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1 Introduction

There exists a vast literature on the estimation of production, cost and profit frontiers. Simar and

Wilson (2008) provide a comprehensive review of the main statistical models and estimators that have

been developed in the last four decades of research.

Recently a large number of articles (see, inter alia, Gijbels et al. (1999), Cazals et al. (2002), Aragon

et al. (2005), Daouia and Simar (2007), Martins-Filho and Yao (2007, 2008) and Daouia et al. (2009))

have appeared in an attempt to improve and refine the estimation of deterministic frontiers models.

Interestingly, theoretical developments and improvements for stochastic frontier models, pioneered by

Aigner et al. (1977) and Meeusen and van den Broeck (1977), have not appeared with similar vigor. This

is in spite of the great success these stochastic frontier models have had among empirical researchers.

Greene (1993), Coelli (1995) and Kumbhakar and Lovell (2000) provide extensive reviews of applications

and empirical uses of these models. Perhaps, one of the great disadvantages of stochastic frontier models

has been their reliance on very tight parametric specifications for both the frontier to be estimated and

the conditional density of the regressand of interest (output, cost or profit). Take, for example, the

original stochastic production frontier model proposed by Aigner et al. They assume that an observed

output-input pair (yi, xi) ∈ < × <D for i = 1, · · · , n is the realization of independent and identically

distributed process with density f(y, x). The process is such that

yi = g(xi) + εi

where g(xi) = x′iβ, εi = vi − ui where ui and vi are independent unobserved random variables such

that vi ∼ N(0, σ2
v), ui ∼ |N(0, σ2

u)| and xi is independent of εi. Their formulation leads to a conditional

density function of yi given xi, denoted by fy|x(y), which takes the structure

fy|x(y; θ, x′β) ≡ fε(y − x′β; θ) =
2√

σ2
u + σ2

v

φ

(
y − x′β√
σ2
u + σ2

v

)(
1− Φ

( √
σ2
u/σ

2
v√

σ2
u + σ2

v

(y − x′β)

))
(1)

where θ = (σ2
u, σ

2
v)′ ∈ Θ ⊂ (0,∞) × (0,∞), φ(x) = 1√

2π
exp

(
− 1

2x
2
)
, Φ(x) =

∫ x
−∞ φ(z)dz, the frontier is

given by g(x) = x′β and fε(ε; θ) denotes that density of εi. Although there have been variations on this

model, e.g. Greene (1990), the specification of stochastic frontiers has largely relied on a full parametric

specification of the conditional density fy|x, and as one would expect, estimation of the parameters has

been conducted by maximizing the induced likelihood function.
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Recently, a number of papers have attempted to provide much needed flexibility to the basic stochastic

frontier model. Fan et al. (1996) retain much of the structure adopted by Aigner et al. However, they

allow the frontier to belong to a much broader class of functions. Instead of the parametric x′β, their

frontier is a smooth nonparametric function g(x) : <D → <. Since in their model E(y|x) = g(x)−
√

2
πσ

2
u

they propose a two step likelihood type estimator for θ (section 2 of this paper provides a complete

description of the estimation procedure) based on a kernel (Nadaraya-Watson) estimator for E(y|x).

Although promising and intuitive in its construction, the authors did not investigate the asymptotic

properties of their proposed estimator. A brief simulation provided in the paper provides what seems to

be desirable experimental properties, but the results are in their totality rather incomplete.

Kumbhakar et al. (2007) take a different approach. Instead of the semiparametric model proposed by

Fan et al. they consider a localized version of Aigner et al. where all “parameters” (g(x), σ2
u(x), σ2

v(x)) of

the likelihood function depend on x. In this context, they adopt the local likelihood estimation approach

pioneered by Staniswalis (1989) and also explored by Fan et al. (1995). Although their approach is

quite general, allowing for example for conditional heterocedasticity, there are two undesirable features

of this fully localized model that can potentially be avoided in a semiparametric specification. First,

since all “parameters” are local, the rate of convergence of their proposed estimator is rather slow when

the number of conditioning variables (inputs, in the case of a production function) is large. This is the

well known curse of dimensionality that afflicts multidimensional kernel based nonparametric estimation.

Since it is quite common in frontier models to have a large number of conditioning variables relative to

the sample size, the accuracy of the asymptotic approximations can be rather poor. For example, in the

empirical exercise conducted by Kumbhakar et al., a sample of 500 banks is used with 9 conditioning

variables, calling into question the accuracy of the asymptotic approximation and the reliability of the

resulting efficiency rankings. Second, since all parameters of the model depend on x, both expected

population efficiency and firm (production plan) specific efficiencies, however calculated, depend on x.

As a result, for any specific sample, uncountably many expected population efficiencies and efficiency

firm rankings can be produced, a rather unsatisfying byproduct for the empirical user.

More recently, Kuosmanen and Kortelainen (2011) propose a two step estimator that combines a

constrained (convex) nonparametric least squares procedure for the estimation of a nonparametric frontier
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g(xi) with a method of moments or pseudo maximum likelihood estimator for θ and Simar and Zeleynuk

(2011) consider a stochastic DEA/FDH estimator that expands on Simar (2007) and Kumbhakar et al.

(2007). However, neither of these papers provide the asymptotic properties of their proposed estimators.

In this paper we contribute to the stochastic frontier literature in two ways. First, as in Fan et al.

(1996), we consider a semiparametric model. We let the frontier be fully nonparametric (g(x)), but we

consider conditional densities that allow for a parametric expression of the expected value of inefficiency.

A special case of this structure is the model adopted in Fan et al. We study the estimation procedure

proposed by Fan et al. in this broader class of models and show that their proposed estimator for the

parameters of the model is consistent. Furthermore, we show that the two stage estimator they propose for

θ is asymptotically normally distributed with parametric convergence rate
√
n. However, their proposed

estimation procedure produces a bias that does not decay to zero when normalized by
√
n under optimal

smoothing for the estimator for g(x). In addition, we show that the variance matrix associated with the

asymptotic distribution is not the inverse of the Fisher information. These results, although new, are not

unexpected in light of the work by Stein (1954), Severini (2000) and Severini and Wong (1992).

The second contribution we make in this paper, as it relates to the estimation of stochastic frontiers,

is to define an alternative frontier estimation procedure that is inspired on the procedure described in

Severini and Wong (1992). We show that our proposed estimator for θ is consistent and
√
n asymp-

totically normal. Furthermore, contrary to the procedure proposed by Fan et al., our estimator carries

no asymptotic bias and is efficient in a class of semiparametric estimators defined in Severini and Wong

(1992).1 Although our approach still relies on a partially parametric model, the efficient estimators we

produce are free from the slow convergence rates described above and no parametric structure is imposed

on the frontier. From a more technical perspective, the main result in this paper is the fact that under

fairly mild conditions local linear regression estimation can be used to estimate least favorable curves

in conditionally parametric models. This extension of Severini and Wong (1992) is not obvious and is

embedded in the proof of our Lemma 2.

Besides this introduction, the paper has five more sections. Section 2 provides a description of our

model and the estimators we study. Section 3 gives the derived asymptotic properties of the estimators
1See also van der Vaart (1999).
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under study and lists a collection of assumptions that are sufficient for the results. A discussion of these

assumptions is also provided. In section 4, a small Monte Carlo study is provided to shed some light on

the finite sample properties of the estimators. The study seems to confirm the results suggested by the

asymptotic theory. Section 5 gives an empirical application using an extensively used data set provided

by Greene (1990). Lastly, section 6 provides a summary and some concluding remarks. All proofs, tables

and graphs are relegated to appendices.

2 A semiparametric stochastic frontier

Let
{(

yi
xi

)}
i=1,2,···

be a collection of independent and identically distributed (i.i.d.) random vectors

taking values in <D+1 with yi ∈ < and xi ∈ <D. In the case of production frontiers we take yi to be a

measure of output and xi to be an input vector, but other frontiers (profit, cost) can also be considered

provided that yi is taken to be a scalar.2 We assume that the density function of
(
yi
xi

)
exists and

is denoted by f(y, x) when evaluated at
(
y
x

)
. We denote the marginal density of xi by fx(x) when

evaluated at x. For all x ∈ <D such that fx(x) 6= 0 we denote the conditional density function of yi given

xi by fy|x(y). Throughout, we assume that fy|x(y) belongs to a family of densities which is known up

to a parameter θ ∈ Θ ⊂ <P , P a positive integer, and a function g(x) : <D → < belonging to a class G.

The true values of θ and g(x) will be denoted by θ0 and g0(x), and our main objective is to estimate θ0

and g0(x) based on a sample χn =
{(

yi
xi

)}n
i=1

. We follow Severini and Wong (1992) and assume that

f(y, x) = fy|x(y; θ, g(x))fx(x), i.e., the parameter θ and the function g(x) enter f only through fy|x. This

type of semiparametric structure has been called conditionally parametric models, since conditional on a

particular value x the conditional density is parametrized by a finite number of parameters. In addition,

as a direct link to the stochastic frontier framework, we restrict the class of conditional densities to

those that satisfy E(y|x) ≡ m(x; θ, g) = g(x) − γ(θ) where γ(θ) : Θ → < and V (y|x) = v(θ) where

v(θ) : Θ → (0,∞). Again, for the case of production frontiers, g(x) is interpreted as the systematic

portion of the frontier and γ(θ0) denotes the expected reduction in expected output due to inefficiencies.

It is easy to verify that the conditional density associated with the stochastic frontier model considered
2It should be noted that the case of multiple outputs can be accommodated in our framework by adopting the polar

coordinate representation of

„
yi

xi

«
given in Simar and Zelenyuk (2011). See their equations (2.5) and (2.6).
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by Aigner et al. (1977) and Fan et al. (1996) is a special case of this structure. Since in their case fy|x is

given by equation (1), then E(y|x) = g(x)− γ(θ) where γ(θ) =
√

2
πσ

2
u and V (y|x) = v(θ) = π−2

π σ2
u + σ2

v .

Given this stochastic structure we consider maximum likelihood (ML) type estimators of θ0 and g0(x)

based on the following log-likelihood function

l̄n(θ, g) =
1
n

n∑
i=1

logfy|x(yi; θ, g(xi)) =
1
n

n∑
i=1

logfε(yi −m(xi; θ, g)− γ(θ); θ). (2)

We investigate two alternative ML procedures. The first, motivated by Fan et al. (1996), is based on

the fact that if g0 were known, a parametric ML estimator for θ0 could be obtained in a routine manner

by maximizing l̄n(θ, g0) = 1
n

∑n
i=1 logfε(yi −m(xi; θ, g0)− γ(θ); θ) over the set Θ. Since g0 is unknown,

l̄n(θ, g0) can be approximated by l̄n(θ, m̂+ γ(θ)) = 1
n

∑n
i=1 logfε(yi − m̂(xi)− γ(θ); θ) where m̂(xi) is an

estimator for m(xi; θ, g0). Then, we define the estimator

θ̂ ≡ argmax
θ

l̄n(θ, m̂+ γ(θ)). (3)

The second, motivated by Severini and Wong (1992), involves “joint” estimation of θ0 and g0(x). To this

end define,

¯̀
n(θ, gx) =

1
n

n∑
i=1

logfε(yi − gx(xi); θ)
1
hn
K

(
xi − x
hn

)
(4)

where gx(xi) = α(x) + β(x)(xi − x), K is a kernel function and hn is a bandwidth. The estimation

procedure involves two-steps. First, for fixed x and θ define α̂θ(x) and β̂θ(x) as

(α̂θ(x), β̂θ(x)) ≡ argmax
α(x),β(x)

¯̀
n(θ, gx). (5)

Second, we define

θ̃ ≡ argmax
θ

l̄n(θ, α̂θ) = argmax
θ

1
n

n∑
i=1

logfε(yi − α̂θ(xi); θ). (6)

The estimator for g0(x) is then given by g̃(x) ≡ α̂θ̃(x). In equations (4), (5) and (6) as well as in the rest

of the paper we assume for simplicity that D = 1. The asymptotic results we obtain for θ̂ and θ̃ are not

impacted by D provided that the speed at which hn → 0 is suitably adjusted.

From a computational perspective, the estimators are fairly easy to implement. In our Monte Carlo

study we provide a discussion of bandwidth selection and the description of an algorithm for obtaining θ̃

using D > 1. In the next section we study some of the asymptotic properties for θ̂ and θ̃.
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3 Asymptotic theory

3.1 The estimator θ̂

We start by listing assumptions that will be used throughout the paper.

Assumption A1. 1. θ0 ∈ int(Θ), where int(Θ) denotes the interior of the compact set Θ ⊂ <P ; 2.

The class G, to which g0 belongs, is given by G = {g(x) : G → H} where G a compact subset of <D,

H a compact subset of <, g(x) ∈ int(H) for all x in G and g(x) is twice continuously differentiable; 3.

E(y|x) ≡ m(x; θ0, g0) = g0(x) − γ(θ0) where γ(θ) : Θ → < which is twice continuously differentiable in

Θ; 4. V (y|x) = v(θ0) where v(θ) : Θ→ (0,∞).

An important consequence of assumption A1.3 is that, for any θ ∈ Θ, x ∈ G and g ∈ G we have

that g(x) − g0(x) = m(x; θ, g) − m(x; θ, g0). As such, although m(x; θ, g) depends on θ, the difference

|m(x; θ, g)−m(x; θ, g0)| does not.

Assumption A2. 1. fx(x) ∈ [BL, BU ], BL, BU ∈ (0,∞) for all x ∈ G; 2. For all x, s ∈ G we have that

|fx(x)− fx(s)| ≤ C||x− s||E for some C ∈ (0,∞), where ||x||E denotes the Euclidean norm of x.

Since we will be considering kernel based nonparametric estimators, we will make the following stan-

dard assumption on the kernel function K. As in assumption A2, throughout the paper C will represent

an arbitrary positive real number.

Assumption A3. 1. K(φ1, · · · , φD) : SD ⊂ <D → < is a symmetric density function with SD a compact

set; 2.
∫
φiK(φ1, · · · , φD)d(φ1, · · · , φD) = 0,

∫
φiφjK(φ1, · · · , φD)d(φ1, · · · , φD) = σ2

K > 0 if i = j,

otherwise σ2
K = 0 for all i and j; 3. For all x ∈ SD we have K(x) ≤ C; 4. For all x, s ∈ SD we have

|K(x)−K(s)| ≤ C||x− s||E for some C.

Assumption A3 is satisfied by many commonly used kernels, including Epanechnikov and biweight.

Assumption A4. 1. For all θ ∈ Θ we have that if θ 6= θ0 then fε(y− g0(x); θ) 6= fε(y− g0(x); θ0) for all

(y, x); 2. If {θi}i=1,2,··· is a sequence in Θ such that θi → θ as i→∞, then logfε(y−g0(x); θi)→ logfε(y−

g0(x); θ) as i→∞ for all θ ∈ Θ; 3. E (supθ∈Θ |logfε(y − g0(x); θ)|) < ∞; 4. For all (y, x), g ∈ G and

θ ∈ Θ, |logfε(y−g(x); θ)− logfε(y−g0(x); θ)| ≤ b(y, x, θ)|g(x)−g0(x)| = b(y, x, θ)|m(x; θ, g)−m(x; θ, g0)|

with b(y, x, θ) > 0, and E (supθ∈Θb(y, x, θ)) <∞.

Assumptions A4.1 and A4.3 guarantee that E(logfε(y − g0(x); θ)) has a unique maximum at θ0.
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Assumption A5. 1. For all η = g(x) ∈ H, logfε(y − η; θ) is twice continuously differentiable with

respect to θ and fε(y− η; θ) > 0 on some open ball S0,θ = S(θ0, d(θ0)) of θ0 with S0,θ ⊂ Θ and d(θ0) the

radius of the ball; 2. E
(
supθ∈S0,θ

∣∣∣ ∂2

∂θj∂θk
logfε(y − g0(x); θ)

∣∣∣) < ∞ for k, j = 1, · · · , P ; 3. We denote

by ∂
∂η the partial derivative operator with respect to η, the argument of fε that immediately follows

the negative sign, and assume ∂
∂η logfε(y − g0(x); θ) is continuously differentiable in S0,θ. Furthermore,∫

sup
θ∈S0,θ

|| ∂
2

∂θ∂η logfε(y − g0(x); θ)||Efε(y − g0(x); θ0)dy <∞ and

E

(
sup
θ∈S0,θ

|| ∂
2

∂θ∂η
logfε(y − g0(x); θ)||E |g(2)

0 (x)|

)
<∞;

4. The matrix

H̄ = E

(
∂2

∂θ∂θ′
logfε(y − g0(x); θ0)

)
+

∂

∂θ
γ(θ0)E

(
∂2

∂θ∂η
logfε(y − g0(x); θ0)

)′
+ E

(
∂2

∂θ∂η
logfε(y − g0(x); θ0)

)
∂

∂θ
γ(θ0)′

exists and is nonsingular; 5. Let η0 = g0(x) for any x ∈ G and put S0,η = S(η0, d(η0)). logfε(y − η; θ)

is continuously differentiable on S0,η, an open interval of H, E

(
sup
η∈S0,η

∣∣∣ ∂∂η logfε(y − η; θ)
∣∣∣) <∞ and for

all x ∈ G, ∂
∂ηE (logfε(y − g0(x); θ0)|x) = 0; 6. For all θ ∈ Θ, ∂

∂η logfε(y − g0(x); θ) is continuous at x,

E

(
sup
θ∈Θ

(
∂

∂η
logfε(y − η; θ)

)2
)
<∞ and E

(
sup
θ∈Θ

(
∂

∂η
logfε(y − η; θ)

)2

y2

)
<∞.

If G is a normed linear space and T (g) : G → < is a functional, we denote the Fréchet differential

of T at g with increment h ∈ G of order i = 1, 2 by δiFT (g;h). Note that if the Fréchet differentials

of order i = 1, 2 of T exist at g, they coincide with the Gateaux differentials of order i = 1, 2 at g,

denoted by δiGT (g;h) = di

dαT (g + αh) |α=0 (see Luenberger (1969) and Lusternik and Sobolev (1964)).

Furthermore, there exists a Taylor’s Theorem (Graves (1927)) such that we can write, T (g + h) =

T (g) + δ1
FT (g;h) +

∫ 1

0
δ2
FT (g + th;h)(1 − t)dt = T (g) + dF

dg T (g)h + h2

2

∫ 1

0
d2F
dg2T (g + th)(1 − t)dt where

dF
dg T (g) and d2F

dg2T (g) are called the first and second order Fréchet derivatives of T at g. We take the norm

in G to be supx∈<D |g(x)|.

Assumption A6. 1. logfε(y − g0(x); θ) is twice Fréchet differentiable at g0 with increment h(x) =

g(x) − g0(x) and denote the Fréchet derivatives of order i = 1, 2 at g0 by diF
dgi logfε(y − g0(x); θ); 2.
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dF
dg logfε(y − g0(x); θ0) is continuous at every x ∈ G; 3. We assume that the matrix

σ2
F = E

((
∂

∂θ
logfε(yi − g0(xi); θ0) + (yi −m(xi; θ0, g0))

∫
∂2

∂θ∂η
fε(y − g0(xi); θ0)fε(y − g0(xi); θ0)dy

)
×
(
∂

∂θ
logfε(yi − g0(xi); θ0) + (yi −m(xi; θ0, g0))

∫
∂2

∂θ∂η
fε(y − g0(xi); θ0)fε(y − g0(xi); θ0)dy

)′)
.

exists and is positive definite.

We observe that Fréchet derivatives are, in this case, bounded linear operators from G to <.

Assumption A7. 1. sup
θ∈S0,θ

∣∣∣E ( ∂
∂η logfε(y − g0(xi); θ)|xi

)∣∣∣ < ∞; 2. ∂2

∂θi∂η
logfε(y − g0(xi); θ) is contin-

uously differentiable in S0,θ and E

(
sup
θ∈S0,θ

∣∣∣ ∂3

∂θi∂θj∂η
logfε(y − g0(xi); θ)

∣∣∣ |xi) < ∞ for all xi ∈ G almost

surely; 3. sup
θ∈S0,θ

∣∣∣E ( ∂2

∂θi∂η
logfε(y − g0(xi); θ)

∣∣∣ |xi) < ∞; 4. E
(

∂3

∂θi∂θj∂η
logfε(y − g0(xi); θ)|xi

)
is con-

tinuous in S0,θ almost surely; 5. E(|yi − g0(xi)|) < ∞; 6. ∂2

∂θi∂θj
E
(
g

(2)
0 (xi) ∂∂η logfy|x(y; θ, g0(xi))

)
is

continuous in S0,θ almost surely.

We now define a specific estimator m̂ to be used in equation (3). For any x ∈ G we define m̂(x) ≡ α̂(x)

where

(α̂(x), β̂(x)) = argmin
α(x),β(x)

n∑
i=1

(yi − α(x)− β(x)(xi − x))2
K

(
xi − x
hn

)
(7)

where 0 < hn → 0 as n→∞ is a bandwidth. This is the local linear estimator of Fan (1992, 1993). We

note that the Nadaraya-Watson estimator used in Fan et al. (1996) as a special case of the local linear

estimator (β(x) = 0). In addition, contrary to the Nadaraya-Watson estimator, the local linear estimator

is design-adaptive, has good boundary properties and is mini-max efficient.3 The next two theorems

establish the consistency and
√
n asymptotic normality of θ̂ after suitable centering.4

Theorem 1 Given assumptions A1.1-3, A2, A3, A4, and the estimator m̂(x) defined in (7), if nh3
n

log(n) →

∞ as n→∞ then θ̂ − θ0 = op(1).

Theorem 2 Given assumptions A1-A7, and the estimator m̂(x) defined in (7), if nh3
n

log(n) →∞ as n→∞

and hn = O(n−1/5) then
√
n(θ̂ − θ0 − Bn) d→ N(0, H̄−1σ2

F H̄
−1), where Bn = −h

2
n

2 σ
2
KH̄

−1M + op(h2
n),

M is a P -vector with pth element given by Mp = E
(
g

(2)
0 (xi) ∂2

∂θp∂η
fε(yi − g0(xi); θ0)

)
, H̄ is as defined in

A5.4 and σ2
F is given in A6.3.

We note that theorems 1 and 2 require sup
x∈G
|m̂(x)−m(x)| = Op

((
log n
nhn

)1/2

+ h2
n

)
. Since both the local

3See Fan (1993) and Li and Racine (2007).
4The proofs for theorems 1 and 2 as well as the proof for Lemma 1 in section 3.2 can be found in Martins-Filho and Yao

(2011).
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linear and Nadaraya-Watson estimators for m share this uniform convergence rate under our assumptions,

either could be used to attain the stated asymptotic characterization for θ̂.

Practical use of theorems 1 and 2 requires the verification of assumptions A1.3-4 and A4-A7 for a

chosen density fε. Although it is possible to find specific classes of densities that do not satisfy our

assumptions, a more useful exercise is to verify that such assumptions are met by commonly considered

stochastic frontier specifications. Simar and Wilson (2010) observe that most applied stochastic frontier

models rely on the density given by (1), which indeed satisfies all required assumptions. This is verified in

Martins-Filho and Yao (2011) where in addition the structure of the matrices which appear in Theorem 2

are also obtained. Specifically, it is of great practical interest to obtain expressions for σ2
F and H̄. These

expressions allow for the construction of confidence intervals and asymptotically valid hypothesis testing.

Let s2 ≡ σ2
u +σ2

v , λ =
√
σ2
u/σ

2
v , w = 1

2λs3 , w1 = − 1
2λ

σ2
u(σ2

u+2σ2
v)

(σ2
v)2s3 , I =

∫ e
√

2
sπ3/2

1−erf(e λ
s
√

2
)
exp(−e2(λ

2

s2 + 1
2s2 ))de,

I1 =
∫ e2

√
2

sπ3/2

1−erf(e λ
s
√

2
)
exp(−e2(λ

2

s2 + 1
2s2 ))de, C1 = γ(σ2

u,σ
2
v)

s4 + λ
swI − (λs )2w

√
2

π(λ2+1)
s2

λ2+1 + w
√

2
π(λ2+1) ,

C2 = γ(σ2
u,σ

2
v)

s4 + λ
sw1I − (λs )2w1

√
2

π(λ2+1)
s2

λ2+1 + w1

√
2

π(λ2+1) where erf is the Gaussian error function.

If we denote the (i, j) element of σ2
F by σ2

F (i,j), then

σ2
F (1,1) =

1
2s4

+ w2I1 + C2
1 (s2 − γ(σ2

u, σ
2
v)2) +

1
s4
C1(−3σ2

v

√
2σ2

u/π − (2σ2
u)3/2(1/

√
π) + γ(σ2

u, σ
2
v)s2)

− 2wC1

√
2

π(λ2 + 1)
s2

λ2 + 1

σ2
F (1,2) =

1
2s4

+ ww1I1 + C1C2(s2 − γ(σ2
u, σ

2
v)2) + (C1 + C2)(−3σ2

v

√
2σ2

u/π − (2σ2
u)3/2(1/

√
π)

+ γ(σ2
u, σ

2
v)s2)− (wC2 + w1C1)

√
2

π(λ2 + 1)
s2

λ2 + 1

σ2
F (2,2) =

1
2s4

+ w2
1I1 + C2

2 (s2 − γ(σ2
u, σ

2
v)2) +

1
s4
C2(−3σ2

v

√
2σ2

u/π − (2σ2
u)3/2(1/

√
π) + γ(σ2

u, σ
2
v)s2)

− 2C2w1

√
2

π(λ2 + 1)
s2

λ2 + 1

and H̄ =
(
H̄11 H̄12

H̄21 H̄22

)
where H̄11 = − 1

2s4 − w2I1 + 2 ∂
∂σ2

u
γ(σ2

u, σ
2
v)C1, H̄12 = − 1

2s4 − ww1I1 +

2 ∂
∂σ2

u
γ(σ2

u, σ
2
v)C2, and H̄22 = − 1

2s4 − w2
1I1. Given that θ̂ is a consistent estimator for θ0, consistent

estimators for σ2
F and H̄ can be obtained using the above expression and a numerical evaluation of the

integrals in I and I1.

From a practical perspective, theorems 1 and 2 provide asymptotic results that justify the extension

of the stochastic frontier model of Aigner et al. to the case where the frontier is fully nonparametric. The
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results seem to be of immediate interest to empirical researchers given the enormous popularity of the

model first proposed by Aigner at al. From a technical perspective, it is not surprising that in theorem 2

a parametric estimator - θ̂ - that is based on averages of a nonparametrically estimated curve converges

at a parametric
√
n rate (see Doksum and Samarov (1995)). Additionally, theorem 2 shows that θ̂ carries

an asymptotic bias that does not decay to zero when normalized by
√
n. The presence of this bias is

precisely the motivation for the generalized profile likelihood estimator proposed by Severini and Wong

(1992) for conditionally parametric models.5 Hence, we now turn our attention to the estimator θ̃.

3.2 The estimator θ̃

Suppose we consider a reparametrization of fε(y − g(x); θ) given by fε(y − αθ(x); θ), where for every

x ∈ G, αθ(x) : Θ→ H with αθ0(x) = g0(x). The parametric submodel described by the curve αθ(x) has

Fisher information given by

I0

(
∂

∂θ
αθ0(x)

)
= E

(
∂

∂θ
logfε(y − g0(x); θ0) +

dF
dg
logfε(y − g0(x); θ0)

∂

∂θ
αθ0(x)

)(
∂

∂θ
logfε(y − g0(x); θ0)

+
dF
dg
logfε(y − g0(x); θ0)

∂

∂θ
αθ0(x)

)′
where ∂

∂θαθ0(x) is the tangent vector associated with αθ(x) evaluated at θ0. As argued in van der Vaart

(1999), it is desirable to minimize the information associated with the parametric submodel induced by

αθ(x). Since the information depends only on the tangent vector it is natural to define6

Iθ0 = inf
∂
∂θαθ0 (x)

I0

(
∂

∂θ
αθ0(x)

)
. (8)

Bickel et al. (1993) show that provided E((dFdg logfε(y − g0(x); θ0)2|x) > 0 the minimizer for (8), say

∂
∂θαθ0(x)∗, satisfies

∂

∂θk
αθ0(x)∗ = −

E
(

∂
∂θk

logfε(y − g0(x); θ0)dFdg logfε(y − g0(x); θ0)|x
)

E((dFdg logfε(y − g0(x); θ0)2|x)
for k = 1, · · · , P. (9)

The tangent vector ∂
∂θαθ0(x)∗ is called a least favorable direction. Interestingly, if we let αθ(x) ∈ G be the

unique maximizer of E(logfε(y−g(x); θ)|x) for fixed x and θ, using a Taylor’s expansion around θ0 shows

that αθ(x) minimizes Fisher’s information, provided E(logfε(y − g(x); θ)|x) < E(logfε(y − g0(x); θ0)|x)

5Naturally, the asymptotic bias associated with θ̂ can be eliminated by choosing a non optimal bandwidth decay rate
(undersmoothing) for the estimator m̂(x).

6We follow the usual practice of defining, for any two squared matrices A and B, A ≤ B if, and only if, B−A is positive
semidefinite.
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whenever θ 6= θ0. As such, Severini and Wong define a least favorable curve for a conditional parametric

model as αθ(x) : Θ→ H that for every x ∈ G satisfies the following: (1) For each x ∈ G, αθ0(x) = g0(x);

(2) For each x ∈ G, ∂
∂θαθ(x) and ∂2

∂θ∂θ′αθ(x) exist and sup
x∈G
| ∂∂θpαθ(x)| < ∞, and sup

x∈G
| ∂2

∂θp∂θm
αθ(x)| < ∞

for all m, p = 1, ..., P ; (3) For each x ∈ G, ∂
∂θαθ0(x) minimizes the Fisher information for the parametric

sub-model described by logfε(y − αθ(x); θ).

Now, consider an arbitrary estimator for αθ(x) given by α̇θ(x) and define

θ̇ ≡ argmax
θ

l̄n(θ, α̇θ) = argmax
θ

1
n

n∑
i=1

logε(yi − α̇θ(xi); θ). (10)

The following theorem establishes the asymptotic normality and consistency of θ̇ conditional on the

asymptotic properties of α̇θ(x) and some regularity conditions on the class containing fε.

Theorem 3 (Severini and Wong (1992)) θ̇−θ = op(1) and
√
n(θ̇−θ) d→ N(0, I−1

θ0
) provided the following

assumptions hold.

PA1: 1. For fixed (but arbitrary) θ′ ∈ Θ and η′ ∈ H and for all θ ∈ Θ and η ∈ H, let ρ(θ, η) =∫
logfε(y− η; θ)fε(y− η′; θ′)dy. If θ 6= θ′ then ρ(θ, η) < ρ(θ′, η′); 2. Ĩθ(θ, η) > 0 for all θ ∈ Θ and η ∈ H

where

Ĩθ(θ, η) = E

(
∂

∂θ
logfε(y − η; θ)

∂

∂θ
logfε(y − η; θ)′

)
−

E( ∂∂η logfε(y − η; θ) ∂∂θ logfε(y − η; θ))E( ∂∂η logfε(y − η; θ) ∂
∂θ′ logfε(y − η; θ))

E(( ∂∂η logfε(y − η; θ)2)

PA2: For r, s = 0, 1, 2, 3, 4 and r + s ≤ 4, ∂r+s

∂θrp∂η
s logfε(y − η; θ) exists for p = 1, · · · , P and

E

(
sup

θ∈Θ,η∈H

∣∣∣∣ ∂r+s∂θrp∂η
s
logfε(y − η; θ)

∣∣∣∣2
)
<∞.

PA3: 1. For all x ∈ G and θ ∈ Θ, qθ(x) ≡ α̇θ(x) − αθ(x) = op(1). For each θ ∈ Θ and for all

r, s = 0, 1, 2 with r+s ≤ 2 we have that ∂r+s

∂xr∂θsp
αθ(x) and ∂r+s

∂xr∂θsp
α̇θ(x) exist; 2. sup

x∈G
|qθ0(x)| = op(n−a) and

sup
x∈G
| ∂∂θp qθ0(x)| = op(n−b) with a+ b ≥ 1/2 and a ≥ 1/4; 3. sup

θ∈Θ
sup
x∈G
|qθ(x)| = op(1), sup

θ∈Θ
sup
x∈G

∣∣∣ ∂∂θp qθ(x)
∣∣∣ =

op(1), sup
θ∈Θ

sup
x∈G

∣∣∣ ∂2

∂θm∂θp
qθ(x)

∣∣∣ = op(1) for all m, p = 1, · · · , P ; 4. For some δ > 0, sup
x∈G
| ∂∂xqθ0(x)| = op(n−δ)

and sup
x∈G
| ∂2

∂x∂θp
qθ0 | = op(n−δ).

The importance of Theorem 3 rests principally on the fact that if an estimator for the least favorable

curve can be found to satisfy PA3, then an estimator for θ that satisfies equation (10) has the stated
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asymptotic properties. In contrast with the estimator described in Theorem 2, θ̇ is not biased asymp-

totically and is efficient in the sense that it is based on a suitable estimator α̇θ(x) for the least favorable

curve.

We now show that the estimator defined in equation (5), i.e., α̂θ(x) satisfies PA3. This result extends

Lemma 5 in Severini and Wong, where it is shown that if the least favorable curve is estimated using a

local constant approximation, i.e., in equation (5) gx(xi) = α(x) (β(x) = 0) PA3 is met. It is convenient

for our purposes to establish the following Lemma 1, which will be used repeatedly in the proof of Lemma

2, which verifies PA3.

Lemma 1 Assume that PA1 and PA2 hold. If nh3
n →∞ as n→∞ we have

sup
x∈G,θ∈Θ,η∈H

∣∣∣∣∣ 1n
n∑
i=1

1
hn

∂

∂η
logfε(yi − η; θ)K

(
xi − x
hn

)(
1

xi − x

)
−

1
hn
E

(
∂

∂η
logfε(yi − η; θ)K

(
xi − x
hn

)(
1

xi − x

))∣∣∣∣ =

 Op

((
log(n)
nhn

)1/2
)

Op

(
hn

(
log(n)
nhn

)1/2
)
 .

Lemma 2 Assume that αθ(x) satisfies ∂
∂ηE(logfε(y − αθ(x); θ)) = 0 and is the unique maximizer of

E(logfε(y − αθ(x); θ)). Define for some d̄θ(x) =
(
d̄0,θ(x)
d̄1,θ(x)

)
∈ <2 the function

Gθ(d̄θ(x)) = fx(x)
∫
SD

E

(
∂

∂η
logfε(yi − αθ(x)− d̄0,θ(x)− d̄1,θ(x)hnψ; θ)|x

)
K(ψ)

(
1

hnψ

)
dψ

and assume that for all ε > 0 there exists δ > 0 such that whenever || sup
θ∈Θ,x∈G

Gθ(d̄θ(x))|| ≤ δ we have

sup
θ∈Θ,x∈G

|d̄0,θ(x)| < ε and sup
θ∈Θ,x∈G

|d̄1,θ(x)| < ε. Then under the assumptions in Lemma 1 and regularity

conditions PB, PC and PD we have that the estimator α̂θ(x) = η̂0 obtained by solving

1
n

n∑
i=1

1
hn

∂

∂η
logfε(yi − η0 − η1(xi − x); θ)K

(
xi − x
hn

)(
1

xi − x

)
=
(

0
0

)
with respect to η0 and η1 for each x and θ satisfies:

a) sup
θ∈Θ,x∈G

|α̂θ(x)− αθ(x)| = op(1) and sup
θ∈Θ,x∈G

| ∂∂x α̂θ(x)− ∂
∂xαθ(x)| = op(1)

b) sup
θ∈Θ,x∈G

|α̂θ(x)− αθ(x)| = Op

((
log(n)
nhn

)1/2
)

+Op
(
h2
n

)
and

sup
θ∈Θ,x∈G

| ∂∂x α̂θ(x)− ∂
∂xαθ(x)| = Op

((
log(n)
nh3

n

)1/2
)

+Op (hn)

c) sup
θ∈Θ,x∈G

| ∂∂θj α̂θ(x)− ∂
∂θj

αθ(x)| = Op

((
log(n)
nhn

)1/2
)

+Op
(
h2
n

)
and

sup
θ∈Θ,x∈G

| ∂2

∂θj∂x
α̂θ(x)− ∂2

∂θj∂x
αθ(x)| = Op

((
log(n)
nh3

n

)1/2
)

+Op (hn)

d) sup
θ∈Θ,x∈G

| ∂2

∂θj∂θk
α̂θ(x)− ∂2

∂θj∂θk
αθ(x)| = Op

((
log(n)
nhn

)1/2
)

+Op
(
h2
n

)
and
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sup
θ∈Θ,x∈G

| ∂3

∂θj∂θk∂x
α̂θ(x)− ∂3

∂θj∂θk∂x
αθ(x)| = Op

((
log(n)
nh3

n

)1/2
)

+Op (hn) provided that nh3
n →∞ as n→∞.

A direct consequence of Lemma 2 and Theorem 3 is that θ̃ as defined by equations (5) and (6) has

the following asymptotic properties

θ̃ − θ0 = op(1) and
√
n(θ̃ − θ0) d→ N(0, I−1

0 ). (11)

The constraints imposed on fε in Theorem 2 and Lemma 2 go beyond those required in assumptions

A4-A7 on the previous section. As a result they must be checked for any assumed specific conditional

density fε. Most importantly, we have verified that all assumptions placed on fε in Lemma 2 are satisfied

by the conditional density given in equation (1).7 Of particular interest is the exact form that I0 takes

when fε in equation (1) is used in estimation. In this case the I0 matrix has (i, j) elements with i, j = 1, 2

given by

Iθ0(1, 1) =
1

2s4
+ w2I1 + α′2σ2

u
(1/s2 + (λ/s)2I2) +

1
s4

(
α′σ2

u
γ(σ2

u, σ
2
v) + α′σ2

u

λ

s

√
2

π(λ2 + 1)
s2

λ2 + 1

)

− 1
s2
α′σ2

u

√
2

π(λ2 + 1)

(
λ

s
+ 2w

s2

λ2 + 1

)
− 2α′σ2

u

λ

s
wI +

1
s6
α′σ2

u

(
−3σ2

v

√
2/πσ2

u −
(2σ2

u)3/2

√
π

)

Iθ0(1, 2) = Iθ0(2, 1) =
1

2s4
+ ww1I1 + α′σ2

u
α′σ2

v
(1/s2 + (λ/s)2I2) +

1
2s4

(
(α′σ2

u
+ α′σ2

v
)(γ(σ2

u, σ
2
v)

+
λ

s

√
2

π(λ2 + 1)
s2

λ2 + 1
)

)

− 1
s2

√
2

π(λ2 + 1)

(
λ

2s
(α′σ2

u
+ α′σ2

v
) + (wα′σ2

v
+ w1α

′
σ2
u
)

s2

λ2 + 1

)
− (wα′σ2

v
+ w1α

′
σ2
u
)
λ

s
I

+
1

2s6
(α′σ2

u
+ α′σ2

v
)
(
−3σ2

v

√
2/πσ2

u −
(2σ2

u)3/2

√
π

)

Iθ0(2, 2) =
1

2s4
+ w2

1I1 + α′2σ2
v
(1/s2 + (λ/s)2I2) +

1
s4

(
α′σ2

v
γ(σ2

u, σ
2
v) + α′σ2

v

λ

s

√
2

π(λ2 + 1)
s2

λ2 + 1

)

− 1
s2
α′σ2

v

√
2

π(λ2 + 1)

(
λ

s
+ 2w1

s2

λ2 + 1

)
− 2α′σ2

v

λ

s
w1I

+
1
s6
α′σ2

v

(
−3σ2

v

√
2/πσ2

u −
(2σ2

u)3/2

√
π

)

where α′σ2
u

= C1( 1
s2 + (λs )2I2)−1, α′σ2

v
= C2( 1

s2 + (λs )2I2)−1 and all remaining constants are as defined

following Theorem 2. Given that θ̃ is a consistent estimator for θ0, consistent estimators for Iθ0 can be

obtained given the above expression.
7See Martins-Filho and Yao (2011).
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4 Monte Carlo study

4.1 Implementation

The estimator θ̃ described by (5) and (6) is implemented using the following algorithm:

Step 1: Obtain an initial maximum likelihood estimate θ̌ based on a linear parametric specification for

g(x) = x′β and define an initial value θ(k) ≡ θ̌, where k = 0.

Step 2: For each xj , j = 1, · · · , n in the sample, maximize the local log-likelihood function based on

θ(k)

(
α̂θ(k)(xj), β̂θ(k)(xj)

)
= argmax{α(xj),β(xj)}

1
n

n∑
i=1

log fε(yi − α(xj)− β(xj)(xi − xj); θ(k))K
(
xi − xj
hn

)
(12)

Step 3: Based on α̂θ(k)(xi) for i = 1, · · · , n from step 2, maximize the global log-likelihood function with

respect to θ, and obtain

θ(k+1) = argmaxθ
1
n

n∑
i=1

log fε(yi − α̂θ(k)(xi); θ) (13)

Step 4: Using θ(k+1) repeat step 2 and then step 3. Continue this cycle until k is such that ||θ(k+1) −

θ(k)||E < ε. We set ε = 0.001.

Step 5: Fix the estimator θ̃ at the value obtained from the last cycle of step 4 and put g̃(x) = α̂θ̃(x) in

step 2.

As pointed out by Lam and Fan (2008), this algorithm is equivalent to a Newton-Raphson procedure

but (13) incorporates the functional dependence of α̂θ(x) on θ by using the value of θ(k) from the previous

step as a proxy for θ. Specifically, the algorithm treats the d
dθ α̂θ(x) and d2

dθdθ′ α̂θ(x) in the Newton-

Raphson procedure as zeros and computes α̂θ(x) using the values of θ(k) in the previous iteration. Thus

the maximization is easier to carry out. We recommend calculating (α̂θ(k)(x),
∂α̂

θ(k)
(x)

∂x ) in step 2 at a

fixed but fine grid of points of x. Then use linear interpolation to calculate the other values of α̂θ(k)(x).

We could utilize the consistent plug-in estimator θ̂ = (σ̂2
u, σ̂

2
v) (Fan et al.(1996)) in Step 1 of our

algorithm but we avoid doing so in the simulation to provide a fair performance comparison of (σ̂2
u, σ̂

2
v)

and (σ̃2
u, σ̃

2
v). Given the strict concavity of logfε(y − g(x));σ2

u, σ
2
v) the initial estimates are important

only for computational speed. Given that the linear specification is a simple and popular alternative, we

use the maximum likelihood estimates based on a linear parametric specification for g(x) as the initial
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values for both (σ̂2
u, σ̂

2
v) and (σ̃2

u, σ̃
2
v).

Implementation of our estimator requires the selection of a bandwidth hn. Since g0(x) = E(y|x)+γ(θ0)

where γ(θ) is a non-stochastic function of θ, we use the data driven rule-of-thumb bandwidth ĥROT of

Ruppert et al. (1995). We observe that ĥROT /h∗n− 1 = op(1) where h∗n is the bandwidth that minimizes

the local linear regression estimator’s asymptotic mean squared error (AMISE). Since, h∗n = O(n−
1
5 ) we

have that h∗n → 0 at a speed that is consistent with that required by the asymptotic theory.

4.2 Data Generation and Results

In this section, we perform a Monte Carlo study which implements our profile likelihood semi-parametric

stochastic frontier estimator and provides evidence on its finite sample performance. We consider the

stochastic production frontier model of Fan et al. (1996) where output-input pairs (yi, xi) are generated

in accordance with assumptions A1, A2 and the conditional density given by (1). We consider four

different functional forms for g(x): g1(x) = 1 + x, g2(x) = 1 + ln(1 + x), g3(x) = 1 − 1
1+x and g4(x) =

1 + 0.5arctan(20(x− 0.5)). The first three functions are considered in Fan et al. (1996) and we introduce

the last one, which exhibits more pronounced nonlinearity. We generate the univariate input xi from

an uniform distribution on [0, 1]. To facilitate comparison, the parameter θ = (σ2
u, σ

2
v) is set at θ(1) =

(1.379, 0.501), θ(2) = (0.988, 0.642) and θ(3) = (0.551, 0.799) to coincide with the values considered by

Aigner et al. (1977) and Fan et al. (1996). Note that the ratio (σ
2
u

σ2
v

) decreases from θ(1) to θ(3). Figure

1 provides a plot of a typical simulated sample for the production frontier g4(x), where the sample was

generated with (σ2
u, σ

2
v) = (1.379, 0.501). Superimposed on the plot are the true production frontier,

estimated frontiers with both a profile likelihood (PL) estimator (θ̃) and a plug in (PI) estimator (θ̂).

The figure suggest that both estimators seem to capture fairly well the shape of the underlying production

frontier.

The PL estimator is implemented using the algorithm described above and the bandwidth ĥROT . We

use the Epanechnikov kernel in the estimation, which satisfies assumption A3. For comparison purpose

we also include in the study the PI estimator and a parametric maximum likelihood (ML) estimator

constructed under the correct specification of the production frontier. The parametric ML estimator

is, under these circumstances, expected to outperform the PL and PI estimators. The PI estimator is
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implemented as described by Fan et al. (1996), but here the conditional expectation m0(x) is estimated

via a local linear estimator, so that the asymptotic characterization given in section 3 is applicable. We set

the sample sizes at n = 300, 600 and 900, and perform 500 replications for each experimental design. We

investigate the performances of PL, PI and ML in estimating the global parameter θ. The performance

of the estimators is summarized by their bias, standard deviation and root mean squared error, which

are provided in Tables 1-4.

As suggested by the asymptotic theory, the performance of all three estimators in terms of bias,

standard deviation, and root mean squared error generally improves as n increases, with a few exceptions

for the bias. All three estimators generally exhibit a negative bias in estimating σ2
u and a positive bias in

estimating σ2
v with a few exceptions for small samples when (σ2

u, σ
2
v) = (0.551, 0.799). It is also clear that

it is harder to estimate σ2
u than to estimate σ2

v , as the bias, standard deviation and root mean squared

error for all estimators of σ2
v are smaller than those of σ2

u. The above observations are consistent with

the results in the Monte Carlo studies of Fan et al. (1996) and Aigner et al. (1977). General conclusions

regarding the relative performance of the estimators are unambiguous and conform with our expectations.

The parametric ML estimator performs best since it is based on a correct specification of the production

frontier and the distribution of the composite error term. Among the two semiparametric estimators that

relax the parametric assumption on the production frontier, the PL estimator we propose outperforms the

PI estimator of Fan et al. across almost all experimental designs, and the improvement is significant. For

example, in the simulation with g1(x) as production frontier and (σ2
u, σ

2
v) = (1.379, 0.501), the reduction

in the root mean squared error from the PL estimator over that of the PI estimator are about 5% in

estimating both σ2
u and σ2

v . A few exceptions occur for the smallest sample when (σ2
u, σ

2
v) = (0.551, 0.799),

which corresponds to the case where the variance of the efficiency term (π−2
π σ2

u) is significantly smaller

than that of the noise in the production frontier (σ2
v). The result is generally consistent with the fact

that asymptotically the PL estimator reaches a semiparametric efficiency bound, while PI does not.

Overall our simulations seem to indicate that our proposed estimator can outperform the estimator

proposed by Fan et al. (1996) in finite samples.
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5 An empirical application

In this section we provide an empirical application of the semiparametric profile likelihood and plug-

in estimation (PL and PI) using data on the U.S. electricity industry. The data have been used by

Christensen and Green (1976), Gijbels et al. (1999), Martins-Filho and Yao (2008) and are provided in

Green (1990). The model fitted in Green (1990) is a restricted specification of the cost function,

Ln(Cost/Pf ) = β0 + β1LnQ+ β2Ln
2Q+ β3Ln(Pl/Pf ) + β4Ln(Pk/Pf ) + ε. (14)

The output (Q) is a function of three factors, labor (l), capital (k), and fuel (f). The three factor prices

are Pl, Pk, and Pf . The restriction of linear homogeneity in the factor price has been imposed on the

cost function. For detailed description of the data set and analysis, see Christensen and Greene (1976)

and Greene(1990). Since we estimate a cost frontier rather than a production frontier, equation (1) is

slightly modified and written as

fy|x(y;σ2
u, σ

2
v , g(x)) ≡ fε(y−g(x);σ2

u, σ
2
v) =

2√
σ2
u + σ2

v

φ

(
y − g(x)√
σ2
u + σ2

v

)(
1− Φ

(
−
√
σ2
u/σ

2
v√

σ2
u + σ2

v

(y − g(x))

))
.

Since the parametric specification of the cost frontier might be restrictive, we utilize the semiparametric

PL and PI approaches to estimate the frontier and analyze the efficiency levels of firms in the electric

utility industry. We implement the PL estimator (σ̃2
u, σ̃

2
v) as described in section 4 using a gaussian

product kernel and a bandwidth given by hl = cσxln
− 1

4+p with l = 1, 2, 3 (see Härdle (1990) and Fan

et al. (1996)), where c is a constant set to be 1.25, and σxl is the sample standard deviation of xl,

x1 = LnQ, x2 = Ln(Pl/Pf ), x3 = Ln(Pk/Pf ) and n = 123 is the sample size. We implement the PI

estimator (σ̂2
u, σ̂

2
v) of Fan et al. (1996) using a local linear estimator for the conditional mean.

The PL estimation results give σ̃2
u = 0.0010, σ̃2

v = 0.0103 with σ̃2
u accounting for only 3.37% of the

estimated conditional variance of Ln(Cost/Pf ). The PI estimation gives even smaller variance estimate

for the one-sided error with σ̂2
u = 0.00001 and σ̂2

v = 0.0108. In contrast, as provided in Greene (1990)

where the linear cost frontier and normal half-normal composite error model is fitted with maximum

likelihood (ML) estimation (σ̌2
u, σ̌

2
v), the estimates are σ̌2

u = 0.0241, σ̌2
v = 0.0115 with σ̌2

u accounting for

43.2% of the estimated conditional variance of Ln(Cost/Pf ). The changes in the estimated parameters

and changes in the allocation of total variance of the disturbance to the inefficiency term, similar in the
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direction but smaller in magnitude, are also observed in Fan et al. for Quebec dairy farm data and Green

(1990) for gamma-distributed frontier model. Relatively small estimates of the one-sided components of

the disturbance are also obtained in the empirical examples in Aigner et al. Given that the signal-to-

noise ratio or the efficiency scores from the semiparametric estimations are fairly small, one might wonder

whether the residuals display skewness in the “right” direction as discussed in Simar and Wilson (2010)

and Almanidis and Sickles (2011), though they argue that the “wrong” skewness (negative skewness

in the case of estimating cost frontier) is either a finite sample problem or associated with potential

mis-specifications in the efficiency distribution. The empirical skewness of PL, PI and ML residuals are

0.0005,−0.0002, and 0.0105 respectively, indicating the residuals from PL and ML exhibit skewness in the

“right” directions. We observe that the semiparametric estimation gives estimation results quite different

from the parametric approach, suggesting that the cost frontier may be nonlinear in xl.

We plot the cost frontier estimated by PL, PI and ML against the observed cost in Figure 2. The

semiparametric estimates seem to be slightly more concentrated around the line of equality between

estimated frontier and observed cost than the ML estimates, although we do not observe a substantial

difference between the quality of fit using these approaches. To compare the difference in these three

estimates, we provide the plot of estimated marginal cost against the output in Figure 3. The ML

procedure assumes a parametric frontier that implies a marginal cost given by β1 + 2β2LnQ. We obtain

the marginal cost under PL by maximizing the local likelihood function in equation (12) at different

sample values of Ln(Q) with σ̂2
u and σ̂2

v reported above, fixing Ln(Pl/Pf ) and Ln(Pk/Pf ) at the sample

mean values. The marginal cost under PI is obtained in an analogous fashion. The marginal costs

obtained with PL and PI are quite similar in magnitudes, but they differ substantially from those of ML

over the range of Ln(Q), indicating that the assumption that marginal cost is linear in Ln(Q) might be

too restrictive.

Based on the frontier estimation results, we evaluate firm specific efficiency levels. We follow Jondrow

et al. (1982) and obtain firm-specific efficiency as

efi =
(σ2
u + σ2

v)
1
2
√
σ2
u/σ

2
v

1 + σ2
u/σ

2
v

 φ(−
√
σ2
u/σ

2
v√

σ2
u+σ2

v

εi)

1− Φ(−
√
σ2
u/σ

2
v√

σ2
u+σ2

v

εi)
+

√
σ2
u/σ

2
v√

σ2
u + σ2

v

εi

 .
The unknown parameters are replaced with their estimates and εi is replaced with ε̂i, the difference
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between yi and the estimated frontier evaluated at xi. Since the data are presented in logs, the efficiencies

are calculated as exp(êfi ).

Estimated efficiencies based on PL fall between 1.0171 and 1.0370 and the average efficiency score

is 1.0251. Thus, on average, the cost of the U.S. electricity utility industry is increased by 2.5% due

to inefficiency. The average efficiency score is roughly the same as that obtained in a COLS/gamma

estimate provided in Table 2 of Green (1990). With a much smaller estimate of σ2
u, estimated efficiencies

of PI are between 1.0024 and 1.0026, and the average efficiency score is 1.0025. In contrast, the estimated

efficiencies with ML range from 1.0308 to 1.4794 with an average efficiency score of 1.1338. Both PL

and ML’s estimated efficiency densities are skewed to the right, while PI’s density seems to be skewed

slightly to the left. Figure 4 shows the plot of estimated efficiencies with the three approaches against

the observed cost. It seems that ML predicts much higher inefficiencies than the semiparametric PL

and PI approaches. This is consistent with the general observations made in Kumbhakar et al. (2007)

using a local maximum likelihood approach. The high estimated inefficiency might be attributed to a

misspecification of the frontier function.

6 Summary and conclusions

In this paper we consider the estimation of a semiparametric stochastic frontier model. We study two

estimators for the parameters of the model. We first establish the asymptotic properties (until now

unknown) of an estimator proposed by Fan et al. (1996). The estimator is shown to be consistent and

asymptotically normal, however the asymptotic distribution is incorrectly centered. We then propose a

new estimator based on a profile likelihood procedure for conditionally parametric models first suggested

by Severini and Wong (1992). We show that our estimator is consistent, asymptotically normal and

efficient in a suitably defined class of semiparametric estimators. Practical use of the estimators requires

the specification of a conditional density that must meet some regularity conditions. We verify that the

density used in Aigner et al. (1977) and Fan et al. (1996) satisfy all of the stated regularity conditions.

However, future work should investigate whether broader classes of densities that may potentially be used

by applied researchers in efficiency and productivity studies meet such regularity conditions.
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Appendix 1 - Assumptions and proofs

Assumption PB: 1. sup
x∈G

fx(x) < C; 2. sup
x∈G

f
(1)
x (x) < C; 3. sup

x∈G
f

(2)
x (x) < C; 4. inf

x∈G
fx(x) > 0; 5.

sup
x∈G,θ∈Θ

| ∂∂xαθ(x)| < C.

Assumption PC:
∫

sup
x∈G

∣∣∣ ∂∂x ( ∂s1+s2+r

∂θ
s1
k ∂θ

s2
j ∂ηr

logfε(y − αθ(x); θ)fε(y − g0(x); θ)
)∣∣∣ dy < c, with s1, s2, r ≥ 0,

where (s1, s2, r) = (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1).

Assumption PD: sup
x∈G,θ∈Θ,η∈H

∣∣∣∫ ∂s1+s2+r

∂θ
s1
k ∂θ

s2
j ∂ηr

logfε(y − η; θ) ∂j

∂xj fy|x(y − g0(x); θ0)dy
∣∣∣ < C with s1, s2, r ≥

0, for j=0, s1 + s2 + r ≤ 4, and (s1, s2, r) = (0,0,5); for j=1, (s1, s2, r) = (0,0,1), (1,0,2), (0,1,2), (1,0,3),

(0,1,3), (0,0,4), (0,0,3), (1,1,2), (1,1,3), (0,1,4), (1,0,4), (0,0,5) and for j=2, (s1, s2, r) = (0,0,1), (0,0,2),

(0,0,3), (1,0,1), (0,1,1), (1,0,2), (0,1,2), (1,0,3), (0,1,3), (0,0,4), (1,1,1), (1,1,2), (1,1,3), (0,1,4), (1,0,4),

(0,0,5).

Lemma 2: Proof. a) For fixed x and θ we define (η̂0, η̂1) = argmax
η0,η1

1
n

∑n
i=1

1
hn
logfε(yi − η0 − η1(xi −

x); θ)K
(
xi−x
hn

)
where η̂0 = α̂θ(x), η̂1 = ∂

∂x α̂θ(x) satisfy first order conditions. Put d̂0,θ(x) = α̂θ(x) −

αθ(x), d̂1,θ(x) = ∂
∂x α̂θ(x)− ∂

∂xαθ(x) and ηθ(x, xi) = αθ(x) + ∂
∂xαθ(x)(xi − x). Let d̂θ(x) =

(
d̂0,θ(x)
d̂1,θ(x)

)
and write

Gnθ(d̂θ(x)) =
(
Gnθ0(d̂θ(x))
Gnθ1(d̂θ(x))

)
=

1
n

n∑
i=1

1
hn

∂

∂η
logfε(yi − ηθ(x, xi)− d̂0,θ(x)− d̂1,θ(x)(xi − x); θ)K

(
xi − x
hn

)
×
(

1
xi − x

)
=
(

0
0

)
.

Letting z′ = (0, 0) we have by Taylor’s Theorem that for d∗j,θ(x) = (1 − λj)d̂j,θ(x) and j = 0, 1 we have

Gnθ(d̂θ(x)) = Gnθ(z) +Hnθ(d∗θ(x))d̂θ(x) = 0 where

Hnθ(d∗θ(x)) =
1
n

n∑
i=1

1
hn

∂2

∂η2
logfε(yi−ηθ(x, xi)−d∗0,θ(x)−d∗1,θ(x)(xi−x); θ)K

(
xi − x
hn

)(
1 xi − x

xi − x (xi − x)2

)
.

We now define sjn(x) = 1
n

∑n
i=1

1
hn

∂2

∂η2 logfε(yi − ηθ(x, xi) − d∗0,θ(x) − d∗1,θ(x)(xi − x); θ)K
(
xi−x
hn

)
(xi −

x)j for j = 0, 1, 2. We note that under our assumptions αθ(x) is an unique maximum and satisfies

∂
∂ηE (logfε(yi − αθ(x); θ)|x) = 0. Given that we can interchange the partial derivative with the ex-

pectation ∂
∂ηE (logfε(yi − αθ(x); θ)|x) = E

(
∂
∂η logfε(yi − αθ(x); θ)|x

)
= 0. Hence, for some d̄θ(x) =(

d̄0,θ(x)
d̄1,θ(x)

)
∈ <2 we have from the definition of Gθ that Gθ(d̄θ(x)) = 0 will have a unique so-

lution at d̄θ(x) = 0. Now, we have assumed that for all ε > 0 there exists a δ > 0 such that

|| sup
θ∈Θ,x∈G

|Gθ(d̄θ(x))|||E ≤ δ implies sup
θ∈Θ,x∈G

|d̄i,θ(x)| ≤ ε for i = 0, 1. Now, P ( sup
θ∈Θ,x∈G

|d̂0,θ(x)| > ε) ≤
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P (|| sup
θ∈Θ,x∈G

|Gθ(d̂θ(x))|||E > ε) = P (|| sup
θ∈Θ,x∈G

|Gθ(d̂θ(x))−Gnθ(d̂θ(x))|||E > ε) since Gnθ(d̂θ(x)) = 0. By

the cr inequality we have

P ( sup
θ∈Θ,x∈G

|α̂θ(x)− αθ(x)| > ε) ≤ P ( sup
θ∈Θ,x∈G

|Gθ,0(d̂θ(x))−Gnθ0(d̂θ(x))| > ε/2)

+ P ( sup
θ∈Θ,x∈G

|Gθ,1(d̂θ(x))−Gnθ1(d̂θ(x))| > ε/2)

and we now show that sup
θ∈Θ,x∈G

|Gθ,j(d̂θ(x))−Gnθj (d̂θ(x))| = op(1) for j = 0, 1.

sup
θ∈Θ,x∈G

|Gθ,j(d̂θ(x))−Gnθj (d̂θ(x))| ≤ sup
θ∈Θ,x∈G

|Gnθj (d̂θ(x))− E(Gnθj (d̂θ(x)))|

+ sup
θ∈Θ,x∈G

|E(Gnθj (d̂θ(x)))−Gθ,j(d̂θ(x))| = I1 + I2.

Now, observe that I1 ≤ sup
θ∈Θ,η∈H,x∈G

∣∣∣ 1
n

∑n
i=1

(
∂
∂η logfε(yi − η; θ) 1

hn
K
(
xi−x
hn

)
(xi − x)j − E

(
∂
∂η logfε(yi − η; θ)

1
hn
K
(
xi−x
hn

)
(xi − x)j

))∣∣∣ = op(1) by Lemma 1. Now, we can write

I2 = sup
θ∈Θ,x∈G

∣∣∣∣∣ 1n
n∑
i=1

(
E

(
1
hn

∂

∂η
logfε(yi − ηθ(x, xi)− d̂0,θ(x)− d̂1,θ(x)(xi − x); θ)K

(
xi − x
hn

)
× (xi − x)j

)
− fx(x)

∫
G

E(
∂

∂η
logfε(yi − αθ(x)− d̂0,θ(x)− d̂1,θ(x)(xi − x); θ)|x)

× 1
hn
K

(
xi − x
hn

)
(xi − x)jdxi

)∣∣∣∣
where d̂0,θ(x) + d̂1,θ(x)(xi − x) ∈ H1 a compact subset of <, and we immediately have

I2 ≤ sup
θ∈Θ,η∈H1,x∈G

∣∣∣∣E ( 1
hn

∂

∂η
logfε(yi − ηθ(x, xi)− η; θ)K

(
xi − x
hn

)
× (xi − x)j

)
− fx(x)

∫
G

E(
∂

∂η
logfε(yi − αθ(x)− η; θ)|x)

× 1
hn
K

(
xi − x
hn

)
(xi − x)jdxi

)∣∣∣∣ = sup
θ∈Θ,η∈H1,x∈G

|I21 − I22| .

Using the fact that fε(yi−g0(xi); θ0) = fε(yi−g0(x); θ0)+ ∂
∂xfε(yi−g0(x); θ0)(xi−x)+ ∂2

∂x2 fε(yi−g0(x∗); θ0)

(xi − x)2 for x∗ ∈ L(xi, x) we can write

I21 = E

(
1
hn

∂

∂η
logfε(yi − ηθ(x, xi)− η; θ)K

(
xi − x
hn

)
(xi − x)j

)
+ E

(∫
1
hn

∂

∂η
logfε(yi − ηθ(x, xi)− η; θ)

∂

∂x
fε(yi − g0(x); θ0)dyiK

(
xi − x
hn

)
(xi − x)j+1

)
+ E

(∫
1
hn

∂

∂η
logfε(yi − ηθ(x, xi)− η; θ)

∂2

∂x2
fε(yi − g0(x); θ0)dyiK

(
xi − x
hn

)
(xi − x)j+2

)
= I211 + I212 + I213.

Given that ∂
∂η logfε(yi−ηθ(x, xi)−η; θ) = ∂

∂η logfε(yi−αθ(x)−η; θ)+ ∂2

∂η2 logfε(yi−αθ(x)−η; θ) ∂
∂xαθ(x)(xi−

x) + ∂3

∂η3 logfε(yi − η∗θ(x)− η; θ)
(
∂
∂xαθ(x)

)2
(xi − x)2 where η∗θ(x) ∈ L(αθ(x), ηθ(x, xi)) we can show that

21



under regularity conditions PB and PD we have sup
θ∈Θ,η∈H1,x∈G

|I211 − I22| = O(h2
n), sup

θ∈Θ,η∈H1,x∈G
|I212| =

O(h2
n) and sup

θ∈Θ,η∈H1,x∈G
|I213| = O(h2

n). Therefore, I2 ≤ O(h2
n) which combined with the order of I1 gives

sup
θ∈Θ,x∈G

|Gθ,j(d̂θ(x)) − Gnθj (d̂θ(x))| = op(1) for j = 0. The case for j = 1 can be treated in analogous

manner. Similarly, we obtain the proof of sup
θ∈Θ,x∈G

| ∂∂x α̂θ(x)− ∂
∂xαθ(x)| = op(1).

b) Recall from part a) that d̂θ(x) = −Hnθ(d∗θ(x))−1Gnθ(z) = −
(
s0n s1n

s1n s2n

)−1

Gnθ(z). Note that by

Taylor’s Theorem we can write

sjn(x) =
1
n

n∑
i=1

1
hn

∂2

∂η2
logfε(yi − ηθ(x, xi); θ)K

(
xi − x
hn

)
(xi − x)j

+
1
n

n∑
i=1

1
hn

∂3

∂η3
logfε(yi − η∗θ(x, xi); θ)K

(
xi − x
hn

)
(xi − x)jd∗0,θ(x)

+
1
n

n∑
i=1

1
hn

∂3

∂η3
logfε(yi − η∗θ(x, xi); θ)K

(
xi − x
hn

)
(xi − x)j+1d∗1,θ(x)

= I1 + I2 + I3

where η∗θ(x, xi) = ηθ(x, xi) + λ(d∗0,θ(x) + d∗1,θ(x)(xi − x)) for λ ∈ [0, 1]. We now define,

s0 = fx(x)E
(
∂2

∂η2
logfε(yi − αθ(x); θ)|x

)
s1 = h2

nσ
2
Kf

(1)
x (x)E

(
∂2

∂η2
logfε(yi − αθ(x); θ)|x

)
+ h2

nσ
2
Kfx(x)

∫
∂2

∂η2
logfε(yi − αθ(x); θ)

∂

∂x
fε(yi − αθ(x); θ)dyi

+ h2
nσ

2
Kfx(x)E

(
∂3

∂η3
logfε(yi − αθ(x); θ)|x

)
∂

∂x
αθ(x) = s11 + s12 + s13

s2 = h2
nσ

2
Ks0.

We will show that I2, I3 = op(1) and that I1 converges to sj uniformly in G and Θ. From the proof of

part a) we know that sup
x∈G,θ∈Θ

|d∗0,θ(x)|, sup
x∈G,θ∈Θ

|d∗1,θ(x)| = op(1). Hence, for sup
x∈G,θ∈Θ

|I2| = op(1) we need

to show that I21 = 1
n

∑n
i=1

1
hn

∂3

∂η3 logfε(yi − η∗θ(x, xi); θ)K
(
xi−x
hn

)
(xi − x)j = Op(1) uniformly in G and

Θ.

sup
x∈G,θ∈Θ

|I21| ≤ sup
x∈G,θ∈Θ,η∈H

| 1
n

n∑
i=1

1
hn

∂3

∂η3
logfε(yi − η; θ)K

(
xi − x
hn

)
(xi − x)j

− E(
1
hn

∂3

∂η3
logfε(yi − η; θ)K

(
xi − x
hn

)
(xi − x)j)|

+ sup
x∈G,θ∈Θ,η∈H

|E(
1
hn

∂3

∂η3
logfε(yi − η; θ)K

(
xi − x
hn

)
(xi − x)j)| = I211 + I212.
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From Lemma 1, given PA2 and nh3
n →∞, we have that I211 = Op

(
hjn

(
log(n)
nhn

)1/2
)

. Now observe that

E(
1
hn

∂3

∂η3
logfε(yi − η; θ)K

(
xi − x
hn

)
(xi − x)j) =

∫ ∫
1
hn

∂3

∂η3
logfε(yi − η; θ)fε(yi − g0(xi); θ0)dyiK

(
xi − x
hn

)
(xi − x)jfx(xi)dxi

and since fε(yi − g0(xi); θ0) = fε(yi − g0(x); θ0) + ∂
∂xfε(yi − g0(x∗); θ0)(xi − x) for x∗ ∈ L(xi, x) and

fx(xi) = fx(x) + f
(1)
x (x)(xi − x) + (1/2)f (2)

x (x∗)(xi − x)2 for x∗ ∈ L(xi, x) we can write

I212 ≤ sup
x∈G,θ∈Θ,η∈H

|
∫ ∫

1
hn

∂3

∂η3
logfε(yi − η); θ)fε(yi − g0(xi); θ0)dyiK

(
xi − x
hn

)
× (fx(x)(xi − x)j + f (1)

x (x)(xi − x)j+1 + (1/2)f (2)
x (x∗)(xi − x)j+2)dxi|

+ sup
x∈G,θ∈Θ,η∈H

|
∫ ∫

1
hn

∂3

∂η3
logfε(yi − η; θ)

∂

∂x
fε(yi − g0(x∗); θ0)dyiK

(
xi − x
hn

)
× (fx(x)(xi − x)j+1 + f (1)

x (x)(xi − x)j+2 + (1/2)f (2)
x (x∗)(xi − x)j+3)dxi|

= I2121 + I2122

Since the kernel K is a bounded function with compact support and given regularity conditions PB and

PD, we have that for j = 0, I2121 ≤ sup
x∈G,θ∈Θ,η∈H

|E( ∂
3

∂η3 logfε(yi−η; θ)|x)|(sup
x∈G

fx(x)+h2
nσ

2
Ksup
x∈G
|f (2)
x (x)|) =

O(1), for j = 1, I2121 ≤ sup
x∈G,θ∈Θ,η∈H

|E( ∂
3

∂η3 logfε(yi − η; θ)|x)|(h2
nσ

2
Ksup
x∈G
|f (1)
x (x)| + Ch3

nsup
x∈G
|f (2)
x (x)|) =

O(h2
n), and for j = 2, I2121 ≤ sup

x∈G,θ∈Θ,η∈H
|E( ∂

3

∂η3 logfε(yi−η; θ)|x)|(h2
nσ

2
Ksup
x∈G
|fx(x)|+Ch3

nsup
x∈G
|f (1)
x (x)|+

Ch4
nsup
x∈G
|f (2)
x (x)|) = O(h2

n) Using similar arguments we can establish I2122 = O(hn) if j = 0, I2122 = O(h2
n)

if j = 1 and I2122 = O(h3
n) if j = 2. Combining the orders of I2121, I2122 and I211 we have sup

x∈G,θ∈Θ
|I21| =

Op

((
log(n)
nhn

)1/2
)

+O(1) for j = 0

Op

(
hn

(
log(n)
nhn

)1/2
)

+O(h2
n) for j = 1

Op

(
h2
n

(
log(n)
nhn

)1/2
)

+O(h2
n) for j = 2

and sup
x∈G,θ∈Θ

|I2| =


op

((
log(n)
nhn

)1/2
)

+ o(1) for j = 0

op

(
hjn

(
log(n)
nhn

)1/2
)

+ o(h2
n) for j = 1, 2.

Following analogous arguments and manipulations we obtain,

sup
x∈G,θ∈Θ

|I3| =


op

(
hn

(
log(n)
nhn

)1/2
)

+ o(h2
n) for j = 0

op

(
hj+1
n

(
log(n)
nhn

)1/2
)

+ o(hj+1
n ) for j = 1, 2.
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We now focus on I1. Note that

I1 − sj =
1
n

n∑
i=1

(
1
hn

∂2

∂η2
logfε(yi − ηθ(x, xi); θ)K

(
xi − x
hn

)
(xi − x)j

− E(
1
hn

∂2

∂η2
logfε(yi − ηθ(x, xi); θ)K

(
xi − x
hn

)
(xi − x)j))

+ E(
1
hn

∂2

∂η2
logfε(yi − ηθ(x, xi); θ)K

(
xi − x
hn

)
(xi − x)j))− sj

= I11 + I12 − sj

and sup
x∈G,θ∈Θ

|I11| ≤ Op
(
hjn

(
log(n)
nhn

)1/2
)

by Lemma 1, given PA2 and nh3
n →∞. By use of the expansions

fx(xi) = fx(x) + f
(1)
x (x)(xi − x) + (1/2)f (2)

x (x∗)(xi − x)2 for x∗ ∈ L(xi, x),

fε(yi−g0(xi); θ0) = fε(yi−g0(x); θ0)+
∂

∂x
fε(yi−g0(x); θ0)(xi−x)+(1/2)

∂2

∂x2
fε(yi−g0(x∗); θ0)(xi−x)2

for x∗ ∈ L(xi, x) and ∂2

∂η2 logfε(yi−ηθ(x, xi); θ) = ∂2

∂η2 logfε(yi−αθ(x); θ)+ ∂3

∂η3 logfε(yi−αθ(x); θ) ∂
∂xαθ(x)

(xi−x)+ ∂4

∂η4 logfε(yi−η∗θ(x); θ)
(
∂
∂xαθ(x)

)2
(xi−x)2 for η∗θ(x) ∈ L(αθ(x), ηθ(x, xi)) together with regular-

ity conditions PB and PD and the fact that the kernel K is a bounded function on a compact support gives

sup
x∈G,θ∈Θ

|I1 − sj | =


Op

((
log(n)
nhn

)1/2
)

+O(h2
n) for j = 0

Op

(
hjn

(
log(n)
nhn

)1/2
)

+O(h3
n) for j = 1, 2.

In all, combining the results for I1, I2

and I3 we have that sup
x∈G,θ∈Θ

|sjn−sj | =



Op

((
log(n)
nhn

)1/2
)

+ o(1) for j = 0

Op

(
hn

(
log(n)
nhn

)1/2
)

+ o(h2
n) for j = 1

Op

(
h2
n

(
log(n)
nhn

)1/2
)

+ o(h2
n) for j = 2

We now write d̂θ(x) =

−

((
s0n s1n

s1n s2n

)−1

−
(
s0 s1

s1 s2

)−1
)
Gnθ(z)−

(
s0 s1

s1 s2

)−1

Gnθ(z). We will show that sup
θ∈Θ,x∈G

d̂θ(x)

has the stated order in probability. To that end note that simple algebra manipulations reveal that the ex-

istence of
(
s0n s1n

s1n s2n

)−1

−
(
s0 s1

s1 s2

)−1

depends on liminf
n

inf
θ∈Θ

inf
x∈G
|h−4
n (s0ns2n−s2

1n)(s0s2−s2
1)| > 0

in probability. Given the order in probability results we have obtained for sup
x∈G,θ∈Θ

|sjn − sj | we write

h−4
n (s0ns2n − s2

1n)(s0s2 − s2
1) =

(
1
h2
n
s0s2 + o(1)

)2

and check that inf
x∈G,θ∈Θ

|s0| > 0 and inf
x∈G,θ∈Θ

1
h2
n
|s2| > 0

with inf
x∈G,θ∈Θ

fx(x) > from PB. If, for fixed x and θ, E(logfε(yi − η; θ)|x) has a unique maximum at

η0 which satisfies ∂
∂ηE(logfε(yi − η0; θ)|x) = 0 and ∂2

∂η2E(logfε(yi − η0; θ)|x) < 0, then we know from

the implicit function theorem that if ∂
∂ηE(logfε(yi − η; θ)|x) is continuous on a neighborhood of x,

θ and η0 and | ∂∂η ( ∂∂ηE(logfε(yi − η0; θ)|x))| 6= 0, there exists a unique αθ(x) in the neighborhood of

η0 such that ∂
∂ηE(logfε(yi − αθ(x); θ)|x) = 0 and − ∂2

∂η2E(logfε(yi − αθ(x); θ)|x) > 0 for all x and

24



θ. Hence, we have that inf
x∈G,θ∈Θ

|s0| ≥ inf
x∈G,θ∈Θ

fx(x) inf
x∈G,θ∈Θ

− ∂2

∂η2E(logfε(yi − αθ(x); θ)|x) > 0 pro-

vided that ∂2

∂η2E(logfε(yi − αθ(x); θ)|x) = E( ∂
2

∂η2 logfε(yi − αθ(x); θ)|x), which is verified given that

∂
∂η logfε(yi−αθ(x); θ) is continuously differentiable on an open set of αθ(x) and E(sup

η∈H
| ∂

2

∂η2 logfε(yi−η; θ)|

|x) <∞. In a similar fashion we verify that inf
x∈G,θ∈Θ

1
h2
n
|s2| > 0. Thus, we obtain as a direct consequence

of the order in probability of sup
x∈G,θ∈Θ

|sjn − sj | and the preceding discussion that
(
s0n s1n

s1n s2n

)−1

−(
s0 s1

s1 s2

)−1

=
(
op(1) op(1)
op(1) op(h−2

n )

)
and

(
s0 s1

s1 s2

)−1

=
(
O(1) O(1)
O(1) O(h−2

n )

)
uniformly in Θ and G.

We now show that each element in Gnθ(z) given by

I = sup
θ∈Θ,x∈G

| 1
n

n∑
i=1

1
hn

∂

∂η
logfε(yi−ηθ(x, xi); θ)K

(
xi − x
hn

)
(xi−x)j | = Op(hjn(log(n)/nhn)1/2)+O(h2+j

n )

for j = 0, 1. Since, by Lemma 1

I ≤ sup
θ∈Θ,x∈G

| 1
n

n∑
i=1

1
hn

∂

∂η
logfε(yi − ηθ(x, xi); θ)K

(
xi − x
hn

)
(xi − x)j

− E(
1
hn

∂

∂η
logfε(yi − ηθ(x, xi); θ)K

(
xi − x
hn

)
(xi − x)j)|

+ sup
θ∈Θ,x∈G

|E(
1
hn

∂

∂η
logfε(yi − ηθ(x, xi); θ)K

(
xi − x
hn

)
(xi − x)j)|

= Op(hjn(log(n)/nhn)1/2) + sup
θ∈Θ,x∈G

|E(
1
hn

∂

∂η
logfε(yi − ηθ(x, xi); θ)K

(
xi − x
hn

)
(xi − x)j)|

it suffices to establish that I1 = sup
θ∈Θ,x∈G

|E( 1
hn

∂
∂η logfε(yi − ηθ(x, xi); θ)K

(
xi−x
hn

)
(xi − x)j)| = O(h2+j

n ).

Once again, we use Taylor’s theorem to expand fε(yi− g0(xi); θ0) around x and ∂
∂η logfε(yi− ηθ(x, xi); θ)

around αθ(x) and write for some η∗θ(x) ∈ L(ηθ(x, xi), αθ(x)) and x∗ ∈ L(xi, x)

I1 = sup
θ∈Θ,x∈G

|
∫ ∫

(
∂

∂η
logfε(yi − αθ(x); θ) +

∂2

∂η2
logfε(yi − αθ(x); θ)

∂

∂x
αθ(x)(xi − x)

+
∂3

∂η3
logfε(yi − η∗θ(x); θ)(

∂

∂x
αθ(x))2(xi − x)2)(fε(yi − g0(x); θ0) +

∂

∂x
fε(yi − g0(x); θ0)(xi − x)

+
∂2

∂x2
fε(yi − g0(x∗); θ0)(xi − x)2)K

(
xi − x
hn

)
1
hn
fx(xi)(xi − x)jdxi|

= sup
θ∈Θ,x∈G

|I11 + · · ·+ I19|.

We investigate each of these terms separately:

sup
θ∈Θ,x∈G

|I11| = sup
θ∈Θ,x∈G

|
∫ ∫

∂

∂η
logfε(yi − αθ(x); θ)fε(yi − g0(x); θ0)dyiK

(
xi − x
hn

)
1
hn
fx(xi)

× (xi − x)jdxi| = 0
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since E( ∂∂η logfε(yi − αθ(x); θ)|x) = for all θ and x;

sup
θ∈Θ,x∈G

|I12 + I13| = sup
θ∈Θ,x∈G

|
∫ ∫

(fε(yi − g0(x); θ0)
∂2

∂η2
logfε(yi − αθ(x); θ)

∂

∂x
αθ(x)(xi − x)

+
∂

∂η
logfε(yi − αθ(x); θ)

∂

∂x
fε(yi − g0(x); θ0)dyi(xi − x))K

(
xi − x
hn

)
× 1

hn
fx(xi)(xi − x)jdxi| = 0

given regularity condition PD and the fact that ∂
∂η logfε(yi − αθ(x); θ)fε(yi − g0(x); θ0) is continuously

differentiable at x. Given regularity conditions PB and PD we show that

sup
θ∈Θ,x∈G

|I14| = sup
θ∈Θ,x∈G

|
∫ ∫

∂2

∂η2
logfε(yi − αθ(x); θ)

∂

∂x
αθ(x)

∂

∂x
fε(yi − g0(x); θ0)dyiK

(
xi − x
hn

)
× 1

hn
fx(xi)(xi − x)j+2dxi| = O(h2+j

n ),

sup
θ∈Θ,x∈G

|I15| = sup
θ∈Θ,x∈G

|
∫ ∫

∂2

∂η2
logfε(yi − αθ(x); θ)

∂

∂x
αθ(x)

∂2

∂x2
fε(yi − g0(x∗); θ0)dyi(xi − x)j+3

× K

(
xi − x
hn

)
1
hn
fx(xi)dxi| = O(h3+j

n ),

sup
θ∈Θ,x∈G

|I16| = sup
θ∈Θ,x∈G

|
∫ ∫

∂

∂η
logfε(yi; θ, αθ(x))

∂2

∂x2
fε(yi − g0(x∗); θ0)dyi(xi − x)j+2

× K

(
xi − x
hn

)
1
hn
fx(xi)dxi| = O(h2+j

n ),

sup
θ∈Θ,x∈G

|I17| = sup
θ∈Θ,x∈G

|
∫ ∫

∂3

∂η3
logfε(yi − η∗θ(x); θ)(

∂

∂x
αθ(x))2fε(yi − g0(x); θ0)dyi

× K

(
xi − x
hn

)
1
hn
fx(xi)(xi − x)2+jdxi| = O(h2+j

n ),

sup
θ∈Θ,x∈G

|I18| = sup
θ∈Θ,x∈G

|
∫ ∫

∂3

∂η3
logfε(yi − η∗θ(x); θ)(

∂

∂x
αθ(x))2 ∂

∂x
fε(yi − g0(x); θ0)dyi

× K

(
xi − x
hn

)
1
hn
fx(xi)(xi − x)3+jdxi| = O(h3+j

n ),

sup
θ∈Θ,x∈G

|I19| = sup
θ∈Θ,x∈G

|
∫ ∫

∂3

∂η3
logfε(yi − η∗θ(x); θ)(

∂

∂x
αθ(x))2 ∂

2

∂x2
fε(yi − g0(x∗); θ0)dyi

× K

(
xi − x
hn

)
1
hn
fx(xi)(xi − x)4+jdxi| = O(h4+j

n ).

c) Since
(
s0n s1n

s1n s2n

)
d̂θ(x) = Gnθ(z) and taking a partial derivative ∂

∂θk
on both sides gives

( ∂
∂θk

s0n
∂
∂θk

s1n
∂
∂θk

s1n
∂
∂θk

s2n

)
d̂θ(x) +

(
s0n s1n

s1n s2n

)
∂

∂θk
d̂θ(x) =

∂

∂θk
Gnθ(z)
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and consequently ∂
∂θk

d̂θ(x) =
(
s0n s1n

s1n s2n

)−1
∂
∂θk

Gnθ(z)−
(
s0n s1n

s1n s2n

)−1( ∂
∂θk

s0n
∂
∂θk

s1n
∂
∂θk

s1n
∂
∂θk

s2n

)
d̂θ(x).

Given the results in parts a) and b), if (i) sup
θ∈Θ,x∈G

| ∂∂θk sjn| = Op(hjn) for j = 0, 1, 2 and (ii)

1
n

n∑
i=1

∂

∂θk
(
∂

∂η
logfε(yi; θ, ηθ(x, xi)))K

(
xi − x
hn

)
1
hn

(xi − x)j = Op(hjn(log(n)/nhn)1/2) +O(h2+j
n )

uniformly in G and Θ for j = 0, 1 we have the desired order for ∂
∂θk

d̂θ(x). We start by establishing (i), but

for that purpose we obtain two related results, sup
θ∈Θ,x∈G

| ∂∂θk α̂θ(x)| = Op(1) and sup
θ∈Θ,x∈G

| ∂∂θk
∂
∂x α̂θ(x)| =

Op(1). First, note that
( ∂

∂θk
α̂θ(x)

∂
∂θk

∂
∂x α̂θ(x)

)
= −

(
s0n s1n

s1n s2n

)−1(
T0n

T1n

)
= −

(
Op(1) Op(1)
Op(1) Op(h−2

n )

)−1

(
T0n

T1n

)
uniformly in G and Θ, where Tjn = 1

n

∑n
i=1

∂
∂θk

∂
∂η logfε(yi − α̂θ(x)− ∂

∂x α̂θ(x)(xi − x); θ) 1
hn

K
(
xi−x
hn

)
(xi − x)j for j = 0, 1. Now, we write

Tjn =
1
n

n∑
i=1

∂

∂θk

∂

∂η
logfε(yi − ηθ(x, xi); θ)

1
hn
K

(
xi − x
hn

)
(xi − x)j

+
1
n

n∑
i=1

∂

∂θk

∂2

∂η2
logfε(yi − η∗θ(x, xi); θ)

1
hn
K

(
xi − x
hn

)
(xi − x)j d̂0,θ(x)

+
1
n

n∑
i=1

∂

∂θk

∂2

∂η2
logfε(yi − η∗θ(x, xi); θ)

1
hn
K

(
xi − x
hn

)
(xi − x)j+1d̂1,θ(x) = T1j + T2j + T3j

where η∗θ(x, xi) ∈ L(ηθ(x, xi), α̂θ(x) + ∂
∂x α̂θ(x)(xi − x)). Now we can write

sup
θ∈Θ,x∈G

|T1j | ≤ sup
θ∈Θ,η∈H,x∈G

| 1
n

n∑
i=1

∂

∂θk

∂

∂η
logfε(yi − η; θ)

1
hn
K

(
xi − x
hn

)
(xi − x)j

− E(
∂

∂θk

∂

∂η
logfε(yi − η; θ)

1
hn
K

(
xi − x
hn

)
(xi − x)j)|

+ sup
θ∈Θ,x∈G

|E(
∂

∂θk

∂

∂η
logfε(yi − ηθ(x, xi); θ)

1
hn
K

(
xi − x
hn

)
(xi − x)j)|

= Op(hjn(log(n)/nhn)1/2) + T11j by Lemma 1.

When j = 0, it follows directly from from conditions PD that T11j = O(1). When j = 1, T111 =

sup
θ∈Θ,x∈G

|E( ∂
∂θk

∂
∂η logfε(yi−ηθ(x, xi); θ)

1
hn
K
(
xi−x
hn

)
(xi−x))| and by expanding ∂

∂θk
∂
∂η logfε(yi−ηθ(x, xi); θ)

around αθ(x) and fε(yi − g0(xi); θ0) around x we write

T111 = sup
θ∈Θ,x∈G

|
∫ ∫

(
∂

∂θk

∂

∂η
logfε(yi − αθ(x); θ) +

∂

∂θk

∂2

∂η2
logfε(yi − η∗θ(x); θ)

∂

∂x
αθ(x)(xi − x))

× (fε(yi − g0(x); θ0) +
∂

∂x
fε(yi − g0(x∗); θ0)(xi − x))dyi

1
hn
K

(
xi − x
hn

)
(xi − x)fx(xi)dxi|.

Given the boundedness of K and its compact support, it follows from conditions PB and PD that
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T111 = O(h2
n). Hence, combining the orders obtained we have that

sup
θ∈Θ,x∈G

|T1j | =
{

Op((log(n)/nhn)1/2) +O(1) if j = 0
Op(hn(log(n)/nhn)1/2) +O(h2

n) if j = 1.

For the term T2j , we note that from our previous results that sup
θ∈Θ,x∈G

|d̂0θ(x)| = Op((log(n)/nhn)1/2) +

Op(h2
n) = Op(h2

n). Hence to obtain sup
θ∈Θ,x∈G

|T2j | =
{

Op(1) if j = 0
Op(h2

n) if j = 1 , we need only show that

sup
θ∈Θ,x∈G

| 1
n

n∑
i=1

∂

∂θk

∂2

∂η2
logfε(yi − η∗θ(x, xi); θ)K

(
xi − x
hn

)
1
hn

(xi − x)j | = Op(1).

But this follows from an application of Lemma 1 and condition PD. Similar arguments give sup
θ∈Θ,x∈G

|T3j | ={
Op(1) if j = 0
Op(h2

n) if j = 1 . Combining the orders of T1j , T2j , T3j we conclude that sup
θ∈Θ,x∈G

|T0n| = Op(1)

and sup
θ∈Θ,x∈G

|T1n| = Op(h2
n), which are sufficient to establish that sup

θ∈Θ,x∈G
| ∂∂θk α̂θ(x)| = Op(1) and

sup
θ∈Θ,x∈G

| ∂∂θk
∂
∂x α̂θ(x)| = Op(1). Now, since sjn = 1

n

∑n
i=1

∂2

∂η2 logfε(yi − ηθ(x, xi)− d∗0,θ(x)− d∗1,θ(x)(xi −

x); θ) 1
hn
K
(
xi−x
hn

)
(xi − x)j for j = 0, 1, 2 where d∗0,θ(x) = (1 − λ0)(α̂θ(x) − αθ(x)) and d∗1,θ(x) =

(1− λ1)( ∂
∂x α̂θ(x)− ∂

∂xαθ(x)) and taking partial derivatives we obtain,

∂

∂θk
sjn =

1
n

n∑
i=1

∂3

∂θk∂η2
logfε(yi − ηθ(x, xi)− d∗0,θ(x)− d∗1θ(x)(xi − x); θ)

1
hn
K

(
xi − x
hn

)
(xi − x)j

+
1
n

n∑
i=1

∂3

∂η3
logfε(yi − ηθ(x, xi)− d∗0,θ(x)− d∗1,θ(x)(xi − x); θ)

1
hn
K

(
xi − x
hn

)
(xi − x)j

× (
∂

∂θk
αθ(x) +

∂

∂θk

∂

∂x
αθ(x)(xi − x) + (1− λ0)(

∂

∂θk
α̂θ(x)− ∂

∂θk
αθ(x))

+ (1− λ1)(
∂

∂θk

∂

∂x
α̂θ(x)− ∂

∂θk

∂

∂x
αθ(x)))(xi − x))

= I1j + I2j .

We now write,

sup
θ∈Θ,x∈G

|I1j | ≤ sup
θ∈Θ,η∈H,x∈G

| 1
n

n∑
i=1

∂3

∂θk∂η2
logfε(yi − η; θ)

1
hn
K

(
xi − x
hn

)
(xi − x)j

− E(
∂3

∂θk∂η2
logfε(yi − η; θ)

1
hn
K

(
xi − x
hn

)
(xi − x)j)|

+ sup
θ∈Θ,η∈H,x∈G

E(
∂3

∂θk∂η2
logfε(yi − η; θ)

1
hn
K

(
xi − x
hn

)
(xi − x)j)

= Op

(
hjn(log(n)/nhn)1/2

)
+ sup
θ∈Θ,η∈H,x∈G

E(
∂3

∂θk∂η2
logfε(yi − η; θ)× 1

hn
K

(
xi − x
hn

)
(xi − x)j)

where the last equality follows from Lemma 1. In addition, using regularity conditions PB and PD

we have that sup
θ∈Θ,η∈H,x∈G

E( ∂3

∂θk∂η2 logfε(yi − η; θ) 1
hn
K
(
xi−x
hn

)
(xi − x)j) = O(hjn) and consequently
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sup
θ∈Θ,x∈G

|I1j | = Op(hjn). The term I2j can be written as,

I2j =
∂3

∂η3
logfε(yi − ηθ(x, xi) + d∗0,θ(x) + d∗1,θ(x)(xi − x); θ)

1
hn
K

(
xi − x
hn

)
(xi − x)j(1− λ0)

∂

∂θk
α̂θ(x)

+
∂3

∂η3
logfε(yi − ηθ(x, xi) + d∗0θ(x) + d∗1,θ(x)(xi − x); θ)

1
hn
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(
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hn
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(xi − x)j+1(1− λ1)

∂

∂θk

∂

∂x
α̂θ(x)

+
∂3

∂η3
logfε(yi − ηθ(x, xi) + d∗0θ(x) + d∗1,θ(x)(xi − x); θ)

1
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(
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(xi − x)jλ0
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∂θk
αθ(x)

+
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logfε(yi − ηθ(x, xi) + d∗0θ(x) + d∗1,θ(x)(xi − x); θ)

1
hn
K

(
xi − x
hn

)
(xi − x)j+1λ1

∂

∂θk

∂

∂x
α̂θ(x).

Since we have already established that sup
θ∈Θ,x∈G

| ∂∂θk α̂θ(x)| = Op(1) and sup
θ∈Θ,x∈G

| ∂∂θk
∂
∂x α̂θ(x)| = Op(1)

and given that sup
θ∈Θ,x∈G

| ∂∂θkαθ(x)| < C and sup
θ∈Θ,x∈G

| ∂∂θk
∂
∂xαθ(x)| < C, we need only establish the order

of sup
θ∈Θ,x∈G

| ∂
3

∂η3 logfε(yi − ηθ(x, xi) + d∗0θ(x) + d∗1θ(x)(xi − x); θ) 1
hn
K
(
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)
(xi − x)j | and
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| ∂
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1
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K

(
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hn

)
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It follows directly from Lemma 1, and conditions PB and PD that these terms are of order Op(hjn) and

Op(hj+1
n ). As such, we conclude that sup

θ∈Θ,x∈G
|I2j | = Op(hjn) and consequently sup

θ∈Θ,x∈G
| ∂∂θk sjn| = Op(hjn).

Finally, to complete the proof of c) we must establish (ii), that is, we must show that

I =
1
n

n∑
i=1

∂

∂θk
(
∂

∂η
logfε(yi − ηθ(x, xi); θ))K

(
xi − x
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)
1
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(xi − x)j = Op(hjn(log(n)/nhn)1/2) +O(h2+j
n )

uniformly in G and Θ for j = 0, 1. Observe that we can write
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1
n
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and using Lemma 1 we can immediately conclude that

sup
θ∈Θ,x∈G
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)
1
hn

(xi − x)j

− E(
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(
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+ sup
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Since we assume sup
θ∈Θ,x∈G

| ∂∂θkαθ(x)| < C and sup
θ∈Θ,x∈G

| ∂2

∂θk∂x
αθ(x)| < C, we have by another application of

Lemma 1 that sup
θ∈Θ,x∈G

|I| ≤ Op(hjn(log(n)/nhn)1/2) + sup
θ∈Θ,x∈G

|E( ∂
∂θk

( ∂∂η logfε(yi− ηθ(x, xi); θ)K
(
xi−x
hn

)
1
hn

(xi−x)j)|. Repeated use of Taylor’s Theorem together with the assumption that ∂
∂η logfε(y−αθ(x); θ) is

continuously differentiable at θ and ∂
∂θk

( ∂∂η logfε(y−αθ(x); θ)fε(y−g0(x); θ0) is continuously differentiable

at x gives sup
θ∈Θ,x∈G

|E( ∂
∂θk

( ∂∂η logfε(yi−ηθ(x, xi); θ)K
(
xi−x
hn

)
1
hn

(xi−x)j)| = Op(h2+j
n ) for j = 0, 1, which

concludes the proof of part c).

d) We note that

∂2

∂θlθk
d̂θ(x) =

(
s0n s1n

s1n s2n

)−1 1
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∂
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)
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Given the results in b) and c) it suffices to establish that
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s0n| sup
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and that for j = 0, 1 1
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∑n
i=1
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(
∂
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)
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n ). Then, sup
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log(n)
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(
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and furthermore sup

θ∈Θ,x∈G
| ∂3

∂θj∂θk∂x
α̂θ(x)− ∂3

∂θj∂θk∂x
αθ(x)| = Op

(
h−1
n

(
log(n)
nhn

)1/2
)

+Op (hn) . We

omit the rest of the proof since it follows arguments that mimic those used in part c). However, in addition

to conditions PB and PD, conditions PC must be assumed to complete the proof.
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Appendix 2 - Tables and Figures

Table 1 Bias(×10−1)(B), Standard deviation(S) and Root Mean Squared
Error(R) for ML, PL and PI estimators with g1(x) = 1 + x

(σ2
u, σ

2
v) = (1.379, 0.501) (0.988, 0.642) (0.551, 0.799)

n B S R B S R B S R
300 ML -0.468 0.466 0.467 -0.672 0.484 0.488 -0.561 0.469 0.472

PL -0.797 0.532 0.537 -1.193 0.576 0.587 -0.380 0.521 0.522
PI -1.374 0.552 0.568 -1.655 0.582 0.605 -0.457 0.510 0.511

600 ML -0.013 0.302 0.301 -0.048 0.337 0.337 -0.473 0.367 0.370
σ2
u PL -0.233 0.375 0.375 -0.459 0.426 0.428 -0.504 0.431 0.434

PI -0.542 0.405 0.408 -0.891 0.467 0.475 -0.470 0.435 0.437
900 ML -0.204 0.240 0.240 -0.243 0.281 0.282 -0.594 0.335 0.340

PL -0.366 0.282 0.285 -0.576 0.365 0.369 -0.620 0.402 0.407
PI -0.576 0.304 0.309 -0.929 0.414 0.423 -0.668 0.418 0.423

300 ML 0.065 0.146 0.146 0.192 0.177 0.178 0.086 0.179 0.179
PL 0.076 0.170 0.170 0.286 0.202 0.204 -0.067 0.189 0.189
PI 0.286 0.178 0.180 0.460 0.203 0.208 -0.029 0.185 0.185

600 ML 0.051 0.098 0.098 0.002 0.120 0.120 0.104 0.136 0.136
σ2
v PL 0.077 0.122 0.122 0.102 0.149 0.149 0.074 0.156 0.156

PI 0.190 0.133 0.134 0.266 0.164 0.166 0.074 0.158 0.158
900 ML 0.064 0.075 0.075 0.071 0.097 0.097 0.170 0.124 0.125

PL 0.083 0.089 0.089 0.163 0.127 0.128 0.164 0.145 0.146
PI 0.159 0.096 0.097 0.298 0.145 0.148 0.191 0.151 0.152

Table 2 Bias(×10−1)(B), Standard deviation(S) and Root Mean Squared
Error(R) for ML, PL and PI estimators with g2(x) = 1 + ln(1 + x)

(σ2
u, σ

2
v) = (1.379, 0.501) (0.988, 0.642) (0.551, 0.799)

n B S R B S R B S R
300 ML -0.220 0.429 0.429 -0.763 0.507 0.513 -0.290 0.465 0.466

PL -1.026 0.519 0.529 -1.972 0.607 0.638 -0.704 0.509 0.513
PI -1.800 0.558 0.585 -2.432 0.613 0.659 -0.764 0.490 0.495

600 ML -0.207 0.294 0.294 -0.199 0.350 0.350 0.038 0.366 0.366
σ2
u PL -0.835 0.391 0.400 -1.320 0.463 0.481 -0.774 0.421 0.428

PI -1.258 0.430 0.448 -1.904 0.507 0.541 -1.076 0.434 0.447
900 ML -0.079 0.237 0.237 -0.090 0.278 0.278 -0.363 0.327 0.329

PL -0.425 0.277 0.280 -1.033 0.379 0.392 -1.325 0.385 0.407
PI -0.750 0.323 0.331 -1.630 0.447 0.475 -1.603 0.406 0.436

300 ML -0.083 0.137 0.137 0.227 0.171 0.173 -0.023 0.180 0.180
PL 0.076 0.170 0.170 0.544 0.210 0.217 0.032 0.191 0.191
PI 0.355 0.185 0.188 0.717 0.213 0.224 0.065 0.186 0.186

600 ML 0.066 0.094 0.094 0.041 0.119 0.119 -0.066 0.139 0.139
σ2
v PL 0.218 0.127 0.129 0.383 0.161 0.165 0.178 0.158 0.159

PI 0.372 0.141 0.146 0.603 0.178 0.188 0.297 0.163 0.166
900 ML 0.030 0.077 0.077 0.053 0.093 0.093 0.133 0.122 0.122

PL 0.098 0.089 0.089 0.343 0.132 0.136 0.451 0.142 0.149
PI 0.214 0.105 0.107 0.567 0.157 0.167 0.561 0.148 0.159
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Table 3 Bias(×10−1)(B), Standard deviation(S) and Root Mean Squared
Error(R) for ML, PL, and PI estimators with g3(x) = 1− 1

1+x

(σ2
u, σ

2
v) = (1.379, 0.501) (0.988, 0.642) (0.551, 0.799)

n B S R B S R B S R
300 ML -0.139 0.466 0.466 -0.479 0.498 0.500 0.203 0.481 0.481

PL -1.096 0.582 0.592 -1.782 0.593 0.619 -0.546 0.531 0.533
PI -1.755 0.600 0.625 -2.427 0.597 0.644 -0.912 0.525 0.532

600 ML -0.136 0.282 0.282 -0.466 0.354 0.357 -0.509 0.373 0.376
σ2
u PL -0.891 0.383 0.393 -1.927 0.476 0.513 -1.681 0.412 0.445

PI -1.369 0.439 0.459 -2.558 0.513 0.573 -1.977 0.424 0.467
900 ML -0.122 0.226 0.226 0.029 0.278 0.278 -0.371 0.322 0.323

PL -0.743 0.293 0.302 -1.307 0.397 0.417 -1.407 0.366 0.391
PI -1.104 0.334 0.352 -1.986 0.459 0.500 -1.753 0.384 0.422

300 ML 0.005 0.137 0.137 0.111 0.174 0.174 -0.115 0.175 0.175
PL 0.219 0.181 0.182 0.469 0.209 0.214 0.060 0.193 0.193
PI 0.453 0.190 0.195 0.707 0.213 0.225 0.198 0.191 0.191

600 ML 0.015 0.088 0.088 0.084 0.125 0.126 0.104 0.135 0.135
σ2
v PL 0.203 0.125 0.127 0.539 0.168 0.176 0.477 0.149 0.157

PI 0.377 0.145 0.150 0.773 0.183 0.199 0.596 0.155 0.166
900 ML -0.004 0.071 0.071 -0.013 0.094 0.094 0.117 0.118 0.118

PL 0.151 0.095 0.096 0.411 0.139 0.144 0.457 0.134 0.141
PI 0.277 0.110 0.113 0.663 0.164 0.177 0.592 0.142 0.154

Table 4 Bias(×10−1)(B), Standard deviation(S) and Root Mean Squared
Error(R) for ML, PL, and PI estimators with g4(x) = 1 + 0.5arctan(20(x− 0.5))

(σ2
u, σ

2
v) = (1.379, 0.501) (0.988, 0.642) (0.551, 0.799)

n B S R B S R B S R
300 ML -0.190 0.437 0.437 -0.080 0.473 0.473 -0.128 0.453 0.453

PL -0.543 0.509 0.511 -0.209 0.533 0.533 -0.275 0.507 0.508
PI -1.228 0.538 0.552 -0.813 0.542 0.548 -0.373 0.484 0.485

600 ML -0.222 0.314 0.314 -0.447 0.344 0.347 -0.290 0.372 0.372
σ2
u PL -0.399 0.366 0.368 -0.622 0.419 0.423 -0.427 0.427 0.429

PI -0.791 0.394 0.401 -0.977 0.447 0.457 -0.530 0.428 0.431
900 ML -0.218 0.246 0.246 -0.399 0.300 0.303 -0.305 0.309 0.310

PL -0.301 0.269 0.271 -0.735 0.365 0.372 -0.433 0.353 0.356
PI -0.547 0.289 0.294 -1.217 0.425 0.441 -0.749 0.381 0.388

300 ML 0.025 0.137 0.137 -0.051 0.167 0.167 -0.040 0.175 0.175
PL 0.056 0.160 0.159 -0.101 0.188 0.188 -0.069 0.192 0.192
PI 0.298 0.171 0.174 0.115 0.195 0.195 -0.038 0.184 0.184

600 ML 0.029 0.095 0.095 0.133 0.120 0.121 0.020 0.143 0.143
σ2
v PL 0.037 0.113 0.113 0.154 0.143 0.143 0.024 0.160 0.160

PI 0.177 0.123 0.124 0.289 0.154 0.156 0.058 0.160 0.160
900 ML 0.048 0.079 0.079 0.127 0.105 0.106 0.086 0.117 0.117

PL 0.041 0.088 0.088 0.211 0.128 0.129 0.103 0.131 0.132
PI 0.129 0.095 0.096 0.390 0.150 0.155 0.220 0.141 0.143
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Figure 1: Simulated dataset n = 300, g4(x) = 1 +
0.5arctan(20(x− 0.5)) and (σ2

u, σ
2
v) = (1.379, 0.501).

Figure 2: Cost frontier estimated with PL, PI, and
ML.

Figure 3: Marginal cost estimated with PL, PI, and
ML.

Figure 4: Plot of estimated efficiencies with PL, PI,
and ML against cost Ln(C/Pf ).
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