Wold theorem �n
d→ N (0, V3). Now, from Eq. (29)

√
N (h(�̃N , k̃, yN ) − h(�N , k0, yN )) = c′

bH−1

(
vN (1, k0) − √

N
(

b�

bk

))
+ c′

bH−1
√

N
(

b�

bk

)
�

Hence by letting A�j represent the jth column of a matrix A, we write

√
N

(
1 − F̃(q(an) + yN )

1 − F(q(an) + yN )
− 1

)
= −k(za)�(	 − �)

C
−

(
c′

bH−1
�1

n∑
i=1

Zi1 + c′
bH−1

�2

n∑
i=1

Zi2

+ (
c′

bH−1
�1 b1 + c′

bH−1
�2 b2

) n∑
i=1

Zi3

+ c′
bH−1

√
N

(
b�

bk

))
+

n∑
i=1

Zi4 + op(1)

= −k(za)�(	 − �)

C
− c′

bH−1
√

N
(

b�

bk

)
+ (−c′

bH−1
�1 −c′

bH−1
�2 −c′

bH−1
�1 b1 − c′

bH−1
�2 b2 1

)
�n + op(1)�

Let �′ = ( −c′
bH−1

�1 −c′
bH−1

�2 −c′
bH−1

�1 b1−c′
bH−1

�2 b2 1 ). Then from the results above, we have �′�n
d→

N (0, �′V3�), where simple algebraic manipulations give �′V3� = c′
bH−1V2H−1cb +
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2c′
b

( 2−k0
1−k0

) + 1. Consequently, if  ∼ N
(− k(za)�(	−�)

C , c′
bH−1V2H−1cb + 2c′

b

( 2−k0
1−k0

) + 1
)
, then

√
N

(
1 − F̃(q(an) + yN )

1 − F(q(an) + yN )
− 1 −

(
−c′

bH−1

(
b�

bk

)))
d→  ,

and for yN = q(an)(ZN − 1) with ZN → za, we immediately have

√
N

(
1 − F̃(q(a) + �nz)
1 − F(q(a) + �nz)

− 1 −
(

−c′
bH−1

(
b�

bk

)))
d→  �

Lastly, since −Wn/k0 + o(1) = √
n(1 − F(q(a)))

(
1−F̃(q(a)+�nz)
1−F(q(a)+�nz) − 1

)
and if

√
n(1 − F(q(a))) = √

n(1 − a) ∝ N 1/2,

that is, n(1 − a) → ∞ at the same rate as N , then

Wn
d→ N

(
(−k0)

(
−k(za)�(	 − �)

C
− c′

bH−1 lim
n→∞

√
N

(
b�

bk

))
,

k2
0

(
c′

bH−1V2H−1cb + 2c′
b

(
2 − k0

1 − k0

)
+ 1

) )
,

which immediately gives,
√

n(1 − a)
(

q̂(a)
q(a) − 1

)
d→  1, where

 1 ∼ N
(
(−k0)

(
−k(za)�(	 − �)

C
− c′

bH−1 lim
n→∞

√
N

(
b�

bk

))
,

k2
0

(
c′

bH−1V2H−1cb + 2c′
b

(
2 − k0

1 − k0

)
+ 1

) )
�
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