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1 Introduction

Conditional value-at-risk (CVaR) and conditional expected shortfall (CES) are two of the most used synthetic

measures of market risk (McNeil and Frey (2000), Duffie and Singleton (2003), Engle and Manganelli (2004),

Cai and Wang (2008)). From a statistical perspective these risk measures have straightforward definitions.

Let {Yt} denote a stochastic process representing the returns1 on a given portfolio, stock or market index,

where t ∈ Z indexes a discrete measure of time and FYt|Xt=x denote the conditional distribution of Yt given

Xt = x. The stochastic vector Xt ∈ R
d normally includes lags {Yt−`}1≤`≤m for some m ∈ N as well as

other relevant conditioning random variables. Then, for a ∈ (0, 1), a-CVaR(x) is defined to be the a-quantile

associated with FYt|Xt=x and a-CES(x) is defined to be the conditional expectation of Yt given that Yt

exceeds the a-CVaR(x) associated with FYt|Xt=x, i.e., a-CES(x)=E(Yt|Yt > a-CVaR(x)).

Usually, practical interest focuses on estimating a-CVaR(x) and a-CES(x) for values of a in the vicinity

of 1. In the conditional (regression) quantile literature this is commonly referred to as estimation of extremal

or high-order quantiles (Chernozhukov and Umantsev (2001), Chernozhukov (2005), Martins-Filho et al.

(2012a)). For example, the Capital Adequacy Directive from the Bank of International Settlements requires

the risk capital of a bank to be sufficient to cover losses on its portfolio (over a 10-day holding period) with

a probability a = 0.99. In such cases, a-CVaR(x), a-CES(x) and their estimation depend critically on the

nature of the upper tail of FYt|Xt=x. A seminal contribution to the study of distribution tail behavior is

Pickands (1975). There, it is shown that for any distribution F in the domain of attraction of an extremal

distribution (Leadbetter et al. (1983), Resnick (1987)), denoted here by F ∈ D(E), for some fixed k and

function σ(ξ)

F ∈ D(E) ⇐⇒ lim
ξ→u∞

sup
0<u<u∞−ξ

|Fξ(u) −G(u; 0, σ(ξ), k)| = 0, (1)

where Fξ(u) = F (u+ξ)−F (ξ)
1−F (ξ) , u∞ = sup{x : F (x) < 1} ≤ ∞ is the upper endpoint of F , u∞ > ξ ∈ R and G

1Let Pt denote the price of a financial asset at time t. Throughout this paper, a “return” Yt is given by Yt = −log Pt
Pt−1

. We

adopt this definition because in practice, regulators, portfolio and risk managers are mostly concerned with the distribution of
losses, i.e., negative values of log Pt

Pt−1
.
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is a generalized Pareto distribution (GPD), i.e.,

G(u;µ, σ, k) =

{
1 − (1 − k(u− µ)/σ)1/k if k 6= 0, σ > 0
1 − exp(−(u− µ)/σ) if k = 0, σ > 0

(2)

with µ ≤ u < ∞ if k ≤ 0 and µ ≤ u ≤ σ/k if k > 0. The equivalence in (1) suggests that G is a suitable

parametric approximation for the upper tail of F provided that F belongs to the domain of attraction of an

extremal distribution. Thus, as argued in Davis and Resnick (1984) and Smith (1987), it is reasonable to

estimate the upper tail of F and associated functionals, such as extremal quantiles, based on the parametric

approximation provided by G.

In this paper we take this approach and use (1) to motivate estimators for a-CVaR(x) and a-CES(x) for

location-scale models of {Yt}. Specifically, we assume that the process {Yt} follows

Yt = m(Xt) + h1/2(Xt)εt, (3)

where m and h are nonparametric functions defined on the range of Xt and εt is independent of Xt with

distribution F satisfying E(εt) = 0, V (εt) = 1. The model can be viewed as a nonparametric generalization

of the autoregressive conditionally heteroscedastic (ARCH) structure and has been studied by, among others,

Masry and Tjostheim (1995), Embrechts et al. (1997), Härdle and Tsybakov (1997), Masry and Fan (1997)

and Fan and Yao (1998). Under (3), for a ∈ (0, 1),

a-CVaR(x) ≡ qYt|Xt=x(a) = m(x) + h1/2(x)q(a) (4)

and

a-CES(x) ≡ E
(
Yt|Yt > qYt|Xt=x(a)

)
= m(x) + h1/2(x)E(εt|εt > q(a)), (5)

where qYt|Xt=x(a) denotes the conditional a-quantile associated with FYt|Xt=x and q(a) is the a-quantile

associated with F . If F ∈ D(E) and a random sample {εt}n
t=1 were observed, q(a) could be estimated

by q̂(a) based on the parametric approximation provided by G using the maximum likelihood estimator

proposed and studied by Smith (1987). In this case, q̂(a) could be combined with nonparametric estimators

m̂(x) and ĥ(x) to produce estimators for a-CVaR(x) and a-CES(x). In practice, {εt}n
t=1 is not observed,
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but given a sample {(Yt,X
T
t )}n

t=1 (xT indicates the transposition of the vector x) and estimators m̂(x) and

ĥ(x), it is possible to construct a sequence of standardized nonparametric residuals

ε̂t =

{
Yt−m̂(Xt)

ĥ1/2(Xt)
, if ĥ(Xt) > 0

0, if ĥ(Xt) ≤ 0
(6)

for t = 1, · · · , n that can be used to produce feasible estimators for a-CVaR(x) and a-CES(x). This two-

stage estimation procedure - first, obtain standardized residuals from the estimation of m and h; second, use

the residuals to obtain estimators of q(a) and E(εt|εt > q(a)) that can then be used to produce estimators

for a-CVaR(x) and a-CES(x) - was, to our knowledge, first proposed by McNeil and Frey (2000) in the

case where m and h are parametrically indexed by a finite dimensional parameter. They provided no

asymptotic characterization or finite sample properties for the resulting estimators of conditional value-at-

risk or expected shortfall. However, their backtesting exercise on several time series of selected market indexes

provided encouraging evidence of the estimators’ performance. Martins-Filho and Yao (2006) generalized

the estimation framework of McNeil and Frey to the case where m and h are nonparametric functions.

They demonstrate via an extensive Monte Carlo simulation, and through backtesting, that accounting for

nonlinearities in m and h can be important in improving the estimators’ finite sample performance. Martins-

Filho et al. (2012a) provide the first asymptotic characterization of the two stage estimation procedure for

a-CVaR for a model with constant and unknown variance (h(x) = θ) and a process {(Yt,X
T
t )}t∈Z that is

independent and identically distributed (IID). Their results, however, are of limited use in empirical finance

where the IID assumption is untenable and h(·) is not adequately modeled as a constant function of t.

Furthermore, by restricting attention to the case where the conditioning variables belong to R, they failed

to elucidate the restrictions that the dimension d may impose on nonparametric estimation of conditional

value-at-risk and expected shortfall.

Here, we extend Martins-Filho et al. (2012a) in three important directions: a) we relax the assumption

that {(Yt,X
T
t )}t∈Z is an IID process and instead consider the case where the process is strictly stationary

and strong mixing of a suitable order. This allows for the presence of lagged values of Yt in the conditioning

vector Xt, a possibility not covered in our earlier paper and of significant practical interest; b) we allow
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the conditional variance h to be a nonconstant function of Xt; c) we consider the estimation of a-CES(x).

We establish consistency and asymptotic normality of the maximum likelihood estimators for q(a) and

E(εt|εt > q(a)) based on the GPD approximation in (1) and use these results to obtain consistency and

asymptotic normality of our proposed estimators for a-CVaR(x) and a-CES(x).

Nonparametric estimation of a-CVaR(x) and a-CES(x) has been previously considered in various con-

texts. Since a-CVaR(x) is a conditional quantile, estimation can naturally proceed using nonparametric

regression quantiles as in Yu and Jones (1998), Cai (2002) or Cai and Wang (2008). These estimators for

a-CVaR(x) can then be used to produce nonparametric estimators for a-CES(x) as in Scaillet (2004), Cai

and Wang (2008) and Kato (2012). Our approach differs from that of the extant literature in that we

explore the approximation provided in (1) under the location-scale structure to improve estimation and to

treat cases where a is in the vicinity of 1. Reliance on the assumption that the stochastic process {Yt} can be

described by (3) implies that the estimators defined in the aforementioned papers may be used for processes

where our procedure may not. Nonetheless, the benefits of using the additional information provided by (1)

regarding tail behavior when a is large are clearly revealed in our Monte Carlo study (see section 4), where

our estimation procedure is shown to outperform that of Cai and Wang (2008).

Besides this introduction, this paper has five more sections and two appendices. Section 2 provides a

detailed description and discussion of the estimation procedure. Section 3 contains a list of assumptions and

the main Theorems that describe the asymptotic behavior of the relevant estimators. Section 4 contains a

Monte Carlo study that sheds light on the finite sample behavior of the estimators and contrasts its perfor-

mance with the estimators proposed by Cai and Wang (2008). Section 5 provides an empirical application

in which a-CVaR and a-CES are estimated using time series of returns on future contracts for five widely

traded agricultural commodities. A backtesting exercise is also conducted for each of the time series. Section

6 provides concluding remarks and gives some directions for future research. Tables and figures associated

with the Monte Carlo study and the empirical exercise are provided in appendix 1. All proofs and supporting

lemmas are provided in appendix 2.
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2 Estimation of a-CVaR and a-CES

As suggested in the introduction, our estimation procedure has two main stages. In the first stage, specific

estimators for m̂(x) and ĥ(x) are required to define of ε̂t in (6). Given a sample {(Yt,X
T
t )}n

t=1 we consider the

local linear (LL) estimator m̂(x) ≡ β̂0 where (β̂0 , β̂) ≡ argmin
β0,β

∑n
t=1

(
Yt − β0 − (XT

t − xT )β
)2
K1

(
Xt−x

h1n

)
,

K1(·) is a multivariate kernel function and h1n > 0 is a bandwidth.2 For the estimation of h we follow

the procedure proposed in Fan and Yao (1998). First, obtain a sequence {Ût ≡ Yt − m̂(Xt)}n
t=1 and define

ĥ(x) ≡ η̂ where (η̂, η̂1) ≡ argmin
η,η1

∑n
t=1

(
Û2

t − η − (XT
t − xT )η1

)2

K2

(
Xt−x

h2n

)
, K2(·) is a multivariate kernel

function and h2n > 0 is a bandwidth, both potentially different from those used in the definition of m̂. The

estimators m̂(Xt) and ĥ(Xt) are used to produce the sequence of standardized nonparametric residuals given

in (6).

The second stage, which is based on the equivalence in (1), is more intricate and requires additional

notation and motivation. In particular, it is useful to draw a parallel to the work of Smith (1987) by

discussing estimation for the case where the εt are observed. Since the GPD is a suitable approximation

for the upper tail of F , it is intuitively reasonable to use only sufficiently large values of εt to estimate its

parameters. Therefore, a key aspect of the estimation is the determination of either a threshold value ξ,

such that only its exceedances are used to estimate the parameters of the GPD, or more directly, a number

N < n of the largest values of εt to be used in the estimation.3 For an observed sequence {εt}n
t=1, define the

ascending order statistics {ε(t)}n
t=1 and for some fixed (nonstochastic) N < n define the excesses over ε(n−N)

by {Zi}N
i=1 = {ε(n−N+i) − ε(n−N)}N

i=1. Ascending order statistics can be viewed as a-quantiles associated

with empirical distributions. As such, we can write

qn(a) =

{
ε(na) if na ∈ N

ε([na]+1) if na /∈ N

where qn(a) is the a-quantile associated with Fn(u) = 1
n

∑n
t=1 χ(εt) where χ(ε) =

{
1 if ε ≤ u
0 if ε > u

. Conse-

2Since Xt may contain up to m lagged values of Yt, the effective sample size used in estimation is n − m. However, for
notational ease, we assume that Y0, Y

−1, · · · are observed as needed to define the relevant sums of length n.
3It should be clear that when a threshold is chosen, for any given sample, the number of exceedances is uniquely determined,

but the choice of N does not uniquely determine a threshold.
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quently, by defining an = 1 − N
n we can write

{Zi}N
i=1 =

{
ε(n−N+i) − qn (an)

}N

i=1
. (7)

Thus, for a given sample size n and a choice of N (or equivalently an) we consider the threshold qn(an)

which will be exceeded by exactly the N largest elements of {εt}n
t=1. The sequence {Zi}N

i=1 can then be

used to estimate the parameters of the GPD. Note that in this setting, for a given sample, the choice of N

uniquely determines the threshold qn(an).

In our case we only observe {ε̂t}n
t=1, therefore we must produce an estimated sequence of exceedances

with typical element that will be denoted by Z̃i. Perhaps the most natural procedure would be to define

Z̃i = ε̂(n−N+i) − q̂n (an) where q̂n(an) is the an-quantile associated with the empirical distribution of the

nonparametric residuals {ε̂t}n
t=1. However, it is well known from the unconditional distribution and quantile

estimation literature (Azzalini (1981), Falk (1985), Yang (1985), Bowman et al. (1998), Martins-Filho and

Yao (2008)) that smoothing beyond that attained by the empirical distribution can produce significant gains

in finite samples with no impact on asymptotic rates of convergence. Consequently, we use the sequence of

standardized nonparametric residuals {ε̂t}n
t=1 to estimate F by integrating a Rosenblatt kernel estimator for

the density f associated with F , i.e.,

F̃ (u) =
1

nh3n

n∑

t=1

∫ u

−∞
K3

(
ε̂t − y

h3n

)
dy (8)

where K3(·) is a univariate kernel and h3n > 0 is a bandwidth. We define a preliminary estimator q̃(a) for

q(a) as the solution for F̃ (q̃(a)) = a. Therefore, we construct the observed sequence of exceedances to be used

in the estimation of the parameters of the GPD in the second stage as {Z̃i}Ns

i=1 =
{
ε̂(n−Ns+i) − q̃(an)

}Ns

i=1
.

It should be noted that as in the case where εt is observed, N (or an) is fixed and the threshold q̃(an)

is stochastic. However, here the number of residuals Ns that exceed q̃(an) may be different from N for

any finite n and is stochastic (sample dependent). As will be seen in section 3, this stochasticity is fully

accounted for in our results and the discrepancy between N and Ns is shown to be of no consequence for

the asymptotic properties of our proposed estimators. Throughout the paper, the study of the estimators’

asymptotic behavior will require that 0 < an < a < 1 and that an → 1 as n→ ∞. Put differently, N should
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be chosen such that 1 −N/n < a and N/n → 0 as n→ ∞.

The sequence {Z̃i}Ns

i=1 is used to obtain maximum likelihood estimators for σ and k based on the density

g(z; σ, k) = 1
σ

(
1 − kz

σ

)1/k−1
associated with the GPD distribution when µ = 0. In particular, we consider a

solution (σ̃q̃(an), k̃) for the likelihood equations

∂

∂σ

1

N

Ns∑

i=1

log g(Z̃i; σ, k) = 0 and
∂

∂k

1

N

Ns∑

i=1

log g(Z̃i; σ, k) = 0. (9)

Based on (1) we can write Fq̃(an)(y) =
F (y+q̃(an))−F (q̃(an))

1−F (q̃(an)) ≈ 1 −
(
1 − ky

σq̃(an)

)1/k

where σ has a subscript

q̃(an) to make explicit the fact that it depends on the threshold q̃(an). Without loss of generality, for

a ∈ (an, 1), we write q(a) = q̃(an) + yq̃(an),a where by construction F (q̃(an) + yq̃(an),a) = a. Hence, we have

1 − a

1 − F (q̃(an))
≈
(

1 − k yq̃(an),a

σq̃(an)

)1/k

. (10)

If F is estimated by F̃ , and noting that 1 − F̃ (q̃(an)) = 1 − an, we write yq̃(an),a ≈ σq̃(an)

k

(
1 −

(
1−a
1−an

)k
)

.

The approximation in (10) is the basis for our proposed estimator q̂(a) for q(a), which is given by

q̂(a) = q̃(an) +
σ̃q̃(an)

k̃

(
1 −

(
1 − a

1− an

)k̃
)
. (11)

We note that if the exceedances εt − q(a) over the quantile q(a) were distributed exactly as g(z; σ, k), then

integration by parts would give E(εt|εt > q(a)) = q(a) + σ
1+k . In the general case where the exceedances

are not distributed as g(z; σ, k), but F satisfies conditions FR1 and FR2 with α > 1 in section 3, it can be

easily shown (Lemma 7) that E(εt|εt > q(a)) = q(a)
1+k (1 + o(1)) . This motivates our proposed estimator for

E(εt|εt > q(a)) which is given by

Ê(εt|εt > q(a)) =
q̂(a)

1 + k̃
. (12)

Combining the estimators m̂, ĥ, (11), (12) into equations (4), (5) we define the estimators q̂Yt|Xt=x(a) =

m̂(x) + ĥ1/2(x)q̂(a) and Ê
(
Yt|Yt > qYt|Xt=x(a)

)
= m̂(x) + ĥ1/2(x)Ê(εt|εt > q(a)) for a-CVaR(x) and a-

CES(x) associated with the series {Yt} and the conditioning set {Xt = x}. In the next section we study the

asymptotic behavior of these estimators.
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3 Asymptotic characterization of the proposed estimators

3.1 Preliminaries

We start by discussing the seminal results in Smith (1985, 1987) which are the basis for understanding

the asymptotic characterization of our estimators and our method of proof. Consider nonstochastic N and

threshold q(an) used to define a sequence of exceedances {Z′
i}N1

i=1 where Z′
i = ε(n−N1+i) − q(an).4 Define

(σ̌q(an), ǩ) as a solution for the likelihood equations

∂

∂σ

1

N

N1∑

i=1

log g(Z′
i; σ, k) = 0 and

∂

∂k

1

N

N1∑

i=1

log g(Z′
i; σ, k) = 0 (13)

associated with L′
N (σ, k) = 1

N

∑N1

i=1 log g(Z
′
i ; σ, k). Smith (1985, Theorem 3.2) showed that as N, q(an) →

∞, if F satisfies

FR1: F ∈ D(Φα), that is, F belongs to the domain of attraction of a Fréchet distribution with index α > 0,

FR2: L(x) = xα(1 − F (x)) satisfies L(tx)
L(x)

= 1 + k(t)φ(x) + o(φ(x)) as x → ∞ for each t > 0, where

0 < φ(x) → 0 as x→ ∞ is regularly varying with index ρ ≤ 0 and k(t) = C
∫ t

1
uρ−1du, for a constant C,

and {Z′
i}N1

i=1 is an independent and identically distributed sequence from Fq(an), then provided that

C

α− ρ
N1/2φ(q(an)) → µ ∈ R,

the estimator (σ̌q(an), ǩ) is such that for k0 = − 1
α and σN = q(an)

α

√
N

(
σ̌q(an)

σN
− 1

ǩ − k0

)
d→ N

((
µ(1−k0)(1+2kρ)

1−k0+k0ρ
µ(1−k0)k0(1+ρ)

1−k0+k0ρ

)
, H−1

)

where H = 1
(1−2k0)(1−k0)

(
1 − k0 −1
−1 2

)
.5 As observed by Smith, the use of this theorem normally involves

taking either N or q(an) as being stochastic and the other as being nonstochastic. Throughout this paper,

as in example 2 in Smith (1987, pp. 1180-1181), we take N as nonstochastic and let the threshold be sample

dependent (stochastic). When {εt}n
t=1 is observed and the threshold q(an) is estimated by the empirical

quantile qn(an), the estimation of the parameters of the GPD is conducted by using the sequence {Zi}N
i=1

4Note that N1 may be different from N .
5Substituting k0 = −α−1 shows that H is identical to the homonymous matrix in equation (18).
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in (7). In this case the estimators (σ̂qn(an), k̂) are defined as solutions for

∂

∂σ

1

N

N∑

i=1

log g(Zi; σ, k) = 0 and
∂

∂k

1

N

N∑

i=1

log g(Zi; σ, k) = 0 (14)

associated with the likelihood function LN (σ, k) = 1
N

∑N
i=1 log g(Zi; σ, k). Accounting for the stochasticity

of qn(an) requires a further restriction on the class of distributions F we consider. Specifically, as in Davis

and Resnick (1984) we assume,

FR1’: F has a strictly positive density denoted by f and for some α > 0 we have limx→∞
xf(x)

1−F (x) = α.

We note that by Corollary 1.12 and Proposition 1.15 c) in Resnick (1987) FR1’ implies FR1, assuring that

under FR1’ F ∈ D(Φα), with α = −1/k0 and k0 < 0. There are several distributions that can be easily shown

to satisfy FR1’, e.g. Pareto, Cauchy, Burr, Log-Gamma and Lévy. However, for our study, the most relevant

example is Student’s-t distribution with degree of freedom v > 2, which satisfies the limit condition in FR1’

with α = v as well as the zero expectation and unit variance (when suitably scaled) assumed following (3).

Also, we note that restricting F to D(Φα) is not entirely arbitrary. If F ∈ D(Ψα), the domain of attraction

of a (reverse) Weibull distribution, then it must be that u∞ is finite, a restriction which is not commonly

placed on the regression error ε. The only other possibility is F in the domain of attraction of a Gumbel

distribution, F ∈ D(Λ). In this case, whenever u∞ is not finite we have that 1−F is rapidly varying, a case

we will avoid.

It will be convenient to reparametrize the likelihood functions and represent arbitrary values σ and k as

σ = σN(1 + τ1δN ), k = k0 + τ2δN for τ1, τ2 ∈ R with δN → 0 as N → ∞ and some σN and k0. Hence, we

will write the likelihood function L′
N (σ, k) as L′

TN (τ1, τ2) = 1
N

∑N1

i=1 log g(Z
′
i; σN(1 + τ1δN ), k0 + τ2δN ). It is

evident that L′
TN (0, 0) = L′

N(σN , k0) and for (σ̌q(an), ǩ) that satisfies (13), there are τ̌1 and τ̌2 that satisfy

1

σNδN

∂L′
TN

∂τ1
(τ1, τ2) = 0 and

1

δN

∂L′
TN

∂τ2
(τ1, τ2) = 0. (15)

Similarly, we write LTN(τ1, τ2) = 1
N

∑N
i=1 log g(Zi; σN(1 + τ1δN ), k0 + τ2δN ) and observe that for (σ̂q(an), k̂)

that satisfies (14), there are τ̂1 and τ̂2 that satisfy

1

σNδN

∂LTN

∂τ1
(τ1, τ2) = 0 and

1

δN

∂LTN

∂τ2
(τ1, τ2) = 0. (16)
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The existence and characterization of a solution (τ̂1, τ̂2) for equation (16) as maxima for LTN is accomplished

through Theorem 1 where we show that the likelihood equations in (15) and (16) are uniformly asymptotically

equivalent in probability.

Theorem 1. Assume FR1’ and FR2. Then, as n→ ∞

1

σNδN

∂LTN

∂τ1
(τ1, τ2) −

1

σNδN

∂L′
TN

∂τ1
(τ1, τ2) = op(1) and

1

δN

∂L′
TN

∂τ2
(τ1, τ2) −

1

δN

∂LTN

∂τ2
(τ1, τ2) = op(1)

Using Theorem 1 and Lemma 5 in Smith (1985) we can conclude that 1
δ2

N
LTN(τ1, τ2) has, with probability

approaching 1, a local maximum (τ̂1, τ̂2) on ST = {(τ1, τ2) : τ2
1 + τ2

2 < 1} at which 1
δ2

N

∂
∂τ1

LTN (τ̂1, τ̂2) = 0

and 1
δ2

N

∂
∂τ2

LTN (τ̂1, τ̂2) = 0. Put differently, there exists, with probability approaching 1, a local maximum

(σ̂qn(an) = σN(1 + τ̂1δN ), k̂ = k0 + τ̂2δN ) on SR = {(σ, k) : ‖( σ
σN

− 1, k− k0)‖E < δN} that satisfies the first

order conditions in equation (14).6 Hence, Theorem 3.2 in Smith (1987) holds when the threshold q(an) is

estimated by qn(an). We note that Smith (1987) makes the same claim in the aforementioned example 2,

but provides no detailed proof.

The first step in the study of the asymptotic behavior of our estimators is to establish that a solution

for equation (9) exists and corresponds to a local maximum of the likelihood function. Our strategy will

be to show, similar to Theorem 1, that the likelihood equations associated with the reparametrized L̃TN =

1
N

∑Ns

i=1 log g(Z̃i; σN(1 + τ1δN ), k0 + τ2δN ) are uniformly asymptotically equivalent in probability to those

associated with LTN . The proof is, of course, similar to that of Theorem 1, but with the added complication

that the nonparametric residual sequence {ε̂t}n
t=1 is used to construct the exceedances in L̃TN . The proof

is also close to that in Martins-Filho et al. (2012a), but the stochastic model we consider here is far more

general, allowing for dependent data that are strong mixing of suitable order and a fully nonparametric scale

function. Before we give a statement of the theorem, in the next subsection we list a series of assumptions

that will hold throughout the paper. Additional regularity conditions that are needed in specific theorems

and lemmas are listed in their enunciation.

6‖x‖E denotes the Euclidean norm of the vector x.

10



3.2 Assumptions

As in Smith (1987) we retain FR2 and assume that {εt}n
t=1 forms an independent and identically distributed

sequence of random variables with absolutely continuous and strictly increasing distribution F . However,

additional assumptions are needed to assure that m̂(x) and ĥ(x) converge uniformly in probability to m(x)

and h(x) at suitable rates.

We adopt the following notation in our assumptions and proofs: a) 0 < C < ∞ will represent an

inconsequential and arbitrary constant taking different values; b) G denotes a compact subset of Rd; c) [x]

denotes the integer part of x ∈ R; d) P (A) denotes the probability of event A associated with a probability

space (Ω,F , P ) or a probability measure, depending on the context; e) for any function m : R
d → R

where s order partial derivatives exist, we denote by Dim(x) : Rd → R the first order partial derivatives

of m with respect to its ith argument for i = 1, · · · , d and the s-order partial derivatives are denoted by

Di1···ism(x) : Rd → R for i1, · · · , is = 1, · · · , d. The gradient of the the function m is denoted by m(1)(x)

and its Hessian by m(2)(x); f) the joint density of the vector of conditioning variables Xt is denoted by

fX(x).

Assumption A1: K(x) : R
d → R is a product kernel K(x) =

∏d
j=1 K(xj) with K(x) : R → R such

that: 1) |K(x)| ≤ C for all x ∈ R; 2) For some C, K(x) = 0 whenever |x| > C; 3)
∫
K(x)dx = 1,

∫
xjK(x)dx = 0 for j = 1, · · · , s− 1,

∫
xsK(x)dx = µK,s <∞; 4) K satisfies a Lipschitz condition of order 1,

that is, for all x, y ∈ R with x 6= y |K(x)− K(y)| ≤ C|x− y| for some C; 5) The kernel K3 satisfies 1), 2) is

symmetric and twice continuously differentiable in R,
∫
K3(x)dx = 1,

∫
xjK3(x)dx = 0 for j = 1, · · · , m1−1,

∫
xm1K3(x)dx < ∞ and for all x, y ∈ R with x 6= y we have

∣∣ d
dx
K3(x) − d

dx
K3(y)

∣∣ ≤ C |x − y| for some

C > 0.

The kernel K(x) is used to construct Ki(x) : Rd → R where Ki(x) =
∏d

j=1 K(xj) for i = 1, 2. Further-

more, for j = 1, · · · , d we have
∫
Rd Ki(x)dx = 1,

∫
xl

jKi(x)dx = 0 for l = 1, · · · , s− 1,
∫
xs

jKi(x)dx = µK,s

and
∫
xi1 · · ·xirKi(x)dx = 0 whenever r < s or ij 6= ik for some j, k ≤ s. The order s for K1 and K2 are

needed to establish that the biases for m̂ and ĥ are, respectively, of order O(hs
in) for i = 1, 2 in Lemmas 2
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and 3. The order m1 for K3 is necessary in the proof of Lemma 4. All other assumption are common in the

nonparametric estimation literature and are easily satisfied by a variety of commonly used kernels.

Assumption A2: 1) {(Xt εt)
T }t=1,2,··· is a strictly stationary α-mixing process with α(l) ≤ C l−B for some

B > 2; 2) The joint density of Xt and εt is given by fXε(x, ε) = fX(x)f(ε); 3) fX(x) and all of its partial

derivatives of order < s are differentiable and uniformly bounded on R
d; 4) 0 < inf

x∈G
fX(x) and sup

x∈G
fX(x) ≤ C.

A2 1) implies that for some δ > 2 and a > 1 − 2
δ ,
∑∞

j=1 j
aα(j)1−

2
δ < ∞, a fact that is needed in our

proofs. We note that α-mixing is the weakest of the mixing concepts (Doukhan (1994)) and its use here is

only possible due to Lemma A.2 in Gao (2007), which plays a critical role in the proof of Lemma 4.

Assumption A3: 1) m(x) and all of its partial derivatives of order < s are differentiable on R
d. The

partial derivatives are uniformly bounded on R
d; 2) 0 < h(x) and all of its partial derivatives of order < s

are differentiable and uniformly bounded on R
d.

The degree of smoothness s of m, h and fX (in A2 3)), the dimension d and the mixing size B are, as

expected, tightly connected with the speed at which m̂ and ĥ converge (uniformly) to m and h. However,

these parameters also interact in specific ways to determine the asymptotic behavior of q̂(a) and Ê(εt|εt >

q(a)).

Assumption A4: 1) Let the cumulative distribution of εt be given by the absolutely continuous function

F (u) with density 0 < f(u) for all u < u∞ = sup{u : F (u) < 1}; 2) f is m1-times continuously differentiable

with
∣∣∣ dj

duj f(u)
∣∣∣ < C for some constant C and j = 1, · · · , m1.

The differentiability restrictions on f are necessary in the proof of Lemma 4.

Assumption A5: 1) The joint density of Xi,Xt, εi, denoted by fXi,Xt,εi(Xi,Xt, εi) is continuous; 2) The

joint density of Xi,Xj,Xt, εiεj , εt, denoted by fXi,Xj,Xt,εi,εj,εt(Xi,Xt,Xt, εi, εj, εt) is continuous.

Assumption A5 is necessary in Lemma 4 and is directly related to the verification of existence of bounds

required to use Lemma A.2 in Gao (2007).

Assumption A6 : 1) h1n ∝ n− 1
2s+d , h2n ∝ n− 1

2s+d , h3n ∝ n− s
2(2s+d) +δ , N ∝ n

2s
2s+d−δ for some δ > 0 and

s ≥ 2d; 2) E(|ε2t − 1|a) <∞ and E(h(x)a) <∞ for some a > 2.

12



3.3 Existence of σ̃N and k̃

We now establish the existence of σ̃q̃(an) and k̃ and characterize them as a local maximum. As mentioned

earlier, the strategy of the proof is to show that the first order conditions associated with the likelihood

function L̃TN (τ1, τ2) = 1
N

∑Ns

i=1 log g(Z̃i; σN(1 + τ1δN ), k0 + τ2δN ) are asymptotically uniformly equivalent

in probability to those associated with LTN on the set ST . For concreteness, we take an = 1 − N
n , and we

formally have

Theorem 2. Assume that FR1’ with α > 1, FR2 and assumptions A1-A6 are holding. Let τ1, τ2 ∈ R,

0 < δN → 0, δNN
1/2 → ∞ as N → ∞ and denote arbitrary σ and k by σ = σN(1 + τ1δN ) and k =

k0 + τ2δN . We define the log-likelihood function L̃TN (τ1, τ2) = 1
N

∑Ns

i=1 log g(Z̃i; σN(1 + τ1δN ), k0 + τ2δN ),

where Z̃i = ε̂(n−Ns+i) − q̃(an), an = 1− N
n

, q̃(·) and ε̂(n−Ns+i) are as defined in section 2. Then, as n → ∞,

1
δ2

N
L̃TN (τ1, τ2) has, with probability approaching 1, a local maximum (τ∗1 , τ

∗
2 ) on ST = {(τ1, τ2) : τ2

1 +τ2
2 < 1}

at which 1
δ2

N

∂
∂τ1

L̃TN (τ∗1 , τ
∗
2 ) = 0 and 1

δ2
N

∂
∂τ2

L̃TN (τ∗1 , τ
∗
2 ) = 0.

The vector (τ∗1 , τ
∗
2 ) implies a value σ̃q̃(an) and k̃ which are solutions for the likelihood equations

∂

∂σ

1

N

Ns∑

j=1

log g(Z̃j ; σ̃q̃(an), k̃) = 0 and
∂

∂k

1

N

Ns∑

j=1

log g(Z̃j ; σ̃q̃(an), k̃) = 0.

Hence, there exists, with probability approaching 1, a local maximum (σ̃q̃(an) = σN(1+τ∗1 δN ), k̃ = k0+τ∗2 δN )

on SR = {(σ, k) : ‖( σ
σN

− 1, k − k0)‖E < δN} that satisfy the first order conditions in equation (9).

The proof of Theorem 2 depends critically on two sets of results. First, since εt is unobserved and is

estimated by ε̂t we must obtain convergence of both m̂(x) and ĥ(x) to the true m(x) and h(x) uniformly in

G at suitable rates. Lemmas 2 and 3 in Appendix 2 give conditions under which we obtain

sup
x∈G

|m̂(x) −m(x)| = Op (L1n) and sup
x∈G

|ĥ(x) − h(x)| = Op (L2n) ,

where L1n =
(

log n
nhd

1n

)1/2

+ hs
1n and L2n =

(
log n
nhd

2n

)1/2

+ hs
2n. These orders are sufficient to obtain that

the difference between estimated residuals and true errors is given by |ε̂t − εt| = Op(L1n) + (Op(L1n) +

Op(L2n))|εt| uniformly in G. Second, Lemma 4 shows that q̃(an) is asymptotically close to qn(an) by

satisfying q̃(an)−qn(an)
q(an) = Op(N

−1/2). In addition to making full use of the probability orders of m̂ and ĥ,
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it is in Lemma 4 that the stochasticity of the estimated threshold q̃ is explicitly handled and where the

restrictions (FR1’,FR2 and α > 1) on the class of functions to which F belongs are needed. It is also

in Lemma 4 that the stochasticity of Ns and the fact it may differ from N in finite samples is handled

by showning that Ns−N
N1/2 = Op(1). Furthermore, the proof of Lemma 4 requires that the relative speed of

decay of h1n, h2n and h3n and the speed at which N → ∞ be carefully controlled. Assumption A6 1) in

Theorem 2 provides polynomial functions of n that assure the orders for these sequences produce the desired

q̃(an)−qn(an)
q(an)

= Op(N
−1/2). In addition, as needed in Smith (1987), N1/2δN → ∞ and N1/2φ(q(an)) = O(1),

where q(an) is a positive nonstochastic sequence such that q(an) → ∞ as N → ∞.

The influence of the dimension d of the conditioning space manifests itself on the asymptotic results in

a strong manner via the requirement that the degree of smoothness of the functions m and h be such that

s ≥ 2d. We believe that alleviation of this strong requirement can only result from further constraints on

the class of functions containing m and h.

3.4 Asymptotic normality of γ̃T = (σ̃q̃(an), k̃)

The following theorem shows that under suitable normalization the estimators (σ̃q̃(an), k̃) are asymptotically

distributed as a normal random variable.

Theorem 3. Suppose FR1’ with α > 1, FR2, A1-A6 hold and that C
α−ρN

1/2φ(q(an)) → µ ∈ R. Then, the

local maximum (σ̃q̃(an), k̃) of the GPD likelihood function, is such that for k0 = − 1
α and σN = q(an)

α

√
N

(
σ̃q̃(an)

σN
− 1

k̃ − k0

)
d→ N

((
µ(1−k0)(1+2k0ρ)

1−k0+k0ρ
µ(1−k0)k0(1+ρ)

1−k0+k0ρ

)
, H−1V2H

−1

)

where V2 =




k2
0−4k0+2
(2k0−1)2

−1
k0(k0−1)

−1
k0(k0−1)

2k3
0−2k2

0+2k0−1

k2
0(k0−1)2(2k0−1)



.

This theorem shows that the use of Z̃i instead of Zi to define the exceedances used in the estimation of

the parameters of the GPD impacts the variance of the asymptotic distribution. It is easy to verify that

H−1V2H
−1 −H−1 is positive definite, implying an (expected) loss of efficiency that results from estimating

εt nonparametrically. However, any additional bias introduced by the nonparametric estimation is of second
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order effect as the asymptotic bias derived in Smith (1987) is precisely the same as the one we obtain in

Theorem 3.

3.5 Asymptotic normality of q̂(a), Ê(εt|εt > q(a)), a-CVaR(x) and a-CES(x)

The asymptotic distribution of the ML estimators given in Theorem 3 is the basis for obtaining the asymptotic

distributions of q̂(a) and Ê(εt|εt > q(a)). The basic idea in the case of q̂(a) is to define, without loss of

generality, q(a) = q(an) + yq̃(an),a for an = 1 − N/n < a and estimate q(an) by q̃(an) and yq̃(an),a based

on the estimated parameters of the GPD. Since Ê(εt|εt > q(a)) =
q̂(a)

1+k̃
, its asymptotic distribution can be

derived directly from the results for q̂(a) and k̃. It is important to note that in Theorems 4, 5 and 6 below,

both an and a approach 1 as n→ ∞ since an < a. The fact that a is not fixed and a → 1 as n → ∞ is only

part of how we envision the asymptotic experiment guiding our theorems. Clearly, for any fixed sample size

n and choice of a, the estimators (11), (12), a-CVaR(x) and a-CES(x) are unambiguously defined.

Theorem 4. Suppose FR1’ with α > 1, FR2, A1-A6 and C
α−ρN

1/2φ(q(an)) → µ with k0 = − 1
α and

σN = q(an)/α. Then, if n(1 − a) ∝ N , for some Z > 0

√
n(1 − a)

(
q̂(a)

q(a)
− 1

)
d→ N (µ1,Σ1) ,

where µ1 = k0

(
(Zρ−1)µ(α−ρ)

ρ + cTb H
−1 lim

n→∞

√
N

(
bσ
bk

))
, Σ1 = k2

0

(
cTb H

−1V2H
−1cb + 2cTb

(
2 − k0

1 − k0

)
+ 1

)
,

cTb =
(
−k−1

0 (Z−1 − 1) k−2
0 log(Z) + k−2

0 (Z−1 − 1)
)
, bσ = E

(
∂

∂σ
log g(Zi; σN , k0)σN

)
and bk =

E
(

∂
∂k log g(Zi; σN , k0)

)
.

Theorem 5. Suppose FR1’ with α > 1, FR2, A1-A6 and C
α−ρN

1/2φ(q(an)) → µ with k0 = − 1
α and

σN = q(an)/α. Then, if n(1 − a) ∝ N , for some Z > 0

√
n(1 − a)

(
Ê(εt|εt > q(a))

q(a)
1+k0

− 1

)
d→ N (µ2,Σ2) ,

where µ2 = k0
(Zρ−1)µ(α−ρ)

ρ + k0c
T
b H

−1 lim
n→∞

√
N

(
bσ
bk

)
− 1

1+k0
lim

n→∞

√
N
(

0 1
)
H−1

(
bσ
bk

)
, cb, bσ, bk

are as defined in Theorem 4,

Σ2 = k2
0

(
cTb H

−1V2H
−1cb + 2cTb

(
2 − k0

1 − k0

)
+ 1

)
+ 2

k0

1 + k0
ηT V3θ +

1

(1 + k0)2
θT V3θ,
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with

ηT =

(
−cTb H−1 −cTb H−1

(
bσ
bk

)
1

)
, θT =

( (
0 1

)
H−1

(
0 1

)
H−1

(
b1
b2

)
0

)
,

V3 =





1
1−2k0

− 1
(k0−1)(2k0−1) 0 0

− 1
(k0−1)(2k0−1)

2
(k0−1)(2k0−1) 0 0

0 0 k2
0 −k0

0 0 −k0 1



 , b1 = 1−k0

k0(2k0−1) and b2 = 1
k2
0

(
k0−1
2k0−1 − 1

k0−1

)
.

From Theorems 3 and 4 we obtain the asymptotic normality and consistency of a-CVaR(x)≡ q̂Yt|Xt=x(a)

and a-CES(x)≡ Ê(Yt|Yt > qYt|Xt=x(a)) in the following theorem.

Theorem 6. Suppose FR1’ with α > 1, FR2, A1-A6 and C
α−ρN

1/2φ(q(an)) → µ with k0 = − 1
α and

σN = q(an)/α. Then, if n(1 − a) ∝ N , for some Z > 0 we have

a)
√
n(1 − a)

(
q̂Yt|Xt=x(a)

qYt|Xt=x(a)
− 1
)

d→ N (µ1,Σ1), where µ1 and Σ1 are as defined in Theorem 4;

b)
√
n(1 − a)

(
Ê(Yt|Yt>qYt |Xt=x(a))

E(Yt|Yt>qYt |Xt=x(a)) − 1
)

d→ N
(
µ2 − µ(ρ−α)Zρ

(ρ−α+1)α ,Σ2

)
, where µ2 and Σ2 are as defined in The-

orem 5.

As a direct consequence of Theorem 6 we have

q̂Yt|Xt=x(a)

qYt|Xt=x(a)
= 1 + op(1) and

Ê(Yt|Yt > qYt|Xt=x(a))

E(Yt|Yt > qYt|Xt=x(a))
= 1 + op(1)

as n(1 − a) → ∞, therefore establishing consistency of the estimators.

4 Monte Carlo study

We perform a Monte Carlo study to investigate the finite sample properties of the parameter estimator

γ̃ = (σ̃q̃(an), k̃)
T , the a-CVaR(x) estimator q̂Yt|Xt=x(a) and the a-CES(x) estimator Ê(Yt|Yt > qYt|Xt=x(a)).

To simplify the notation, throughout this section we put q̂Yt|Xt=x(a) ≡ q̂, Ê(Yt|Yt > qYt|Xt=x(a)) ≡ Ê with

corresponding true values given by q and E. The underlying values of a and x will be clear in context.

We generate data from the following location-scale model

Yt = m(Yt−1) + h(t)1/2εt, t = 1, · · · , n. (17)

We choose m(Yt−1) to be sin(0.5Yt−1) and consider h(t) = hi(Yt−1)+θh(t−1) for i = 1, 2, where h1(Yt−1) =

1 + 0.01Y 2
t−1 + 0.5sin(Yt−1) and h2(Yt−1) = 1 − 0.9exp(−2Y 2

t−1). The quadratic type heteroskedasticity
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function h1(·) has been considered in Cai and Wang (2008), where we add the sin(·) function to make the

nonlinearity more prominent, and h2(·) is considered in Martins-Filho and Yao (2006). θ is set to be 0 or

0.5. Our estimators are based on a model where θ = 0, but the model with θ = 0.5 and h1(·) without the

sin(·) function correspond to the popular GARCH model, and it would be interesting to investigate the

performance of our estimators under this structure. Initial values of Yt and h(t) are set to be zero and Yt is

generated recursively according to equation (17). We discard the first 1000 observations so that the samples

are not heavily influenced by the choice of initial values.

We generate εt independently from a distribution with density f that is in the domain of attraction of

the Fréchet distribution Φα with index α = −1/k0. We consider f to be the student-t distribution with v

degree of freedom. The student-t distribution is symmetric and bell-shaped, like the normal distribution,

but it exhibits heavier tails than the normal distribution. Thus, it is more prone to produce values that

are far from its mean, making it a more suitable distribution to model financial returns. It can be shown

that k0 = − 1
v , so we have k0 = −0.4 for v = 2.5, k0 = −1/3 for v = 3, and k0 = −1/20 for v = 20. Here,

the variance of εt is largest with v = 2.5 and we expect that in this case estimation will be relatively more

difficult. On the other hand, when v = 20 the student-t distribution resembles the normal distribution. For

identification purpose, we standardize εt so that it has unit variance.7

Implementation of our estimator requires the choice of bandwidths h1n, h2n and h3n. Since h1n and

h2n are utilized to estimate the conditional mean and variance, we select them using the rule-of-thumb data

driven plug-in method of Ruppert et al. (1995) and denote them by ĥ1n and ĥ2n. Specifically, ĥ1n and ĥ2n are

obtained from the following regressand and regressor sequences {Yt, Yt−1}n
t=1 and {(Yt−m̂(Yt−1))

2, Yt−1}n
t=1

respectively. We select h3n by using the rule-of-thumb bandwidth ĥ3n = 0.79R(Yt−1)n
−1/5+δ as in (2.52)

of Pagan and Ullah (1999), where R(yt−1) is the sample interquartile range of Yt−1 and we set δ = 0.01 so

that it satisfies our assumption on the bandwidth. The second order Epanechnikov kernel is used for our

estimators.

7We have also performed our study with the log-gamma distribution, a density that is also in the domain of attraction of
the Fréchet distribution. Since its support is bounded from below, it is much less commonly used to model the financial return.
Though the relative rankings regarding estimators changes somewhat in specific experiment designs, we do not report these
result to save space and focus on the more popular student-t distribution for more detailed exposition.
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In estimating the parameters, we consider both our estimators γ̃ = (σ̃q̃(an), k̃)
T and Smith type esti-

mators γ̂ = (σ̂qn(an), k̂)
T , which utilize the true conditional mean m(·), variance h(·) and εt available in

the simulation. Without having to estimate m(·) and h(·), we expect that Smith’s estimators will perform

best and serve as a benchmark to evaluate our estimator. In estimating the conditional value-at-risk (q)

and expected shortfall (E), we include our estimators (q̂, Ê), the Smith type estimator (qs, Es), and the

estimators (q̇, Ė) proposed by Cai and Wang (2008). We follow their instruction for implementation and

utilize the theoretical optimal bandwidths available in the simulation for (q̇, Ė) to minimize the noise.

To give the readers a vivid picture of them in practice, we provide in Figure 1 a plot of the conditional

value-at-risk and expected shortfall estimates evaluated at the sample mean of Yt−1 across different values

of a. a ranges from 0.95 to 0.999 because we are interested in higher order quantiles. The estimation utilizes

1000 sample data points generated from equation (17) with h1(Yt−1) = 1 + 0.01Y 2
t−1 + 0.5sin(Yt−1), θ = 0

and student-t distributed εt with v = 3 degree of freedom. We use N = round(10000.8−0.01) = 234 in

constructing our estimates, where round(·) gives the nearest integer. We note that all estimators are smooth

functions of a, and they seem to capture the shape of the true value-at-risk and expected shortfall well. It

seems more difficult to estimate expected shortfall than value-at-risk as the gap between the estimates and

the true is noticeably larger for the expected shortfall.

The performance of our estimator is fairly robust to the choice of N and we follow a simple choice of

N = round(n0.8−0.01) in the simulation for n = 1000, 2000 and 4000, which gives N = 234, 405, and 701

respectively. Thus, with n being doubled, the effective sample size N in the second stage of our estimation is

less than doubled, as required by the assumption on N . Each experiment is repeated 2000 times, except for

n = 4000 where we set the number of repetitions to be 1000. We summarize the performance of all parameter

estimators in terms of their bias (B), standard deviation (S) and root mean squared error (R) in Table 1

for θ = 0 and in Table 2 for θ = 0.5. We consider the performance of the a−conditional value-at-risk and

expected shortfall estimators for a = 0.95, 0.99, 0.995 and 0.999 evaluated at Yn, the most recent observation

in the sample. Specifically, the performances in terms of the bias (B), standard deviation (S) and relative

root mean squared error (R) for θ = 0 with h1(Yt−1) and h2(Yt−1) are detailed in Tables 3 and 4, and those
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for θ = 0.5 are summarized in Tables 5 and 6. To facilitate comparison, we report the relative root mean

squared error as the ratio of the root mean squared error of each estimator over that of the estimator with

the smallest root mean squared error in each experiment design. To reduce the impact of extreme experiment

runs, we truncate the smallest and largest 2.5% estimates from the repetitions for all estimators. As the

results for n = 2000 are qualitatively similar, we only report detailed results for n = 1000 and n = 4000.

In the case of estimating parameters, we notice both γ̂ and γ̃ overestimate (σN , k0). As the sample

size increases, both estimators’ performance improve, in the sense that their bias, standard deviation and

root mean squared error decrease. This confirms the asymptotic results in the previous section. When k0 is

decreased (smaller v in Tables 1 and 2), we generally find the bias of both γ̂ and γ̃ decrease, and the standard

deviation of γ̃ increases, but there is no definite pattern on the standard deviation of γ̂. We think this is

related to the bias and variance trade-off for parameter estimation. As mentioned above, the variance of εt

without standardization is larger with smaller k0, and the distribution of εt exhibits heavier tail behavior,

thus the more representative extreme observations have a larger probability to show up in a sample, which

explains the lower bias. It is generally harder to estimate σN than k0, as estimates of σN exhibit larger

root mean squared error. When v = 2.5 and 3, γ̂ generally outperforms γ̃ in terms of smaller bias, standard

deviation and root mean squared error, though the difference diminishes with larger sample size. When

v = 20, γ̃ exhibits smaller bias, standard deviation of similar or sometimes smaller magnitudes, and its

performance is very similar to γ̂. The results suggest that our proposed estimator γ̃ is well supported by the

nonparametric kernel estimators for the functions m(Yt−1) and h(Yt−1).

In the case of estimating the conditional value-at-risk and expected shortfall, we observe that perfor-

mances of all estimators generally improve with the sample sizes in terms of smaller bias, standard deviation

and root mean squared error, with some exceptions on the bias. It confirms our asymptotic results that our

estimator for the conditional value-at-risk and expected shortfall are consistent. In the case of estimating

conditional value-at-risk, q̂ and qs carry positive bias for a = 0.95 and 0.99, but exhibit negative bias for

larger values of a. q̇ shows a similar pattern for bias, with more positive bias occurrences for larger a. In

the case of estimating expected shortfall, all estimators are generally negatively biased. As k0 increases,
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the performance of the estimators for (qs, Es) and (q̂, Ê) generally improves in terms of smaller standard

deviation and root mean squared error for a 6= 0.95. This is expected since the distribution of εt exhibits

less heavy tails with larger k0. However, the performance of (q̇, Ė) does not seem to depend on k0 in a clear

fashion. With a few exceptions, we notice that it is more difficult to estimate the conditional expected short-

fall relative to the value-at-risk, judged by the larger bias, standard deviation and root mean squared error

for all estimators across different experiment designs. It is also harder to estimate higher order conditional

value-at-risk and expected shortfall, as demonstrated by the larger bias, standard deviation and root mean

squared error for all estimators, with some exceptions for the bias.

Across all experiment designs, the best estimators for (q, E) are (qs, Es), with a few exceptions in esti-

mating E with a = 0.95. Thus, the root mean square errors are constructed for the other two estimators

relative to (qs, Es). When a > 0.95, we observe that (q̂, Ê) consistently outperforms (q̇, Ė) in terms of

smaller standard deviation and root mean squared error, with only a few exceptions when θ = 0.5. When

a = 0.95, the advantage of q̂ over q̇ generally persists. In terms of estimating E, Ė shows smaller bias, larger

standard deviation, and its root mean squared error is generally smaller than that of Ê. We notice that the

finite sample improvement could be sizable when a > 0.95. To illustrate, we plot in Figure 2 the relative

root mean squared error of q̇
q̂ and that of Ė

Ê
across sample sizes 1000 and 4000 for θ = 0. We observe that

the relative root mean squared errors are all greater than one. Furthermore, as the sample size increases,

the relative root mean squared error generally becomes larger, illustrating the finite sample improvement of

(q̂, Ê) over (q̇, Ė) gets magnified with sample sizes. As v is increased, the advantage of (q̂, Ê) over (q̇, Ė) is

more prominent. For example, in the case of estimating q, the relative root mean squared error of q̇
q̂

is over

3 for v = 20, so the reduction in the root mean squared error of q̂ over q̇ is more than 66%. In the case of

estimating E, the relative root mean squared error Ė
Ê

is over 1.8 for v = 20, so the reduction in the root

mean squared error of Ê over Ė is more than 44%.

We conclude that our estimators (q̂, Ê) have good finite sample performance and can be especially useful

when estimating higher order conditional value-at-risk and expected shortfall. The results of the estimators

do not change qualitatively across different values of θ, which suggest that accounting for the nonlinearity
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in the conditional mean and variance functions is important for estimating the high order q and E. Overall,

the study suggests that utilizing the extreme value theory and properly accounting for the nonlinearity in

the estimation seems to pay off in the finite samples.

The choice of N could be an important issue because the number of residuals exceeding the threshold is

based on q̃(an). We need to choose a large q̃(an) to reduce the bias from approximating the tail distribution

with GPD, but we need to keep N large (or q̃(an) small) to control the variance of the estimates.8 We

suggested before that our estimators are relatively robust to the choice of N , and here we specifically

illustrate the impact from different N ’s on the performance of our estimators for the 99% conditional value-

at-risk and expected shortfall with a simulation. We set n = 1000, σ2
1(Yt−1) = 1 + 0.01Y 2

t−1 + 0.5sin(Yt−1),

θ = 0 and use a student-t distributed εt with v = 3. We graph the bias and root mean squared error of q̂

and Ê against N = 20, 25, · · · , 300 in Figure 3. The other experiment designs give graphs of similar general

pattern. We observe that q̂ carries a small positive bias and Ê is generally negatively biased. As we have

mentioned above, it is harder to estimate the conditional expected shortfall than the value-at-risk, judged

with the larger bias and root mean squared error of Ê. The performance of q̂ is fairly robust with the range

of N considered, with slight improvement when N is greater than 20. The bias of Ê seems to be smallest

when N is around 40, but its magnitude is enlarged with smaller N , and grows steadily with larger N .

The root mean squared error of Ê decreases sharply from N = 20 to 60 and drops further gradually until

N = 120. It remains fairly stable for a wide range of N and eventually increases slowly for N greater than

220.

5 Empirical illustration with backtesting

We illustrate the empirical applicability of our estimators using five historical daily series {Yt} on the following

log returns of future prices (contracts expiring between 1 and 3 months): (1) Maize from August 10, 1998

to July 28, 2004. (2) Rice from August 1, 2002 to July 18, 2008. (3) Soybean from July 25, 2006 to July 6,

2012. (4) Soft wheat (wheatcbot) from August 15, 1996 to July 31, 2002. The data are obtained from the

8Note that the number of exceedances Ns over q̃(an) is asymptotically of the same order as N , since
√

N
“

Ns−N

N

”

= Op(1)

(Lemma 4).
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Chicago Board of Trade. We also obtain (5) Hard wheat (wheatkcbt) of August 1, 1996 to July 18, 2002

from Kansas City Board of Trade.

To backtest on a data set {Y1, Y2, · · · , Ym}, we utilize the previous n observations {Yt−n+1, Yt−n+2,

· · · , Yt} to estimate the a-CVaR by q̂Y |X=Yt
(a) and the a-CES by Ê(Y |Y > qY |X=Yt

(a)) for a = 0.95, 0.99,

and 0.995, where 0 < n < m, t ∈ T = {n, n + 1, · · · , m − 1}. We fix m = 1500, n = 1000, let N =

round(n0.8−0.01) = 234 and implement our estimators as in the simulation study. We provide in Figure 4 the

plot of log returns of Maize futures prices against time together with the 95% conditional value-at-risk and

expected shortfall estimates. Clearly our estimates respond quickly to the changing volatility in the market.

To backtest the a-CVaR estimator, we define a violation as the event {Yt+1 > qY |X=Yt
(a)}. Under the null

hypothesis that the return dynamics of Yt are correctly specified, It ≡ χ{Yt+1>qY |X=Yt
(a)} ∼ Bernoulli(1−a)

where χA is the indicator function. Consequently, W =
∑

t∈T It ∼ Binomial(m − n, 1 − a). We perform

a two sided test with the alternative hypothesis that the quantile is not correctly estimated with too many

or too few violations. Since qY |X=Yt
(a) is not observed, we estimate it with q̂Y |X=Yt

(a) and construct the

empirical version of the test statistic as Ŵ =
∑

t∈T χ{Yt+1>q̂Y |X=Yt
(a)}. Under the null hypothesis, the

standardized test statistic Ŵ−(m−n)(1−a)√
(m−n)(1−a)a

is distributed asymptotically as a standard normal. We report the

violation numbers together with the p-values based on the normal distribution for our estimator on the left

half of Table 7. For all five daily series and across all values of a considered, the actual number of violations

are fairly close to the expected number, with large p-values indicating no rejection of the null hypothesis.

The only relatively large deviation of the violation numbers from expected is for a = 0.95 on Maize, but its

p-value is still larger than 0.1.

To backtest the a-CES we consider the normalized difference between Yt+1 and E(Y |Y > qY |X=Yt
(a)) as

rt+1 =
Yt+1−E(Y |Y >qY |X=Yt

(a))

h1/2(Yt)
= εt+1 − E(ε|ε > q(a)). If the return dynamics are correctly specified, given

that Yt+1 > qY |X=Yt
(a), rt+1 is independent and identically distributed with mean zero. Since E(Y |Y >

qY |X=Yt
(a)) is not observed, we use the estimated residuals {r̂t+1 : t ∈ T and Yt+1 > q̂Y |X=Yt

(a)}, where

r̂t+1 =
Yt+1−Ê(Y |Y >qY |X=Yt

(a))

ĥ1/2(Yt)
. Without making specific distributional assumptions on the residuals, we

perform a one-sided bootstrap test as described in Efron and Tibshirani (1993) pp.224-227 to test the null
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hypothesis that the mean of the residuals is zero against the alternative that the mean is greater than zero,

since underestimating a−conditional expected shortfall is likely to be the direction of interest. The p-values

of the test for the five series across all values of a are provided on the right half of Table 7. Given 5%

significance level for the test, the null hypothesis for our a-conditional expected shortfall estimator is not

rejected for a = 0.99 and 0.995 for all the series, but it is rejected for a = 0.95. The empirical result seems

to confirm our Monte Carlo study that our estimators can be especially useful in estimating higher order

conditional value-at-risk and expected shortfall.

6 Summary and conclusion

The estimation of conditional value-at-risk and conditional expected shortfall has been the subject of much

interest in both empirical finance and theoretical econometrics. Perhaps the interest is driven by the use-

fulness of these measures for regulators, portfolio managers and other professionals interested in an effective

and synthetic tool for measuring risk. Most stochastic models used and estimators proposed for conditional

value-at-risk and expected shortfall are hampered in their use by tight parametric specifications that most

certainly impact performance usability. In this paper we have proposed fully nonparametric estimators for

value-at-risk and expected shortfall, showed their consistency and obtained their asymptotic distribution.

Our Monte Carlo study has revealed that our estimators outperform those proposed by Cai and Wang

(2008) indicating that the use of the approximations provided by Extreme Value Theory may indeed prove

beneficial.

We see an important direction for future research related to the contribution in this paper. The fact

that we require s ≥ 2d presents a strong requirement on the smoothness of the location and scale functions.

This perverse manifestation of the curse of dimensionality requires a solution. Perhaps restricting m and h

to belong to a class of additive functions, such that m(x) =
∑d

u=1mu(xu) and h(x) =
∑d

u=1 hu(xu) may be

sufficient to relax substantially the restriction that s ≥ 2d.
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Appendix 1 - Tables and figures

Table 1 Bias (B), Standard deviation (S) and Root mean squared error (R) for
parameter estimators with sample size n(×1000) and θ = 0, where k0 = −1/v.

h1(Yt−1) = 1 + 0.01Y 2
t−1 + 0.5sin(Yt−1) h2(Yt−1) = 1 − 0.9exp(−2Y 2

t−1)
σN k0 σN k0

v n B S R B S R B S R B S R
γ̂ 2.5 1 .261 .041 .265 .137 .089 .163 .263 .041 .266 .141 .092 .168
γ̃ 2.5 1 .318 .087 .330 .136 .095 .166 .283 .080 .294 .136 .110 .175
γ̂ 2.5 4 .219 .025 .220 .106 .052 .118 .219 .026 .220 .103 .050 .114
γ̃ 2.5 4 .258 .060 .265 .099 .058 .115 .215 .052 .221 .089 .070 .113
γ̂ 3 1 .350 .048 .353 .152 .083 .173 .348 .049 .351 .151 .085 .173
γ̃ 3 1 .374 .071 .380 .154 .086 .176 .323 .072 .331 .152 .099 .181
γ̂ 3 4 .296 .029 .298 .116 .050 .126 .295 .028 .296 .115 .048 .125
γ̃ 3 4 .309 .046 .313 .111 .056 .124 .256 .041 .260 .109 .062 .126
γ̂ 20 1 .673 .069 .677 .230 .083 .244 .674 .070 .678 .231 .083 .245
γ̃ 20 1 .669 .069 .673 .235 .086 .250 .614 .065 .618 .215 .084 .231
γ̂ 20 4 .589 .036 .590 .182 .047 .188 .593 .039 .594 .186 .051 .193
γ̃ 20 4 .585 .036 .586 .183 .047 .189 .549 .035 .550 .172 .048 .179

Table 2 Bias (B), Standard deviation (S) and Root mean squared error (R) for
parameter estimators with sample size n(×1000) and θ = 0.5, where k0 = −1/v.

h1(Yt−1) = 1 + 0.01Y 2
t−1 + 0.5sin(Yt−1) h2(Yt−1) = 1 − 0.9exp(−2Y 2

t−1)
σN k0 σN k0

v n B S R B S R B S R B S R
γ̂ 2.5 1 .263 .040 .266 .140 .087 .165 .261 .041 .265 .140 .089 .166
γ̃ 2.5 1 .321 .082 .332 .141 .091 .168 .306 .082 .317 .133 .104 .169
γ̂ 2.5 4 .218 .024 .219 .103 .051 .115 .218 .025 .219 .104 .048 .115
γ̃ 2.5 4 .260 .057 .266 .099 .055 .113 .246 .057 .252 .094 .060 .112
γ̂ 3 1 .347 .049 .350 .149 .084 .171 .349 .050 .352 .154 .085 .176
γ̃ 3 1 .371 .074 .378 .151 .088 .175 .357 .071 .364 .152 .093 .178
γ̂ 3 4 .295 .030 .296 .113 .048 .123 .296 .029 .297 .115 .049 .125
γ̃ 3 4 .308 .047 .311 .111 .051 .122 .294 .040 .297 .109 .055 .123
γ̂ 20 1 .670 .070 .674 .226 .087 .242 .673 .071 .677 .230 .087 .246
γ̃ 20 1 .665 .069 .669 .225 .087 .241 .653 .069 .657 .214 .088 .231
γ̂ 20 4 .591 .037 .593 .184 .049 .190 .592 .037 .594 .186 .051 .193
γ̃ 20 4 .587 .036 .588 .178 .050 .185 .581 .037 .582 .169 .049 .176
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Table 3 Bias (B), Standard deviation (S) and Relative Root Mean Squared
Error (R) for conditional value-at-risk (q) and expected shortfall (E) estimators

with h1(Yt−1) = 1 + 0.01Y 2
t−1 + 0.5sin(Yt−1), sample size n(×1000), and θ = 0.

v = 2.5 a = 0.95 a = 0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
qs 1 .023 .061 1 .025 .228 1 -.048 .391 1 -.631 1.149 1
q̂ 1 .040 .125 1.998 .066 .344 1.528 .009 .542 1.377 -.512 1.441 1.167
q̇ 1 .032 .266 4.082 .103 .544 2.412 .149 .773 2.000 -.204 1.932 1.482
qs 4 .009 .031 1 .021 .115 1 -.028 .202 1 -.483 .627 1
q̂ 4 .020 .089 2.833 .064 .217 1.931 .039 .331 1.637 -.319 .872 1.172
q̇ 4 -.004 .176 5.471 -.004 .378 3.234 .019 .551 2.712 .017 1.356 1.712
Es 1 -.446 .212 1 -.710 .649 1 -1.003 .998 1 -2.533 2.466 1

Ê 1 -.422 .292 1.039 -.644 .822 1.086 -.907 1.239 1.085 -2.319 2.977 1.067

Ė 1 .125 .564 1.170 .089 1.298 1.352 .014 1.936 1.368 -1.006 5.055 1.458
Es 4 -.411 .126 1.081 -.614 .363 1 -.852 .562 1 -2.153 1.423 1

Ê 4 -.381 .204 1.087 -.523 .516 1.030 -.716 .769 1.029 -1.832 1.853 1.010

Ė 4 .087 .388 1 .041 .943 1.322 -.011 1.369 1.341 -.419 3.399 1.326

v = 3 a = 0.95 a = 0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
qs 1 .026 .066 1 .032 .216 1 -.038 .348 1 -.559 .906 1
q̂ 1 .039 .126 1.871 .053 .315 1.463 -.012 .470 1.343 -.524 1.105 1.148
q̇ 1 .037 .301 4.288 .146 .597 2.810 .176 .795 2.324 -.046 1.673 1.572
qs 4 .011 .033 1 .037 .111 1 -.000 .187 1 -.370 .535 1
q̂ 4 .024 .091 2.718 .077 .205 1.870 .059 .304 1.657 -.232 .745 1.199
q̇ 4 -.008 .194 5.611 .061 .481 4.148 .080 .597 3.221 .175 1.302 2.018
Es 1 -.521 .192 1.089 -.743 .525 1 -.988 .772 1 -2.200 1.716 1

Ê 1 -.510 .262 1.126 -.723 .650 1.069 -.964 .932 1.069 -2.166 1.992 1.055

Ė 1 .092 .502 1 -.124 1.090 1.206 -.245 1.554 1.254 -.778 3.790 1.386
Es 4 -.475 .126 1.246 -.621 .321 1 -.802 .478 1 -1.757 1.104 1

Ê 4 -.446 .201 1.241 -.543 .456 1.014 -.689 .653 1.017 -1.516 1.431 1.004

Ė 4 .094 .383 1 -.105 .732 1.057 -.216 1.111 1.213 -.618 2.663 1.317

v = 20 a = 0.95 a = 0.99 a = 0.995 a = 0.999
n B S R B S R B S R B S R

qs 1 .015 .053 1 .006 .103 1 -.027 .144 1 -.178 .267 1
q̂ 1 .011 .094 1.735 -.013 .147 1.429 -.053 .186 1.318 -.221 .305 1.175
q̇ 1 .184 .487 9.520 .517 .706 8.490 .594 .774 6.642 .628 .916 3.461
qs 4 .003 .027 1 .020 .048 1 .009 .070 1 -.075 .141 1
q̂ 4 .004 .054 1.996 .017 .077 1.511 .004 .097 1.383 -.087 .166 1.176
q̇ 4 .153 .446 17.36 .521 .709 16.76 .625 .763 14.03 .802 .881 7.456

Es 1 -.685 .136 1.313 -.752 .220 1 -.812 .271 1 -1.021 .408 1

Ê 1 -.697 .181 1.355 -.781 .266 1.053 -.848 .316 1.057 -1.073 .449 1.058

Ė 1 -.072 .527 1 -.759 1.293 1.913 -1.018 1.728 2.343 -1.559 3.191 3.229
Es 4 -.639 .112 1.544 -.661 .145 1 -.694 .172 1 -.832 .254 1

Ê 4 -.639 .142 1.559 -.668 .180 1.022 -.703 .207 1.025 -.847 .288 1.028

Ė 4 -.043 .418 1 -.624 1.116 1.889 -.898 1.404 2.331 -1.444 2.476 3.294
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Table 4 Bias (B), Standard deviation (S) and Relative Root Mean Squared
Error (R) for conditional value-at-risk (q) and expected shortfall (E) estimators

with h2(Yt−1) = 1 − 0.9exp(−2Y 2
t−1), sample size n(×1000), and θ = 0.

v = 2.5 a = 0.95 a = 0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
qs 1 .011 .029 1 .009 .113 1 -.028 .192 1 -.313 .568 1
q̂ 1 .017 .125 4.051 .036 .299 2.659 .014 .438 2.253 -.207 1.052 1.654
q̇ 1 .009 .183 5.893 .155 .451 4.211 .191 .612 3.297 .049 1.257 1.940
qs 4 .005 .016 1 .015 .054 1 -.005 .092 1 -.202 .290 1
q̂ 4 .009 .121 7.339 .047 .268 4.852 .050 .376 4.103 -.054 .836 2.371
q̇ 4 -.018 .119 7.302 .107 .401 7.396 .193 .559 6.392 .344 1.106 3.278
Es 1 -.213 .123 1 -.343 .334 1 -.485 .510 1 -1.223 1.259 1

Ê 1 -.200 .268 1.356 -.288 .638 1.462 -.400 .925 1.433 -1.000 2.149 1.350

Ė 1 -.015 .292 1.186 -.428 .616 1.568 -.685 .904 1.611 -1.288 2.765 1.738
Es 4 -.187 .081 1 -.272 .185 1 -.376 .281 1 -.955 .718 1

Ê 4 -.169 .251 1.486 -.198 .533 1.728 -.257 .745 1.677 -.646 1.632 1.468

Ė 4 .013 .223 1.095 -.384 .476 1.859 -.727 .654 2.081 -1.548 1.834 2.008

v = 3 a = 0.95 a = 0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
qs 1 .012 .037 1 .013 .120 1 -.025 .195 1 -.303 .531 1
q̂ 1 .003 .157 4.063 .002 .330 2.743 -.037 .455 2.317 -.317 .946 1.633
q̇ 1 .007 .278 7.196 .202 .576 5.067 .250 .735 3.940 .134 1.338 2.201
qs 4 .005 .018 1 .016 .060 1 -.004 .099 1 -.195 .285 1
q̂ 4 .005 .143 7.616 .035 .283 4.610 .027 .378 3.842 -.126 .746 2.192
q̇ 4 -.013 .198 10.56 .220 .536 9.383 .324 .697 7.794 .480 1.245 3.866
Es 1 -.278 .147 1 -.397 .333 1 -.528 .483 1 -1.167 1.080 1

Ê 1 -.295 .314 1.370 -.416 .621 1.442 -.546 .839 1.400 -1.183 1.655 1.279

Ė 1 -.077 .364 1.182 -.710 .690 1.909 -1.006 .989 1.972 -1.893 2.652 2.049
Es 4 -.245 .107 1 -.320 .200 1 -.414 .285 1 -.906 .649 1

Ê 4 -.244 .281 1.390 -.293 .516 1.570 -.369 .678 1.536 -.803 1.289 1.363

Ė 4 -.046 .324 1.224 -.687 .552 2.331 -1.043 .680 2.478 -2.039 1.701 2.383

v = 20 a = 0.95 a = 0.99 a = 0.995 a = 0.999
n B S R B S R B S R B S R

qs 1 .010 .034 1 .003 .064 1 -.018 .090 1 -.112 .172 1
q̂ 1 -.007 .124 3.519 -.008 .181 2.828 -.024 .213 2.334 -.104 .305 1.576
q̇ 1 .131 .370 11.12 .526 .577 12.15 .651 .647 10.00 .826 .792 5.593
qs 4 .003 .018 1 .013 .033 1 .006 .047 1 -.050 .096 1
q̂ 4 -.014 .092 5.088 -.001 .128 3.591 -.006 .147 3.117 -.050 .204 1.950
q̇ 4 .104 .323 18.55 .509 .574 21.45 .657 .642 19.49 .928 .789 11.31

Es 1 -.424 .165 1 -.465 .209 1 -.502 .241 1 -.632 .336 1

Ê 1 -.428 .252 1.090 -.461 .322 1.103 -.493 .360 1.096 -.606 .466 1.068

Ė 1 -.285 .429 1.132 -.772 .932 2.373 -.997 1.139 2.717 -1.613 1.333 2.922
Es 4 -.403 .151 1 -.418 .165 1 -.439 .181 1 -.527 .238 1

Ê 4 -.410 .221 1.081 -.419 .263 1.102 -.436 .286 1.100 -.511 .355 1.077

Ė 4 -.184 .416 1.056 -.654 .888 2.455 -.833 1.114 2.930 -1.323 1.753 3.799
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Table 5 Bias (B), Standard deviation (S) and Relative Root Mean Squared
Error (R) for conditional value-at-risk (q) and expected shortfall (E) estimators

with h1(Yt−1) = 1 + 0.01y2
t−1 + 0.5sin(Yt−1), sample size n(×1000), and θ = 0.5.

v = 2.5 a = 0.95 a = 0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
qs 1 .034 .087 1 .032 .322 1 -.079 .542 1 -.952 1.553 1
q̂ 1 .065 .197 2.224 .104 .518 1.634 .018 .792 1.447 -.773 2.004 1.179
q̇ 1 .006 .266 2.852 .098 .646 2.021 .123 .954 1.757 -.408 2.580 1.434
qs 4 .013 .045 1 .039 .169 1 -.022 .294 1 -.631 .913 1
q̂ 4 .036 .158 3.466 .113 .370 2.236 .087 .548 1.880 -.392 1.357 1.273
q̇ 4 -.021 .174 3.754 .017 .453 2.621 .051 .668 2.268 .123 1.848 1.668
Es 1 -.645 .286 1 -1.043 .875 1 -1.480 1.339 1 -3.756 3.269 1

Ê 1 -.604 .422 1.044 -.941 1.148 1.091 -1.342 1.704 1.086 -3.480 3.991 1.063

Ė 1 .246 .893 1.313 .097 1.704 1.254 -.074 2.466 1.236 -1.827 6.562 1.368
Es 4 -.575 .172 1 -.842 .520 1 -1.162 .809 1 -2.932 2.056 1

Ê 4 -.530 .325 1.035 -.711 .805 1.804 -.972 1.179 1.079 -2.520 2.749 1.041

Ė 4 .178 .713 1.225 .080 1.292 1.307 -.001 1.766 1.247 -.712 4.541 1.283

v = 3 a = 0.95 a = 0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
qs 1 .031 .093 1 .043 .306 1 -.050 .500 1 -.762 1.324 1
q̂ 1 .050 .211 2.215 .074 .487 1.594 -.016 .716 1.426 -.726 1.670 1.192
q̇ 1 .027 .324 3.313 .169 .700 2.331 .190 .966 1.960 -.279 2.150 1.419
qs 4 .014 .048 1 .058 .160 1 .011 .267 1 -.487 .750 1
q̂ 4 .033 .177 3.597 .110 .361 2.219 .083 .503 1.910 -.345 1.113 1.303
q̇ 4 -.028 .188 3.795 .027 .474 2.793 .077 .699 2.636 .152 1.617 1.816
Es 1 -.738 .267 1 -1.040 .759 1 -1.376 1.125 1 -3.040 2.527 1

Ê 1 -.725 .407 1.060 -1.019 .988 1.102 -1.353 1.411 1.100 -3.013 3.019 1.079

Ė 1 .185 .898 1.168 -.130 1.475 1.150 -.247 2.062 1.168 -1.136 5.038 1.306
Es 4 -.670 .159 1 -.863 .435 1 -1.107 .654 1 -2.422 1.524 1

Ê 4 -.641 .323 1.043 -.785 .692 1.083 -1.000 .966 1.081 -2.209 2.020 1.046

Ė 4 .179 .714 1.069 -.096 1.061 1.102 -.251 1.405 1.109 -.618 3.638 1.289

v = 20 a = 0.95 a = 0.99 a = 0.995 a = 0.999
n B S R B S R B S R B S R

qs 1 .023 .077 1 .013 .148 1 -.032 .208 1 -.239 .391 1
q̂ 1 .022 .184 2.311 .008 .277 1.866 -.038 .337 1.609 -.245 .517 1.250
q̇ 1 .124 .420 5.471 .496 .718 5.878 .584 .796 4.687 .554 .991 2.480
qs 4 .006 .038 1 .032 .074 1 .016 .107 1 -.110 .213 1
q̂ 4 .008 .148 3.807 .043 .212 2.677 .033 .245 2.300 -.073 .347 1.481
q̇ 4 .013 .219 5.642 .439 .664 9.848 .565 .728 8.556 .726 .879 4.768

Es 1 -.976 .164 1.539 -1.067 .301 1 -1.150 .380 1 -1.440 .586 1

Ê 1 -.977 .267 1.576 -1.072 .411 1.035 -1.155 .490 1.036 -1.444 .696 1.032

Ė 1 -.091 .637 1 -.885 1.828 1.831 -1.208 2.482 2.280 -1.753 4.830 3.306
Es 4 -.923 .117 2.559 -.957 .177 1 -1.006 .220 1 -1.209 .343 1.009

Ê 4 -.912 .218 2.578 -.932 .297 1.005 -.974 .341 1.002 -1.155 .465 1

Ė 4 .014 .364 1 -.810 1.479 1.732 -1.150 1.949 2.197 -1.804 3.586 3.222
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Table 6 Bias (B), Standard deviation (S) and Relative Root Mean Squared
Error (R) for conditional value-at-risk (q) and expected shortfall (E) estimators

with h2(Yt−1) = 1 − 0.9exp(−2Y 2
t−1), sample size n(×1000), and θ = 0.5.

v = 2.5 a = 0.95 a = 0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
qs 1 .019 .056 1 .015 .208 1 -.054 .354 1 -.597 1.031 1
q̂ 1 .032 .249 4.235 .076 .576 2.781 .039 .825 2.310 -.365 1.901 1.626
q̇ 1 -.018 .298 5.031 .075 .615 2.964 .083 .842 2.366 -.325 1.966 1.673
qs 4 .007 .027 1 .020 .099 1 -.020 .171 1 -.406 .530 1
q̂ 4 .023 .240 8.528 .104 .518 5.228 .110 .713 4.181 -.101 1.501 2.252
q̇ 4 -.026 .211 7.539 .050 .522 5.194 .110 .739 4.333 .115 1.536 2.307
Es 1 -.403 .209 1 -.651 .595 1 -.922 .909 1 -2.323 2.239 1

Ê 1 -.375 .490 1.359 -.534 1.148 1.436 -.740 1.646 1.394 -1.873 3.708 1.288

Ė 1 .060 .592 1.310 -.386 1.147 1.372 -.664 1.724 1.427 -1.575 4.949 1.610
Es 4 -.356 .129 1 -.527 .321 1 -.730 .490 1 -1.844 1.239 1

Ê 4 -.317 .448 1.447 -.372 .948 1.650 -.496 1.309 1.592 -1.307 2.759 1.374

Ė 4 .083 .485 1.297 -.304 .939 1.599 -.639 1.222 1.568 -1.436 3.460 1.686

v = 3 a = 0.95 a = 0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
qs 1 .020 .067 1 .018 .218 1 -.054 .353 1 -.575 .925 1
q̂ 1 .043 .280 4.026 .081 .574 2.648 .031 .777 2.179 -.413 1.565 1.486
q̇ 1 .001 .336 4.777 .142 .691 3.220 .160 .897 2.552 -.157 1.838 1.693
qs 4 .009 .034 1 .034 .110 1 -.002 .184 1 -.357 .524 1
q̂ 4 .028 .257 7.437 .106 .510 4.516 .102 .672 3.688 -.146 1.277 2.027
q̇ 4 -.026 .244 7.056 .095 .591 5.192 .159 .776 4.299 .205 1.494 2.378
Es 1 -.516 .216 1 -.742 .549 1 -.986 .803 1 -2.181 1.784 1

Ê 1 -.489 .488 1.237 -.660 .994 1.293 -.870 1.345 1.259 -1.946 2.656 1.169

Ė 1 -.044 .679 1.217 -.643 1.246 1.519 -.910 1.850 1.621 -1.509 4.966 1.842
Es 4 -.463 .148 1 -.604 .327 1 -.778 .479 1 -1.701 1.102 1

Ê 4 -.434 .448 1.282 -.498 .851 1.436 -.624 1.119 1.403 -1.389 2.111 1.246

Ė 4 -.090 .605 1.257 -.669 .999 1.750 -.996 1.300 1.793 -1.663 3.155 1.759

v = 20 a = 0.95 a = 0.99 a = 0.995 a = 0.999
n B S R B S R B S R B S R

qs 1 .019 .059 1 .008 .123 1 -.029 .171 1 -.199 .318 1
q̂ 1 .014 .228 3.666 .026 .337 2.749 .002 .392 2.259 -.130 .549 1.503
q̇ 1 .055 .332 5.398 .316 .583 5.399 .386 .659 4.398 .430 .806 2.432
qs 4 .006 .031 1 .023 .057 1 .009 .082 1 -.094 .168 1
q̂ 4 -.003 .187 5.923 .040 .272 4.477 .041 .309 3.761 -.017 .409 2.128
q̇ 4 .003 .238 7.523 .267 .512 9.415 .382 .592 8.492 .560 .749 4.858

Es 1 -.778 .170 1.426 -.853 .271 1 -.920 .333 1 -1.156 .498 1

Ê 1 -.764 .320 1.483 -.811 .456 1.040 -.863 .526 1.033 -1.059 .707 1.012

Ė 1 -.126 .544 1 -.661 1.673 2.010 -.932 2.169 2.413 -1.910 3.091 2.887
Es 4 -.732 .133 2.109 -.760 .174 1 -.800 .206 1 -.963 .304 1.009

Ê 4 -.719 .270 2.177 -.715 .361 1.027 -.737 .405 1.018 -.852 .524 1

Ė 4 -.024 .352 1 -.534 1.348 1.858 -.785 1.866 2.450 -1.552 3.104 3.468
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Table 7 Backtest results for a−conditional Value-at-Risk (q) and expected
shortfall(E) on m− n = 500 observations, expected violations = (m− n)(1 − a).

q: Number of violations and p-value (in brackets).
E: p-value for exceedance residuals to have zero mean.

q E
a = 0.95 a = 0.99 a = 0.995 a = 0.95 a = 0.99 a = 0.995

Expected violations
25 5 2.5

Maize 18 (.151) 5(1) 2(.751) 0 .161 .735
Rice 29(.412) 4(.653) 2(.751) 0 .081 .248

Soybean 21(.412) 3(.369) 2(.751) 0 .302 .244
Wheatcbot 30(.305) 6(.653) 2(.751) .001 .339 .273
Wheatkcbt 25(1) 5(1) 2(.751) 0 .082 .239

Figure 1: Plot of conditional value-at-risk (q) and expected shortfall (E) estimates evaluated at sample mean
across different a, with n = 1000, h1(Yt−1) = 1 + 0.01Y 2

t−1 + 0.5sin(Yt−1), θ = 0 and student-t distributed

εt with v = 3. 1 : true q, 2 : q̂, 3 : q̇, 4 : true E, 5 : Ê, and 6 : Ė.
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Figure 2: Relative root mean squared error of q̇
q̂ (left) and Ė

Ê
(right) across sample sizes 1000 and 4000 for

θ = 0, student-t distributed εt with v degree of freedom and hi(Yt−1) for i = 1, 2.
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Figure 3: Bias and root mean squared error (R) of 99% conditional value-at-risk (q̂) and expected shortfall
(Ê) estimators with different N with n = 1000, h1(yt−1), θ = 0 and student-t distributed εt with v = 3. 1 :
bias of q̂, 2: bias of Ê, 3: R of q̂, and 4: R of Ê.

Figure 4: Plot of the log return for Maize future prices from Aug. 1, 2002 to July 28, 2004, together with
the 95% conditional value-at-risk (dashed line) and expected shortfall (dotted line) estimates.
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Appendix 2 - Lemmas and proofs

We rely, throughout the proofs, on some results from Smith (1985) and Smith (1987). For a nonstochastic

positive sequence q(an) → ∞ as N → ∞ and for σN = q(an)/α, 0 < α = −1/k0 and k0 < 0 we have

E
(
σN

∂
∂σ
log g(Z; σN , k0)

)
= Cφ(q(an))

(1+α−ρ)
+ o(φ(q(an))), E

(
∂

∂k
log g(Z; σN , k0)

)
= − αCφ(q(an))

(α−ρ)(1+α−ρ)
+ o(φ(q(an)),

E
(
σ2

N
∂2

∂σ2 log g(Z; σN , k0)
)

= − α
2+α + O(φ(q(an))), E

(
∂2

∂k2 log g(Z; σN , k0)) = − 2α2

(1+α)(2+α) + O(φ(q(an)))

and E
(
σN

∂2

∂σ∂k log g(Z; σN , k0)
)

= α2

(1+α)(2+α) +O(φ(q(an))), where all expectations are taken with respect

to the unknown distribution Fq(an). Evidently, these approximations are based on a sequence of thresholds

q(an) that approach the end point of the distribution F as the N → ∞.

Theorem 1.

Proof. For a sample {εt}n
t=1 and nonstochastic N < n such that an = 1− N

n we denote E = {t : εt > qn(an)}

and E′ = {t : εt > q(an)}. The number of elements in E and E′ are denoted by N and N1. Using Taylor’s

Theorem we expand (15) around (0, 0) such that,

1

δ2N

∂

∂τ1
L′

TN (τ1, τ2) =
1

N

N1∑

i=1

∂

∂σ
log g(Z′

i ; σN , k0)
σN

δN

+
1

N

N1∑

i=1

∂2

∂σ2
log g(Z′

i ; σN(1 + δN τ1λ1), k0 + δN τ2λ2)σ
2
Nτ1

+
1

N

N1∑

i=1

∂2

∂σ∂k
log g(Z′

i; σN(1 + δN τ1λ1), k0 + δN τ2λ2)σN τ2 = I′1N + I′2N + I′3N

and

1

δ2N

∂

∂τ2
L′

TN (τ1, τ2) =
1

N

N1∑

i=1

∂

∂k
log g(Z′

i ; σN , k0)
1

δN

+
1

N

N1∑

i=1

∂2

∂k∂σ
log g(Z′

i ; σN(1 + δN τ1λ1), k0 + δN τ2λ2)σNτ1

+
1

N

N1∑

i=1

∂2

∂k2
log g(Z′

i ; σN(1 + δN τ1λ1), k0 + δN τ2λ2)τ2 = I′4N + I′5N + I′6N ,

where λ1, λ2 ∈ (0, 1) and the terms I′lN for l = 1, · · · , 6 denote the corresponding averages in the preceding

equality. Similar expressions are defined as IlN for l = 1, · · · , 6 by replacing Z′
i with Zi and N1 with N .

It can easily be shown that I1N = Op(N
−1/2δ−1

N ), I4N = Op(N
−1/2δ−1

N ) and provided N1/2δN → ∞ and
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N1/2φ(uN) = O(1) we have I1N , I4N = op(1). Furthermore, I2N = − α
1+α

+ op(1), I3N = α2

(1+α)(2+α)
+

op(1), I5N = α2

(1+α)(2+α) + op(1), I6N = − 2α2

(1+α)(2+α) + op(1) uniformly on ST = {(τ1, τ2) : τ2
1 + τ2

2 < 1}.

Consequently, 1
δ2

N

∂
∂τ1

L′
TN (τ1, τ2)

p→ τ1

(
− α

1+α

)
+ τ2

(
α2

(1+α)(2+α)

)
, 1

δ2
N

∂
∂τ2

L′
TN (τ1, τ2)

p→ τ1

(
α2

(1+α)(2+α)

)
+

τ2

(
− 2α2

(1+α)(2+α)

)
, which combined with the fact that H = −

(
− α

1+α
α2

(1+α)(2+α)
α2

(1+α)(2+α) − 2α2

(1+α)(2+α)

)
is assumed to

be positive definite gives

(
τ1 τ2

)
(

1
δ2

N

∂
∂τ1

L′
TN (τ1, τ2)

1
δ2

N

∂
∂τ2

L′
TN (τ1, τ2)

)
p→
(
τ1 τ2

)
(−H)

(
τ1
τ2

)
≤ 0 on ST . (18)

We will establish that IlN − I′lN = op(1) for each l = 1, · · · , 6.

I1N − I′1N =
1

δN
(k−1

0 − 1)

(
1

N

N∑

i=1

(
1 − k0Zi

σN

)−1
k0Zi

σN
− 1

N

N1∑

i=1

(
1− k0Z

′
i

σN

)−1
k0Z

′
i

σN

)
+

1

δN

(
N1 −N

N

)

=
1

δN
(k−1

0 − 1)I11n +
1

δN
I12n

Since N1−N
N1/2 = Op(1) (see Lemma 4) and δNN

1/2 → ∞, 1
δN
I12n = op(1).

Case 1: qn(an) < q(an). Then, E′ ⊂ E, N1 ≤ N and

1

δN
I11n =

1

δN

(
1

N

N1∑

i=1

(
1 − k0Zi

σN

)−1
k0Zi

σN
− 1

N

N1∑

i=1

(
1 − k0Z

′
i

σN

)−1
k0Z

′
i

σN
+

1

N

N∑

i=N1+1

(
1 − k0Zi

σN

)−1
k0Zi

σN

)
.

Let Ψ(z) =
(
1 − k0

σN
z
)−1

k0z
σN

. By the Mean Value Theorem there exists λi ∈ (0, 1) and Z∗
i = Zi +

λi(Z
′
i − Zi) such that Ψ(Zi) − Ψ(Z′

i) =
(
1 − k0

σN
Z∗

i

)−2
qn(an)−q(an)

q(an) since q(an) = −σN/k0. From Lemma

4, qn(an)−q(an)
q(an)

= Op(N
−1/2) and

(
1 − k0

σN
Z∗

i

)
> 1 since Z∗

i > 0. Hence, Ψ(Zi) − Ψ(Z′
i) = Op(N

−1/2).

Now,

∣∣∣∣
1
N

∑N
i=N1+1

(
1 − k0Zi

σN

)−1
k0Zi

σN

∣∣∣∣ ≤ 1
N

∑N
i=N1+1

∣∣∣∣
(
1 − k0Zi

σN

)−1
k0Zi

σN

∣∣∣∣ ≤ N−N1

N = N−1/2Op(1) since for

all Zi > 0,
(
1 − k0Zi

σN

)−1
k0Zi

σN
< 1. Consequently, 1

δN
I11n = N1

NδN
Op(N

−1/2) + 1
δN
Op(N

−1/2) = op(1) since

δNN
1/2 → ∞.

Case 2: q(an) < qn(an). Then, E ⊂ E′, N ≤ N1 and

1

δN
I11n =

1

δN

(
1

N

N∑

i=1

(
1 − k0Zi

σN

)−1
k0Zi

σN
− 1

N

N∑

i=1

(
1 − k0Z

′
i

σN

)−1
k0Z

′
i

σN
− 1

N

N1∑

i=N+1

(
1 − k0Z

′
i

σN

)−1
k0Z

′
i

σN

)
.

Using the same arguments as in case 1, we have 1
δN
I11n = 1

δN
Op(N

−1/2) = op(1).
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Ĩ4N − I4N = − 1

δN

1

k2
0

(
1

N

N∑

i=1

log

(
1 − k0Zi

σN

)
− 1

N

N1∑

i=1

log

(
1 − k0Z

′
i

σN

))

+
1

k0

1

δN

(
1 − k−1

0

)
(

1

N

N∑

i=1

(
1 − k0Zi

σN

)−1
k0Zi

σN
− 1

N

N1∑

i=1

(
1 − k0Z

′
i

σN

)−1
k0Z

′
i

σN

)

= − 1

δN

1

k2
0

I41n +
1

k0

1

δN

(
1 − k−1

0

)
I11n.

From the study of I1N − I′1N , 1
δN
I11n = op(1).

Case 1: qn(an) < q(an). Then, E′ ⊆ E, N1 ≤ N . Let Q(z) = log
(
1 − k0

σN
z
)

and write I41n =

1
N

∑N1

i=1(Q(Zi) − Q(Z′
i)) + 1

N

∑N
i=N1+1Q(Zi). By the Mean Value Theorem there exists λi ∈ (0, 1) and

Z∗
i = Zi +λi(Z

′
i −Zi) such that Q(Zi)−Q(Z′

i) =
(
1 − k0

σN
Z∗

i

)−1
qn(an)−q(an)

q(an)
=
(
1 +

Z∗
i

q(an)

)−1

Op(N
−1/2) =

Op(N
−1/2), since Z∗

i > 0. Now, given that qn(an) < εi < q(an)

1

N

N∑

i=N1+1

Q(Zi) =
1

N

N∑

i=N1+1

log

(
1 +

Zi

q(an)

)
≤ 1

N
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Zi

q(an)
≤ 1

N

N∑

i=N1+1

(
q(an) − qn(an)

q(an)

)

=
N −N1

N
Op(N

−1/2).

Case 2: q(an) < qn(an). Then, E ⊆ E′, N ≤ N1 and I41n = 1
N

∑N
i=1(Q(Zi) −Q(Z′

i)) − 1
N

∑N1

i=N+1 Q(Z′
i) =

Op(N
−1/2) − 1

N

∑N1

i=N+1 Q(Z′
i).

1
N

∑N1

i=N+1Q(Z′
i) ≤ 1

N

∑N1

i=N+1
Z′

i

q(an) = Op(N
−1/2). Hence, I41n

δN
= op(1).
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N
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1
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N
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)−2(
k̇Zi
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i
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− τ1
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(
1
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)
I1n − 2τ1

(1 + δN τ1λ1)2

(
1

k̇
− 1

)
I2n.

τ1

N1/2(1+δN τ1λ1)2
N−N1

N1/2 = op(1) since δN → 0 and N−N1

N1/2 = Op(1). Let ζl(z) =
(
1 − k̇z

σ̇N

)−l (
k̇z
σ̇N

)l

for l = 1, 2.

Then, it suffices to establish that Iln = 1
N

∑N
i=1 ζl(Zi)− 1

N

∑N1

i=1 ζl(Zi) = op(1) for l = 1, 2 uniformly in ST .

Case 1: qn(an) < q(an). Then, E′ ⊆ E, N1 ≤ N and Iln = 1
N

∑N1

i=1(ζl(Zi) − ζl(Z
′
i)) + 1

N

∑N
i=N1+1 ζl(Zi).
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By the Mean Value Theorem there exists λi ∈ (0, 1) and Z∗
i = Zi + λi(Z

′
i − Zi) such that

ζl(Zi) − ζl(Z
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i) = l
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−1/2) for l = 1, 2

since sup
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σN
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∣∣∣ < C and sup
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(
1 − k̇

σ̇N
Z∗

i

)−l−1 (
k̇

σ̇N
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i
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∣∣∣∣ < C for n sufficiently large. Now,

N−1
N∑

i=N1+1

ζl(Zi) = N−1
N∑

i=N1+1

(
1 − k̇

σ̇N
Zi

)−l(
k̇

σ̇N
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)l

≤ N −N1

N
C = Op(N

−1/2).

Hence, Iln = N1

N Op(N
−1/2) + 1

N1/2Op(1) = op(1).

Case 2: q(an) < qn(an). Then, E ⊆ E′, N ≤ N1 and Iln = 1
N

∑N
i=1 (ζl(Zi) − ζl(Z

′
i))− 1

N

∑N1

i=N+1 ζl(Z
′
i) and

we have Iln = op(1) uniformly on ST following the same arguments as in Case 1.

Now, we note that I3N − I′3N = I5N − I′5N and write

I3N − I′3N =
τ2

1 + δN τ1λ1

1

N

N∑

i=1



−1

k̇

(
1 − k̇Zi

σ̇N

)−1
k̇Zi

σ̇N
+

1

k̇

(
1

k̇
− 1

)(
1 − k̇Zi

σ̇N

)−2(
k̇Zi

σ̇N

)2




+
1

1 + δNτ1λ1

1

N

N1∑

i=1



1

k̇

(
1 − k̇Z′

i

σ̇N

)−1
k̇Z′

i

σ̇N
− 1

k̇

(
1

k̇
− 1

)(
1 − k̇Z′

i

σ̇N

)−2(
k̇Z′

i

σ̇N

)2




= op(1)

uniformly on ST from the arguments used to study I2N − I′2N . Lastly, we write

I6N − I′6N = τ2



 1

N

N∑

i=1



 2

k̇3
log

(
1 − k̇Zi

σ̇N

)
+

2

k̇3

(
1 − k̇Zi

σ̇N

)−1(
k̇Zi

σ̇N

)



− 1

k̇2

(
1

k̇
− 1

)(
1 − k̇Zi

σ̇N

)−2(
k̇Zi

σ̇N

)2


− 1

N

N1∑

i=1



 2

k̇3
log

(
1 − k̇Z′

i

σ̇N

)
+

2

k̇3

(
1 − k̇Z′

i

σ̇N

)−1(
k̇Z′

i

σ̇N

)
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− 1

k̇2

(
1

k̇
− 1

)(
1 − k̇Z′

i

σ̇N

)−2(
k̇Z′

i

σ̇N

)2






 =
2τ2

k̇3

(
1

N

N∑

i=1

log

(
1 − k̇Zi

σ̇N

)
− 1

N

N1∑

i=1

log

(
1 − k̇Zi

σ̇N

))
+ op(1)

uniformly in ST by the study of I2N − I′2N .

=
2τ2

k̇3
I6n + op(1)

Case 1: qn(an) < q(an). Then, E′ ⊆ E, N1 ≤ N and letting Q̇(z) = log(1 − k̇
σ̇
z) we write I6n =

1
N

∑N1

i=1(Q̇(Zi) − Q̇(Z′
i)) + 1

N

∑N
i=N1+1 Q̇(Zi). By the Mean Value Theorem there exists λi ∈ (0, 1) and

Z∗
i = Zi + λi(Z

′
i − Zi) > 0 such that

|Q̇(Zi) − Q̇(Z′
i)| ≤ sup

ST

∣∣∣∣∣∣

(
1− k̇

σ̇N
Z∗

i

)−1
∣∣∣∣∣∣
sup
ST

∣∣∣∣∣
k̇

σ̇N

σN

k0

∣∣∣∣∣
q(an) − qn(an)

q(an)
= Op(N

−1/2)

since sup
ST

∣∣∣∣
(
1 − k̇

σ̇N
Z∗

i

)−1
∣∣∣∣ < C and sup

ST

∣∣∣ k̇
σ̇N

σN

k0

∣∣∣ < C for n sufficiently large. Hence, 1
N

∑N1

i=1(Q̇(Zi) −

Q̇(Z′
i)) ≤ N1

N Op(N
−1/2) = op(1). Now,

1

N

N∑

i=N1+1

Q̇(Zi) ≤
1

N

N∑

i=N1+1

∣∣∣∣∣
k̇

σ̇N

∣∣∣∣∣Zi ≤ C
1

N

N∑

i=N1+1

Zi

q(an)
= C

N −N1

N
Op(N

−1/2) = Op(N
−1)

from the study of I4N − I′4N . Similar arguments establish the the desired order in case 2 when q(an) <

qn(an).

Theorem 2.

Proof. Given the results described in section 3.1 and Taylor’s Theorem, for λ1, λ2 ∈ (0, 1), we have

1

δ2N

∂

∂τ1
L̃TN (τ1, τ2) =

1

N

Ns∑

i=1

∂

∂σ
log g(Z̃i; σN , k0)

σN

δN

+
1

N

Ns∑

i=1

∂2

∂σ2
log g(Z̃i; σN(1 + δN τ1λ1), k0 + δNτ2λ2)σ

2
Nτ1

+
1

N

Ns∑

i=1

∂2

∂σ∂k
log g(Z̃i; σN(1 + δN τ1λ1), k0 + δN τ2λ2)σNτ2 = Ĩ1N + Ĩ2N + Ĩ3N
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and

1

δ2N

∂

∂τ2
L̃TN (τ1, τ2) =

1

N

Ns∑

i=1

∂

∂k
log g(Z̃i; σN , k0)

1

δN

+
1

N

Ns∑

i=1

∂2

∂k∂σ
log g(Z̃i; σN(1 + δN τ1λ1), k0 + δNτ2λ2)σNτ1

+
1

N

Ns∑

i=1

∂2

∂k2
log g(Z̃i; σN(1 + δN τ1λ1), k0 + δN τ2λ2)τ2 = Ĩ4N + Ĩ5N + Ĩ6N .

Note that ĨjN is defined as IjN with Zi replaced by Z̃i for j = 1, · · · , 6. Let

χ(ε) =

{
1 if ε− qn(an) > 0
0 if ε− qn(an) ≤ 0

, χ̃(ε) =

{
1 if ε− q̃(an) > 0
0 if ε− q̃(an) ≤ 0

,

χI(ε) =

{
1 if ε− q̃(an) > 0, ε− qn(an) > 0
0 otherwise

and χD(ε) =

{
1 if ε− q̃(an) > 0, ε− qn(an) ≤ 0
0 otherwise

.

Also, let Ẽ = {t : ε̂t > q̃ (an)}, E = {t : εt > qn (an)}, Zt = εt − qn(an) and Z̃t = ε̂t − q̃(an) for t = 1, · · · , n.

Then, we have

Ĩ1N − I1N =
1

δN

(
1 − Ns

N

)
+

1

δN
(k−1

0 − 1)



 1

N

n∑

t=1




(

1 − k0Z̃t

σN

)−1
k0Z̃t

σN
−
(

1 − k0Zt

σN

)−1
k0Zt

σN
χ(εt)



 χ̃(εt)

+
1

N

n∑

t=1

(
1 − k0Zt

σN

)−1
k0Zt

σN
χ(εt) (χ̃(εt) − χ(εt))

)
= op(1) +

1

δN
(k−1

0 − 1)(I11n + I12n)

since N −Ns = Op(N
1/2) (see Lemma 4) and δNN

1/2 → ∞. We first study I11n, which can be written as

I11n =
1

N

n∑

t=1




(

1 − k0Z̃t

σN

)−1
k0Z̃t

σN
−
(

1 − k0Zt

σN

)−1
k0Zt

σN



χI(εt) +
1

N

n∑

t=1

(
1 − k0Z̃t

σN

)−1
k0Z̃t

σN
χD(εt)

= I111n + I112n where t ∈ Ẽ −E denotes that t ∈ Ẽ and t /∈ E.

By the Mean Value theorem, for some λt ∈ (0, 1) and Z∗
t = Zt + λt(Z̃t − Zt) we have

∣∣∣∣∣∣

(
1 − k0Z̃t

σN

)−1
k0Z̃t

σN
χI(εt) −

(
1 − k0Zt

σN

)−1
k0Zt

σN
χI(εt)

∣∣∣∣∣∣
=

|k0|/σN(
1 − k0Z∗

t

σN

)2 |Z̃t − Zt|χI(εt)

=
1

(
1 +

Z∗
t

q(an)

)2

|Z̃t − Zt|
q(an)

χI(εt),
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where the last equality follows from σN = −q(an)k0 and k0 < 0. Note that we can write,

ε̂t − εt = (m(Xt) − m̂(Xt))(ĥ
−1/2(Xt) − h−1/2(Xt))χ{ĥ(Xt)>0}

+ h−1/2(Xt)(m(Xt) − m̂(Xt))
(
χ{ĥ(Xt)>0} − 1

)
+ h−1/2(Xt)(m(Xt) − m̂(Xt))

+

(
h1/2(Xt)

ĥ1/2(Xt)
− 1

)
χ{ĥ(Xt)>0}εt +

(
χ{ĥ(Xt)>0} − 1

)
εt. (19)

By Lemmas 2, 3, Corollary 1 and the fact that h(x) is uniformly bounded away from zero, we have

|ε̂t − εt| = Op(L1n) + (Op(L1n) +Op(L2n)) |εt| uniformly in G. (20)

Consequently, since Z̃t − Zt = ε̂t − εt − (q̃(an) − qn(an)), we have

|Z̃t − Zt|
q(an)

≤ 1

q(an)
(Op(L1n) + Op(L1n + L2n)|εt|) +

|q̃(an) − qn(an)|
q(an)

=
1

q(an)
(Op(L1n) + Op(L1n + L2n)|εt|) +Op(N

−1/2) (21)

where the last equality follows from Lemma 4. Note that in the set E ∩ Ẽ we have Zt > 0 and 0 <

εt = Zt + qn(an). Hence, since qn(an)
q(an) = Op(1) and L1n

q(an) = op(N
−1/2) provided that N ∝ n

2s
2s+d −δ and

hin ∝ n− 1
2s+d for i = 1, 2, we have

|Z̃t − Zt|
q(an)

=

(
Zt

q(an)
+Op(1)

)
Op (L1n + L2n) + Op(N

−1/2) uniformly in G.

In addition,
Z∗

t

q(an) = Zt

q(an) + λt

(
1

q(an) (Op(L1n) + Op(L1n + L2n)εt) +Op(N
−1/2)

)
, and given that λt < 1

and provided that hin ∝ n− 1
2s+d we can write

Z∗
t

q(an)
=

Zt

q(an)
(1 +Op(L1n + L2n)) + Op(N

−1/2) =
Zt

q(an)
(1 + op(1)) + op(1) uniformly in G.

Thus,

I111n ≤ 1

N

n∑

t=1

1
(
1 + Zt

q(an)
(1 + op(1)) + op(1)

)2

((
Zt

q(an)
+Op(1)

)
Op(L1n + L2n) + Op(N

−1/2)

)
χI(εt).

Given that Zt > 0 whenever t ∈ χI(εt) and x
(1+x)2

< 1 for x > 0 we have I111n ≤ (Op(L1n + L2n) +

Op(N
−1/2)) 1

N

n∑
t=1
χI(εt) = Op(L1n + L2n) + Op(N

−1/2) since 1
N

n∑
t=1

χI(εt) = Op(1). We now consider I112n,

which can be written as I112n = 1
N

n∑
t=1

(
1 − k0Z̃t

σN

)−1
k0Z̃t

σN
(χ̃(εt) − χ(εt))χD(εt). For δ1, δ2 > 0 we define
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the events A =
{
ω : |ε̂t−εt|

qn(an) < δ1

}
and B =

{
ω : |q̃(an)−qn(an)|

qn(an) < δ2

}
and note that Cc ⊆ Ac ∪ Bc, where

C = {ω : χ̃(εt) − χ(εt) = 0}. The indicator function for an arbitrary set S is defined by χS . Hence,

χCc ≤ χAc + χBc and

I112n ≤ 1

N

n∑

t=1

∣∣∣∣∣∣

(
1 − k0Z̃t

σN

)−1
k0Z̃t

σN

∣∣∣∣∣∣
χAcχD(εt) +

1

N

n∑

t=1

∣∣∣∣∣∣

(
1 − k0Z̃t

σN

)−1
k0Z̃t

σN

∣∣∣∣∣∣
χBcχD(εt)

= I1121n + I1122n.

Since for δ1, δ2 > 0 we have |ε̂t−εt|
δ1qn(an)

> 1 on Ac and |q̃(an)−qn(an)|
δ2qn(an)

> 1 on Bc. Therefore,

I1121n <
1

N

n∑

t=1

∣∣∣∣∣∣

(
1 − k0Z̃t

σN

)−1
k0Z̃t

σN

∣∣∣∣∣∣
|ε̂t − εt|
δ1qn(an)

χD(εt)

and

I1122n <
1

N

n∑

t=1

∣∣∣∣∣∣

(
1 − k0Z̃t

σN

)−1
k0Z̃t

σN

∣∣∣∣∣∣
|q̃(an) − qn(an)|

δ2qn(an)
χD(εt).

Since k0 < 0, σN > 0 and Z̃t > 0 whenever t ∈ Ẽ −E we have that

∣∣∣∣
(
1 − k0Z̃t

σN

)−1
k0Z̃t

σN

∣∣∣∣ < C. From Lemma

4 we can immediately conclude that I1122n ≤ 1
δ2
Op(N

−1/2) 1
N

n∑
t=1

χD(εt), and since 1
N

n∑
t=1

χD(εt) = Op(1)

we have I1122n = Op(N
−1/2). Now, given (20), we have |ε̂t−εt|

qn(an)
= |εt|

qn(an)
Op(L1n + L2n) + op(N

−1/2),

therefore I1121n ≤ Op(L1n +L2n) 1
Nδ1

n∑
t=1

|εt|
qn(an)χD(εt) + op(N

−1/2) 1
Nδ1

n∑
t=1

χD(εt). The second term following

the inequality is op(N
−1/2) since 1

Nδ1

n∑
t=1
χD(εt) = Op(1). For the first term, note that

|εt|
qn(an) =

∣∣∣ Zt

qn(an) + 1
∣∣∣

and for t ∈ Ẽ − E, εt ≤ qn(an) and consequently if εt > 0 we have | Zt

qn(an) | <
|εt|

qn(an) + 1 < 2. If εt ≤ 0 for

t ∈ Ẽ −E then

ε̂t = (m(Xt) − m̂(Xt))
(
ĥ−1/2(Xt) − h−1/2(Xt)

)
χ{ĥ(Xt)>0} +

m(Xt) − m̂(Xt)

h1/2(Xt)

(
χ{ĥ(Xt)>0} − 1

)

+ (m(Xt) − m̂(Xt))h
−1/2(Xt) +

h1/2(Xt)

ĥ1/2(Xt)
χ{ĥ(Xt)>0}εt

= Op(L1n) +
h1/2(Xt)

ĥ1/2(Xt)
χ{ĥ(Xt)>0}εt > 0.

Since h1/2(Xt)

ĥ1/2(Xt)
χ{ĥ(Xt)>0} = 1 + op(1) and L1n → 0, it must be that εt > 0 with probability approaching 1.

Consequently, for N sufficiently large and t ∈ Ẽ − E we have | Zt

qn(an) | < 2 and I1121n = Op(L1n + L2n) +

op(N
−1/2). Combining the orders of I1121n and I1122n we have I112n = Op(L1n + L2n) + Op(N

−1/2) and
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I11n = Op(L1n + L2n) + Op(N
−1/2). We now consider I12n and note that

I12n ≤ 1

Nδ1

n∑

t=1

∣∣∣∣∣

(
1 − k0Zt

σN

)−1
k0Zt

σN

∣∣∣∣∣
|ε̂t − εt|
qn(an)

χ(εt) +
1

Nδ2

n∑

t=1

∣∣∣∣∣

(
1 − k0Zt

σN

)−1
k0Zt

σN

∣∣∣∣∣
|q̃(an) − qn(an)|

qn(an)
χ(εt).

By Lemma 4 and the fact that

∣∣∣∣
(
1 − k0Zt

σN

)−1
k0Zt

σN

∣∣∣∣ < C, the second term following the inequality is

Op(N
−1/2) given that 1

N

n∑
t=1

χ(εt) = Op(1). Again, using |ε̂t−εt|
qn(an) = |εt|

qn(an)Op(L1n +L2n)+op(N−1/2) we have

that the first term after the inequality is bounded byOp(L1n+L2n) 1
Nδ1

n∑
t=1

|εt|
qn(an)

χ(εt)+op(N
−1/2) 1

Nδ1

n∑
t=1

χ(εt).

Since 1
N

n∑
t=1

χ(εt) = Op(1) we need only investigate the order of 1
N

n∑
t=1

|εt|
qn(an)χ(εt). Note that 1

N

n∑
t=1

|εt|
qn(an)χ(εt) ≤

C 1
N

n∑
t=1

Zt

q(an)χ(εt) + Op(1) since q(an)
qn(an) = Op(1), Zt > 0 whenever t ∈ E and 1

N

n∑
t=1

χ(εt) = Op(1). Now, let

Z′
t = εt − q(an) and note that

1

N

n∑

t=1

Zt

q(an)
χ(εt) =

1

N

n∑

t=1

Z′
t

q(an)
χ(εt) −

qn(an) − q(an)

q(an)

1

N

n∑

t=1

χ(εt)

=
1

N

N∑

t=1

Z′
t

q(an)
−Op(N

−1/2)Op(1) by Lemma 4.

If q(an) ≤ qn(an) then Z′
t > 0 and E

(∣∣∣ Z′
t

q(an)

∣∣∣
)

= 1
α−1 + O(φ(q(an))) and 1

N

∑N
t=1

Z′
t

q(an) = Op(1). If

q(an) > qn(an) and N1 denotes the number of elements in {εt}N
t=1 that exceed q(an), we have N > N1

and we write 1
N

∑N
t=1

∣∣∣ Z′
t

q(an)

∣∣∣ ≤ 1
N

∑N1

t=1

∣∣∣ Z′
t

q(an)

∣∣∣ + 1
N

∑N−N1

t=1

∣∣∣ Z′
t

q(an)

∣∣∣. For the terms in the second sum on

the right side of the inequality
∣∣∣ Z′

t

q(an)

∣∣∣ ≤
∣∣∣ εt

q(an)

∣∣∣ + 1 ≤ 2 since in this case εt ≤ q(an). The Z′
t in the first

sum are all positive and we have 1
N

∑N1

t=1
Z′

t

q(an) = Op

(
N1

N

) (
1

α−1 + O (φ(q(an)))
)
. Thus, 1

N

∑N
t=1

Z′
t

q(an) =

Op

(
N1

N

) (
1

α−1 + O (φ(q(an)))
)

+ Op

(
N1−N

N

)
= Op(1) since N1

N = Op(1). Thus, 1
N

n∑
t=1

|εt|
qn(an)χ(εt) = Op(1)

and we conclude that I12n = Op(L1n + L2n) + Op(N
−1/2). Combining the orders of I11n and I12n we have

Ĩ1N −I1N = 1
δN

(k−1
0 −1)(Op(L1n+L2n)+Op(N−1/2))+op(1). Since, δNN

1/2 → ∞ and
√
NL1n,

√
NL2n → 0

as n → ∞ whenever N ∝ n
2s

2s+d −δ for 0 < δ, h1n ∝ n− 1
2s+d and h2n ∝ n− 1

2s+d we have Ĩ1N − I1N = op(1).

We now turn to establishing that Ĩ4N − I4N = op(1). We write

Ĩ4N − I4N =
1

δN



 1

N

n∑

t=1



− 1

k2
0

log

(
1 − k0Z̃t

σN

)
+

1

k0

(
1 − 1

k0

)(
1 − k0Z̃t

σN

)−1
k0Z̃t

σN

−
(
− 1

k2
0

log

(
1 − k0Zt

σN

)
+

1

k0

(
1 − 1

k0

)(
1 − k0Zt

σN

)−1
k0Zt

σN

)
χ(εt)

)
χ̃(εt)
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+
1

N

n∑

t=1

(
− 1

k2
0

log

(
1 − k0Zt

σN

)
+

1

k0

(
1 − 1

k0

)(
1 − k0Zt

σN

)−1
k0Zt

σN

))
χ(εt)(χ̃(εt) − χ(εt))

=
1

δN
(I41n + I42n).

First, note that

I41n = − 1

k2
0

(
1

N

n∑

t=1

(
log

(
1 − k0Z̃t

σN

)
− log

(
1 − k0Zt

σN

))
χI(εt) +

1

N

n∑

i=1

log

(
1 − k0Z̃t

σN

)
χD(εt)

)

+
1

k0

(
1 − 1

k0

)
I11n = − 1

k2
0

(I411n + I412n) +
1

k0

(
1 − 1

k0

)
I11n

Since we have already established that I11n = Op(L1n +L2n)+Op(N
−1/2), it suffices to investigate the order

of I411n and I412n. By the mean value theorem for some λt ∈ (0, 1) and Z∗
t = Zt + λt(Z̃t − Zt) we have

∣∣∣∣∣log
(

1 − k0Z̃t

σN

)
− log

(
1 − k0Zt

σN

)∣∣∣∣∣χI(εt) =

(
1 +

Z∗
t

q(an)

)−1 |Z̃t − Zt|
q(an)

χI(εt).

Using the same arguments when studying the order of I111n we immediately have I411n ≤ Op(L1n + L2n) +

Op(N
−1/2). Given that χD(εt) = χ̃(εt)(χ̃(εt) − χ(εt)) and χA = χ2

A we have for δ1, δ2 > 0

I412n ≤ 1

N

n∑

t=1

log

(
1 − k0Z̃t

σN

)( |ε̂t − εt|
δ1qn(an)

+
|q̃(an) − qn(an)|

δ2qn(an)

)
χD(εt)

≤ Op(L1n + L2n)
1

δ1N

n∑

t=1

log

(
1 − k0Z̃t

σN

)
|εt|

qn(an)
χD(εt) + Op(N

−1/2)
1

N

n∑

t=1

log

(
1 − k0Z̃t

σN

)
χD(εt).

Note that by the Mean Value theorem
∣∣∣log

(
1 − k0Z̃t

σN

)∣∣∣ =

∣∣∣∣
(
1 − k0Z∗

t

σN

)−1 −k0Z̃t

σN

∣∣∣∣ < − k0

σN
Z̃t since Z̃t > 0

whenever t ∈ Ẽ − E, Z∗
t = λtZ̃t > 0 for some 0 < λt < 1. Hence,

I412n ≤ Op(L1n + L2n)
1

δ1N

n∑

t=1

−k0

σN
Z̃t

|εt|
qn(an)

χD(εt) + Op(N
−1/2)

1

N

n∑

t=1

−k0

σN
Z̃tχD(εt).

Since q(an)
qn(an)

= 1 + op(1), |εt|
qn(an)

≤ |Zt|
qn(an)

+ 1 and Z̃t

q(an)
≤ |Zt|

qn(an)
(1 +Op(L1n + L2n)) + Op(N

−1/2) we have,

for the first term following the inequality,

1

N

n∑

t=1

−k0

σN
Z̃t

|εt|
qn(an)

χD(εt) ≤
1

N

n∑

t=1

( |Zt|
qn(an)

(1 +Op(L1n + L2n)) + Op(N
−1/2)

)(
1 +

|Zt|
qn(an)

)
χD(εt).

Given that |Zt|
qn(an) < 2 whenever t ∈ Ẽ − E for N sufficiently large, we have that 1

N

n∑
t=1

|Zt|2
qn(an)2χD(εt) ≤

4
N

n∑
t=1

χD(εt) = Op(1). The second term following the inequality can be bounded using the similar arguments
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and we obtain I412n = Op(L1n + L2n) +Op(N
−1/2). We now investigate the order of I42n. Note that,

I42n <
1

N

n∑

t=1

∣∣∣∣∣−
1

k2
0

log

(
1 − k0Zt

σN

)
+

1

k0

(
1 − 1

k0

)(
1 − k0Zt

σN

)−1
k0Zt

σN

∣∣∣∣∣
|ε̂t − εt|
δ1qn(an)

χ(εt)

+
1

N

n∑

t=1

∣∣∣∣∣−
1

k2
0

log

(
1 − k0Zt

σN

)
+

1

k0

(
1 − 1

k0

)(
1 − k0Zt

σN

)−1
k0Zt

σN

∣∣∣∣∣
|q̃(an) − qn(an)|

δ2qn(an)
χ(εt)

= I421n + I422n.

Since |ε̂t−εt|
qn(an) ≤ |εt|

qn(an)Op(L1n + L2n) + op(N
−1/2) we write

I421n ≤ Op(L1n + L2n)
1

k2
0δ1N

n∑

t=1

∣∣∣∣log
(

1 − k0Zt

σN

)∣∣∣∣
|εt|

qn(an)
χ(εt)

+Op(L1n + L2n)

∣∣∣∣
1

k0

(
1 − 1

k0

)∣∣∣∣
1

δ1N

n∑

t=1

∣∣∣∣∣

(
1 − k0Zt

σN

)−1
∣∣∣∣∣

∣∣∣∣
k0Zt

σN

∣∣∣∣
|εt|

qn(an)
χ(εt)

+ op(N−1/2)
1

k2
0δ1N

n∑

t=1

∣∣∣∣log
(

1 − k0Zt

σN

)∣∣∣∣χ(εt)

+ op(N−1/2)

∣∣∣∣
1

k0

(
1 − 1

k0

)∣∣∣∣
1

δ1N

n∑

t=1

∣∣∣∣∣

(
1 − k0Zt

σN

)−1
∣∣∣∣∣

∣∣∣∣
k0Zt

σN

∣∣∣∣χ(εt) (22)

Since k0 < 0 and Zt > 0 for all t ∈ E we have that

∣∣∣∣
(
1 − k0Zt

σN

)−1
∣∣∣∣
∣∣∣k0Zt

σN

∣∣∣ < C and the second and fourth

terms following the inequality are Op(L1n + L2n) and op(N
−1/2) since 1

N

n∑
t=1

|εt|
qn(an)

χ(εt) = Op(1) (see the

order of I12n) and 1
N

n∑
t=1
χ(εt) = Op(1). Note that for all t ∈ E, since Zt > 0 and k0 < 0 we have

1

N

n∑

t=1

∣∣∣∣log
(

1 − k0Zt

σN

)∣∣∣∣
|εt|

qn(an)
χ(εt) ≤

1

N

n∑

t=1

log

(
1 − k0Zt

σN

)
Zt

qn(an)
χ(εt) +

1

N

n∑

t=1

log

(
1 − k0Zt

σN

)
χ(εt)

= (1 + op(1))
1

N

n∑

t=1

log

(
1 +

Zt

q(an)

)
Zt

q(an)
χ(εt) +

1

N

n∑

t=1

log

(
1 − k0Zt

σN

)
χ(εt)

= (1 + op(1))T1N + T2N

by using the fact that q(an)/qn(an) = 1 + op(1) and −σN/k0 = q(an). Let Ψ(z) = log (1 + z) z and write

T1N = − 1
N

∑N
t=1 (Ψ(Z′

t/q(an)) − Ψ(Zt/q(an))) + 1
N

∑N
t=1 Ψ(Z′

t/q(an)). If q(an) ≤ qn(an) then Zt, Z
′
t > 0

and by the Mean Value Theorem, there exists λt ∈ (0, 1) and Z∗
t = Z′

t + λt(qn(an) − q(an)) > 0 such that

Ψ(Z′
t/q(an)) − Ψ(Zt/q(an)) =

((
1 +

Z∗
t

q(an)

)−1
Z∗

t

q(an)
+ log

(
1 +

Z∗
t

q(an)

))
qn(an) − q(an)

q(an)
.

We observe that
(
1 +

Z∗
t

q(an)

)−1
Z∗

t

q(an) < C and
qn(an)−q(an)

q(an) = Op(N
−1/2). Also, log

(
1 +

Z∗
t

q(an)

)
≤ Z∗

t

q(an) =

Z′
t

q(an) + λt
qn(an)−q(an)

q(an) =
Z′

t

q(an) + op(1). Consequently, 1
N

∑N
t=1 (Ψ(Z′

t/q(an)) − Ψ(Zt/q(an))) = Op(N
−1/2)
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since 1
N

∑N
t=1

Z′
t

q(an) = Op(1). Now, 1
N

∑N
t=1 Ψ(Z′

t) = Op(1) since E
(∣∣∣log

(
1 +

Z′
t

q(an)

)
Z′

t

q(an)

∣∣∣
)

= 1
(α−1)2 +

1
α(α−1)

+ O(φ(q(an))). Thus, combining these orders we have T1N = Op(1). Let Q(z) = log(1 + z), then

T2N = − 1
N

∑N
t=1 (Q(Z′

t/q(an)) −Q(Zt/q(an))) + 1
N

∑N
t=1Q(Z′

t/q(an)). By the Mean Value Theorem, there

exists λt ∈ (0, 1) and Z∗
t = Z′

t + λt(qn(an) − q(an)) > 0 such that

Q(Z′
t/q(an)) −Q(Zt/q(an)) =

(
1 +

Z∗
t

q(an)

)−1
qn(an) − q(an)

q(an)
= Op(N

−1/2).

Furthermore, 1
N

∑N
t=1Q(Z′

t/q(an)) = Op(1) since E (|Q(Z′
t/q(an))|) = 1

α + o(1). Hence, T2N = Op(1) which

combines with the order of T1N to give 1
N

n∑
t=1

∣∣∣log
(
1 − k0Zt

σN

)∣∣∣ |εt|
qn(an)χ(εt) = Op(1).

Now, consider the case where q(an) > qn(an) and consequently N > N1. Then,

T1N = − 1

N

N1∑

t=1

(Ψ(Z′
t/q(an)) − Ψ(Zt/q(an))) +

1

N

N1∑

t=1

Ψ(Z′
t/q(an)) +

1

N

N−N1∑

t=1

Ψ(Zt/q(an)).

The first two sums on the right side of the equality have Z′
t > 0 and can be treated as in the case where

q(an) ≤ qn(an). In the last sum qn(an) < εt < q(an) and we have

1

N

N−N1∑

t=1

Ψ(Zt/q(an)) ≤ 1

N

N−N1∑

t=1

(
Zt

q(an)

)2

≤ 1

N

N−N1∑

t=1

(
εt

q(an)

)2

= Op

(
N −N1

N

)
= Op(N

−1/2),

which combines with the order of the first two terms to give T1N = Op(1). Now, write

T2N = − 1

N

N1∑

t=1

(Q(Z′
t/q(an)) −Q(Zt/q(an))) +

1

N

N−N1∑

t=1

Q(Zt/q(an)).

The first term on the right side of the inequality can her treat as in the case where q(an) ≤ qn(an). For the

second term, 1
N

∑N−N1

t=1 Q(Zt/q(an)) ≤ 1
N

∑N−N1

t=1
Zt

q(an)
≤ Op

(
N−N1

N

)
= Op(N

−1/2). Consequently, T2N =

Op(N1/N) + Op(N
−1/2) which combines with the order of T1N to give 1

N

n∑
t=1

∣∣∣log
(
1 − k0Zt

σN

)∣∣∣ |εt|
qn(an)χ(εt) =

Op(1). Thus, the first term on the right side of inequality in (22) is Op(L1n + L2n). Similar arguments

establish that 1
N

n∑
t=1

log
(
1 − k0Zt

σN

)
χ(εt) = Op(1) and that the order of the third term is Op(N

−1/2).

We now examine the order of I422n. Given
q̃n(an)−qn(an)

qn(an) = Op(N
−1/2) and

∣∣∣∣
(
1 − k0Zt

σN

)−1
k0Zt

σN

∣∣∣∣ < C

we write I422n ≤ 1
δ2
Op(N

−1/2)

(
1

k2
0δ2

1
N

n∑
t=1

∣∣∣log
(
1 − k0Zt

σN

)∣∣∣χ(εt) + C
∣∣∣ 1
k0

(
1 − 1

k0

)∣∣∣ 1
N

n∑
t=1
χ(εt)

)
. Since we

have already established that 1
N

n∑
t=1

∣∣∣log
(
1 − k0Zt

σN

)∣∣∣χ(εt) = Op(1) and 1
N

n∑
t=1

χ(εt) = Op(1) we conclude that
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I422n = Op(N
−1/2). Combining all orders obtained we have that I41n + I42n = Op(L1n +L2n) +Op(N

−1/2)

and consequently Ĩ4N − I4N = op(1), since δNN
1/2 → ∞ as n → ∞.

We now investigate the order of Ĩ2N −I2N . Consider arbitrary σ̇N = σN(1+δN τ1λ1) and k̇ = k0+δN τ2λ2

and write

Ĩ2N − I2N =
τ1

(1 + τ1δNλ1)2



(−2)

(
1

k̇
− 1

)
1

N

Ns∑

t=1




(

1 − k̇Z̃t

σ̇N

)−1
k̇Z̃t

σ̇N
+

1

2

(
1 − k̇Z̃t

σ̇N

)−2(
k̇Z̃t

σ̇N

)2




+ 2

(
1

k̇
− 1

)
1

N

N∑

t=1




(

1 − k̇Zt

σ̇N

)−1
k̇Zt

σ̇N
+

1

2

(
1 − k̇Zt

σ̇N

)−2(
k̇Zt

σ̇N

)2








+
τ1

(1 + τ1δNλ1)2

(
Ns

N
− 1

)

Hence, it suffices to examine

1

N

Ns∑

t=1

(
1 − k̇Z̃t

σ̇N

)−l(
k̇Z̃t

σ̇N

)l

− 1

N

N∑

t=1

(
1 − k̇Zt

σ̇N

)−l(
k̇Zt

σ̇N

)l

=
1

N

n∑

t=1




(

1 − k̇Z̃t

σ̇N

)−l(
k̇Z̃t

σ̇N

)l

−
(

1 − k̇Zt

σ̇N

)−l(
k̇Zt

σ̇N

)l

χ(εt)



 χ̃(εt) +
1

N

n∑

t=1

(
1 − k̇Zt

σ̇N

)−l(
k̇Zt

σ̇N

)l

χ(εt)(χ̃(εt) − χEt) = Inl1 + Inl2

for l = 1, 2. First, note that Inl1 = Inl11 + Inl12 where

Inl11 =
1

N

n∑

t=1




(

1− k̇Z̃t

σ̇N

)−l(
k̇Z̃t

σ̇N

)l

−
(

1 − k̇Zt

σ̇N

)−l(
k̇Zt

σ̇N

)l


χI(εt) and

Inl12 =
1

N

n∑

t=1

(
1 − k̇Z̃t

σ̇N

)−l(
k̇Z̃t

σ̇N

)l

χD(εt).

By the Mean Value theorem, there exists Z∗
t = Z̃t + λt(Z̃t − Zt) for λt ∈ (0, 1) such that

Inl11 ≤ l
1

N

n∑

t=1

∣∣∣∣∣∣

(
1 − k̇Z∗

t

σ̇N

)−l−1
k̇

σ̇N

(
k̇Z∗

t

σ̇N

)l−1

qn(an)

∣∣∣∣∣∣

×
(
Op(L1n + L2n)

(
Zt

qn(an)
+ 1

)
+ Op(N

−1/2)

)
χI(εt). (23)

Since q(an) = −σN/k0 and q(an)
qn(an) = Op(1) we have

sup
ST

1

N

n∑

t=1

∣∣∣∣∣∣

(
1 − k̇Z∗

t

σ̇N

)−l−1
k̇

σ̇N

(
k̇Z∗

t

σ̇N

)l−1
Zt

qn(an)
qn(an)

∣∣∣∣∣∣
χI(εt) ≤ Op(1)sup

ST

∣∣∣∣∣
k̇

k0

σN

σ̇N

∣∣∣∣∣

× 1

N

n∑

t=1

χI(εt)sup
ST

∣∣∣∣∣∣

(
k̇Z∗

t

σ̇N

)l−1(
1 − k̇Z∗

t

σ̇N

)−l−1
Zt

qn(an)

∣∣∣∣∣∣
.
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Given that δN → 0 we have for N sufficiently large sup
ST

∣∣∣ k̇
k0

σN

σ̇N

∣∣∣ < C and sup
ST

∣∣∣∣
(

k̇Z∗
t

σ̇N

)l−1 (
1 − k̇Z∗

t

σ̇N

)−l
∣∣∣∣ < C.

Hence, to establish the order of the left hand side of the inequality it suffices to obtain the order of υn =

1
N

n∑
t=1

χI(εt)sup
ST

∣∣∣∣
(
1 − k̇Z∗

t

σ̇N

)−1
Zt

qn(an)

∣∣∣∣. Note that,

υn ≤ C
1

N

n∑

t=1

χI(εt)sup
ST

∣∣∣∣∣∣

(
1 − k̇Z∗

t

σ̇N

)−1(
− k̇Zt

σ̇N

)∣∣∣∣∣∣
sup
ST

(
− k̇

σ̇N

)−1
1

qn(an)

≤ C
1

N

n∑

t=1

χI(εt)sup
ST

∣∣∣∣∣∣

(
1 − k̇Z∗

t

σ̇N

)−1(
− k̇Zt

σ̇N

)∣∣∣∣∣∣
since sup

ST

(
− k̇

σ̇N

)−1
1

qn(an) < C

≤ C
1

N

n∑

t=1

χI(εt)sup
ST

∣∣∣∣∣∣

(
1 − k̇

σ̇N
q(an)

(
Zt

q(an)
(1 + op(1)) + op(1)

))−1(
− k̇Zt

σ̇N

)∣∣∣∣∣∣
= Op(1)

since
Z∗

t

q(an) =
(

Zt

q(an) (1 + op(1)) + op(1)
)
, sup

ST

∣∣∣∣
(
1 − k̇

σ̇N
q(an)

(
Zt

q(an) (1 + op(1)) + op(1)
))−1 (

− k̇Zt

σ̇N

)∣∣∣∣ < C

and 1
N

n∑
t=1
χI(εt) = Op(1). Consequently, Inl11 = Op(L1n + L2n) +Op(N

−1/2) as all remaining terms in (23)

are of the same order. Now, we write

Inl12 ≤ 1

N

n∑

t=1

∣∣∣∣∣∣

(
1 − k̇Z̃t

σ̇N

)−l(
k̇Z̃t

σ̇N

)l
∣∣∣∣∣∣
χD(εt)

(
Op(L1n + L2n)

1

δ1

( |εt|
qn(an)

+
1

qn(an)

)
+

1

δ2
Op(N

−1/2)

)

and obtain the order of νn = 1
N

n∑
t=1

∣∣∣∣
(
1 − k̇Z̃t

σ̇N

)−l (
k̇Z̃t

σ̇N

)l
∣∣∣∣

|εt|
qn(an)χD(εt). Note that

νn ≤ 1

N

n∑

t=1

sup
ST

∣∣∣∣∣∣

(
1 − k̇Z̃t

σ̇N

)−l(
k̇Z̃t

σ̇N

)l
∣∣∣∣∣∣

|εt|
qn(an)

χD(εt) ≤ C
1

N

n∑

t=1

|εt|
qn(an)

χD(εt) = Op(1)

from the study of the order of I1121n. Consequently, Inl12 = Op(L1n + L2n) + Op(N
−1/2) which combined

with the order of Inl11 gives Inl1 = Op(L1n + L2n) + Op(N
−1/2). Now, as argued previously, we can write

Inl2 ≤ 1

N

n∑

t=1




(

1 − k̇Zt

σ̇N

)−l(
k̇Zt

σ̇N

)l



(
Op(L1n + L2n)

1

δ1

( |εt|
qn(an)

+
1

qn(an)

)
+

1

δ2
Op(N

−1/2)

)
χ(εt).

(24)

Letting Tn = 1
N

n∑
t=1

((
1 − k̇Zt

σ̇N

)−l (
k̇Zt

σ̇N

)l
)

|εt|
qn(an)χ(εt), we note that Tn ≤ C 1

N

n∑
t=1

|εt|
qn(an)χ(εt) = Op(1) from

the study of I12n given that δN → 0, forN sufficiently large we have k̇ < 0, σ̇N > 0 and

∣∣∣∣
(
1 − k̇Zt

σ̇N

)−l (
k̇Zt

σ̇N

)l
∣∣∣∣ <

C. Consequently, Inl2 = Op(L1n +L2n)+Op(N
−1/2) since all other terms in inequality (24) are of the same

order given

∣∣∣∣
(
1 − k̇Zt

σ̇N

)−l (
k̇Zt

σ̇N

)l
∣∣∣∣ < C and the fact that 1

N

n∑
t=1
χ(εt) = Op(1). Combining the orders of Inl1
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and Inl2 we conclude that Ĩ2N − I2N = op(1) uniformly on ST . Now, note that Ĩ3N − I3N = Ĩ5N − I5N and

Ĩ3N − I3N =
τ2

1 + δNτ1λ1

1

N

Ns∑

t=1



−1

k̇

(
1 − k̇Z̃t

σ̇N

)−1
k̇Z̃t

σ̇N
+

1

k̇

(
1

k̇
− 1

)(
1 − k̇Z̃t

σ̇N

)−2(
k̇Z̃t

σ̇N

)2




+
τ2

1 + δN τ1λ1

1

N

N∑

t=1



 1

k̇

(
1 − k̇Zt

σ̇N

)−1
k̇Zt

σ̇N
− 1

k̇

(
1

k̇
− 1

)(
1 − k̇Zt

σ̇N

)−2(
k̇Zt

σ̇N

)2


 .

Using the same arguments as in the case of Ĩ2N − I2N we have Ĩ3N − I3N = op(1) and Ĩ5N − I5N = op(1)

uniformly on ST . Lastly, we investigate the order of Ĩ6N − I6N which can be written as

Ĩ6N − I6N = τ2



 1

N

Ns∑

t=1



 2

k̇3
log

(
1 − k̇Z̃t

σ̇N

)
+

2

k̇3

(
1 − k̇Z̃t

σ̇N

)−1(
k̇Z̃t

σ̇N

)



− 1

k̇2

(
1

k̇
− 1

)(
1 − k̇Z̃t

σ̇N

)−2(
k̇Z̃t

σ̇N

)2




− 1

N

N∑

t=1



 2

k̇3
log

(
1 − k̇Zt

σ̇N

)
+

2

k̇3

(
1 − k̇Zt

σ̇N

)−1(
k̇Zt

σ̇N

)

− 1

k̇2

(
1

k̇
− 1

)(
1 − k̇Zt

σ̇N

)−2(
k̇Zt

σ̇N

)2








=
2τ2

k̇3

(
1

N

Ns∑

t=1

log

(
1 − k̇Z̃t

σ̇N

)
− 1

N

N∑

t=1

log

(
1 − k̇Zt

σ̇N

))
+ op(1) uniformly in ST . (25)

The last equality follows form the arguments used above when investigating the order of Ĩ2N − I2N . The

first term in equation (25) can be written as (excluding the constant 2τ2/k̇
3) I61n + I62n, where

I61n =
1

N

n∑

t=1

(
log

(
1 − k̇Z̃t

σ̇N

)
− log

(
1 − k̇Zt

σ̇N

)
χ(εt)

)
χ̃(εt),

I62n =
1

N

n∑

t=1

log

(
1 − k̇Zt

σ̇N

)
χ(εt)(χ̃(εt) − χ(εt)).

Now, I62n ≤ 1
N

n∑
t=1

∣∣∣log
(
1 − k̇Zt

σ̇N

)∣∣∣χ(εt)
(

Op(L1n+L2n)
δ1

(
|εt|

qn(an)
+ 1

qn(an)

)
+ 1

δ2
Op(N

−1/2)
)

and we consider

the order of 1
N

n∑
t=1

∣∣∣log
(
1 − k̇Zt

σ̇N

)∣∣∣ |εt|
qn(an)χ(εt). Note that Zt > 0 whenever t ∈ E and as N → ∞, δN → 0,

k̇ → k0 and σ̇N

σN
→ 1. Consequently, given that

q(an)
qn(an) = Op(1) we have 1

N

n∑
t=1

∣∣∣log
(
1 − k̇Zt

σ̇N

)∣∣∣ |εt|
qn(an)χ(εt) =

Op(1) which follows from the order of I421n. Hence, I62n = Op(L1n + L2n) + Op(N
−1/2) uniformly on

ST . We write I61n = I611n + I612n where I611n = 1
N

n∑
t=1

(
log
(
1 − k̇Z̃t

σ̇N

)
− log

(
1 − k̇Zt

σ̇N

))
χI(εt)and I612n =
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1
N

n∑
t=1

log
(
1 − k̇Z̃t

σ̇N

)
χD(εt). Then,

I611n =
1

N

n∑

t=1

(
1 − k̇Z∗

t

σ̇N

)−1
k̇

σ̇N
(Z̃t − Zt)χI(εt)

≤ 1

N

n∑

t=1

∣∣∣∣∣∣

(
1 − k̇Z∗

t

σ̇N

)−1
∣∣∣∣∣∣

∣∣∣∣∣
k̇

σ̇N
qn(an)

∣∣∣∣∣

(
Op(L1n + L2n)

(
Zt

qn(an)
+ 1

)
+Op(N

−1/2)

)
χI(εt)

≤ sup
ST

∣∣∣∣∣
k̇

σ̇N
qn(an)

∣∣∣∣∣
1

N

n∑

t=1

sup
ST

∣∣∣∣∣∣

(
1 − k̇Z∗

t

σ̇N

)−1
∣∣∣∣∣∣

(
Op(L1n + L2n)

(
Zt

qn(an)
+ 1

)
+Op(N

−1/2)

)
χI(εt)

= Op(1)
1

N

n∑

t=1

sup
ST

∣∣∣∣∣∣

(
1 − k̇Z∗

t

σ̇N

)−1
∣∣∣∣∣∣

(
Op(L1n + L2n)

(
Zt

qn(an)
+ 1

)
+Op(N

−1/2)

)
χI(εt)

= Op(L1n + L2n) +Op(N
−1/2) uniformly on ST given the order of υn.

Since Z̃t > 0 whenever t ∈ Ẽ − E and since as N → ∞ δN → 0, k̇ → k0 and σ̇N

σN
→ 1 we have I612n =

1
N

n∑
t=1

log
(
1 − k0Z̃t

σN

)
χD(εt)+op(1). From the order of I412n we have I612n = Op(L1n+L2n)+Op(N−1/2) and

consequently I61n = Op(L1n + L2n) +Op(N
−1/2), which combined with the order of I62n gives Ĩ6N − I6N =

op(1) uniformly on ST .

Theorem 3.

Proof. Let r̃N =
σ̃q̃(an)

σN
= 1 + δN τ

∗
1 , k̃ = k0 + δN τ

∗
2 and note that

(
1

δ2
N

∂
∂τ1

LTN (τ∗1 , τ
∗
2 )

1
δ2

N

∂
∂τ2

LTN (τ1∗∗, τ∗2 )

)
=

1

δNN

( ∑N
i=1

∂
∂rN

log g(Z̃i; r̃NσN , k̃)∑N
i=1

∂
∂k
log g(Z̃i; r̃NσN , k̃)

)
=

(
0
0

)
. (26)

For some λ1, λ2 ∈ (0, 1) let k∗ = λ2k0 + (1 − λ2)k̃, r
∗
N = λ1 + (1 − λ1)r̃N ,

HN(r∗N , k
∗) = − 1

N

N∑

i=1

(
∂2

∂r2
N
log g(Z̃j ; r

∗
NσN , k

∗) ∂2

∂k∂rN
log g(Z̃i; r

∗
NσN , k

∗)
∂2

∂k∂rN
log g(Z̃i; r

∗
NσN , k

∗) ∂2

∂k∂k log g(Z̃i; r
∗
NσN , k

∗)

)
and

vN (1, k0) =
√
N

(
1
N

∑N
i=1

∂
∂rN

log g(Z̃j ; σN , k0)
1
N

∑N
i=1

∂
∂k log g(Z̃i; σN , k0)

)
=

√
N

(
δN (Ĩ1N − I1N) + δN I1N

δN (Ĩ4N − I4N) + δN I4N

)
,

where Ĩ1N , I1N , Ĩ4N , I4N are as defined in Theorem 2. By a Taylor’s expansion of the first order condition

in (26) around (1, k0) we have

HN(r∗N , k
∗)
√
N

(
r̃N − 1

k̃ − k0

)
= vN(1, k0). (27)
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We start by investing the asymptotic properties of vN (1, k0). Let b1 = −α(1+α)
2+α , b2 =

(
−α2(1+α)

2+α + α3

1+α

)

and observe that from Theorem 2 and Lemma 4 and the fact that qn(an)
q(an)

− 1 = op(1) we have that

vN(1, k0) =

(
b1
√
N q̃(an)−qn(an)

qn(an)
+ δN

√
NI1N + op(1)

b2
√
N q̃(an)−qn(an)

qn(an) + δN
√
NI4N + op(1)

)

=



 b1
√
N
(

q̃(an)−q(an)
q(an) − qn(an)−q(an)

q(an)

)
+ δN

√
NI1N + op(1)

b2
√
N
(

q̃(an)−q(an)
q(an) − qn(an)−q(an)

q(an)

)
+ δN

√
NI4N + op(1)





By Lemma 5 and the fact that N1 −N = Op(N
1/2)

( √
NδNI1N√
NδNI4N

)
=

(
b1
√
N qn(an)−q(an)

q(an) + 1√
N

∑N
i=1

∂
∂σ log g(Z

′
i ; σN , k0)σN + op(1)

b2
√
N qn(an)−q(an)

q(an)
+ 1√

N

∑N
i=1

∂
∂k
log g(Z′

i; σN , k0) + op(1)

)

where Z′
i = εi − q(an) for εi > q(an). Hence, by letting bσ = E

(
∂

∂σ log g(Z
′
i; σN , k0)σN

)
and bk =

E
(

∂
∂k
log g(Z′

i ; σN , k0)
)

we have

vN (1, k0) −
√
N

(
bσ
bk

)
=




b1
√
N q̃(an)−q(an)

q(an) + 1√
N

(∑N
i=1

∂
∂σ log g(Z

′
i; σN , k0)σN − bσ

)
+ op(1)

b2
√
N q̃(an)−q(an)

q(an) + 1√
N

(∑N
i=1

∂
∂k log g(Z

′
i ; σN , k0) − bk

)
+ op(1)



 .

Note that we can write

1√
N

(
N∑

i=1

∂

∂σ
log g(Z′

i; σN , k0)σN − bσ

)
=

n∑

t=1

N−1/2

(
∂

∂σ
log g(Z′

t; σN , k0)σN − bσ

)
χ{εt>q(an)}

=

n∑

t=1

Zt1

and

1√
N

(
N∑

i=1

∂

∂k
log g(Z′

i; σN , k0)σN − bk

)
=

n∑

t=1

N−1/2

(
∂

∂k
log g(Z′

t; σN , k0)σN − bk

)
χ{εt>q(an)}

=

n∑

i=1

Zi2.

Also, from Lemma 4,
√
N q̃(an)−q(an)

q(an) is distributed asymptotically as
n∑

t=1
k0(n(1−F (yn)))−1/2(q1n−E(q1n))+

op(1) =
n∑

t=1
Zt3 + op(1) where q1n = 1

h3n

∫ yn

−∞K3

(
y−εt

h3n

)
dy and yn = q(an)(1 + N−1/2z) for arbitrary z. It

can be easily verified that E(Zt1) = E(Zt2) = E(Zt3) = 0. In addition,

V (Zt1) = N−1E

(
∂

∂σN
log g(Z′

i; σN , k0)σN − bσ

)2

P ({εt > q(an)})

= n−1E

(
∂

∂σN
log g(Z′

i ; σN , k0)σN − bσ

)2

= n−1

(
1

1 − 2k0
+ o(1)

)
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where the last equality follows from the results listed in section 3.1. Using similar arguments we obtain

V (Zt2) = n−1

(
2α2

(1 + α)(2 + α)
+ o(1)

)

and from Lemma 4 we have that V (Zt3) = n−1k3
0F (yn) + o(h3n). We now define the vector ψn =

n∑
t=1

(Zt1, Zt2, Zt3)
T and for arbitrary 0 6= λ ∈ R

3 we consider λTψn =
n∑

i=1

(λ1Zt1 + λ2Zt2 + λ3Zt3) =
n∑

t=1
Ztn.

From above, we have that E(Ztn) = 0 and V (Ztn) =
∑3

l=1 λ
2
dE(Z2

td) + 2
∑

1≤d<d′≤3 λdλd′E(ZtdZtd′). First,

we consider E(Zt1Zt2) which can be written as

E(Zt1Zt2) =
1

n
T1n − N

n2
bσbk

where T1n = E
(

∂
∂σN

log g(Z′
i ; σN , k0)σN

∂
∂k log g(Z

′
i; σN , k0)

)
. Since bσ =

Cφ(ε(n−N))

1+α−ρ + o(φ(ε(n−N))) and

bk = − Cαφ(ε(n−N))

(α−ρ)(1+α−ρ) + o(φ(ε(n−N))) we have that

E(Zt1Zt2) =
1

n
T1n −O

(
(N1/2φ(ε(n−N)))

2

n2

)
=

1

n
T1n − n−2O(1)

since N1/2φ(ε(n−N)) = O(1). Now, note that

T1n = −bk − 1

k0

(
1

k0
− 1

)2

E

((
1 − k0Z

′
t

σN

)−2(
k0Z

′
t

σN

)2
)

− 1

k2
0

(
1

k0
− 1

)
E

(
log

(
1 − k0Z

′
t

σN

)(
1 − k0Z

′
t

σN

)−1(
k0Z

′
t

σN

))
.

From Smith (1987) we have that E

((
1 − k0Z′

t

σN

)−2 (
k0Z′

t

σN

)2
)

= 2
(1+α)(2+α) + O(φ(ε(n−N))) and bk =

O(φ(ε(n−N))). From Lemma 6 we have that

E

(
log

(
1 − k0Z

′
t

σN

)(
1 − k0Z

′
t

σN

)−1(
k0Z

′
t

σN

))
= − 1

α
+

α

(1 + α)2
+O(φ(ε(n−N)))

which combined with the orders obtained for the other components of the expectation and the fact that

k0 = −α−1 give E(Zt1Zt2) = − 1
n(k0−1)(2k0−1)

+ 1
n
φ(ε(n−N))O(1) − O(n−2). We now turn to E(Zt1Zt3)

which can be written as

E(Zt1Zt3) = T2n − k0E

(
N−1/2

(
∂

∂σN
log g(Z′

i ; σN , k0)σN

)
χεt>q(an)

)
E(q1n)(n(1 − F (yn)))−1/2,
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where T2n = E
(
N−1/2

(
∂

∂σN
log g(Z′

i ; σN , k0)σN

)
χεt>q(an)(n(1 − F (yn)))−1/2k0q1n

)
. We note that

E

(
N−1/2

(
∂

∂σN
log g(Z′

i ; σN , k0)σN

)
χ{εt>q(an)}

)
=

√
N

n
bσ =

√
N

n
O(φ(ε(n−N))),

from Lemma 4 E(q1n) = F (yn) + O(hm+1
3n ) = O(1) and since (n(1 − F (yn)))−1/2 is asymptotically equiv-

alent to N−1/2, the second term in the covariance expression is of order
√

N
n O(φ(ε(n−N)))O(1)N−1/2 =

n−1O(φ(ε(n−N))). We now turn to T2n, the first term in the covariance expression. Since (n(1−F (yn)))−1/2

is asymptotically equivalent to N−1/2, we have by the Cauchy-Schwartz inequality

T2n =
1

n
E

(
∂

∂σN
log g(Z′

i; σN , k0)σNq1n

)
≤ 1

n

∣∣∣∣E
(

∂

∂σN
log g(Z′

i; σN , k0)σNq1n

)∣∣∣∣

≤ 1

n

(
E

((
∂

∂σN
log g(Z′

i; σN , k0)σN

)2
)
E(q21n)

)1/2

= n−1o(1).

Hence, E(Zt1Zt3) = o(n−1). In a similar manner we obtain E(Zt2Zt3) = o(n−1). Hence, nV (Ztn) = λTV1λ+

o(1), where V1 =




1

1−2k0
− 1

(k0−1)(2k0−1) 0

− 1
(k0−1)(2k0−1)

2
(k0−1)(2k0−1)

0 0 k2
0



. By Liapounov’s CLT
n∑

i=1
Znt

d→ N (0, λTV1λ)

provided that
n∑

t=1
E(|Ztn|3) → 0. To verify this condition, it suffices to show that (i)

n∑
i=1

E(|Zt1|3) →

0; (ii)
n∑

i=1
E(|Zt2|3) → 0; (iii)

n∑
i=1
E(|Zt3|3) → 0. (iii) was verified in Lemma 4, so we focus on (i) and

(ii). For (i), note that
n∑

t=1
E(|Z1t|3) ≤ 1√

N
E
(∣∣(1/k0 − 1)(1 − k0Z

′
t/σN)−1k0Z

′
t/σN − 1

∣∣3
)

→ 0 provided

E(−(1−k0Z
′
t/σN)−3(k0Z

′
t/σN)3) < C, which is easily verified by noting that −(1−k0Z

′
t/σN)−3(k0Z

′
i/σN)3 <

−(1 − k0Z
′
t/σN)−3(1 − k0Z

′
t/σN)3 = 1. Lastly,

n∑

i=1

E(|Z2t|3) ≤
1√
N
E
(∣∣−(1/k2

0)log(1 − k0Z
′
t/σN) + (1/k0)(1 − 1/k0)(1 − k0Z

′
t/σN)−1k0Z

′
t/σN

∣∣3
)
→ 0

provided E
(
log(1 − k0Z

′
t/σN)3

)
< C given the bound we obtained in case (i). By FR2 and integrating by

parts we have

E
(
log(1 − k0Z

′
t/σN)3

)
= −

∫ ∞

0

log(1 − k0z/σN)3dFε(n−N)
(z)

= −1 − F (ε(n−N)(1 + z/ε(n−N)))

1 − F (ε(n−N))
(log(1 + z/ε(n−N)))

3|∞0

+

∫ ∞

0

L(ε(n−N)(1 + z/ε(n−N)))

L(ε(n−N))
(1 + z/ε(n−N))

−α3(log(1 + z/ε(n−N)))
2

× (1 + z/ε(n−N))
−1(1/ε(n−N))dz = τ1n + τ2n.
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Three repeated applications of L’Hôpital’s rule and Proposition 1.15 in Resnick (1987) give τ1n = 0. For τ2n

we have that given FR2 and again integrating by parts and letting t = 1 + z/ε(n−N)

τ2n =

∫ ∞

1

3(log(t))2t−α−1dt+ φ(ε(n−N))

∫ ∞

1

3(log(t))2t−α−1C

ρ
(tρ − 1)dt+ o(φ(ε(n−N))).

It is easy to verify that
∫∞
1

3(log(t))2t−α−1dt = 6
α3 and consequently τ2n = 6

α3 +O(φ(ε(n−N))) which verifies

(ii). By the Cramer-Wold theorem we have that ψn
d→ N (0, V1). Consequently, for any vector γ ∈ <2

we have γT

(
vN (σN , k0) −

√
N

(
bσ
bk

))
d→ N (0, γT V2γ) where V2 =




k2
0−4k0+2
(2k0−1)2

− 1
k0(k0−1)

− 1
k0(k0−1)

2k3
0−2k2

0+2k0−1
k2
0(k0−1)2(2k0−1)



.

Again, by the Cramer-Wold theorem

(
vN(σN , k0) −

√
N

(
bσ
bk

))
d→ N (0, V2). Hence, given equation (27),

provided that HN(r∗N , k
∗)

p→ H we have

√
N

(
r̃N − 1

k̃ − k0

)
−H−1

√
N

(
bσ
bk

)
= H−1

(
vN (σN , k0) −

√
N

(
bσ
bk

))
d→ N

(
0, H−1V2H

−1
)
.

To see that HN(r∗N , k
∗)

p→ H , first observe that whenever (τ1, τ2) ∈ ST we have (r̃N , k̃) ∈ SR and conse-

quently (r∗N , k
∗) ∈ SR. In addition, from Theorem 2 and the results from Smith (1987) we have HN(r̃N , k̃)

p→

H uniformly on SR. By Theorem 21.6 in Davidson (1994) we conclude that HN(r∗N , k
∗)

p→ H .

Theorem 4.

Proof. Let a ∈ (0, 1) and an = 1 − N
n < a. We are interested in estimating q(a) which we write as

q(a) = q(an)+yN,a . Estimating q(an) by q̃(an) and based on the GPD approximation we define an estimator

ŷN,a for yN,a as ŷN,a =
σ̃q̃n(an)

k̃

(
1 −

(
n(1−a)

N

)k̃
)

. Note that, as defined, ŷN,a satisfies

1 − F̃ (q̃(an) + ŷN,a) =
N

n

(
1 − k̃ŷN,a

σ̃q̃n(an)

)1/k̃

. (28)

Note that for a chosen N , equation (28) is satisfied with a distribution function Ḟ that is not necessarily F̃ .

However, given the continuity of F̃ , there exists N satisfying the order relation a > 1 −N/n for which (28)

is satisfied by F̃ . Hence, to avoid additional notation we proceed with F̃ . We define the estimator for q(a)

as q̂(a) = q̃(an) + ŷN,a. For σn = q(a)(n(1 − a))−1/2, arbitrary 0 < z and Vn = −k0
√
n/(1 − a)1/2 we note
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that

P (σn(q̂(a) − q(a)) ≤ z) = P (1 − a ≥ 1 − F̃ (q(an) + yN,a + σnz))

= P (Vn((1 − a) − (1 − F (q(a) + σnz)))) ≥ Vn((1 − F̃ (q(an) + yN,a + σnz))

− (1 − F (q(a) + σnz))).

In addition, from the proof of Lemma 4 we have that limn→∞Vn((1 − a) − (1 − F (q(a) + σnz))) = z. Now,

let Wn = Vn((1 − F̃ (q(an) + yN,a + σnz)) − (1 − F (q(a) + σnz))) and note that
n(1−F (q(a)))

Vn(1−F (q(a)+σnz))Wn =

√
n(1 − F (q(a)))

(
1−F̃ (q(a)+σnz)
1−F (q(a)+σnz)

− 1
)

= − 1
k0
Wn(1 + o(1)). We first establish that

√
n(1 − F (q(a)))

(
1 − F̃ (q(a) + σnz)

1 − F (q(a) + σnz)
− 1

)

is asymptotically normally distributed. Without loss of generality consider yN = q(an)(ZN − 1) for 0 <

ZN → Z < ∞. Note that if ZN = Z, then yN,a = yN = q(an)(Z − 1). Then, q(a) + σnz = q(an)Z(1 +

z((1 − a)n)−1/2) = q(an)ZN . By FR2

(q(an)ZN )α

q(an)α

1 − F (q(an)ZN )

1 − F (q(an))
= Z

−1/k0

N

1 − F (q(an)ZN )

1 − F (q(an))
since α = −1/k0

= 1 + k(ZN )φ(q(an)) + o(φ(q(an)))

where 0 < φ(q(an)) → 0 as q(an) → ∞, k(ZN ) =
C(Z

ρ
N−1)

ρ
. Since we assume that N1/2Cφ(q(an))

α−ρ
→ µ, we

have that as ZN → Z, k(ZN )φ(q(an)) − k(Z)N−1/2 µ(α−ρ)
C → 0 and consequently

Z
−1/k0

N

1 − F (q(an)ZN )

1 − F (q(an)
= 1 + k(Z)N−1/2µ(α− ρ)

C
+ o(N−1/2). (29)

We observe that for the function h(σ, k, y) = − 1
k log

(
1 − ky

σ

)
we can write

1 − F̃ (q̃(an) + yN )

1 − F̃ (q̃(an))
= exp(−h(σ̃N , k̃, yN))

and using the notation in Theorem 3 and the mean value theorem gives

h(σ̃N , k̃, yN) − h(σN , k0, yN ) =
(
σN

∂
∂σh(σ

∗
N , k

∗, yN) ∂
∂kh(σ

∗
N , k

∗, yN)
)( r̃N − 1

k̃ − k0

)
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for σ∗
N = λ1σ̃N + (1 − λ1)σN and k∗N = λ2k̃N + (1 − λ2)k0 and λ1, λ2 ∈ (0, 1). It follows from σN =

−k0q(an) = − k0yN

ZN−1 that yN = (1−ZN)σN

k0
and from Theorem 3 we have

σN
∂

∂σ
h(σ∗

N , k
∗, yN)

p→ −k−1
0 (Z−1 − 1) and

∂

∂k
h(σ∗

N , k
∗, yN)

p→ k−2
0 log(Z) + k−2

0 (Z−1 − 1).

Hence, if cTb =
(
−k−1

0 (Z−1 − 1) k−2
0 log(Z) + k−2

0 (Z−1 − 1)
)

and µT
p =

(
µ(1−k0)(1+2k0ρ)

1−k0+k0ρ
µ(1−k0)k0(1+ρ)

1−k0+k0ρ

)

we can write

cTb
√
N

(
r̃N − 1

k̃ − k0

)
d→ N (cTb µp, c

T
b H

−1V2H
−1) and

√
N(h(σ̃N , k̃, yN) − h(σN , k0, yN)) = Op(1). (30)

Now, we can conveniently write,

1 − F̃ (q(an) + yN )

1 − F (q(an) + yN )
=

1 − F̃ (q(an) + yN )

1 − F̃ (q̃(an))

1 − F (q(an))

1 − F (q(an) + yN)
Z

1/k0

N Z
−1/k0

N .

Note that 1−F̃ (q(an)+yN )

1−F̃ (q̃(an))
=
(
1 − k̃yN

σ̃N

)1/k̃ (
1−F̃ (q(an))

1−F̃ (q̃(an))

)
and Z

−1/k0

N =
(
1 − k0yN

σN

)−1/k0

= exp(h(σN , k0, yN )).

Furthermore from equation (29), Z
1/k0

N
1−F (q(an))

(1−F (q(an)ZN))
− 1 = N−1/2

(
−k(Z)µ(α−ρ)

C

)
+ o(N−1/2). Hence,

1 − F̃ (q(an) + yN )

1 − F (q(an) + yN )
= Z

1/k0

N

1 − F (q(an))

(1 − F (q(an)ZN ))

1 − F̃ (q(an))

(1 − F̃ (q̃(an)))
exp(−h(σ̃N , k̃, yN) + h(σN , k0, yN)).

Now, we note that 1−F̃ (q(an))

1−F̃ (q̃(an))
− 1 = − F̃ (q(an))−F (q(an))

1−F (q(an))
and from Lemma 4 we have

√
n(1−F (q(an))

1−F (q(an))
(1 −

F̃ (q(an)) − (1 − F (q(an)))
d→ N (0, 1) as q(an) → ∞. In particular, using the notation adopted in Lemma 4

we have that

√
n(1 − F (q(an))

1 − F (q(an))
(1 − F̃ (q(an)) − (1 − F (q(an))) = −

n∑

i=1

1√
n(1 − F (q(an))

(q1n −E(q1n)) + op(1)

=

n∑

i=1

Zi4 + op(1).

Hence,

1 − F̃ (q(an) + yN )

1 − F (q(an) + yN )
− 1 = Z

1/k0

N

1 − F (q(an))

(1 − F (q(an)ZN ))

1 − F̃ (q(an))

(1 − F̃ (q̃(an)))
exp(−h(σ̃N , k̃, yN) + h(σN , k0, yN)) − 1.

and by equation (30) and the Mean Value theorem we have

exp(−h(σ̃N , k̃, yN) + h(σN , k0, yN)) = 1 − (h(σ̃N , k̃, yN ) − h(σN , k0, yN )) + op(N
−1/2).
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Therefore, we write

√
N

(
1 − F̃ (q(an) + yN )

1 − F (q(an) + yN )
− 1

)
=

√
N

(
Z

1/k0

N

1 − F (q(an))

(1 − F (q(an)ZN ))
− 1

)
+
√
N

(
1 − F̃ (q(an))

(1 − F̃ (q̃(an)))
− 1

)

−
√
N(h(σ̃N , k̃, yN) − h(σN , k0, yN )) + op(1).

Since
√
N
(
Z

1/k0

N
1−F (q(an))

(1−F (q(an)ZN )) − 1
)
→ −k(Z)µ(α−ρ)

C we focus on the joint distribution of the last two terms.

By equation (30) we have that

√
N(h(σ̃N , k̃, yN) − h(σN , k0, yN)) = cTb

√
N

(
r̃N − 1

k̃ − k0

)
+ op(1) (31)

and by Theorem 3 (adopting its notation) we have

√
N

(
r̃N − 1

k̃ − k0

)
−
√
N

(
bσ
bk

)
= (H−1 + op(1))

(
vN (1, k0) −

√
N

(
bσ
bk

))
,

where the last vector in this equality depends on
√
N q̃(an)−q(an)

q(an) which is asymptotically distributed as

∑n
t=1Zt3 +op(1),

∑n
t=1 Zt2 and

∑n
t=1 Zt1. Hence, we define

√
N
(

1−F̃ (q(an))

(1−F̃ (q̃(an)))
− 1
)

=
∑n

t=1Zt4, let 0 6= d ∈

R
4,

qT
n =

( ∑n
t=1 Zt1

∑n
t=1 Zt2

∑n
t=1Zt3

∑n
t=1 Zt4

)

and consider dTqn =
∑n

t=1

∑4
δ=1 Ztδdδ =

∑n
t=1 Znt. Note that Znt forms an iid sequence with E(Znt) = 0

and the asymptotic behavior of
∑n

t=1Zt1,
∑n

t=1 Zt2 and
∑n

t=1 Zt3 was studied in Theorem 3. In addition

the asymptotic behavior of
∑n

t=1Zt4 was studied in Lemma 4. Recall that E(Z2
t4) = n−1(F (yn) + o(h3n))

and from Theorem 3 E(Zt1Zt4) = o(n−1) and E(Zt2Zt4) = o(n−1). Here we examine

E(Zt3Zt4) = − k0

n((1 − F (yn))(1 − F (q(an))))1/2
E

(
q1n

1

h3n

∫ q(an)

−∞
K3

(
y − εt

h3n

)
dy

)

− E(q1n)E

(
1

h3n

∫ q(an)

−∞
K3

(
y − εt

h3n

)
dy

)
.

By Lemma 4 E(q1n) − F (yn) = O(hm+1
3n ) and similarly we have E

(
1

h3n

∫ q(an)

−∞ K3

(
y−εt

h3n

)
dy
)
− F (q(an)) =

O(hm+1
3n ). Since in Lemma 4 we have yn = q(an) + σnz, then for κ(x) = h−1

3n

∫ x

−∞K3

(
y−ε
h3n

)
dy we can write

E

(
q1n

1

h3n

∫ q(an)

−∞
K3

(
y − εt

h3n

)
dy

)
= E(κ(q(an) + σnz)κ(q(an)))(χ{q(an)=yn} + χ{q(an) 6=yn}).
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For z > 0 we have that q(an) 6= yn implies yn > q(an) so that

E(κ(q(an) + σnz)κ(q(an))χ{q(an)<yn}) ≤ Cχ{q(an)<yn} = C (F (q(an) + σnz) − F (q(an))) .

By FR2 limn→∞
F (q(an)+σnz)−F (q(an))

1−F (q(an)) = 0, hence (1− F (q(an)))−1E(κ(q(an) + σnz)κ(q(an))χ{q(an) 6=yn}) =

o(1) and E
(
q1n

1
h3n

∫ q(an)

−∞ K3

(
y−εt

h3n

)
dy
)

= E
(
κ2(q(an))

)
+ o(1 − F (q(an))). Consequently,

E(Zt3Zt4) = − k0

n((1 − F (yn))(1 − F (q(an))))1/2
(E
(
κ2(q(an))

)
+ o(1 − F (q(an)))) − F 2(q(an)) + O(hm+1

3n )

= −k0

n
(F (q(an)) + o(1))

and V (Zin) = 1
nd

TV3d + o(n−1) where V3 =





1
1−2k0

− 1
(k0−1)(2k0−1) 0 0

− 1
(k0−1)(2k0−1)

2
(k0−1)(2k0−1) 0 0

0 0 k2
0 −k0

0 0 −k0 1



. From the

verification of Liapounov’s condition in Theorem 3 we have that dTqn
d→ N (0, dTV3d) and from the Cramer-

Wold theorem qn
d→ N (0, V3). Now, from equation (31)

√
N(h(σ̃N , k̃, yN) − h(σN , k0, yN)) = cTb H

−1

(
vN (1, k0) −

√
N

(
bσ
bk

))
+ cTb H

−1
√
N

(
bσ
bk

)

hence by letting A.j represent the jth column of a matrix A, we write

√
N

(
1 − F̃ (q(an) + yN )

1 − F (q(an) + yN )
− 1

)
= −k(Z)µ(α − ρ)

C
−
(
cTb H

−1
.1

n∑

i=1

Zt1 + cTb H
−1
.2

n∑

i=1

Zt2

+
(
cTb H

−1
.1 b1 + cTb H

−1
.2 b2

) n∑

t=1

Zt3

+ cTb H
−1

√
N

(
bσ
bk

))
+

n∑

i=1

Zt4 + op(1)

= −k(Z)µ(α − ρ)

C
− cTb H

−1
√
N

(
bσ
bk

)

+
(
−cTb H−1

.1 −cTb H−1
.2 −cTb H−1

.1 b1 − cTb H
−1
.2 b2 1

)
qn + op(1).

Let ηT =
(
−cTb H−1

.1 −cTb H−1
.2 −cTb H−1

.1 b1 − cTb H
−1
.2 b2 1

)
, then from the results above we have ηTqn

d→

N (0, ηTV3η) where simple algebraic manipulations give ηTV3η = cTb H
−1V2H

−1cb + 2cTb

(
2 − k0

1 − k0

)
+ 1.

Consequently, if ζ ∼ N

(
−k(Z)µ(α−ρ)

C , cTb H
−1V2H

−1cb + 2cTb

(
2 − k0

1 − k0

)
+ 1

)
, then

√
N

(
1 − F̃ (q(an) + yN )

1 − F (q(an) + yN )
− 1 −

(
−cTb H−1

(
bσ
bk

)))
d→ ζ,
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and for yN = q(an)(ZN − 1) with ZN → Z we immediately have

√
N

(
1 − F̃ (q(a) + σnZ)

1 − F (q(a) + σnZ)
− 1 −

(
−cTb H−1

(
bσ
bk

)))
d→ ζ.

Lastly, since −Wn/k0+o(1) =
√
n(1 − F (q(a)))

(
1−F̃ (q(a)+σnz)
1−F (q(a)+σnz) − 1

)
and if

√
n(1 − F (q(a))) =

√
n(1 − a) ∝

N1/2, that is, n(1 − a) → ∞ at the same rate as N , then

Wn
d→ N

(
(−k0)

(
−k(Z)µ(α − ρ)

C
− cTb H

−1 lim
n→∞

√
N

(
bσ
bk

))
, k2

0

(
cTb H

−1V2H
−1cb + 2cTb

(
2 − k0

1 − k0

)
+ 1

))

which immediately gives,
√
n(1 − a)

(
q̂(a)
q(a) − 1

)
d→ ζ1 where

ζ1 ∼ N

(
(−k0)

(
−k(Z)µ(α − ρ)

C
− cTb H

−1 lim
n→∞

√
N

(
bσ
bk

))
, k2

0

(
cTb H

−1V2H
−1cb + 2cTb

(
2 − k0

1 − k0

)
+ 1

))
.

Theorem 5.

Proof. We write

Ê(εt|εt > q(a))

q(a)/(1 + k0)
− 1 =

q̂(a)/(1 + k̃)

q(a)/(1 + k0)
− 1 =

(
q̂(a)

q(a)
− 1

)(
k0 − k̃

1 + k̃

)
+
q̂(a)

q(a)
− 1 +

k0 − k̃

1 + k̃
.

From Theorems 3 and 4 we have k̃−k0

1+k̃
= Op(N

−1/2) and q̂(a)
q(a) − 1 = Op(N

−1/2). Hence,

√
N

(
q̂(a)/(1 + k̃)

q(a)/(1 + k0)
− 1

)
=

√
N

(
q̂(a)

q(a)
− 1

)
−

√
N

(
k̃ − k0

1 + k0

)
+ op(1)

=
(

1 −(1 + k0)
−1

)



√
N
(

q̂(a)
q(a)

− 1
)

√
N
(
k̃ − k0

)



+ op(1).

Hence, it suffices to obtain the joint distribution of the vector




√
N
(

q̂(a)
q(a) − 1

)

√
N
(
k̃ − k0

)



. From Theorem 4

we have that
√
N
(

q̂(a)
q(a) − 1

)
− (−k0)

√
N
(

1−F̃ (q(an)+yN )
1−F (q(an)+yN ) − 1

)
= op(1), where yN = q(an)(ZN − 1) for

0 < ZN → Z <∞. Also,

(−k0)
√
N

(
1 − F̃ (q(an) + yN )

1 − F (q(an) + yN )
− 1

)
= (−k0)

−(Zρ − 1)µ(α− ρ)

ρ
− (−k0)c

T
b H

−1
√
N

(
bσ
bk

)
+ (−k0)η

Tqn

+ op(1),
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where qT
n =

(
n∑

t=1
Zt1

n∑
t=1

Zt2

n∑
t=1

Zt3

n∑
t=1
Zt4

)T
d→ N (0, V3) and the structure of

n∑
t=1

Ztj for j = 1, · · · , 4

and V3 are given in Theorem 4. From Theorem 3

√
N(k̃ − k0) −

√
N
(

0 1
)
H−1

(
bσ
bk

)
=

(
0 1

)
H−1

(
vN (1, k0) −

√
N

(
bσ
bk

))
+ op(1)

=

( (
0 1

)
H−1

(
0 1

)
H−1

(
b1
b2

) )





n∑
t=1
Zt1

n∑
t=1
Zt2

n∑
t=1
Zt3





+ op(1).

Hence, we can write,




√
N
(

q̂(a)
q(a)

− 1
)

√
N
(
k̃ − k0

)



 =




(−k0)

−(Zρ−1)µ(α−ρ)
ρ − (−k0)c

T
b H

−1
√
N

(
bσ
bk

)

√
N
(

0 1
)
H−1

(
bσ
bk

)





+

(
−k0η

T

θT

)
qn + op(1)

where θT =

( (
0 1

)
H−1

(
0 1

)
H−1

(
b1
b2

)
0

)
. Consequently,





√
N

(
q̂(a)
q(a) − 1 − (−k0)

−(Zρ−1)µ(α−ρ)
ρ + (−k0)c

T
b H

−1
√
N

(
bσ
bk

))

√
N

(
k̃ − k0 −

√
N
(

0 1
)
H−1

(
bσ
bk

))




d→ N (0, V4) .

where V4 =

(
−k0 η

T

θT

)
V3

(
−k0 η

T

θT

)T

. Thus, it follows immediately that

√
N

(
q̂(a)/(1 + k̃)

q(a)/(1 + k0)
− 1

)
−
(

1 −(1 + k0)
−1
)




(−k0)

−(Zρ−1)µ(α−ρ)
ρ − (−k0)c

T
b H

−1
√
N

(
bσ
bk

)

√
N
(

0 1
)
H−1

(
bσ
bk

)





d→ N
(
0,
(

1 −(1 + k0)
−1

)
V4

(
1 −(1 + k0)

−1
)T)

.

Additional algebra, gives

√
n(1 − a)

(
q̂(a)/(1 + k̃)

q(a)/(1 + k0)
− 1

)
d→ N

(
k0

(Zρ − 1)µ(α− ρ)

ρ
+ k0c

T
b H

−1 lim
n→∞

√
N

(
bσ
bk

)

− 1

1 + k0
lim

n→∞

√
N
(

0 1
)
H−1

(
bσ
bk

)
,Σ

)
,

where Σ = k2
0η

TV3η+2 k0

1+k0
ηTV3θ+ 1

(1+k0)2
θTV3θ, with ηTV3η =

(
cTb H

−1V2H
−1cb + 2cTb

(
2 − k0

1 − k0

)
+ 1

)

from Theorem 4.
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Theorem 6.

Proof. a) We write

q̂Yt|Xt=x(a)

qYt|Xt=x(a)
− 1 =

m̂(x) −m(x)

m(x) + h1/2(x)q(a)
+

(
ĥ1/2(x) − h1/2(x)

)

(
m(x)
q(a)

+ h1/2(x)
) q̂(a)

q(a)
+

h1/2(x)(
m(x)
q(a)

+ h1/2(x)
)
(
q̂(a) − q(a)

q(a)

)
.

From Lemma 2, sup
x∈G

|m̂(x)−m(x)| = Op(L1n). As n→ ∞, a → 1 and q(a) → ∞. Hence, given that h1/2(x)

is bounded away from zero for fixed x by assumption A3 2), we have that
m̂(x)−m(x)

m(x)+h1/2(x)q(a)
= op(L1n).

Now, given A6 1) and n(1 − a) ∝ N we have
√
n(1 − a) m̂(x)−m(x)

m(x)+h1/2(x)q(a)
= op(1). From Corollary 1,

sup
x∈G

|ĥ1/2(x) − h1/2(x)| = Op(L1n + L2n). Hence, given A6 1), n(1 − a) ∝ N and the fact that m(x) is

bounded for fixed x we have
√
n(1 − a)

(ĥ1/2(x)−h1/2(x))
(m(x)

q(a) +h1/2(x))
= op(1). From Theorem 4 we have q̂(a)

q(a)
= 1 + op(1),

which gives
√
n(1 − a)

(ĥ1/2(x)−h1/2(x))
(m(x)

q(a)
+h1/2(x))

q̂(a)
q(a) = op(1). Lastly, since q(a) → ∞ as n → ∞, for fixed x we have

h1/2(x)

(m(x)
q(a) +h1/2(x))

→ 1 and by Theorem 4
√
n(1 − a)

(
q̂(a)−q(a)

q(a)

)
d→ N (µ1,Σ1), which gives the desired result.

b) We write

Ê
(
Yt|Yt > qYt|Xt=x(a)

)

E
(
Yt|Yt > qYt|Xt=x(a)

) − 1 =
m̂(x) −m(x)

m(x) + h1/2(x)E(εt|εt > q(a))
+

ĥ1/2(x) − h1/2(x)(
m(x)

E(εt|εt>q(a)) + h1/2(x)
) Ê(εt|εt > q(a))

E(εt|εt > q(a))

+
h1/2(x)(

m(x)
E(εt|εt>q(a)) + h1/2(x)

)
(
Ê(εt|εt > q(a)) − E(εt|εt > q(a))

E(εt|εt > q(a))

)

As in part a), since m(x) + h1/2(x)E(εt|εt > q(a)) → ∞ as n → ∞, given Lemma 2 and A6 1) and

n(1 − a) ∝ N ,
√
n(1 − a) m̂(x)−m(x)

m(x)+h1/2(x)E(εt|εt>q(a))
= op(1). By equation (39) in Lemma 7 we can write

√
n(1 − a)

Ê(εt|εt > q(a)) − E(εt|εt > q(a))

E(εt|εt > q(a))
=
√
n(1 − a)

(
Ê(εt|εt > q(a))

q(a)
1+k0

− 1

)(
E(εt|εt > q(a))

q(a)
1+k0

)−1

−
(1 + k0)

√
n(1 − a)

(
Cφ(q(a))

(ρ−α+1)(1−α)
+ o (φ(q(a)))

)

E(εt|εt>q(a))
q(a)
1+k0

.

By Theorem 5,
√
n(1 − a)

(
Ê(εt|εt>q(a))

q(a)
1+k0

− 1

)
d→ N (µ2,Σ2) and by Lemma 7, E(εt|εt>q(a))

q(a)
1+k0

= 1+o(1). Since

n(1 − a) ∝ N we investigate the order of (1 + k0)
CN1/2φ(q(a))
(ρ−α+1)(1−α) + (1 + k0)N

1/2φ(q(a))o (1). We note that

CN1/2φ(q(a))

(ρ− α+ 1)(1 − α)
=

1

(ρ− α+ 1)(1 − α)

N1/2Cφ(q(an))

α− ρ

(α− ρ)φ(q(a))

φ(q(an))
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and since by assumption N1/2Cφ(q(an))
α−ρ

→ µ we need only investigate φ(q(a))
φ(q(an))

. As in Theorem 4, without loss

of generality, there exists a sequence ZN → Z such that q(a) = q(an)ZN and we write φ(q(a))
φ(q(an)) = φ(q(an)ZN )

φ(q(an)) .

Since, φ is regularly varying with index ρ ≤ 0, φ(q(an)ZN )
φ(q(an))

→ Zρ as n → ∞ and we have CN1/2φ(q(a))
(ρ−α+1)(1−α)

→
µ(α−ρ)Zρ

(ρ−α+1)(1−α) . Similar arguments show that N1/2φ(q(a)) = O(1). Hence, given that k0 = −α−1 we have

√
n(1 − a)

Ê(εt|εt > q(a)) −E(εt|εt > q(a))

E(εt|εt > q(a))

d→ N
(
µ2 −

(ρ− α)µ

α(ρ− α+ 1)
Zρ,Σ2

)
. (32)

An immediate consequence of equation (32) is that Ê(εt|εt>q(a))
E(εt|εt>q(a))

= 1 + op(1). Furthermore, given Corollary

1, assumption A6 1) and n(1− a) ∝ N we have that
√
n(1 − a) ĥ1/2(x)−h1/2(x)

“

m(x)
E(εt|εt>q(a))

+h1/2(x)
” = op(1). Finally, since

as n→ ∞,
h1/2(x)

“

m(x)
E(εt|εt>q(a))

+h1/2(x)
” → 1, we have

√
n(1 − a)

(
Ê
(
Yt|Yt > qYt|Xt=x(a)

)

E
(
Yt|Yt > qYt|Xt=x(a)

) − 1

)
d→ N

(
µ2 −

(ρ− α)µ

α(ρ− α+ 1)
Zρ,Σ2

)
.

Lemma 1. Let w(Xt − x; x) : Rd → R and g(ε) : R → R be measurable functions and define

s(x) =
1

nhd
n

n∑

t=1

K

(
Xt − x

hn

)(
Xti − xi

hn

)p1
(
Xtj − xj

hn

)p2
(
Xtl − xl

hn

)p3

w(Xt − x; x)g(εt) (33)

where K is a multivariate kernel given by K(x) =
∏d

j=1 K(xj), hn > 0 is a bandwidth, for i, j = 1, · · · , d

and p1, p2, p3 = 0, 1. Assume that A1 and A2 are holding and that:

a) E (|g(εt)|a) <∞ for some a > 2;

b) w(Xt −x; x) satisfies a Lipschitz condition of order 1, i.e., |w(Xt−x; x)−w(Xt −xk; xk)| ≤ C‖x−xk‖E

for some C > 0 and x 6= xk in R
d and |w(Xt − x; x)| < C for all x ∈ R

d;

c) The joint density of Xi and Xj conditional on εi and εj denoted by fXiXj|εiεj
(Xi,Xj) < C.

Then, for an arbitrary compact set G ⊆ R
d, we have

sup
x∈G

|s(x) −E(s(x))| = Op

((
log n

nhd
n

)1/2
)

(34)

provided that for a, B > 2, θ > 0, we have

n1− 2
a−2θhd

n → ∞ (35)
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and

n(B+1.5)( 1
a +θ)− B

2 +0.75+d
2 h

−1.75d−d
2 (d+B)

n (log n)0.25+0.5(B−d) → 0. (36)

Proof. See Martins-Filho et al. (2012b).

Lemma 2. Assume that the kernel K1 used to define m̂ satisfies assumption A1 and assumptions A2 and

A3 are holding. Assume also that the bandwidth h1n used to define m̂ satisfies equations (35) and (36).

Then, if E(|εt|a) <∞, E(h1/2(Xt)
a) <∞ for some a > 2 and condition c) in Lemma 1 is holding

sup
x∈G

|m̂(x) −m(x)| = Op (L1n) , (37)

where L1n =
(

log n
nhd

1n

)1/2

+ hs
1n.

Proof. See Martins-Filho et al. (2012b).

Lemma 3. Assume that the kernel K2 used to define ĥ satisfies assumption A1 and assumptions A2 and A3

are holding. Assume also that the bandwidth h2n used to define ĥ satisfies equations (35) and (36). Then,

under the assumptions in Lemma 2, if E(|ε2t − 1|a) <∞ and E(h(Xt)
a) <∞ for some a > 2,

sup
x∈G

|ĥ(x) − h(x)| = Op (L1n + L2n) , (38)

where L1n =
(

log n
nhd

1n

)1/2

+ hs
1n and L2n =

(
log n
nhd

2n

)1/2

+ hs
2n.

Proof. See Martins-Filho et al. (2012b).

Corollary 1. Under the assumptions of Lemma 3,

sup
x∈G

|ĥ1/2(x) − h1/2(x)| = Op (L1n + L2n) and sup
x∈G

|χ{ĥ(x)>0} − 1| = Op (L1n + L2n) ,

where L1n =
(

log n
nhd

1n

)1/2

+ h2
1n and L2n =

(
log n
nhd

2n

)1/2

+ h2
2n.

Lemma 4. Under assumptions A1-A6 and conditions FR1’ and FR2, if α ≥ 1 we have

N1/2

(
q̃ (an) − qn (an)

q (an)

)
= Op(1), where an = 1 − N

n
.
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Proof. See Martins-Filho et al. (2012b).

Lemma 5. Let an = 1 − N
n and for i = 1, · · · , N define Zi = εi − qn(an) whenever εi > qn(an) and for

i = 1, · · · , N1 define Z′
i = εi − q(an) whenever εi > q(an). If ∆σ = 1

N

∑N
i=1

∂
∂σ log g(Zi; σN , k0)σN −

1
N

∑N1

i=1
∂

∂σ log g(Z
′
i ; σN , k0)σN and ∆k = 1

N

∑N
i=1

∂
∂k log g(Zi; σN , k0) − 1

N

∑N1

i=1
∂
∂k log g(Z

′
i ; σN , k0), then

N1/2∆σ = b1
√
N qn(an)−q(an)

q(an)
+ op(1) and N1/2∆k = b2

√
N qn(an)−q(an)

q(an)
+ op(1), where b1 = −α(1+α)

2+α
,

b2 =
(
−α2(1+α)

2+α + α3

1+α

)
.

Proof. The proof is identical to that of Lemma 3 in Martins-Filho et al. (2012a) by substituting their U(n−N)

with ε(n−N).

Lemma 6. E

(
log
(
1 − k0Z′

i

σN

)(
1 − k0Z′

i

σN

)−1 (
k0Z′

i

σN

))
= − 1

α
+ α

(1+α)2
+O(φ(ε(n−N)))

Proof. The proof is identical to that of Lemma 4 in Martins-Filho et al. (2012a) by substituting their U(n−N)

with ε(n−N).

Lemma 7. Under conditions FR1 with α > 1, FR2 and a ∈ (an, 1) with an = 1 − N
n → 1 as n → ∞, we

have E(εt|εt>q(a))
q(a)
1+k0

= 1 + o(1).

Proof. Denote the distribution of εt − q(a) given that εt > q(a) evaluated at z by Fεt−q(a)|εt>q(a)(z). Since

Fεt−q(a)|εt>q(a)(z) =
F (z+q(a))−F (q(a))

1−F (q(a)) , by FR2 we can write Fεt−q(a)|εt>q(a)(z) = 1 − L(z+q(a))
L(q(a))

(
z+q(a)

q(a)

)−α

.

Observe that under FR1 α = −1/k0 and q(an) = −σN/k0, hence z+q(a)
q(a)

= 1− k0z
σN−k0(q(a)−q(an))

≡ tn(z) and

we write Fεt−q(a)|εt>q(a)(z) = 1 − L(tn(z)q(a))
L(q(a)) tn(z)1/k0 . Hence,

E(εt|εt > q(a)) = q(a) −
∫ ∞

q(a)

(ε− q(a))d

(
L(tn(ε− q(a))q(a))

L(q(a))
tn(ε− q(a))1/k0

)
and integrating by parts

= −(ε− q(a))

(
L(tn(ε− q(a))q(a))

L(q(a))
tn(ε− q(a))1/k0

)∣∣∣∞q(a)

+

∫ ∞

q(a)

L(tn(ε− q(a))q(a))

L(q(a))
tn(ε− q(a))1/k0dε+ q(a)

Denoting the first term on the right side of the equality by I1 and the second term by I2, we observe that

I1 = − lim
ε→∞

ε− q(a)

(1 − F (q(a)))/1 − F (ε)
= − lim

ε→∞
ε− q(a)

(
1 − k0(ε−q(a))

σN−k0(q(a)−q(an))

)−1/k0
lim

ε→∞
L(q(a)tn(ε− q(a)))

L(q(a))
.
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By FR2 lim
ε→∞

L(q(a)tn(ε−q(a)))
L(q(a)) = 1, and since −1 < k0 < 0 (α > 1), lim

ε→∞
ε−q(a)

“

1− k0(ε−q(a))

σN −k0(q(a)−q(an))

”−1/k0
= 0. By

FR1 and FR2, changing variables in I2, we write

I2 = q(a)

∫ ∞

1

L(q(a)t)

L(q(a))
t1/k0dt = q(a)

(∫ ∞

1

t1/k0dt+ φ(q(a))

∫ ∞

1

t1/k0k(t)dt+ o(φ(q(a)))

)

= −q(a) k0

1 + k0
+ q(a)

(
Cφ(q(a))

(ρ− α+ 1)(1 − α)
+ o (φ(q(a)))

)

where the last equality follows from
∫∞
1
t1/k0dt = − k0

1+k0
and

∫∞
1
t1/k0k(t)dt = C

(ρ−α+1)(1−α). Consequently,

E(εt|εt > q(a)) =
q(a)

1 + k0
+ q(a)

(
Cφ(q(a))

(ρ− α+ 1)(1 − α)
+ o (φ(q(a)))

)
. (39)

Since as n → ∞, a→ 1, then q(a) → ∞ and (φ(q(a)) → 0, giving the desired result.
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