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1 Introduction

Conditional value-at-risk (CVaR) and conditional expected shortfall (CES) are two of the most used synthetic
measures of market risk (McNeil and Frey (2000), Duffie and Singleton (2003), Engle and Manganelli (2004),
Cai and Wang (2008)). From a statistical perspective these risk measures have straightforward definitions.
Let {Y;} denote a stochastic process representing the returns® on a given portfolio, stock or market index,
where ¢ € Z indexes a discrete measure of time and Fy,|x,—x denote the conditional distribution of Y; given
X, = x. The stochastic vector X; € R? normally includes lags {Y;_¢}1<o<m for some m € IN as well as
other relevant conditioning random variables. Then, for a € (0,1), a-CVaR(x) is defined to be the a-quantile
associated with Fy,x,—x and a-CES(x) is defined to be the conditional expectation of Y; given that Y;
exceeds the a-CVaR(x) associated with Fy,x,—x, i.e., a-CES(x)=E(Y;|Y; > a-CVaR(x)).

Usually, practical interest focuses on estimating a-CVaR(x) and a-CES(x) for values of a in the vicinity
of 1. In the conditional (regression) quantile literature this is commonly referred to as estimation of extremal
or high-order quantiles (Chernozhukov and Umantsev (2001), Chernozhukov (2005), Martins-Filho et al.
(2012a)). For example, the Capital Adequacy Directive from the Bank of International Settlements requires
the risk capital of a bank to be sufficient to cover losses on its portfolio (over a 10-day holding period) with
a probability a = 0.99. In such cases, a-CVaR(x), a-CES(x) and their estimation depend critically on the
nature of the upper tail of Fy,x,—x. A seminal contribution to the study of distribution tail behavior is
Pickands (1975). There, it is shown that for any distribution F' in the domain of attraction of an extremal
distribution (Leadbetter et al. (1983), Resnick (1987)), denoted here by F € D(FE), for some fixed k and
function o (&)

F e D(E) < lim sup  |Fe(u) — G(u;0,0(8), k)| =0, (1)

= loo D<U<U0o—E

where Fe(u) = %&?(5), Uoo = sup{x : F(x) < 1} < oo is the upper endpoint of F', us > & € R and G

1Let P, denote the price of a financial asset at time t. Throughout this paper, a “return” Y; is given by Y; = —log Pftl . We
adopt this definition because in practice, regulators, portfolio and risk managers are mostly concerned with the distribution of
losses, i.e., negative values of log Pftl .



is a generalized Pareto distribution (GPD), i.e.,

' (1= =k(u—p)o)F ifk#£0,0>0
G(u,,u,a,k)—{ l—exp(—(u—’u,u)/a) ifk=0,0>0 )

with p <u < oo if bk <0and p <wu<o/kif k> 0. The equivalence in (1) suggests that G is a suitable
parametric approximation for the upper tail of F' provided that F' belongs to the domain of attraction of an
extremal distribution. Thus, as argued in Davis and Resnick (1984) and Smith (1987), it is reasonable to
estimate the upper tail of F' and associated functionals, such as extremal quantiles, based on the parametric
approximation provided by G.

In this paper we take this approach and use (1) to motivate estimators for a-CVaR (x) and a-CES(x) for

location-scale models of {Y;}. Specifically, we assume that the process {Y;} follows
Yy = m(Xy) + h2(Xy)e, (3)

where m and h are nonparametric functions defined on the range of X; and ¢; is independent of X; with
distribution F satisfying F(e;) = 0, V(e;) = 1. The model can be viewed as a nonparametric generalization
of the autoregressive conditionally heteroscedastic (ARCH) structure and has been studied by, among others,
Masry and Tjostheim (1995), Embrechts et al. (1997), Hardle and Tsybakov (1997), Masry and Fan (1997)

and Fan and Yao (1998). Under (3), for a € (0,1),
a-CVaR(x) = qy,x,=x(a) = m(x) + h'/?(x)q(a) (4)

and

a-CES(x) = FE (Yt|Yt > th|Xt:x(al)) =m(x) + h1/2(x)E(5t|5t > q(a)), (5)

where gy, x,—x(a) denotes the conditional a-quantile associated with Fy,x,—x and g(a) is the a-quantile
associated with F. If F € D(F) and a random sample {e;}}, were observed, g(a) could be estimated
by ¢(a) based on the parametric approximation provided by G using the maximum likelihood estimator
proposed and studied by Smith (1987). In this case, §(a) could be combined with nonparametric estimators

m(x) and h(x) to produce estimators for a-CVaR(x) and a-CES(x). In practice, {&;}?, is not observed,



but given a sample {(Y;, X7)}?_; (x” indicates the transposition of the vector x) and estimators 7 (x) and

h(x), it is possible to construct a sequence of standardized nonparametric residuals

&t = h1/2(Xy)

0, if h(X;) <0

{ YeomXe) it (X)) > 0 -

for t = 1,---,n that can be used to produce feasible estimators for a-CVaR(x) and a-CES(x). This two-
stage estimation procedure - first, obtain standardized residuals from the estimation of m and h; second, use
the residuals to obtain estimators of g(a) and E(e|e; > ¢(a)) that can then be used to produce estimators
for a-CVaR(x) and a-CES(x) - was, to our knowledge, first proposed by McNeil and Frey (2000) in the
case where m and h are parametrically indexed by a finite dimensional parameter. They provided no
asymptotic characterization or finite sample properties for the resulting estimators of conditional value-at-
risk or expected shortfall. However, their backtesting exercise on several time series of selected market indexes
provided encouraging evidence of the estimators’ performance. Martins-Filho and Yao (2006) generalized
the estimation framework of McNeil and Frey to the case where m and h are nonparametric functions.
They demonstrate via an extensive Monte Carlo simulation, and through backtesting, that accounting for
nonlinearities in m and h can be important in improving the estimators’ finite sample performance. Martins-
Filho et al. (2012a) provide the first asymptotic characterization of the two stage estimation procedure for
a-CVaR. for a model with constant and unknown variance (h(x) = 6) and a process {(Y;, X7 )}icz that is
independent and identically distributed (IID). Their results, however, are of limited use in empirical finance
where the IID assumption is untenable and h(-) is not adequately modeled as a constant function of t.
Furthermore, by restricting attention to the case where the conditioning variables belong to R, they failed
to elucidate the restrictions that the dimension d may impose on nonparametric estimation of conditional
value-at-risk and expected shortfall.

Here, we extend Martins-Filho et al. (2012a) in three important directions: a) we relax the assumption
that {(V;, XT)},ez is an TID process and instead consider the case where the process is strictly stationary
and strong mixing of a suitable order. This allows for the presence of lagged values of Y; in the conditioning

vector Xy, a possibility not covered in our earlier paper and of significant practical interest; b) we allow



the conditional variance h to be a nonconstant function of X;; ¢) we consider the estimation of a-CES(x).
We establish consistency and asymptotic normality of the maximum likelihood estimators for g(a) and
E(et|ler > q(a)) based on the GPD approximation in (1) and use these results to obtain consistency and
asymptotic normality of our proposed estimators for a-CVaR(x) and a-CES(x).

Nonparametric estimation of a-CVaR(x) and a-CES(x) has been previously considered in various con-
texts. Since a-CVaR(x) is a conditional quantile, estimation can naturally proceed using nonparametric
regression quantiles as in Yu and Jones (1998), Cai (2002) or Cai and Wang (2008). These estimators for
a-CVaR(x) can then be used to produce nonparametric estimators for a-CES(x) as in Scaillet (2004), Cai
and Wang (2008) and Kato (2012). Our approach differs from that of the extant literature in that we
explore the approximation provided in (1) under the location-scale structure to improve estimation and to
treat cases where a is in the vicinity of 1. Reliance on the assumption that the stochastic process {Y;} can be
described by (3) implies that the estimators defined in the aforementioned papers may be used for processes
where our procedure may not. Nonetheless, the benefits of using the additional information provided by (1)
regarding tail behavior when a is large are clearly revealed in our Monte Carlo study (see section 4), where
our estimation procedure is shown to outperform that of Cai and Wang (2008).

Besides this introduction, this paper has five more sections and two appendices. Section 2 provides a
detailed description and discussion of the estimation procedure. Section 3 contains a list of assumptions and
the main Theorems that describe the asymptotic behavior of the relevant estimators. Section 4 contains a
Monte Carlo study that sheds light on the finite sample behavior of the estimators and contrasts its perfor-
mance with the estimators proposed by Cai and Wang (2008). Section 5 provides an empirical application
in which a-CVaR and a-CES are estimated using time series of returns on future contracts for five widely
traded agricultural commodities. A backtesting exercise is also conducted for each of the time series. Section
6 provides concluding remarks and gives some directions for future research. Tables and figures associated
with the Monte Carlo study and the empirical exercise are provided in appendix 1. All proofs and supporting

lemmas are provided in appendix 2.



2 Estimation of ¢-CVaR and a-CES

As suggested in the introduction, our estimation procedure has two main stages. In the first stage, specific
estimators for ri(x) and h(x) are required to define of £, in (6). Given a sample {(Y;, X7)}™_, we consider the
local linear (LL) estimator 7(x) = 3o where (b0, 3) = argfgin S (Yo =50 — (X — XT)5)2 K (%) ;
Ki(-) is a multivariate kernel function and hy, > 0 is a bandwidth.? For the estimation of h we follow
the procedure proposed in Fan and Yao (1998). First, obtain a sequence {U; = Y; — m(X;)}", and define
h(x) = 7 where (4, 7)) = argmin Yoy (Uf —-n—-(XT - XT)n1)2 K, (%), K5(+) is a multivariate kernel
n,m

function and hs, > 0 is a bandwidth, both potentially different from those used in the definition of m. The
estimators (X, ) and h(X;) are used to produce the sequence of standardized nonparametric residuals given
in (6).

The second stage, which is based on the equivalence in (1), is more intricate and requires additional
notation and motivation. In particular, it is useful to draw a parallel to the work of Smith (1987) by
discussing estimation for the case where the €, are observed. Since the GPD is a suitable approximation
for the upper tail of F', it is intuitively reasonable to use only sufficiently large values of ¢; to estimate its
parameters. Therefore, a key aspect of the estimation is the determination of either a threshold value &,
such that only its exceedances are used to estimate the parameters of the GPD, or more directly, a number
N < n of the largest values of ¢; to be used in the estimation.® For an observed sequence {&;}? ;, define the
ascending order statistics {€(;)}7_,; and for some fixed (nonstochastic) N < n define the excesses over €, )

by {Z}, = {e(m-Nti) — Em-n) ;. Ascending order statistics can be viewed as a-quantiles associated

with empirical distributions. As such, we can write

(a) = €(na) if na € IN
) = €([na]+1) if na ¢ N

1 ife<u

0 ifesqy - COmSe

where ¢,,(a) is the a-quantile associated with F,(u) = L 3" | x(g;) where x(¢) = {

2Since X may contain up to m lagged values of Y;, the effective sample size used in estimation is n — m. However, for
notational ease, we assume that Yy, Y_1,--- are observed as needed to define the relevant sums of length n.

31t should be clear that when a threshold is chosen, for any given sample, the number of exceedances is uniquely determined,
but the choice of N does not uniquely determine a threshold.



quently, by defining a,, =1 — % we can write

(ZYY) = {emonsi) — an (an) )1, (7)

Thus, for a given sample size n and a choice of N (or equivalently a,) we consider the threshold ¢, (a.)
which will be exceeded by exactly the N largest elements of {e;}? ;. The sequence {Z;}¥, can then be
used to estimate the parameters of the GPD. Note that in this setting, for a given sample, the choice of N
uniquely determines the threshold g, (ay,).

In our case we only observe {&;}7;, therefore we must produce an estimated sequence of exceedances
with typical element that will be denoted by Z;. Perhaps the most natural procedure would be to define
Z; = E(n—N+i) — Gn (an) where ¢, (an) is the a,-quantile associated with the empirical distribution of the
nonparametric residuals {£,}7,. However, it is well known from the unconditional distribution and quantile
estimation literature (Azzalini (1981), Falk (1985), Yang (1985), Bowman et al. (1998), Martins-Filho and
Yao (2008)) that smoothing beyond that attained by the empirical distribution can produce significant gains
in finite samples with no impact on asymptotic rates of convergence. Consequently, we use the sequence of

standardized nonparametric residuals {é;}}_; to estimate F' by integrating a Rosenblatt kernel estimator for

the density f associated with F, i.e.,

Flu) = n;; [ w5 a 5)

where K3(-) is a univariate kernel and hs, > 0 is a bandwidth. We define a preliminary estimator ¢(a) for

q(a) as the solution for F((a)) = a. Therefore, we construct the observed sequence of exceedances to be used
in the estimation of the parameters of the GPD in the second stage as {Z;} Y = {é(n-N,+i) — (j(an)}jv:sl.
It should be noted that as in the case where &, is observed, N (or ay,) is fixed and the threshold ¢(a,)
is stochastic. However, here the number of residuals N, that exceed ¢(a,) may be different from N for
any finite n and is stochastic (sample dependent). As will be seen in section 3, this stochasticity is fully
accounted for in our results and the discrepancy between N and Ny is shown to be of no consequence for

the asymptotic properties of our proposed estimators. Throughout the paper, the study of the estimators’

asymptotic behavior will require that 0 < a,, < a < 1 and that a,, — 1 as n — co. Put differently, N should



be chosen such that 1 — N/n < a and N/n — 0 as n — oc.
The sequence {Z}fvzsl is used to obtain maximum likelihood estimators for o and k based on the density
g(z;0,k) = % (1 — ﬁ)kal associated with the GPD distribution when p = 0. In particular, we consider a

o

solution (G4(a,), k) for the likelihood equations

N
0 1 & 0
o N Zogng,ak =0 and %NZlogng,ak)—O (9)
1/k
Based on (1) we can write Fq(an)(y) = F(er;I(aI?'()g(aI:g()I(an)) ~1- (1 — %) where ¢ has a subscript

G(an) to make explicit the fact that it depends on the threshold ¢(a,). Without loss of generality, for

a € (an, 1), we write g(a) = G(an) + Yj(a,),a Where by construction F(¢(an) + ¥g(a,),a) = a. Hence, we have

1—a ~ (1 B k y@(an)7a>l/k ' (10)
1 — F(q(an)) TG(an)

k
If F is estimated by F, and noting that 1 — F(G(an)) = 1 — a,, we write yg(a,),a ~ “Lpn) (1 - ( 1-a ) )

1—an

The approximation in (10) is the basis for our proposed estimator §(a) for g(a), which is given by

- N
qw>—qmm—+5§ﬁl<r—(f_an)>. )

We note that if the exceedances e, — g(a) over the quantile g(a) were distributed ezactly as g(z; o, k), then

integration by parts would give E(e¢|e; > g(a)) = g(a) + 57 In the general case where the exceedances

are not distributed as g(z; 0, k), but F satisfies conditions FR1 and FR2 with a > 1 in section 3, it can be
easily shown (Lemma 7) that E(e:]e; > ¢(a)) = %(1 + 0(1)) . This motivates our proposed estimator for

E(etler > g(a)) which is given by

q(a)
1+k

B(eller > qla)) = (12)

Combining the estimators 1, h, (11), (12) into equations (4), (5) we define the estimators dy,x,=x(a) =
i(x) + h/2(x)q(a) and E (Yi|Y: > gy, x,=x(a)) = 10(x) + h'/?(x)E(e]e; > q(a)) for a-CVaR(x) and a-
CES(x) associated with the series {Y;} and the conditioning set {X; = x}. In the next section we study the

asymptotic behavior of these estimators.



3 Asymptotic characterization of the proposed estimators

3.1 Preliminaries

We start by discussing the seminal results in Smith (1985, 1987) which are the basis for understanding
the asymptotic characterization of our estimators and our method of proof. Consider nonstochastic N and
threshold g(a,) used to define a sequence of exceedances {Z/}M', where Z| = = E(n_nNi+i) — q(an).* Define

(Fg(an); k) as a solution for the likelihood equations

ZloggZ/ak —Oand——ZloggZ o, k)=0 (13)

associated with L)y (o, k) = & Zf\[:ll log g(Z!;0,k). Smith (1985, Theorem 3.2) showed that as N, g(a,) —
o0, if F' satisfies

FR1: F € D(®,), that is, F belongs to the domain of attraction of a Fréchet distribution with index a > 0,

FR2: L(z) = z%(1 — F(x)) satisfies LL((t;)) = 1+ k@t)p(z) + o(é(z)) as & — oo for each ¢ > 0, where
0 < ¢(x) — 0 as x — oo is regularly varying with index p < 0 and k(t) = Cflt u?~tdu, for a constant C,

and {Z] }fV:ll is an independent and identically distributed sequence from Fy,,), then provided that

¢
_— N2 N
P ¢(q(an)) — p€R,
the estimator (54(a,), k) is such that for ko = _é and on = q(zn)
YO IR g (G Ty B
0 T—ko-+hop
1 L—=ko —17)5; . . '
where H = (1—2ko)(1—ko) 1 9 ) As observed by Smith, the use of this theorem normally involves

taking either N or ¢(a,) as being stochastic and the other as being nonstochastic. Throughout this paper,
as in example 2 in Smith (1987, pp. 1180-1181), we take N as nonstochastic and let the threshold be sample
dependent (stochastic). When {e;}}; is observed and the threshold g(a,) is estimated by the empirical

quantile g, (ay), the estimation of the parameters of the GPD is conducted by using the sequence {Z;}¥,

4Note that N; may be different from N.
5Substituting ko = —a~! shows that H is identical to the homonymous matrix in equation (18).



in (7). In this case the estimators (G, () k) are defined as solutions for

N
1 0
~N g logg(Z;;0,k) =0 and 8_kN g logg(Z;;0,k) =0 (14)

9
0
associated with the likelihood function Ly (o, k) = % Zi\;l log g(Z;;0,k). Accounting for the stochasticity
of g, (ay) requires a further restriction on the class of distributions F' we consider. Specifically, as in Davis
and Resnick (1984) we assume,
FR1’: F has a strictly positive density denoted by f and for some a > 0 we have lim,_. 1”}2) =q.
We note that by Corollary 1.12 and Proposition 1.15 ¢) in Resnick (1987) FR1’ implies FR1, assuring that
under FR1’ F € D(®,,), with « = —1/ko and ko < 0. There are several distributions that can be easily shown
to satisfy FR1’, e.g. Pareto, Cauchy, Burr, Log-Gamma and Lévy. However, for our study, the most relevant
example is Student’s-t distribution with degree of freedom v > 2, which satisfies the limit condition in FR1’
with o = v as well as the zero expectation and unit variance (when suitably scaled) assumed following (3).
Also, we note that restricting F' to D(®, ) is not entirely arbitrary. If F' € D(¥,), the domain of attraction
of a (reverse) Weibull distribution, then it must be that us is finite, a restriction which is not commonly
placed on the regression error . The only other possibility is F' in the domain of attraction of a Gumbel
distribution, F' € D(A). In this case, whenever uo, is not finite we have that 1 — F' is rapidly varying, a case
we will avoid.
It will be convenient to reparametrize the likelihood functions and represent arbitrary values o and k as
oc=on(14+7mn), k=ko+ Ty for 71,72 € R with §y — 0 as N — oo and some oy and kg. Hence, we

will write the likelihood function L'y (o, k) as Ly (71, T2) = Z 1logg(Zl;on(L+T10N), ko + m2dn). Tt is

evident that L%y (0,0) = Ly (0N, ko) and for (54(a,), k) that satisfies (13), there are 71 and 7 that satisfy

1 Oy Ly,
P S (11,72) =0 and — iy Om (11, 72) = 0. (15)

Similarly, we write Ly (71, 72) = % Zi\il log g(Zi;on(14T16N), ko + 720 ) and observe that for (54(a,,)s IAC)

that satisfies (14), there are 71 and 7 that satisfy

1 8LTN 1 8LTN
———(11,72) =0 and —
onON OT1 oN T2

(7’1,7’2) = 0 (16)



The existence and characterization of a solution (71, 72) for equation (16) as maxima for Ly is accomplished
through Theorem 1 where we show that the likelihood equations in (15) and (16) are uniformly asymptotically

equivalent in probability.

Theorem 1. Assume FR1’ and FR2. Then, as n — o

1 OLry 1 OLhy B 1 0L}y
ondn 0Ty (1, 72) = (11,72) = 0p(1) and on Om

(11, 72) = ——F—(71,72) = 0p(1)

Using Theorem 1 and Lemma 5 in Smith (1985) we can conclude that X%LTN(’H, 79) has, with probability
approaching 1, a local maximum (71, 72) on St = {(71,m2) : ¥ + 73 < 1} at which %%LTN('{H,%Q) =0
and %%LTN (1,72) = 0. Put differently, there exists, with probability approaching 1, a local maximum
(Gan(an) = oN(L+710N), k= ko+720x) on Sp = {(0, k) : (3= — 1, k—ko)||p < 6n} that satisfies the first
order conditions in equation (14).% Hence, Theorem 3.2 in Smith (1987) holds when the threshold g(ay) is
estimated by ¢, (a,). We note that Smith (1987) makes the same claim in the aforementioned example 2,
but provides no detailed proof.

The first step in the study of the asymptotic behavior of our estimators is to establish that a solution
for equation (9) exists and corresponds to a local maximum of the likelihood function. Our strategy will
be to show, similar to Theorem 1, that the likelihood equations associated with the reparametrized Ly =
+ vazsl log g(Zi;on(1 + 110N, ko + 720N are uniformly asymptotically equivalent in probability to those
associated with Lpy. The proof is, of course, similar to that of Theorem 1, but with the added complication
that the nonparametric residual sequence {£;}}_ is used to construct the exceedances in Lrn. The proof
is also close to that in Martins-Filho et al. (2012a), but the stochastic model we consider here is far more
general, allowing for dependent data that are strong mixing of suitable order and a fully nonparametric scale
function. Before we give a statement of the theorem, in the next subsection we list a series of assumptions
that will hold throughout the paper. Additional regularity conditions that are needed in specific theorems

and lemmas are listed in their enunciation.

6||x||z denotes the Euclidean norm of the vector x.

10



3.2 Assumptions

As in Smith (1987) we retain FR2 and assume that {e;}7; forms an independent and identically distributed
sequence of random variables with absolutely continuous and strictly increasing distribution F'. However,
additional assumptions are needed to assure that 1 (x) and h(x) converge uniformly in probability to m(x)
and h(x) at suitable rates.

We adopt the following notation in our assumptions and proofs: a) 0 < C < oo will represent an

inconsequential and arbitrary constant taking different values; b) G denotes a compact subset of R%; ¢) [z]
denotes the integer part of « € R; d) P(A) denotes the probability of event A associated with a probability
space (€2, F,P) or a probability measure, depending on the context; e) for any function m : R? — R
where s order partial derivatives exist, we denote by D;m(x) : R — R the first order partial derivatives
of m with respect to its i*" argument for i = 1,---,d and the s-order partial derivatives are denoted by
Dj,..iom(x) : R — R for iy,--- ,is = 1,---,d. The gradient of the the function m is denoted by m() (x)
and its Hessian by m(?(x); f) the joint density of the vector of conditioning variables X; is denoted by
fx ().
Assumption Al: K(x) : R? — R is a product kernel K(x) = H?ZIIC(xj) with £(z) : R — R such
that: 1) |[K(z)] < C for all z € R; 2) For some C, K(z) = 0 whenever |z| > C; 3) [K(z)dz = 1,
J2IK(z)dz =0forj=1,---,s—1, [2*K(x)dx = px s < o0; 4) K satisfies a Lipschitz condition of order 1,
that is, for all z,y € R with z #y |[K(x) — K(y)| < Clx — y| for some C; 5) The kernel K3 satisfies 1), 2) is
symmetric and twice continuously differentiable in R, [ K3(z)dz =1, [ 2/ K3(z)dz =0for j =1,--- ,m;—1,
Ja™ K3(z)dr < co and for all z,y € R with 2 # y we have ’%Kg(.f) - %Kg(y)’ < C'|xz — y| for some
C>0.

The kernel K(z) is used to construct K;(x) : R — R where K;(x) = H;l:l K(z;) for i = 1,2. Further-
more, for j =1,---,d we have [p, K;(x)dx = 1, fxé—Ki(x)dx =0forl=1,--,5—1, [23Ki(x)dx = px s
and [ @, - x; K;(x)dx = 0 whenever r < s or i; # iy for some j,k < s. The order s for K; and K> are

needed to establish that the biases for /m and h are, respectively, of order O(h,) for i = 1,2 in Lemmas 2

11



and 3. The order m; for K3 is necessary in the proof of Lemma 4. All other assumption are common in the
nonparametric estimation literature and are easily satisfied by a variety of commonly used kernels.

Assumption A2: 1) {(X; ;)7 }4=1.2.... is a strictly stationary a-mixing process with a(l) < C'1~B for some
B > 2; 2) The joint density of X; and &; is given by fx.(x,¢) = fx(x)f(€); 3) fx(x) and all of its partial

derivatives of order < s are differentiable and uniformly bounded on R%; 4) 0 < ing fx(x) and sup fx (x) < C.
x€ xe€g

A2 1) implies that for some § > 2 and a > 1 — 2, ijljaa(j)k% < 00, a fact that is needed in our
proofs. We note that a-mixing is the weakest of the mixing concepts (Doukhan (1994)) and its use here is
only possible due to Lemma A.2 in Gao (2007), which plays a critical role in the proof of Lemma 4.
Assumption A3: 1) m(x) and all of its partial derivatives of order < s are differentiable on R¢. The
partial derivatives are uniformly bounded on R%; 2) 0 < h(x) and all of its partial derivatives of order < s
are differentiable and uniformly bounded on R¢.

The degree of smoothness s of m, h and fx (in A2 3)), the dimension d and the mixing size B are, as
expected, tightly connected with the speed at which m and h converge (uniformly) to m and h. However,
these parameters also interact in specific ways to determine the asymptotic behavior of §(a) and E (et]er >
q(a)).

Assumption A4: 1) Let the cumulative distribution of ¢; be given by the absolutely continuous function
F(u) with density 0 < f(u) for all u < uso = sup{u : F(u) < 1}; 2) f is my-times continuously differentiable

with

%jf(u)’ < C for some constant C and j =1,---,m;.
The differentiability restrictions on f are necessary in the proof of Lemma 4.
Assumption A5: 1) The joint density of X;, Xy, &;, denoted by fx; x, ., (Xi, X4, &) is continuous; 2) The
joint density of Xy, X, Xy, €565, €¢, denoted by fx, X, X,.e:.¢;.e. (Xi, X¢, Xy, €4, €5, €¢) is continuous.
Assumption A5 is necessary in Lemma 4 and is directly related to the verification of existence of bounds
required to use Lemma A.2 in Gao (2007).

+0

. 1 1 s 25 _
Assumption A6 : 1) hy, x n” 24, hg, &x n” 25Fd hg, x n” Z@FD " ° 0 N o n2s+d % for some § > 0 and

s >2d; 2) E(]e? — 1]*) < oo and E(h(x)*) < oo for some a > 2.
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3.3 Existence of 7y and k

We now establish the existence of G4(,,) and k and characterize them as a local maximum. As mentioned
earlier, the strategy of the proof is to show that the first order conditions associated with the likelihood
function Ly (11, 72) = % Zi\/:sl log g(Zl-; on(l + 116N), ko + 720n) are asymptotically uniformly equivalent
in probability to those associated with Lpy on the set Sp. For concreteness, we take a, =1 — %, and we

formally have

Theorem 2. Assume that FR1™ with o > 1, FR2 and assumptions A1-A6 are holding. Let 11,70 € R,
0 <dy — 0, oNNY2 = 00 as N — oo and denote arbitrary o and k by o = on(l + 7éNn) and k =
ko + 20n. We define the log-likelihood function fLTN(Tl, To) = % Zi\f:sl log g(Z~1-; on(l+ T10N), ko + T20N),
where Z; = En-Noti) — G(an), an =1—= () and é(,_n, 1) are as defined in section 2. Then, asn — oo,
%ETN (11, 72) has, with probability approaching 1, a local mazimum (1,75) on Sy = {(11,72) : ¥ +72 < 1}

; 1 907 Ko k) 1 907 k)
at which KB_nLTN(Tl’Q) =0 and E%LTN(Tl,TQ) =0.

The vector (71, 75) implies a value G4(4,) and k which are solutions for the likelihood equations

9 1 & . . D 1 .
N Zl log 9(Zj; 54(an), k) = 0 and N ; log 9(Zj; 64(an). k) = 0.

Hence, there exists, with probability approaching 1, a local maximum (G4(a,) = on(1+7{0n), k = ko+750nN)
on Sg={(0, k) : (% — 1, k — ko)||g < dn} that satisfy the first order conditions in equation (9).

The proof of Theorem 2 depends critically on two sets of results. First, since ¢; is unobserved and is
estimated by &, we must obtain convergence of both 7i2(x) and h(x) to the true m(x) and h(x) uniformly in

G at suitable rates. Lemmas 2 and 3 in Appendix 2 give conditions under which we obtain

suplin() —m(x)| = Op (L1n) and suplh(s) = ()| = O (L)

h = (to2n)'"* 4 s and = (teen)'"? g, Th d ffici btain th
where Lq, = whi + hi,, and Lg, = whd + h3,,. These orders are sufficient to obtain that
the difference between estimated residuals and true errors is given by |&; — | = Op(L1n) + (Op(Lin) +

Op(Lap))|et| uniformly in G. Second, Lemma 4 shows that ¢(a,) is asymptotically close to gn(an) by

satisfying M‘IT‘)(G") = 0,(N~1/2). In addition to making full use of the probability orders of 7 and h,

q(an
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it is in Lemma 4 that the stochasticity of the estimated threshold ¢ is explicitly handled and where the
restrictions (FR1’,FR2 and a > 1) on the class of functions to which F' belongs are needed. It is also

in Lemma 4 that the stochasticity of N, and the fact it may differ from N in finite samples is handled

Ns—N

by showning that 5

= Op(1). Furthermore, the proof of Lemma 4 requires that the relative speed of
decay of hin, ho, and hs, and the speed at which N — oo be carefully controlled. Assumption A6 1) in

Theorem 2 provides polynomial functions of n that assure the orders for these sequences produce the desired

) dnltn) — O, (N=1/2). In addition, as needed in Smith (1987), NV/25y — oo and N*/2¢(g(a,)) = O(1),
where ¢(ay,) is a positive nonstochastic sequence such that g(a,) — oo as N — oo.

The influence of the dimension d of the conditioning space manifests itself on the asymptotic results in
a strong manner via the requirement that the degree of smoothness of the functions m and h be such that

s > 2d. We believe that alleviation of this strong requirement can only result from further constraints on

the class of functions containing m and h.
3.4 Asymptotic normality of 77 = (55a,), k)

The following theorem shows that under suitable normalization the estimators (644, ), k) are asymptotically

distributed as a normal random variable.

Theorem 3. Suppose FR1’ with o > 1, FR2, A1-A6 hold and that %Nl/%ﬁ(q(an)) — pu € R. Then, the

local mazimum (Gg(a,), I;) of the GPD likelihood function, is such that for kg = —% and oy = 9(an)

Taen) 1\ 4 (1—ko) 1+ 2k0p) o
vy AR Rt W Qee 75 TS RECANL L

1—ko+kop
k2 —4ko+2 1
_ (2ko—1)2 Fo(ko—1)
where Va = 1 22— 2k2+2ko—1

ko(ko—1) k2(ko—1)2(2ko—1)

This theorem shows that the use of Zl- instead of Z; to define the exceedances used in the estimation of
the parameters of the GPD impacts the variance of the asymptotic distribution. It is easy to verify that
H-YWoH~! — H~! is positive definite, implying an (expected) loss of efficiency that results from estimating

e nonparametrically. However, any additional bias introduced by the nonparametric estimation is of second
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order effect as the asymptotic bias derived in Smith (1987) is precisely the same as the one we obtain in

Theorem 3.

3.5 Asymptotic normality of §(a), E(c/|e; > q(a)), a-CVaR(x) and a-CES(x)

The asymptotic distribution of the ML estimators given in Theorem 3 is the basis for obtaining the asymptotic
distributions of §(a) and E(e|e; > g(a)). The basic idea in the case of §(a) is to define, without loss of

generality, q(a) = q(an) + Yg(an),a for an =1 — N/n < a and estimate q(a,) by G(an) and ¥z, ),. based

d(a)

on the estimated parameters of the GPD. Since E(e|e; > q(a)) = e

its asymptotic distribution can be
derived directly from the results for §(a) and k. It is important to note that in Theorems 4, 5 and 6 below,
both a, and a approach 1 as n — oo since a,, < a. The fact that a is not fixed and a — 1 as n — oo is only

part of how we envision the asymptotic experiment guiding our theorems. Clearly, for any fixed sample size

n and choice of a, the estimators (11), (12), a-CVaR(x) and a-CES(x) are unambiguously defined.

Theorem 4. Suppose FR1’ with o > 1, FR2, A1-A6 and %Nl/%ﬁ(q(an)) — u with kg = —% and

on = q(ay)/a. Then, if n(1 —a) x N, for some Z >0

n(l—a) (%-1) L N (1, %),

where 1 = ko (W—i—chl lim\/ﬁ( ZU ) , 21 :k% (chH1V2chb+2ch( ?_IZO >+1>,
n—oo Lk — RO

o =( —kg"(Z71=1) kyPlog(Z)+ky* (271 =1) ), b, =E (%logg(Zi; on, ko)on) and by, =

E (%logg(Zi; ON, ko)).

Theorem 5. Suppose FRI1’ with o > 1, FR2, A1-A6 and %Nl/%ﬁ(q(an)) — p with kg = —% and

on = q(ay)/a. Then, if n(1 —a) x N, for some Z >0

n(l —a) (W - 1) 4 N (p2, %),
T+ko

- a— — . bcr . — bcr
wher = by EH ko1l () = gt /(0 )57 (). e

are as defined in Theorem 4,

07 V50,

2k k
Sy = k2 (chHl‘/Qchb—i-Zch( 1_k2 >+1> +21+01€ nTVs0 +
0

1
(14 ko)?
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with

nT_(—chHl —clH? (2‘;) ) ( L (o0 1)H1(z;> 0),
:
—ko
1

1 1 0
1721kg ~ (ko— 13(21@0 1)
Va = T (ko—1)(2ko—1) (ko—1)(2ko—1) 0
0 0 k2
0 0 —ko

_ —ko 1 ko—1 _ 1
, b= k0(2k i) and by = = (21@071 kgfl)'

From Theorems 3 and 4 we obtain the asymptotic normality and consistency of a-CVaR (x)= Gy,|x,=x(a)

and a-CES(x)= E(Y|Y; > qy;|x,=x(a)) in the following theorem.

Theorem 6. Suppose FR1’ with o > 1, FR2, A1-A6 and %Nl/%ﬁ(q(an)) — u with kg = —é and
on = q(ay)/a. Then, if n(1 —a) < N, for some Z >0 we have
a) \/n (Z;t:it "EZ% — 1) = N (p1,%1), where 1 and X1 are as defined in Theorem 4;

b) v/n(l—a) (ggﬁ:ﬁig;ﬂizzgzgg - 1) KA ./\/( %, ) where 2 and o are as defined in The-

orem .

As a direct consequence of Theorem 6 we have

E(Y,|Y, > qy,|x,=x(a))
E(Yi|Y: > qy,1x,=x(a))

v, x,=x(a)

QYt|Xt:x(a

=14o0,(1) and =1+o0,(1)

as n(l — a) — oo, therefore establishing consistency of the estimators.

4 Monte Carlo study

We perform a Monte Carlo study to investigate the finite sample properties of the parameter estimator
¥ = (Ggtan) k)T, the a-CVaR(x) estimator dy,|x,=x(a) and the a-CES(x) estimator EY,|Y, > Qy,|x,=x(a)).
To simplify the notation, throughout this section we put gy, x,—x(a) = ¢, EY|Y; > Ay, |x,=x(a)) = E with
corresponding true values given by ¢ and E. The underlying values of a and x will be clear in context.

We generate data from the following location-scale model
}/t :m(}/tfl)—i_h’(t)l/QEtat: 15 y 1. (17)

We choose m(Y;_1) to be sin(0.5Y;_1) and consider h(t) = h;(Yi_1)+60h(t—1) for i = 1,2, where hy(Y;—1) =

1+ 0.01Y2, + 0.5sin(Y;—1) and ha(Yi—1) = 1 — 0.9ezp(—2Y2 ;). The quadratic type heteroskedasticity
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function hq(-) has been considered in Cai and Wang (2008), where we add the sin(-) function to make the
nonlinearity more prominent, and hs(-) is considered in Martins-Filho and Yao (2006). 6 is set to be 0 or
0.5. Our estimators are based on a model where 6 = 0, but the model with § = 0.5 and h4(-) without the
sin(-) function correspond to the popular GARCH model, and it would be interesting to investigate the
performance of our estimators under this structure. Initial values of Y; and h(t) are set to be zero and Y; is
generated recursively according to equation (17). We discard the first 1000 observations so that the samples
are not heavily influenced by the choice of initial values.

We generate ¢; independently from a distribution with density f that is in the domain of attraction of
the Fréchet distribution ®, with index oo = —1/ko. We consider f to be the student-t distribution with v
degree of freedom. The student-t distribution is symmetric and bell-shaped, like the normal distribution,
but it exhibits heavier tails than the normal distribution. Thus, it is more prone to produce values that
are far from its mean, making it a more suitable distribution to model financial returns. It can be shown
that kg = —%, so we have kg = —0.4 for v = 2.5, kg = —1/3 for v = 3, and kg = —1/20 for v = 20. Here,
the variance of ¢, is largest with v = 2.5 and we expect that in this case estimation will be relatively more
difficult. On the other hand, when v = 20 the student-t distribution resembles the normal distribution. For
identification purpose, we standardize &; so that it has unit variance.”

Implementation of our estimator requires the choice of bandwidths hi,, he, and hs,. Since hi, and
hay, are utilized to estimate the conditional mean and variance, we select them using the rule-of-thumb data
driven plug-in method of Ruppert et al. (1995) and denote them by i, and hay,. Specifically, R, and ha,, are
obtained from the following regressand and regressor sequences {Yy, Y;—1}7 ; and {(V; —m(Y;—1))?, Yio1} g
respectively. We select hs, by using the rule-of-thumb bandwidth hs, = 0.79R(Y;_1)n~2/310 as in (2.52)
of Pagan and Ullah (1999), where R(y:—1) is the sample interquartile range of ¥;_1 and we set 6 = 0.01 so
that it satisfies our assumption on the bandwidth. The second order Epanechnikov kernel is used for our

estimators.

7We have also performed our study with the log-gamma distribution, a density that is also in the domain of attraction of
the Fréchet distribution. Since its support is bounded from below, it is much less commonly used to model the financial return.
Though the relative rankings regarding estimators changes somewhat in specific experiment designs, we do not report these
result to save space and focus on the more popular student-t distribution for more detailed exposition.
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In estimating the parameters, we consider both our estimators ¥ = (G4(a,.), I;)T and Smith type esti-
mators 4 = (G4, (an); k)T, which utilize the true conditional mean m(-), variance h(-) and &; available in
the simulation. Without having to estimate m(-) and h(:), we expect that Smith’s estimators will perform
best and serve as a benchmark to evaluate our estimator. In estimating the conditional value-at-risk (q)

and expected shortfall (E), we include our estimators (¢, F), the Smith type estimator (¢°, E*), and the

estimators (¢, F) proposed by Cai and Wang (2008). We follow their instruction for implementation and
utilize the theoretical optimal bandwidths available in the simulation for (g, E) to minimize the noise.

To give the readers a vivid picture of them in practice, we provide in Figure 1 a plot of the conditional
value-at-risk and expected shortfall estimates evaluated at the sample mean of Y;_; across different values
of a. a ranges from 0.95 to 0.999 because we are interested in higher order quantiles. The estimation utilizes
1000 sample data points generated from equation (17) with hy(Y;—1) = 1+ 0.01Y2 + 0.5sin(Y;—1), 6 = 0
and student-t distributed ; with v = 3 degree of freedom. We use N = round(1000°-87991) = 234 in
constructing our estimates, where round(-) gives the nearest integer. We note that all estimators are smooth
functions of a, and they seem to capture the shape of the true value-at-risk and expected shortfall well. It
seems more difficult to estimate expected shortfall than value-at-risk as the gap between the estimates and
the true is noticeably larger for the expected shortfall.

The performance of our estimator is fairly robust to the choice of N and we follow a simple choice of
N = round(n®8=991) in the simulation for n = 1000,2000 and 4000, which gives N = 234,405, and 701
respectively. Thus, with n being doubled, the effective sample size N in the second stage of our estimation is
less than doubled, as required by the assumption on N. Each experiment is repeated 2000 times, except for
n = 4000 where we set the number of repetitions to be 1000. We summarize the performance of all parameter
estimators in terms of their bias (B), standard deviation (S) and root mean squared error (R) in Table 1
for # = 0 and in Table 2 for § = 0.5. We consider the performance of the a—conditional value-at-risk and
expected shortfall estimators for a = 0.95,0.99, 0.995 and 0.999 evaluated at Y;,, the most recent observation
in the sample. Specifically, the performances in terms of the bias (B), standard deviation (S) and relative

root mean squared error (R) for # = 0 with h;(Y;—1) and ho(Y:—1) are detailed in Tables 3 and 4, and those
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for § = 0.5 are summarized in Tables 5 and 6. To facilitate comparison, we report the relative root mean
squared error as the ratio of the root mean squared error of each estimator over that of the estimator with
the smallest root mean squared error in each experiment design. To reduce the impact of extreme experiment
runs, we truncate the smallest and largest 2.5% estimates from the repetitions for all estimators. As the
results for n = 2000 are qualitatively similar, we only report detailed results for n = 1000 and n = 4000.

In the case of estimating parameters, we notice both 4 and 4 overestimate (o, ko). As the sample
size increases, both estimators’ performance improve, in the sense that their bias, standard deviation and
root mean squared error decrease. This confirms the asymptotic results in the previous section. When kq is
decreased (smaller v in Tables 1 and 2), we generally find the bias of both 4 and 4 decrease, and the standard
deviation of 4 increases, but there is no definite pattern on the standard deviation of 4. We think this is
related to the bias and variance trade-off for parameter estimation. As mentioned above, the variance of &,
without standardization is larger with smaller kg, and the distribution of ; exhibits heavier tail behavior,
thus the more representative extreme observations have a larger probability to show up in a sample, which
explains the lower bias. It is generally harder to estimate on than ko, as estimates of on exhibit larger
root mean squared error. When v = 2.5 and 3, 4 generally outperforms ¥ in terms of smaller bias, standard
deviation and root mean squared error, though the difference diminishes with larger sample size. When
v = 20, ¥ exhibits smaller bias, standard deviation of similar or sometimes smaller magnitudes, and its
performance is very similar to 4. The results suggest that our proposed estimator 7 is well supported by the
nonparametric kernel estimators for the functions m(Y;—1) and h(Y:_1).

In the case of estimating the conditional value-at-risk and expected shortfall, we observe that perfor-
mances of all estimators generally improve with the sample sizes in terms of smaller bias, standard deviation
and root mean squared error, with some exceptions on the bias. It confirms our asymptotic results that our
estimator for the conditional value-at-risk and expected shortfall are consistent. In the case of estimating
conditional value-at-risk, ¢ and ¢° carry positive bias for a = 0.95 and 0.99, but exhibit negative bias for
larger values of a. ¢ shows a similar pattern for bias, with more positive bias occurrences for larger a. In

the case of estimating expected shortfall, all estimators are generally negatively biased. As ko increases,
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the performance of the estimators for (¢°, E®) and (g, E) generally improves in terms of smaller standard
deviation and root mean squared error for a # 0.95. This is expected since the distribution of ; exhibits
less heavy tails with larger ko. However, the performance of (¢, E) does not seem to depend on kg in a clear
fashion. With a few exceptions, we notice that it is more difficult to estimate the conditional expected short-
fall relative to the value-at-risk, judged by the larger bias, standard deviation and root mean squared error
for all estimators across different experiment designs. It is also harder to estimate higher order conditional
value-at-risk and expected shortfall, as demonstrated by the larger bias, standard deviation and root mean
squared error for all estimators, with some exceptions for the bias.

Across all experiment designs, the best estimators for (¢, F) are (¢°, E*), with a few exceptions in esti-
mating F with a = 0.95. Thus, the root mean square errors are constructed for the other two estimators
relative to (¢°, E%). When a > 0.95, we observe that (g, E) consistently outperforms (g, E) in terms of
smaller standard deviation and root mean squared error, with only a few exceptions when # = 0.5. When
a = 0.95, the advantage of ¢ over ¢ generally persists. In terms of estimating F, E shows smaller bias, larger
standard deviation, and its root mean squared error is generally smaller than that of E. We notice that the
finite sample improvement could be sizable when a > 0.95. To illustrate, we plot in Figure 2 the relative
root mean squared error of % and that of % across sample sizes 1000 and 4000 for 8 = 0. We observe that
the relative root mean squared errors are all greater than one. Furthermore, as the sample size increases,
the relative root mean squared error generally becomes larger, illustrating the finite sample improvement of
(q, E) over (q, E) gets magnified with sample sizes. As v is increased, the advantage of (g, E) over (q, E) is
more prominent. For example, in the case of estimating ¢, the relative root mean squared error of % is over
3 for v = 20, so the reduction in the root mean squared error of § over ¢ is more than 66%. In the case of
estimating F, the relative root mean squared error % is over 1.8 for v = 20, so the reduction in the root
mean squared error of E over E is more than 44%.

We conclude that our estimators (g, E) have good finite sample performance and can be especially useful
when estimating higher order conditional value-at-risk and expected shortfall. The results of the estimators

do not change qualitatively across different values of 8, which suggest that accounting for the nonlinearity
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in the conditional mean and variance functions is important for estimating the high order ¢ and E. Overall,
the study suggests that utilizing the extreme value theory and properly accounting for the nonlinearity in
the estimation seems to pay off in the finite samples.

The choice of N could be an important issue because the number of residuals exceeding the threshold is
based on G(a,). We need to choose a large ¢(ay) to reduce the bias from approximating the tail distribution
with GPD, but we need to keep N large (or g(a,) small) to control the variance of the estimates.® We
suggested before that our estimators are relatively robust to the choice of NV, and here we specifically
illustrate the impact from different N’s on the performance of our estimators for the 99% conditional value-
at-risk and expected shortfall with a simulation. We set n = 1000, 03(Y;—1) = 1+ 0.01Y2 ; + 0.5sin(Y;_1),
f = 0 and use a student-t distributed ¢; with v = 3. We graph the bias and root mean squared error of ¢
and F against N = 20,25, ---,300 in Figure 3. The other experiment designs give graphs of similar general
pattern. We observe that § carries a small positive bias and E is generally negatively biased. As we have
mentioned above, it is harder to estimate the conditional expected shortfall than the value-at-risk, judged
with the larger bias and root mean squared error of E. The performance of ¢ is fairly robust with the range
of N considered, with slight improvement when N is greater than 20. The bias of E seems to be smallest
when N is around 40, but its magnitude is enlarged with smaller N, and grows steadily with larger N.
The root mean squared error of E decreases sharply from N = 20 to 60 and drops further gradually until
N = 120. It remains fairly stable for a wide range of N and eventually increases slowly for N greater than

220.
5 Empirical illustration with backtesting

We illustrate the empirical applicability of our estimators using five historical daily series {Y;} on the following
log returns of future prices (contracts expiring between 1 and 3 months): (1) Maize from August 10, 1998
to July 28, 2004. (2) Rice from August 1, 2002 to July 18, 2008. (3) Soybean from July 25, 2006 to July 6,

2012. (4) Soft wheat (wheatcbot) from August 15, 1996 to July 31, 2002. The data are obtained from the

8Note that the number of exceedances N5 over §(an) is asymptotically of the same order as N, since V. N <N5§N> = 0p(1)
(Lemma 4).
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Chicago Board of Trade. We also obtain (5) Hard wheat (wheatkcbt) of August 1, 1996 to July 18, 2002
from Kansas City Board of Trade.

To backtest on a data set {Y7,Ys,---,Y;,}, we utilize the previous n observations {Yi—, 41, Yi—nta2,
---,Y;} to estimate the a-CVaR by ¢y |x—v,(a) and the a-CES by E(Y]Y > qy|x=v, (a)) for a = 0.95,0.99,
and 0.995, where 0 <n < m,t €T = {n,n+1,---,m—1}. We fix m = 1500, n = 1000, let N =

0-8-0.01) — 934 and implement our estimators as in the simulation study. We provide in Figure 4 the

round(n
plot of log returns of Maize futures prices against time together with the 95% conditional value-at-risk and
expected shortfall estimates. Clearly our estimates respond quickly to the changing volatility in the market.

To backtest the a-CVaR estimator, we define a violation as the event {Y;11 > ¢y|x=v,(a)}. Under the null
hypothesis that the return dynamics of Y; are correctly specified, Iy = X{v, ,>qy x_y,(a)} ~ Bernoulli(l1—a)
where x4 is the indicator function. Consequently, W = >, Iy ~ Binomial(m —n,1 — a). We perform
a two sided test with the alternative hypothesis that the quantile is not correctly estimated with too many

or too few violations. Since gy |x—y,(a) is not observed, we estimate it with ¢y |x—y;(a) and construct the

empirical version of the test statistic as W = Doier X {Yes1 >y 1 x—v, ()} Under the null hypothesis, the
=Tt

W—(m—n)(1—a)
v/ (m—n)(1—a)a

violation numbers together with the p-values based on the normal distribution for our estimator on the left

standardized test statistic is distributed asymptotically as a standard normal. We report the
half of Table 7. For all five daily series and across all values of a considered, the actual number of violations
are fairly close to the expected number, with large p-values indicating no rejection of the null hypothesis.
The only relatively large deviation of the violation numbers from expected is for a = 0.95 on Maize, but its
p-value is still larger than 0.1.

To backtest the a-CES we consider the normalized difference between Y; ;1 and E(Y]Y > gy x—y,(a)) as

Tl = Yt+17E(Z|1}//2>(§5‘X:Yt(a)) =411 — E(gle > q(a)). If the return dynamics are correctly specified, given

that ;11 > ¢y|x=v,(a), r¢41 is independent and identically distributed with mean zero. Since E(Y'|Y >

qy|x=v,(a)) is not observed, we use the estimated residuals {711 : t € T'and Y; 1 > {y|x=v,(a)}, where

R . Yt+1*EA(Y|Y>qY\X:Yt(a))
Tt+1 = RY72(Yy) :

Without making specific distributional assumptions on the residuals, we

perform a one-sided bootstrap test as described in Efron and Tibshirani (1993) pp.224-227 to test the null
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hypothesis that the mean of the residuals is zero against the alternative that the mean is greater than zero,
since underestimating a—conditional expected shortfall is likely to be the direction of interest. The p-values
of the test for the five series across all values of a are provided on the right half of Table 7. Given 5%
significance level for the test, the null hypothesis for our a-conditional expected shortfall estimator is not
rejected for a = 0.99 and 0.995 for all the series, but it is rejected for a = 0.95. The empirical result seems
to confirm our Monte Carlo study that our estimators can be especially useful in estimating higher order

conditional value-at-risk and expected shortfall.
6 Summary and conclusion

The estimation of conditional value-at-risk and conditional expected shortfall has been the subject of much
interest in both empirical finance and theoretical econometrics. Perhaps the interest is driven by the use-
fulness of these measures for regulators, portfolio managers and other professionals interested in an effective
and synthetic tool for measuring risk. Most stochastic models used and estimators proposed for conditional
value-at-risk and expected shortfall are hampered in their use by tight parametric specifications that most
certainly impact performance usability. In this paper we have proposed fully nonparametric estimators for
value-at-risk and expected shortfall, showed their consistency and obtained their asymptotic distribution.
Our Monte Carlo study has revealed that our estimators outperform those proposed by Cai and Wang
(2008) indicating that the use of the approximations provided by Extreme Value Theory may indeed prove
beneficial.

We see an important direction for future research related to the contribution in this paper. The fact
that we require s > 2d presents a strong requirement on the smoothness of the location and scale functions.
This perverse manifestation of the curse of dimensionality requires a solution. Perhaps restricting m and h

d

to belong to a class of additive functions, such that m(x) =" _; m.(z,) and h(x) = DO

u=1

hy(x,,) may be

sufficient to relax substantially the restriction that s > 2d.

23



Appendix 1 - Tables and figures

TABLE 1 BIias (B), STANDARD DEVIATION (S) AND ROOT MEAN SQUARED ERROR (R) FOR

PARAMETER ESTIMATORS WITH SAMPLE SIZE n(x1000) AND 6 = 0, WHERE kg = —1/v.
hi(Yi_1) = 1+0.01Y;2, +0.5sin(Y;_1) ha(Yi_1) = 1 — 0.9exp(—2Y2 ;)
ON /{0 ON /{0
v n B S R B S R B S R B S R

4 25 1 .261 .041 .265 .137 .089 .163 .263 .041 .266 .141 .092 .168
4 25 1 .318 .087 .330 .136 .095 .166 .283 .080 .294 .136 .110 .175
4 25 4 219 .025 .220 .106 .052 .118 .219 .026 .220 .103 .050 .114
¥ 25 4 258 .060 .265 .099 .058 .115 .215 .052 .221 .089 .070 .113
4 3 1 .350 .048 .353 .152 .083 .173 .348 .049 .351 .151 .085 .173
4 3 1 .3714 .071 .380 .154 .086 .176 .323 .072 .331 .152 .099 .181
o 3 4 .296 .029 .298 .116 .050 .126 .295 .028 .296 .115 .048 .125
v 3 4 .309 .046 .313 .111 .056 .124 .256 .041 .260 .109 .062 .126
4 20 1 .673 .069 .677 .230 .083 .244 .674 .070 .678 .231 .083 .245
4 20 1 .669 .069 .673 .235 .086 .250 .614 .065 .618 .215 .084 .231
4 20 4 .589 .036 .590 .182 .047 .188 .593 .039 .594 .18 .051 .193
4 20 4 .585 .036 .586 .183 .047 .189 .549 .035 .550 .172 .048 .179

TABLE 2 BIAs (B), STANDARD DEVIATION (S) AND ROOT MEAN SQUARED ERROR (R) FOR

PARAMETER ESTIMATORS WITH SAMPLE SIZE n(x1000) AND 6 = 0.5, WHERE ko = —1/v.
hi(Yi_1) = 1+0.01Y,2, +0.5sin(Y;_1) ha(Yi_1) = 1 — 0.9exp(—2Y2 ;)
ON /{0 ON /{0
v n B S R B S R B S R B S R
4 25 1 .263 .040 .266 .140 .087 .165 .261 .041 .265 .140 .089 .166
¥y 25 1 321 .082 .332 .141 .091 .168 .306 .082 317 .133 .104 .169
4 25 4 218 .024 .219 .103 .051 .115 .218 .025 .219 .104 .048 .115
¥y 25 4 260 .057 .266 .099 .055 113 .246 .057 .252 .094 .060 .112
4 3 1 .347 .049 350 .149 .084 .171 .349 .050 .352 .154 .085 .176
4 3 1 371 074 378 151 .088 .175 .357 .071 .364 .152 .093 .178
4 3 4 295 .030 .296 .113 .048 .123 .296 .029 .297 115 .049 .125
¥y 3 4 308 .047v 311 .111 .051 .122 .294 .040 .297 .109 .055 .123
4 20 1 .670 .070 .674 .226 .087 .242 .673 .071 .677 .230 .087 .246
4 20 1 .665 .069 .669 .225 .087 .241 .653 .069 .657 .214 .088 .231
4 20 4 591 .037 .593 .184 .049 190 .592 .037 .594 186 .051 .193
4 20 4 587 .036 .588 .178 .050 .185 .581 .037 .582 .169 .049 .176
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TABLE 3 BIAS (B), STANDARD DEVIATION (S) AND RELATIVE ROOT MEAN SQUARED
ERROR (R) FOR CONDITIONAL VALUE-AT-RISK (q) AND EXPECTED SHORTFALL (E) ESTIMATORS
WITH h1(Y;—1) =1+ 0.01Y2 | + 0.5sin(Y;—1), SAMPLE SIZE n(x1000), AND 6 = 0.

v=2.5 a = 0.95 a=0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
¢ 1 .023 .061 1 025 228 1 -.048 391 1 -.631 1.149 1
g 1 .040 .125 1.998 .066 .344 1.528  .009 042 1.377 -512  1.441 1.167
g 1 .032 .266 4.082 .103 .544 2.412 149 773 2.000 -.204 1.932  1.482
g 4 .009 .031 1 .021 115 1 -.028  .202 1 -483  .627 1
g 4 .020 .089 2833 .064 .217 1.931 .039 331 1.637  -319  .872 1.172
g 4 -004 .176 5471 -004 378 3.234 .019 .51 2712 017 1.356  1.712
Es 1 -.446 212 1 -.710  .649 1 -1.003  .998 1 -2.533  2.466 1
E 1 -422 292 1.039 -.644 822 1.086 -.907 1.239 1.085 -2.319 2.977 1.067
E 1 125 564 1.170 .089 1.298 1.352 .014 1.936 1.368 -1.006 5.055 1.458
Es 4 -411 126 1.081 -.614 .363 1 -.852  .562 1 -2.153 1.423 1
E 4 -381 204 1.087 -523 .516 1.030 -716 .769 1.029 -1.832 1.853 1.010
E 4 087 .388 1 041 943 1.322 -.011 1.369 1.341 -419 3.399 1.326
v=3 a=0.95 a=0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
g 1 .026 .066 1 032 .216 1 -.038  .348 1 -.559  .906 1
g 1 .039 .126 1.871 .03 .315 1.463 -.012 470 1.343 -.524 1.105 1.148
g 1 .037 301 4.288 .146 .597 2.810 .176 795 2324 -.046 1.673 1.572
qg° 4 .011 .033 1 037 111 1 -.000  .187 1 -370  .535 1
g 4 .024 .091 2718 .077 .205 1.870  .059 304 1.657 -.232 745 1.199
g 4 -008 .194 5.611 .061 .481 4.148 .080 D97 0 3.221 175 1.302  2.018
Es 1 -521 192 1.089 -.743 .525 1 -.988 772 1 -2.200 1.716 1
E 1 -510 .262 1.126 -.723 .650 1.069 -.964 .932 1.069 -2.166 1.992 1.055
E 1 .092 .502 1 -124  1.090 1.206 -.245 1.554 1.254 -778 3.790 1.386
Es 4 -475 126 1.246 -.621 .321 1 -.802 478 1 -1.757 1.104 1
E 4 -446 201 1.241 -543 456 1.014 -689 .653 1.017 -1.516 1.431 1.004
E 4 094 .383 1 -105  .732  1.057 -216 1.111 1.213 -.618 2.663 1.317
v =20 a = 0.95 a=0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
¢ 1 .015 .053 1 .006  .103 1 -.027 144 1 -.178  .267 1
g 1 .011 .094 1.735 -.013 .147 1.429 -.053 .18 1.318 -.221 305 1.175
g 1 184 487 9.520 517 706 8.490 .594 774 6.642 628 916  3.461
q¢° 4 .003 .027 1 020  .048 1 .009 .070 1 -075 141 1
g 4 .004 .054 1996 .017 .077 1.511  .004 097  1.383 -.087 .166 1.176
g 4 .153 446 1736 .521 .709 16.76  .625 763 14.03  .802 881 7.456
Es 1 -68 .136 1.313 -.752 .220 1 -.812 .271 1 -1.021  .408 1
E 1 -697 .18l 1.355 -.781 .266 1.053 -.848 .316 1.057 -1.073 .449 1.058
E 1 -072 .527 1 =759 1.293 1913 -1.018 1.728 2.343 -1.559 3.191 3.229
ES 4 -639 112 1.544 -.661 .145 1 -.694 172 1 -.832 .24 1
E 4 -639 .142 1559 -.668 .180 1.022 -703 .207 1.025 -.847 .288 1.028
E 4 -043 418 1 -.624 1.116 1.889 -.898 1.404 2331 -1.444 2476 3.294
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TABLE 4 BIAS (B), STANDARD DEVIATION (S) AND RELATIVE ROOT MEAN SQUARED
ERROR (R) FOR CONDITIONAL VALUE-AT-RISK (q) AND EXPECTED SHORTFALL (E) ESTIMATORS
WITH ha(Y;—1) = 1 — 0.9exp(—2Y?2 |), SAMPLE SIZE n(x1000), AND 6 = 0.

v=2.5 a=0.95 a=0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
¢ 1 .011 .029 1 .009 113 1 -.028 192 1 -.313  .568 1
g 1 .017 125 4.051 .036 .299 2.659 .014 438 2253 -.207  1.052 1.654
g 1 .009 .183 5.893 .155 451 4.211 .191 612 3.297 .049  1.257 1.940
¢° 4 .005 .016 1 015 .054 1 -.005  .092 1 -.202  .290 1
g 4 .009 .121 7.339 .047 .268 4.852  .050 376 4103 -.054 .836 2.371
g 4 -018 .119 7302 .107 .401 7.396 .193 599 6.392 344 1106  3.278
Es 1 -213 123 1 =343 334 1 -.485  .510 1 -1.223  1.259 1
E 1 -200 .268 1.356 -.28%8 .638 1.462 -.400 .925 1.433 -1.000 2.149 1.350
E 1 -015 .292 1.186 -.428 .616 1.568 -.685 .904 1.611 -1.288 2.765 1.738
Es 4 -187 .081 1 -.272 185 1 -.376 281 1 -.955 718 1
E 4 -169 251 1.486 -.198 .533 1.728 -257 .745 1.677 -.646 1.632 1.468
E 4 013 223 1.095 -.384 .476 1.859 -.727 .654 2.081 -1.548 1.834 2.008
v=3 a=0.95 a=0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
g 1 .012 .037 1 013  .120 1 -.025 195 1 -.303 .531 1
g 1 .003 .157 4.063 .002 .330 2.743 -.037 455 2317 -317 946 1.633
g 1 .007 278 7.196 .202 .576 5.067 .250 7350 3,940 134 1.338  2.201
¢ 4 .005 .018 1 .016 .060 1 -.004  .099 1 -195 .285 1
g 4 .005 .143 7.616 .035 .283 4.610 .027 378 3.842  -.126 .746  2.192
g 4 -013 .198 10.56 .220 .536 9.383 .324 697 7794 480 1.245 3.866
Es 1 -278 147 1 =397 333 1 -.528 483 1 -1.167 1.080 1
E 1 -295 314 1370 -.416 .621 1.442 -546 839 1.400 -1.183 1.655 1.279
E 1 -077 .364 1.182 -710 .690 1.909 -1.006 .989 1.972 -1.893 2.652 2.049
Es 4 -245 107 1 -.320 .200 1 -414 285 1 -906  .649 1
E 4 -244 281 1390 -.293 516 1.570 -.369 .678 1.536 -.803 1.289 1.363
E 4 -046 .324 1224 -.687 .552 2331 -1.043 .680 2478 -2.039 1.701 2.383
v =20 a=0.95 a=0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
¢ 1 .010 .034 1 003  .064 1 -.018  .090 1 -112 172 1
g 1 -007 .124 3.519 -.008 .181 2.828 -.024 .213 2334 -104 305 1.576
g 1 131 370 11.12 526 .577 12.15  .651 .647 10.00  .826 792 5.593
¢ 4 .003 .018 1 013 .033 1 .006 .047 1 -.050  .096 1
g 4 -014 .092 5.088 -.001 .128 3.591 -.006  .147 3.117 -.050 .204 1.950
g 4 .104 323 18.55 .509 .574 2145  .657 642 19.49 928 789 11.31
Es 1 -424 165 1 -.465  .209 1 -.502 241 1 -.632  .336 1
E 1 -428 252 1.090 -.461 .322 1.103 -.493 .360 1.096 -.606 .466 1.068
E 1 -285 429 1.132 -772 .932 2373 -997 1.139 2717 -1.613 1.333 2.922
Es 4 -403 .151 1 -.418 165 1 -439 181 1 -.527 238 1
E 4 -410 221 1.081 -.419 .263 1.102 -.436 .286 1.100 -.511 395 1.077
E 4 -184 .416 1.056 -.654 .888 2455 -.833 1.114 2930 -1.323 1.753 3.799
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TABLE 5 BIAS (B), STANDARD DEVIATION (S) AND RELATIVE ROOT MEAN SQUARED
ERROR (R) FOR CONDITIONAL VALUE-AT-RISK (q) AND EXPECTED SHORTFALL (E) ESTIMATORS
WITH h1(Y;—1) = 1+ 0.01y?_; + 0.5sin(Y;—1), SAMPLE SIZE n(x1000), AND 6 = 0.5.

v=2.5 a=0.95 a=0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
¢¢ 1 .034 .087 1 .032 322 1 -.079 542 1 -.952  1.553 1
g 1 .065 .197 2224 104 b18  1.634 018 792 1447 -773 0 2.004  1.179
g 1 .006 .266 2.852 .098 646  2.021 123 954 1.757 -.408 2.580 1.434
¢¢ 4 013 .045 1 .039 .169 1 -.022 294 1 -.631 913 1
g 4 .036 .158 3.466 .113 370 2236 .087 548 1.880 -.392  1.357 1.273
g 4 -.021 174 3.754 017 453 2.621  .051 668 2268 123  1.848 1.668
Es 1 -.645 .286 1 -1.043  .875 1 -1.480 1.339 1 -3.756  3.269 1
E 1 -604 422 1.044 -941 1.148 1.091 -1.342 1.704 1.086 -3.480 3.991 1.063
E 1 246 893 1.313 .097 1.704 1.254 -074 2466 1236 -1.827 6.562 1.368
Es 4 -575 172 1 -.842 520 1 -1.162  .809 1 -2.932  2.056 1
E 4 -530 .325 1.035 -.711 805 1.804  -972 1.179 1.079 -2.520 2.749 1.041
E 4 178 713 1.225 .080 1.292 1.307 -.001 1.766 1.247 -712 4541 1.283
v=3 a=0.95 a=0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
¢ 1 .031 .093 1 .043 .306 1 -.050  .500 1 -.762 1.324 1
g 1 .050 .211 2215 .074 487  1.894  -.016  .716 1.426 -.726 1.670 1.192
g 1 .027 324 3.313 .169 700 2331 .190 966 1960 -.279 2150 1.419
g 4 014 .048 1 .058 .160 1 011 267 1 -487 750 1
g 4 .033 177 3.597 110 361 2219  .083 503 1910 -.345 1.113 1.303
g 4 -028 188 3.795 .027 474 2793 077 699 2636 .152 1.617 1.816
ES 1 -738 .267 1 -1.040 .759 1 -1.376  1.125 1 -3.040 2.527 1
E 1 -725 407 1.060 -1.019 .988 1.102 -1.353 1.411 1.100 -3.013 3.019 1.079
E 1 185 .898 1168 -.130 1.475 1.150 -.247 2062 1.168 -1.136 5.038 1.306
E° 4 -670 .159 1 -.863  .435 1 -1.107  .654 1 -2.422  1.524 1
E 4 -641 .323 1.043 -785 .692 1.083 -1.000 .966 1.081 -2.209 2.020 1.046
E 4 179 714 1.069 -.096 1.061 1.102 -.251 1.405 1.109 -.618 3.638 1.289
v =20 a=0.95 a=0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
¢ 1 .023 .077 1 .013 148 1 -.032  .208 1 -.239  .391 1
g 1 .022 .184 2311 .008 277 1866 -.038  .337 1.609 -.245 517 1.250
g 1 124 420 5.471 496 718 5878  .584 796 4.687  .554 991 2,480
¢ 4 .006 .038 1 .032 074 1 .016 107 1 -.110  .213 1
g 4 .008 .148 3.807 .043 212 2,677 .033 245 2300 -.073  .347 1.481
g 4 .013 .219 5.642 439 664 9.848  .565 728  8.556  .726 879 4.768
ES 1 -976 .164 1539 -1.067 .301 1 -1.150  .380 1 -1.440  .586 1
E 1 -977 267 1576 -1.072 411 1.035 -1.155 .490 1.036 -1.444 696 1.032
E 1 -091 .637 1 -.885 1.828 1.831 -1.208 2.482 2.280 -1.753 4.830 3.306
Es 4 -923 117 2.559 -957 177 1 -1.006  .220 1 -1.209  .343  1.009
E 4 -912 218 2578 -932 297 1.005 -974 341 1.002 -1.155 .465 1
E 4 014 .364 1 -.810 1.479 1.732 -1.150 1.949 2197 -1.804 3.586 3.222
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TABLE 6 BIAS (B), STANDARD DEVIATION (S) AND RELATIVE ROOT MEAN SQUARED
ERROR (R) FOR CONDITIONAL VALUE-AT-RISK (q) AND EXPECTED SHORTFALL (E) ESTIMATORS
WITH ha(Y;—1) = 1 — 0.9exp(—2Y?2 ), SAMPLE SIZE n(x1000), AND 6 = 0.5.

v=2.5 a=0.95 a=0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
¢¢ 1 .019 .056 1 015  .208 1 -.054 .354 1 -.597  1.031 1
g 1 .032 .249 4.235 .076 .576 2.781 .039 .825 2310 -.365 1.901 1.626
g 1 -018 .298 5.031 .075 .615 2964 .083 .842 2.366 -.325 1.966 1.673
q¢° 4 .007 .027 1 020  .099 1 -.020 171 1 -.406  .530 1
g 4 .023 .240 8528 .104 518 5.228 110 .713 4.181 -.101 1.501 2.252
g 4 -026 .211 7539 .050 .522 5.194 110 .739 4333 115 1.536 2.307
ES 1 -403 .209 1 -.651  .595 1 -.922 909 1 -2.323  2.239 1
E 1 -375 490 1.359 -.534 1.148 1436 -.740 1.646 1.394 -1.873 3.708 1.288
E 1 060 .592 1.310 -.386 1.147 1.372 -.664 1.724 1.427 -1.575 4.949 1.610
Es 4 -35 .129 1 -.527 321 1 =730 .490 1 -1.844 1.239 1
E 4 -317 448 1.447 -372 .948 1.650 -.496 1.309 1.592 -1.307 2.759 1.374
E 4 083 .48 1297 -304 .939 1599 -.639 1.222 1568 -1.436 3.460 1.686
v=3 a=0.95 a=0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
¢ 1 .020 .067 1 018  .218 1 -.054  .353 1 -.575  .925 1
g 1 .043 .280 4.026 .081 574 2.648 .031 .777 2179 -413 1.565 1.486
g 1 .001 .336 4.777 142 .691 3.220 .160 .897 2.552 -.157 1.838 1.693
¢° 4 .009 .034 1 034 110 1 -.002 184 1 -.357  .524 1
g 4 .028 257 7.437 106 510 4.516 .102 .672 3.688 -.146 1.277 2.027
g 4 -026 .244 7.056 .095 .591 5.192 159 776 4.299 205 1.494 2.378
Es 1 -516 .216 1 =742 549 1 -.986  .803 1 -2.181 1.784 1
E 1 -489 4838 1.237 -.660 .994 1293 -870 1.345 1.259 -1.946 2.656 1.169
E 1 -044 679 1.217 -.643 1.246 1519 -910 1.850 1.621 -1.509 4.966 1.842
ES 4 -463 .148 1 -.604 327 1 =778 479 1 -1.701 1.102 1
E 4 -434 448 1282 -498 851 1436 -.624 1.119 1.403 -1.389 2.111 1.246
E 4 -09 .605 1257 -.669 .999 1.750 -.996 1.300 1.793 -1.663 3.155 1.759
v =20 a=0.95 a=0.99 a = 0.995 a = 0.999

n B S R B S R B S R B S R
¢ 1 .019 .059 1 .008  .123 1 -.029 171 1 -.199 318 1
g 1 .014 228 3.666 .026 .337 2.749 .002 .392 2.259 -.130 .549 1.503
g 1 .065 .332 5398 316 .583 5399 386 .659 4.398  .430 806 2.432
¢° 4 .006 .031 1 023 .057 1 009  .082 1 -.094  .168 1
g 4 -003 .187 5.923 .040 272 4477 041 309 3.761 -.017 409 2.128
g 4 .003 .238 7.523 .267 .512 9415 382 .592 8.492  .560 749 4.858
Es 1 -778 170 1426 -853 .271 1 -920 .333 1 -1.156  .498 1
E 1 -764 .320 1.483 -811 .456 1.040 -.863 .526 1.033 -1.059 .707 1.012
E 1 -126 544 1 -.661 1.673 2.010 -932 2.169 2413 -1.910 3.091 2.887
Es 4 -732 133 2109 -.760 .174 1 -.800  .206 1 -963  .304 1.009
E 4 -719 270 2177 -715 361 1.027 -737 405 1.018 -852 .524 1
E 4 -024 .352 1 -.534 1.348 1.858 -.785 1.866 2.450 -1.552 3.104 3.468
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TABLE 7 BACKTEST RESULTS FOR a—CONDITIONAL VALUE-AT-RISK (¢) AND EXPECTED
SHORTFALL(FE) ON m — n = 500 OBSERVATIONS, EXPECTED VIOLATIONS = (m —n)(1 — a).
¢: NUMBER OF VIOLATIONS AND P-VALUE (IN BRACKETS).

E: P-VALUE FOR EXCEEDANCE RESIDUALS TO HAVE ZERO MEAN.

q E
a=095 a=099 a=099 a=095 a=0.99 a =0.995
EXPECTED VIOLATIONS

25 5 2.5
Maize 8 (.151) 5(1) 2(.751) 0 .161 735
Rice ( 412) 4(.653) 2(.751) 0 .081 .248
Soybean 21(.412) 3(.369) 2(.751) 0 .302 .244
Wheatcbot  30(.305) 6(.653) 2(.751) .001 .339 273
Wheatkebt 25(1) 5(1) 2(.751) 0 .082 .239

g and E (on log scale)

0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000

a

Figure 1: Plot of conditional value-at-risk (¢) and expected shortfall (E) estimates evaluated at sample mean
across different a, with n = 1000, h1(Y;—1) = 1 4+ 0.01Y,2; + 0.5sin(Y;—1), = 0 and student-t distributed

g withv=3. 1:trueq,2:4,3:¢,4:true £, 5: E and 6 : E.
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Figure 2: Relative root mean squared error of % (left) and % (right) across sample sizes 1000 and 4000 for
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Figure 3: Bias and root mean squared error (R) of 99% conditional value-at-risk (§) and expected shortfall
(E) estimators with different N with n = 1000, h1(y;—1), & = 0 and student-t distributed ¢; with v =3. 1:
bias of ¢, 2: bias of E, 3: R of ¢, and 4: R of E.
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Figure 4: Plot of the log return for Maize future prices from Aug. 1, 2002 to July 28, 2004, together with
the 95% conditional value-at-risk (dashed line) and expected shortfall (dotted line) estimates.
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Appendix 2 - Lemmas and proofs

We rely, throughout the proofs, on some results from Smith (1985) and Smith (1987). For a nonstochastic
positive sequence ¢g(a,) — oo as N — oo and for on = g(an)/a, 0 < a = —1/kg and kg < 0 we have
E (onlogg(Zion ko)) = THLE + o(d(q(an))), E (&log 9(Z;on, ko)) = —msstdlealls 4 o(¢(g(an)),
E (0% Zrlogg(Z; o ko)) = — 535 + O(da(an), B (Falogg(Zion, ko)) = —rrieray + O(6(alan))
and F (O'N 6gak1099 (Z;on, ko)) = % + O(p(q(an))), where all expectations are taken with respect
to the unknown distribution Fy(,,). Evidently, these approximations are based on a sequence of thresholds
q(an) that approach the end point of the distribution F as the N — oc.

Theorem 1.

Proof. For a sample {,}?_; and nonstochastic N < n such that a, = 1—Z we denote E = {t : &, > gy,(an)}
and E' = {t : & > q(an)}. The number of elements in F and E’ are denoted by N and N;. Using Taylor’s

Theorem we expand (15) around (0, 0) such that,

1 0 ON
g&_ Ly (11, 72) Z logg UN,kO)E

=+ Z lOgg UN(l+5N7'1)\1),k0+5N7'2)\2>0'12v7'1

32
+ N;mlog 9(Zi;on(14 dnT1A1), ko + OnTodo)onTe = I1 vy + Iy + I3y

and
1 9 1
ga Ly (11, 72) Zaklogg UN’kO)E
1y 92
—y —I AR 1 k
+ N;ak@g Ogg( i O’N( + 5]\[7’1)\1), 0+ 5]\[7’2)\2)0']\[7'1
N1 2
1 0 ,
+ N;wlogg(zi; O'N(l =+ 5]\[7’1)\1) ko + 5]\[7’2)\2) Ty = I4N =+ ISN =+ IGNa
where A1, A2 € (0,1) and the terms I/ for I = 1,---,6 denote the corresponding averages in the preceding
equality. Similar expressions are defined as Ijy for I = 1,---,6 by replacing Z! with Z; and Ny with N.

It can easily be shown that I;x = O,(N~Y25"), iy = O,(N~/25,") and provided N'/25y — oo and
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NY2(uy) = O(1) we have Iy, Iiy = 0,(1). Furthermore, Ly = —12= + 0p(1), Isn = qrraizray +
2 2 .
op(1), Isny = rajeray T op(1), Isny = —(Hs)@% + 0p(1) uniformly on Sy = {(11,72) : £ + 75 < 1}

P 2 3 P 2
Consequently, %%L’TN(TMTQ) - T (—ﬁ) + 7 (M;‘w), %ﬁL%N(Tl,TQ) - T ((IJFOS‘W) +

2 (— (EryTeEw; j;‘é +a)), which combined with the fact that H = — ( e (TFa)2Fa) ) is assumed to
(I+a)(2+a) ~— (A+o)(2+a)
be positive definite gives
1 9 g/
2 Ll (71, T2)
FamLon(m) ()
T T —-H <0on Sr. 18
( o )< %%L/TN(TLW) ) ( ! 2 )( ) T2 - T ( )

We will establish that I;ny — Ijy = 0p(1) foreach [ =1,---,6.
N -1 N -1
1 _ 1 koZ; koZ; 1 koZ! koZ! 1 (Ni1—N
—Iy=—k'=1) | = 1— - = - ==) == —
IlN N 5]\[(0 )<N§< O'N> ON N;( ON ON +5N N
1

1
= —(kg' = D) lin + —Ton
5N(0 )11 +5N 12

Since B2 = O,(1) (see Lemma 4) and 6y N'/2 — o0, 5-T1a, = 0p(1).

Case 1: ¢qn(an) < gq(ap). Then, E' C E, Ny < N and

1 1 (1 & koZi\ L koZi 1 & koZ\ P koZ! 1 koZi\ "t koZ;
= (521 e (- R LS (1 -
5]\[ 5]\[ N i—1 ON ON N i—1 ON ON Ni:NlJrl ON ON

-1
Let ¥(z) = (1 — ko ) ’;LNZ By the Mean Value Theorem there exists A; € (0,1) and ZF = Z;, +

L0~
oN

—2
A\i(Z] — Z;) such that ¥(Z;) — ¥(Z]) = (1 - f—;Z;‘) w since q(a,) = —on/ko. From Lemma

qlan

4, wele)oglen) — O (N-Y/2) and (1-2227) > 1since 27 > 0. Hence, W(Z:) — W(Z]) = O,(N"1/2).
N N\ 7 kozs N kaZi\ " keZs
A (1-82)  BL < LN (1 k) ek

-1
all Z; > 0, (1 - M) koZi < 1. Consequently, 3~T11n, = 58=Op(N~2) + 5-0,(N~1/2) = 0,(1) since

oN

Now, < =M = N=1/20,(1) since for

SNNY2 - 00,
Case 2: q(an) < gn(ay). Then, E C E', N < Ny and

L, 1Y | kZ oz 1Y | hZ T kz 1 i Y YA
5]\[ lln_(S]\[ N_ 1 ON ON Ni:l ON ON N ON ON ’

1= 1=N-+1

Using the same arguments as in case 1, we have 3~I11,, = 3~0,(N71/2) = 0,(1).
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N

- koZ!
I4N—I4N 5 k2 ( Zlog (1 )——Zlog( ))
1=1
sl 12N:< ) koZ; 1N1(1 ko_Z’>1ko_Z’
ko 5]\[ 1 ON Ni:l ON ON

11 11

-1
= 5N k2]41n k:o E (1 - k:o ) Illn.

From the study of Iy — I, ﬁfun = 0,(1).
Case 1: gn(an) < q(ap). Then, E/ C E, Ny < N. Let Q(z) = log (1—:—22“) and write 41, =
%Ziv:ll(Q(Zi) -QUZ)) + + ZfV:NIH Q(Z;). By the Mean Value Theorem there exists A; € (0,1) and

Z¥ = Zi+ N (Z] — Z;) such that Q(Z;) — Q(Z]) = (1 - :_fézz‘*)i an(an)—q(an) _ (1 +

q(an)

-t —1/2
a(an )) Op(N71/?) =

O,(N~Y/2), since Z} > 0. Now, given that g,(a,) < &; < q(ay)

N N N N
1 1 Z; 1 Z; 1 q(an) — qnlan)
1 0Z) = - lo (1+—>§— <1 (—
N igﬂ Z) =5 gﬂ I\ ) SN gﬂ fan) =N }H a(an)
_ NN vy,

Case 2: g(an) < gn(an). Then, EC E', N < Ny and Iy1, = & Zivzl(Q(Zi) -Q(Z))— % 3.2 N+1 Q(Z) =

Op(N71/2) — N ZN1N+1 Q7). 3 N ZN1N+1 QZ) <« Z =N+1 q(an) = Op(N~'/%). Hence, o = op(1).

oN
N — N
Iy — Thy = Tl !
N 2N (1+5N7'1)\1)2 N
. —2 . 2 . —2 . 2
m L 12N: k2 i:Z; 1% | _ k2t iz
(1+5N7'1)\1)2 k N 1 é’N d’N N =1 d’N d’N
. -1 4. . -1 /.
27 L 12N: k2 i:Z; 1% k2t iz
(1+5N7'1)\1)2 k N el é’N d’N N i1 d’N d’N
T1 N N1 1 (1 ) 27’1 (1 )
— — 1 Iln—i 1 IQn
(1+5N7'1)\1)2 N (1+5N7'1)\1) (1+5N7'1)\1)
. —1 . l
s = (1) snce B — 0 and % = 0,0, Lot ) = (1- £2) (B dor = 1,2

Then, it suffices to establish that I, = % Zivzl G(Z;) — % Zi\[:ll G(Z;) = 0p(1) for I = 1,2 uniformly in Sp.

Case 1 gn(an) < q(an). Then, B/ C E, Ny < N and I, = £ S0 (G(Zi) — G(Z) + & S nogs G(Zi).
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By the Mean Value Theorem there exists \; € (0,1) and Zf = Z; + X\;(Z] — Z;) such that

. . —1-1 . -1
(2 -z =12 (1—iz:> (iz;‘> 2(@n) = nlan)

E ON ON q(an)

. —I-1 . -1 .
k k —koy
=1 |1-—2z — 7 ——=0,(N7Y/2
< UN 1) (UN 1) UN kO OP( )

: -1, . -1
k k
|Gi(Zs) — G(Z])] <1 sup (1 — EZ;> (—Z;‘) sup

o
— 2O, (N2
S oN . k :D( )

=0,(N"V?) for 1 =1,2

k o
_k_Z;’ < C and sup

oN

since sup
St

, —1-1, -1
(1 — LZ;‘) (%Z;‘) ’ < C for n sufficiently large. Now,

Sr N
N N 2 i " NN
v 3 am-ne 3 (1-ka) (La) <20,
1=N1+1 1=N1+1 N N

Hence, Ij, = SO, (N7V/2) + 15 0,(1) = 0p(1).
Case 2: q(an) < gn(an). Then, EC E', N < Ny and I, = + S0 (G(Z:) — G(Z)) — & S var G(Z)) and

we have Ij;, = 0,(1) uniformly on Sr following the same arguments as in Case 1.

Now, we note that Isy — Iy = Isn — Iy and write

N . -1 . . -2 . 2
1 1 kz\  kzi 11 Z Z
Liy-—Dy=—2 -5 [-2[1-2& R D N i
W 1+5N71A1N; k( c'rN> aN+k<k )( c'rN> (m)
N . -1 . ) -2 . 2
1 1 1 kz0\ kz 11 izl iz
b3 (12 A e :
L+onvnh N\ k oN onN  k\k oN oN

= 0p(1)

uniformly on St from the arguments used to study Ion — I} 5. Lastly, we write
. . -1 .
1 2 kZ; 2 kZ; kZ;
Ieny — Iy = — —l JE—— —(1-=== !
oN T en = NZ k?’og( 'N>+k3< d’N) (dN>
2

g
=1
1 /1 iz\ " (kz 1 (9 A 2 AN
—.—(T—1> 122 , ~ 3 Slog (1220 )+ = (122 i
k2 \ k ON ON N._l k3 ON k3 ON ON
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. 2 N N
1 /1 iz i 7! 27 [ 1 i, 1 i,
2 (k ) ( mv) (m) i3 (Nzi_l 09( aN> Nzl_:1 09( aN>>+0p( )

uniformly in St by the study of Ion — I .

= ?Iﬁn + Op(l)
Case 1: gn(an) < q(an). Then, E/ C E, Ny < N and letting Q(z) = log(1 — fz) we write I, =

+ Zi\[:ll Q(Z) — Q(Z) + + Zij\;NIH Q(Z;). By the Mean Value Theorem there exists A; € (0,1) and

Zr =Z;+ N(Z! — Z;) > 0 such that

k on

on ko

q(an) — qn(an)

_ —1/2
Q(an) O;D(N )

. —1
) . k
|Q(Zi) — Q(Z])| < sup (1 - .—ZZ‘> sup

St ON St

%k—’v’ < C for n sufficiently large. Hence, %va:ll (Q(Z) —

- N Nz N—N
- Z<C— L 0O, (N2 =0, (Nt
N i:Nzl+1 :%: N l—Nzl+l 9(an) N 2 : ol :

from the study of Iyy — Ijy. Similar arguments establish the the desired order in case 2 when ¢(a,) <

Qn(an)- O

Theorem 2.

Proof. Given the results described in section 3.1 and Taylor’s Theorem, for A1, A2 € (0, 1), we have

1 0 - 1
— L = — = Zion, k
5]2\[ 87’1 TN (7-15 TQ) N Og g( ON 0) 5N

2 1Mz
Q3|Q)

+
=2l

—log 9(Zi;on(1+0nT1A), ko + OnTeXa)or

s
Il
—
o

0

. 900k ———10ogg(Zi;on(1 +dnTiA1), ko + OnTede)onTe = Ly + Lon + Isn

_l’_
HMmZ
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and

1 9 1
52 8 2LTN(7-1;7—2 Z 8_klogg(Z’LaUNak0) 5N

1 ok 0?2 -
N ; 3kaalog 9(Zi;on (14 6nT1A1), ko + OnT2A2)oNT

N,
1 Qe 2 _ S
+N;wlogg(zi;gf\/(l+5N7-1)\1),k0+5N7'2)\2)7'2:I4N+I5N+IGN,

Note that ij is defined as Ijn with Z; replaced by Z~1 forj=1,---,6. Let

1 ife—gu(an) >0 _, . [ 1 ife—ga,) >0
X(E)_{o ife—qnian) <0 X =10 ife—gla) <0

_ 1 ife— (j(an) >0,e— Qn(an) >0 _ 1 ife— (j(an) >0,e— Qn(an) <0
xi(e) = { 0 otherwise and xp(e) = 0 otherwise

Also, let E= {t:é&>q(an)}, E={t et > qn(an)}, Zt = et — gn(ay,) and Z, = & —q(ay) fort=1,---,n

Then, we have

~ —1 ~
- 1 N, 1 1 koZ, koZ, koZ,\ " koZ, 3
hin —hn = 5o (1 - W) + E(ko -1) NZ (1 - ) - (1 - ) x(ee) | X(et)

ON ON

since N — Ny = O,(N1/2) (see Lemma 4) and 6y N'/2 — co. We first study I11,, which can be written as

—1 ~ ~ —1 ~
koZ, koZ, koZ:\ "t koZ, 1 koZ, koZ,
Illn:_z ( - t) - t—(l— - t) ;Nt XI(Et)+NZ (1— - t) ;NtXD(Et)

ON ON

= I111n + 1112, Where t € FE — E denotes that t € E and ¢ ¢ E.

By the Mean Value theorem, for some )\, € (0,1) and ZF = Z, + \(Z; — Z;) we have

N =1 - 1

koZ koZ koZ koZ kol/o -

(1— 0 ) 02 1(er) - (1— 0 ) Mo o)) = AN 7 ziate)
ON ON ON ON (1 _ kUZt*)

oN

1 |Z, — Z4]
= 75 \2 (CL) XI(Et)a
()

q(an)

37



where the last equality follows from on = —q(a,)ko and ko < 0. Note that we can write,

€ —egr = (m(Xt) - m(Xt))(iLilﬂ(Xt) - h71/2(Xt))X{E(Xt)>0}
R m(X) = X)) (Xgicgsoy — 1) + B X)m(Xe) = (X))
h1/2(Xt>
+ (m — 1) X{H(Xt)>0}€t =+ (X{H(Xt)>0} — 1) Et. (19)

By Lemmas 2, 3, Corollary 1 and the fact that h(x) is uniformly bounded away from zero, we have
|é: — et] = Op(L1n) + (Op(L1n) + Op(Lay)) |€¢| uniformly in G. (20)

Consequently, since Z; — Z; = €; — &, — (§(an) — gn(an)), we have

|Zt — Z4| 1 M
q(an) < () (Op(L1n) + Op(L1n + Lay)led]) + e
= q(clL ) (O;D(Lln) + Op(Lln + Lop)led]) + OP(N71/2) 1)

where the last equality follows from Lemma 4. Note that in the set £ N E we have Zy > 0and 0 <

€t = Z; + qn(an). Hence, since q;((;b")) = O0,(1) and q%;:) = 0,(N~1/2) provided that N « n7ia % and

1 .
hin o n” 25+ for ¢ = 1,2, we have

20— Zi) _ ( 2
q(an) q(an

j + Op(1)> Oy (Lin + Lan) 4+ Op(N~Y2) uniformly in G.
In addition, % =5+ N (ﬁ (Op(L1p) + Op(Lin + Lan)er) + Op(N*1/2)) , and given that \, < 1
and provided that h;, o NI we can write

Z; Zt Zt

= in 2n p U= L Op op(1) uniformly in G.
s = L (4 Oy Ly + L)) + 0N Y2) = 2L (140,(1)) + 0,(1) uniforuly in G
Thus,
1 — 1 Z
L € 5D ; L+ 0y(1) ) Op(Ln + Lan) + Op(N7V2) ) xs(e0).
Nt:1(1+q(ii)(1+op(1))+op(1)) ((‘J(W ) )

Given that Z; > 0 whenever t € y;(e;) and ﬁ < 1 for z > 0 we have In11n < (Op(L1n + Lon) +

x1(et) = Op(Lin + Loy) + Op(Nfl/Q) since % x1(et) = Op(1). We now consider Iq2n,

1 t=1
n

~ —1 ~
which can be written as Iij2, = + > (1 — Ii‘“—ft) Ii,“—it (X(er) — x(et)) xp(et). For 81,02 > 0 we define
i=1

NE!

Op(N"12)
t
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the events A = {w : [;t(ast)' < 51} and B = { W < 52} and note that C¢ C A° U B¢, where

C = {w : Xx(et) — x(e¢) = 0}. The indicator function for an arbitrary set S is defined by xs. Hence,

Xce < XAe + xpe and

_ ~ —1 ~
1 & koZy koZy - koZ: koZ,
Tiion < N ( ) . Xaexp(er) + NZ 1- . XBeXD(Et)

A

= Ii121n + T1122n-

Since for §1,d2 > 0 we have Jlsqt (5t|) > 1 on A°¢ and w > 1 on B¢. Therefore,

N~ oN on | 61qn(an)

~ —1 ~
1 & koZ koZs| |é — €
11121n < _Z (1 _ 0 t) 04t | t t| XD(Et)

and

—1 ~
" koZ koZi | |G(an) — gn(an
i < Z( 0 ) oZ lilan) —anlan)|

1 ON 02 dn (an>

Since kg < 0, oy > 0 and Z; > 0 whenever t € F — E we have that < C. From Lemma

. =1 -
1— koZ; koZ:
oN oN

4 we can immediately conclude that I1129, < éOp( L ZXD(Et) and since & > xp(er) = Op(1)
=1

we have 1192, = O,(N~'/2). Now, given (20), we have % = q|§fl| )Op(Lm + Lan) + 0p(N7V/2),

therefore I11215, < Op(L1n + Lay) Nl > |?Z| XD (e1) + ojo(Nfl/Q)N%;l >~ xp(et). The second term following
A t=1

the inequality is o,(N~1/2) since W ZXD (e¢) = Op(1). For the first term, note that quZL) = qn(an) + 1’

_lesl

and fort € E—FE, g < gn(ay) and consequently if e, > 0 we have |q %; )| < zeo T 1 <2 Ifeg <0 for

t € E — F then

P12 ~1/2 m(Xy) — m(Xy
£ = m0X0) = %, (2060 = 17200 Xy + e (eieso — 1)

h1/2(Xt)
P/2(X,) Rk >0p

+
)
E<
§>

(X)) R 2(Xy) +

2(X4)

Since 7]11/2 (X)) X{h(X:)>0} =

y =1+ 0p(1) and Ly, — 0, it must be that ¢, > 0 with probability approaching 1.
Consequently, for N sufficiently large and ¢ € E — E we have |$| < 2 and Ti21n = Op(Lin + Lan) +

OP(N71/2). Combining the orders of I1121, and I1120, we have I119, = Op(Lln + L2n) + Op(N71/2> and
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Iin = Op(Lin + Lay) + Op(Nfl/Q). We now consider I, and note that
kOZt ko, | _ ki “ koZ,
ON ON ON

-1
By Lemma 4 and the fact that ’(1 — ﬁ’—?) koZ:i| < O, the second term following the inequality is

€ — &4 =

Qn(an)

|(j(an> — Qn(anﬂx(st)'

1

N5

ON

O,(N~1/2) given that %tzlx(st) = O,(1). Again, using [15:(;?)' qlffl' )O (Lin + Lapn) + 0, (N71/2) we have
Z sx(Et)+op(N~H2) i ;X(Et)

Since % 3" x(e¢) = O, (1) we need only investigate the order of %; - (an)

that the first term after the inequality is bounded by Op(L1n+L2n)

x(e¢). Note that %Z q|§;| (&) <

Cx> q(in) (e¢) + Op(1) since qq(zla")) = O,(1), Z; > 0 whenever t € E and %; X(gt) = Op(1). Now, let

N &) = — dnlan) —qlan) 1 )
N;Q(an)x( t) N;tJ(an (@) N;X( )
_ 4 Z! s
N ; qlan) )Op(1) by Lemma 4.

If g(an) < gn(an) then Z; > 0 and E

) = =L + 0(¢(qan))) and £ 3L, q(an) = 0,(1). If

q(a,) > gn(a,) and N; denotes the number of elements in {&;}}Y, that exceed gq(a,), we have N > N;

and we write 4 Zi\il ’% < % le % + % é\SNl % . For the terms in the second sum on
the right side of the inequality ’q%) < ’ﬁ + 1 < 2 since in this case e; < ¢q(a,). The Z] in the first

/

sum are all positive and we have % Zt 1 q(ii) 0, (1) (— + 0 (¢(q(a )))) Thus, + Zt 1@y =
Oy () (ﬁ +O(¢(q(an)))) + 0, (BF2) = 0,(1) since X = 0,(1). Thus, %tz tx(e) = 0,(1)

and we conclude that 12, = Op(L1s + Layn) + Op(N~1/2). Combining the orders of I11, and I2, we have

Lin—Iin = 3= (ky " =1)(Op(Lin+Lan)+0p(N2))+0,(1). Since, Sy N'/? — 00 and VN Lin, VN Lan — 0
as n — 0o whenever N oc n%+2 % for 0 < 0, hin n~ % and hopn o n~ % we have Ly — Ly = op(1).

We now turn to establishing that Iin — Liy = op(1). We write

- - —1 ~
. 1 (1 1 koZy 1 1 koZy koZy
Ln—Iiv=+ <> |—zlog|1- —(1-=)(1-
N N 5]\[ Nt:l k% 09( ON >+I€0 ( ko) ( ON ON

1 koZ 1 1 koZ:\ "t koZ, 3
_ <_k—8109 (1 - t) e (1 E) (1 - g}\:) ;Nt> X(Et)) X(et)
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" %z <_k_18109 (-B2) (L) (k) ’“mf)) x(e((er) = x(er)
1

First, note that

1 n koZy ( kOZt>
Iy = —— log | 1— —lo € lo
, kg( z(g( UN) ) e + 3t

koZ,
)XD(Et)>
1 1 1 1 1
1— — ) hin=—5U411n + L1120 1—— ) Iin
ko ( o > 11 kQ( at1n + La120) + %o ( k0> 11

Since we have already established that I11, = Op(L1p + Loyn) +Op(N -1/ 2), it suffices to investigate the order

of Iy11n and I412y. By the mean value theorem for some A, € (0,1) and Z; = Z; + )\t(Z~t — Z;) we have

koZ koZ
log(l— 0 t)—log(l— 0 t)
ON ON

Using the same arguments when studying the order of I111, we immediately have Is11, < Op(Lin + Lon) +

Z2\ 2, -2
t ) | t t|XI(5t)-

(an) q(an)

xi(er) = (1 -

O,(N~Y/2). Given that xp(e;) = X(e¢)(X(e¢) — x(g)) and x4 = x% we have for §;,2 > 0

Lo < %Zlog (1 B kOZt> ( |6 — &4 n lq(an) — qn(an)|> o(er)

t=1 ON 51qn(an) 52(]71(@71)
RS koZ koZy
< Ol + Lo ) Jos (1_ ﬁNt> o)+ 0N ) Zl"g ( )XD@).
t=1 n\%n

Note that by the Mean Value theorem

lOg (1 _ kDZt)’ _ ’(1 _ koZt*)fl —koZy
ON ON ON

whenever t € E — E, ZF = A\eZ; > 0 for some 0 < \; < 1. Hence,

ko & o 5
—ﬁZt since Z; > 0

1 ~—ko 5
XD(Et)+Op(N*1/2)NZU—NOZtXD(Et).

t=1

1
I412n S Op(Lln + L2n)5—N
1

ITM:
oL
Q
>~
o

. an + Zy ~t Zy —
Since qi((an)) =1+4o0,(1), Lol < aL +1 and q(in) < ql(al)(l + Op(L1n + Lay)) + Op(N~1/2) we have,

for the first term following the inequality,

n

Ls~hog e 1 2] ~1/2 | Zy|
N2 o D gulan) P S F (04 0y + Lo+ 0,8 ) (14 L) v,

Given that qlfj) < 2 whenever t € E — E for N sufficiently large, we have that %Z ql(;l B xp(er) <
w(an =

=
i

Xp(er) = Op(1). The second term following the inequality can be bounded using the similar arguments
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and we obtain Is19, = Op(L1p + Lop) + Op(Nfl/Q). We now investigate the order of I4o,. Note that,
I<a| 1 koZ, 1 1 koZ,\  koZ,

Tyon < — —log 1 — 1—— 1-—
12 <N; k2 ( O'N>+I€0( ko)( ON ON

1< 1 koZ, 1 1 koZi\ t koZ,
=N |—=log(1- 1—— ) (1-
i N; kg Og( ON ) ko ( k0> ( oN oN

= Iyo1n + L422n.

& — el
51(]71(@71)

x(et)

Since =gl < 0 (L1, + Ly,) + 0,(N~1/2) we write

( n) — qn(an)
kOZt>’ |€t|
3
( ON Qn(an)X( t)

n

I421n < Op(Lln + L2n k25 NZ

t=1

1 « kOZt> koZy| et

+ Op(L1n + Lan) 1- — 1— c

;D( ! 2 0 ( )’ N; ( ON ON Qn(an)X( t)

" koZ

N~1/2 log (1 - 22

+on( k251N; 09( on )| X
1 1 1 — koZ:\ | | koZ

N71/2 - 1__ 1_ 04t 04t 22

+0p( ) k0< k0>’51N; ( oN on X(et) (22)
ngt

Since kg < 0 and Z; > 0 for all t € E we have that ’(1 — Ii‘“—ft) < C and the second and fourth

terms following the inequality are O,(L1, + Lay) and o,(N~1/2) since + Z q |Z| sx(et) = Op(1) (see the

NE!

order of I12,) and % > x(e¢) = Op(1). Note that for all ¢ € F, since Z; > 0 and ko < 0 we have

t

koZ: EA 1 & koZy Z, 1 & koZy
log1——=22) /= <= log|1- — log(1-—
og( )’ ” )x(st) < NE og p— )X(Et)+ N;:l og po— x(et)

ON n (an —1 dn (an

1

1 n
N

t=1

=(1+4o0,(1 Zlog (1 + an)> %x(st) + %ilog (1 - koZt) x(er)

o
=1 N

=(1+0p(1))Tin + Ton
by using the fact that ¢(an)/gn(an) =1+ 0p(1) and —on/ko = q(an). Let ¥(z) = log (1 + z) z and write

Tiv = —4 T, (W(Z/a(an) — ¥(Ze/a(an)) + & TI, U(Zi/a(an). T q(an) < gulan) then Z,, Z; > 0

and by the Mean Value Theorem, there exists A; € (0,1) and Z; = Z] + A\i(¢n(an) — g(an)) > 0 such that

U(Z;/q(an)) — ¥(Z/q(an)) = ((1 + q(Zj;)> q(Zai) + log (1 + q(ii))) qn(a,;)(;l)q(a").

s < Cand feloalotlen) — 0 (N1/2). Also, log (1+525) < 25 =

L el tles) _ _ZL o (1), Consequently, & YN (W(Z}/q(an) — ¥(Zi/q(an))) = O

zZ;! -
We observe that (1 + m) q(a

bS]
—~
=
L
~
no
~
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. N _z, _ ; Z Z, ) =
since % >y, o = Op(1). Now, NZt 1¥(Z]) = Op(1) since E(log (1—|— q(an)) ) ) = (a,ll)z +

ET ey O(¢(g(axn))). Thus, combining these orders we have T1xy = Op(1). Let Q(2) = log(1 + z), then

Ton = —% Zi\il (Q(Z}/q(an)) — Q(Zi/q(an))) + + Zi\il Q(Z{/q(ay)). By the Mean Value Theorem, there

exists Ay € (0,1) and Z; = Z; + M\ (gqn(an) — q(ay)) > 0 such that

QZatan)) - Qi falan)) = (1+ -2 ) - el tln) _ gy

Furthermore, + Zi\il Q(Z}/q(an)) = Op(1) since E (|Q(Z;/q(as))|) = L + o(1). Hence, Tox = Op(1) which

log (1- %)’q|§;|)X(5t) Op(1).

combines with the order of Tiy to give % >
t=1
gn(an) and consequently N > Nj. Then,

Now, consider the case where g(ay) >

— N1

Ny
Tin = —— Z (Z4falan)) — W(Z/a(an))) + - S W7 fqfan) Z (Zu/a(an))

The first two sums on the right side of the equality have Z; > 0 and can be treated as in the case where

q(an) < gn(ay). In the last sum ¢,(a,) < & < g(a,) and we have

— N7 N—N; 2 N—N; 2
1 Zy 1 €t o N—Ny\ —1/2
z <t Y (Z5) <3 T (-25) —o(552) —ow .

2 2. \ qlan) 2.\ qlan)

which combines with the order of the first two terms to give Th n = O,p(1). Now, write

Nl Nle

Ton =~ Y (QUZ falan) ~ QU fatan)) + xS QZ/alan))

t=1 t=1

The first term on the right side of the inequality can her treat as in the case where ¢(a,) < gn(ay). For the

second term, < M NQZ/q(an)) < ¥ AR q(itn) < 0, (B58r) = 0,(N~Y/2). Consequently, Ton =
koZ:
log (1 - U“—N)

Op(1). Thus, the first term on the right side of inequality in (22) is Op(L1, + L2,). Similar arguments

Op(N1/N) + O,(N~Y/2) which combines with the order of Thx to give & >
i=1

qJ?ZL)X(Et> -

establish that % > log (1 — ’i‘“—ff) x(gt) = Op(1) and that the order of the third term is O,(N~'/2).
=1

~1
We now examine the order of Iygg,. Given Inlan)—dn(an) _ = 0,(N~1/2) and ’(1 — Ii‘“—ft) kZi) ¢

an(an)
%2:: log( kOZt)’X(Et)+C’k_10( _k_lg)’%iX(EQ) Since we

log ( koZt) ’ x(er) = 0p(1) and £ 3" x(g¢) = Op(1) we conclude that

t=1

we write Iyg9, < éOp(N*ﬂ) (

have already established that %
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Iy90, = Op(Nfl/Q). Combining all orders obtained we have that Is1, + Ison = Op(Lin + Lon) + Op(Nfl/Q)

and consequently Iyn — Isn = 0,(1), since Sy N'/2 — oo as n — oo.

We now investigate the order of Iy —Isn. Consider arbitrary oy = on(14+0n71 A1) and k= ko+dnT2)a

and write

N .o~ -1 . - .o~ -2 .o~ 2
~ T1 1 1 - th th 1 th th
In—Iy=—"2 (=2 (z-1)= R e I IO Al al]
S e NS YE ( )(k )N - ( c'rN> aN+2< dN> (m)

1 1Y iz\ kz 1 TANNITAY
t t t t
e2 (1) w2 (“E) E+§<1_E> (7)
T1 Ns
N S
* (1 -‘1-7'15]\[)\1)2 (N )

Hence, it suffices to examine
N N N N . . ! n N N
1 <= 1 kZ,; kZ,; lz 1 kZ,; kZ,; - lz 1 kZ,; kZ,;
N ON ON Nt:l TN ON Nt:l ON ON
IANNITAY 1 & ANNITAS
- (1 - —t> <—t> x(ee) | X(ee) + NZ (1 - —t> <—t> x(e)(X(et) = xB,) = Inix + Iniz
ON N

for [ = 1, 2. First, note that I,,;j; = In11 + Inii2 where

2 iz iz \ " (k2

¢ ¢ ¢ ¢
kZ iz
¢ ¢
Iue = —Z ( ) (E) xp(et)-

By the Mean Value theorem, there exists Z; = Zi + )\t(Z~t — Zy) for \; € (0,

-1 . : -1
" kZ* k (kzr
T <l— Z ( ) o ( dNt ) qn(an)

1) such that

Z,
X (Op(Lln + Loy) (ﬁ;) + 1) + Op(N1/2)> xr(&t). (23)
Since g(a,) = —on/ko and Q((a")) = O,(1) we have
kZ* g (kT 2 i
t t ON
su — - (o ) < Op()sup |——
p 2 < ) N < N ) qn(an) q ( ) XI( t) ;D( ) STp kO UN|

. -1 —1—1
1< kZ; kz; Z
X — E¢)SU; - 1-— .
N;XI( t) STp ( N ) ( UN ) qn(an)
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<C.

-1 C N 1
(kZ ) (1 _ kz )
ON ON

Hence, to establish the order of the left hand side of the inequality it suffices to obtain the order of v, =

> bz \
t;XI(Et)Sip ( UNt) qn(a )’ Note that,

. —1 . . —1
kZ} kZ k 1
vn < C— sz ee)sup | (1~ — —=— || sup | ——
NS oN on )| sr \ On )  an(an)

. -1 .
~ kZ; kZ L
_Z (e¢) sup (1 — ) <__t> since sup (—%) ﬁ <C

ON ON St

e Z YA
s (1—Eq<an> (m<1+op<1>>+op<1>)> (‘E) —0,(1)

(1= Falon) (50 + 0,0) +0,(0)) (2| <

and + > xs(e) = Op(1). Consequently, Ij11 = Op(Liy + Loy ) + Op(N~1/2) as all remaining terms in (23)
i=1

Given that oy — 0 we have for N sufficiently large sup’ k oy ’ < C and sup
Sr

2|~

IA
2

HM:

i Z;  _
since s = (q(a )(l—l—op(l))—l-op(l)), sup

St

are of the same order. Now, we write

N RN
1 & kZ, kZ, 1 et 1 1 _
Inl12 < N § <1 - —> (E) XD(Et) (Op(Lln + L2n)5— (— + m) + gOp(N 1/2)>

qJ(ZL) Xp(g¢). Note that

&
=
(ol
o
o8
-+
e
=
-+
=
¢
©]
=
o
@
=
o
=n
S
I
2=
=

.o~ l
1< iz iz 4| 1~ e
vn < 7 D_sup (1 - —t> (—) L xp(e) < O Y —sxn(e) = Op(1)

(o2 g
i St N N

from the study of the order of I1121,. Consequently, Iji2 = Op(Lin + Lon) + Op(Nfl/Q) which combined

with the order of I,11 gives I = Op(L1y + Lan) + Op(N~/2). Now, as argued previously, we can write

-1 4. l
1 « th kZ, 1 ¢ 1 1 1/
(24)

n . =1 /. l n
Letting T,, = %; ((1 - ];—it) (’;—iﬁ) ) qJZL)X(Et) we note that T,, < C%; |f;| )X(Et) = 0,(1) from

(- ()
ON ON

C. Consequently, T2 = Op(L1y + Lap) + Op(N~1/2) since all other terms in inequality (24) are of the same

the study of I15, given that oy — 0, for N sufficiently large we have k< 0,0n > 0and <

. —1 . l n
(1 - %) (%) ’ < C and the fact that 1 > x(g;) = O,(1). Combining the orders of I,
t=1

order given
ON ON

45



and I,;2 we conclude that Ioy — Iony = 0p(1) uniformly on Sr. Now, note that Iiy — Isy = Isy — Isy and
len( 1 iz\ T kze 11 i Z iz\’
~ T2 t t t t
Iy Iy = —2— — QAL [Ty G Y Rl ald
SN TN 1+5N7'1)\1N; k( UN) oN k(k ) ( UN) <0N>
. -1 . ) —2 . 2
1 _k2 %_l(l_1> 1_kZ kz,
k ON on  k \k ON ON

Using the same arguments as in the case of Ly — Iy we have Isy — I3y = op(1) and Isy — sy = op(1)

4T 1
1+ M N

M-

uniformly on St. Lastly, we investigate the order of Isn — Ign which can be written as

.o~ -1 .o~
~ - 1 u 2 th 2 th th
IGN—IGN—TQ(NZ k3log<1_dN>+k3 (1_(5']\[) <0N>
.o~ 2
i (l 1) 1 th kZ;
k2 \k ON ON

N . -1 4.
1 2 th 2 e Z, i Z,
- | Slog [1-= )+ = (1- 2 el

Ns
= % (%Zlog (1 — %> — —Zlog (1 - %>> + 0p(1) uniformly in Sp. (25)

The last equality follows form the arguments used above when investigating the order of Ioy — Ion. The

first term in equation (25) can be written as (excluding the constant 275 /k®) g1, + Is2n, where

e i7 iz ~
Ig1n = N; (log (1 . ) —log (1 T on ) X(Et)> X(et),

Ig2n = %Zlog (1 - i_}Z\;) x(ee)(X(er) — x(er))-

log( th)’X (op(L1§1+LG> (qﬁ;ln) 4 qn(a )) +3 L0 (Nfl/z)) and we consider
th
log (1 - )

k — ko and g—z — 1. Consequently, given that qi(zl;j) = 0p(1) we have %;

n
1
NOW, IGQn S WZ

qJZL)X( ¢). Note that Z; > 0 whenever ¢ € F and as N — oo, oy — 0,
g (1= §2)| eyt -

O,(1) which follows from the order of Iy21,. Hence, Igo, = Op(Lin + Lay) + Op(N~/2) uniformly on

the order of %tzl

ON

St. We write Ig1, = Ig11n + Ig12n Where Ig11, = % Z (log (1 — k—Zt) — lOg ( ];Zt)) X[(Et)and Ig12n =
t=1
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ON

. -1
1 kZ* k-
Ig11n = Z (1 -t ) —(Zy — Zy)x1(er)

1 & kzx k Z _
<= 1- - ~  4n\dn Lin + Lan 1 N 1/2
< N;:l ( C.fN) P (an) (0p( 1n + Lo )(qn(an> + >+0p( )) xr(et)
. —1
k 1 & kZ; Zy —1/2
< = gnlan)| — 1— Lip + Lop) [ —4— +1 N
sup| =4 (an) N;:lS;LTp ( UN) (0p( 1n + L2 )<qn(an) + >+0p( ) ) xr(et)

= Op(1>%zn:sup (1 - kZ*) h (Op(Lln + Lay) (% + 1) + Op(N1/2)> xi(er)

&
t=1°T N

= Op(Lin + Layn) + Op(N*1/2) uniformly on St given the order of v,.

Since Zt > 0 whenever ¢t € E — E and since as N — oo oy — 0, k— ko and Z—Z — 1 we have Ig19, =

> log ( k“Zt) xp(et) +0,(1). From the order of I412, we have Ig12, = Op(L1p+ Loy ) +O0,(N~1/2) and
=1
consequently Ig1, = Op(L1n + Loy) + Op(N71/2), which combined with the order of I, gives Iy — Ign =

0p(1) uniformly on Sr. O
Theorem 3.

Proof. Let 7y = &‘;(—J“V") =1+0n7], k=ko+ dnTs and note that

%%LTN(T{F;TQ*) _ 1 Z'fvlar logg(Zl,TNUN,k) _ 0 ' (26)
! *75) ONN ZNlaklogg(Zl,TNaN,k) 0

For some )\1, )\2 S (0, 1) let k* = )\Qko + (1 — )\2)12, T}‘V = )\1 + (1 — )\1)7:]\[,

lo i TNON, BT 0 Ziirion, k*
e ol (7 S A R

; ‘
S\ 75— logg(ZmNUN,k) 52 log g(Zi;rion, k)

on (1, ko) = VN 1{’ Ziv 1 BTN log 9(Zy5 0w ko) =VN ( 5N(I:1N ~ o)+ onh )
, ~ Zz 1 aklog 9(Zi; 0N, ko) On(Isn — Iun) +OnIun )7

where fl N, Iin, f4 N, Iy are as defined in Theorem 2. By a Taylor’s expansion of the first order condition

in (26) around (1, ko) we have
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We start by investing the asymptotic properties of vy (1, ko). Let by = —a(;faa), by ( Q(Jlrza) + H—l)

and observe that from Theorem 2 and Lemma 4 and the fact that q"(gla")) — 1= 0p(1) we have that

b/ N Alal ta02) 4 /R Ty + 0y(1)
bo/ Nl —talon) 4 50 /N T,y + 0,(1)

bl\/ﬁ Q(an)(*Q)(an) _ qn(an()fg(an) + 5N\/NIIN + Op(l)

un(1, ko) =

o q(an q(an
byV/N ((Uenmtlen) _ galea)oglan)) 46 \/NT, + 0,(1)

By Lemma 5 and the fact that Ny — N = O,(N'/?)

( VNON LN > B bl\/ﬁw + \/Lﬁzl L 801099( 0N, ko)on + op(1)
\/N(SNLLN b2\/_qn(a;()a %(an) + \/Lﬁ Zi:l mlogg( 1-; ON, ko) + Op(l)

where Z! = ¢; — q(a,) for i > g(a,). Hence, by letting b, = E(a—ilogg(Z{;aN,ko)aN) and b, =

E (Zlog g(Z};0n, ko)) we have

(ko) - VF ( by ) bV Naezeen) 4 o (S Zlog g(Zion, koo = bo ) + 0p(1)
sy v0) — = an an
b by /N lleaytle) o (S Blog g(Z}; 0w, ko) — bi) + 0p(1)

Note that we can write

L iilo (Zlson,ko)on — by | =
\/N vt o g g\4,;;0N,K0)ON o | —

_ 0
N—1/2 (a—glog g(Zé; on,ko)on — bg> X{e:>q(an)}

- 1D-

Zn

~
Il

1

and

ﬁ\

t=1

:2%2
=1

N n
0 _ 0
(; 3_ Ogg O'N, kO)UN — bk> = ZN 1/2 (8—klogg(Z£; ON, kO)UN — bk> X{et>q(an)}

Also, from Lemma 4, \/N% is distributed asymptotically as > ko(n(1—F(y,))) "2 (q1n— E(q1n)) +
=1

op(1) = > Zi3 + 0p(1) where g1, = ﬁ [ K (yh:it) dy and y, = q(a,)(1 + N~Y/22) for arbitrary z. It

=1
can be easily verified that F(Z;1) = E(Z2) = E(Z3) = 0. In addition,
0
V(Zu)=N"'E
( tl) (80’]\[
_ 71E 8 l (Z/' kj ) b 2 | 1 4 (1)
=n 8UN 09 g\4;; 0N, K0)ON o =n 1—2I€0 o

log g(ZL: o ko) — bg) Pz > qlan)})
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where the last equality follows from the results listed in section 3.1. Using similar arguments we obtain

V(Zi2) = n! (% + 0(1)>

and from Lemma 4 we have that V(Z;3)

n k3 F (yn) + o(hsn).

We now define the vector v, =
S (Zi1, Zi2, Z43)T and for arbitrary 0 # A € R3 we consider AT, =
t=1

n

S (MZo+ NoZio + X3 Zi3) = . Zin.
i=1 t=1
From above, we have that F(Z;,) =0 and V(Z;,) = Z?:l NE(Z7) + 230 cacar<s Mda E(ZyaZyar). First,

we consider E(Z1 Z2) which can be written as

1 N
E(ZnZy) = ETln — mbobk

whete Tin = B (52109 9(Zf; on, ko)ow §log 9(Zis on, ko) ). Since by = 529 4 o(g(e(, ) and
Cap(en_
b = _% + o(¢(e(n—ny)) we have that

1 NY2¢(20a))?2 1

E(Ztlzt2) _ _Tln _ O (( (b(gé N))) _ _Tln _ n720(1)
n n n

since N*/2¢(e(,—n)) = O(1). Now, note that

2 N\ —2 N 2
= b (L 1) E | _ ko2 koZy
ko \ ko ON ON
1 /1 koZ! koZ!\ " [ koZ!
() m (o (-2 (- 2) T ()
kg \ ko ON ON ON
From Smith (1987) we have that E ((1

AN AR 2
ON ON -

Traera T O@(Em-n))) and by
O(é(e(m—n))). From Lemma 6 we have that

E (log (1 - koZt[) (1 — —kOZt/>1 (_kOZt/>> __1 @
ON ON

. =--1 Atap +O0(9(e(n-n)))

which combined with the orders obtained for the other components of the expectation and the fact that
ko = —a~ ! give E(Ztlth) =

_n(k071)1(2k071) + %(b(s(n,N))O(l) — O(n=%). We now turn to E(Z;17;3)
which can be written as

E(Zy1 Zy3) = Tay — koE (N1/2 ( 9

2 togl(Zi 3. ho)on ) Xesaony ) Elarn) (a1 = Fln))) ™2
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where T, = E (N*”Q (%log 9(Zj;on, ko)azv) Xer>q(an) (n(1 — F(yn)))*l/z’koqm)- We note that

_ 0
E (N 1/2 (80’]\/ logg(Z{;UN,k0)0N> X{st>q(an)}> = Tbo == (A(e(n—n)))s

from Lemma 4 F(q1,) = F(yn) + O(h35™) = O(1) and since (n(1 — F(y,)))~*/? is asymptotically equiv-

alent to N~'/2, the second term in the covariance expression is of order gO(qﬁ(s(n,]\;)))O(l)Nﬁl/2 =

nLO(¢(e(n—n))). We now turn to Tb,, the first term in the covariance expression. Since (n(1—F(y,)))~ /2

—1/2

is asymptotically equivalent to N , we have by the Cauchy-Schwartz inequality

1 1
Tyy = —F 0 logg(Z;0n,ko)onqin | < = |E 0 log g(Zi; 0N, ko)ongin
n don n Jon
1 B) 2 Y2
< - (E ((aUNlogg(Z{;UN,ko)ffN> ) E(tfﬁ)) =n""o(1).

Hence, E(Z;1Z;3) = o(n™1). In a similar manner we obtain F(Z;2Z;3) = o(n™1). Hence, nV (Z;,) = AT ViA+

17121ko _(kgflgékgfl) 0 n d r
o(1), where V; = ~ TR oD D) . By Liapounov’s CLT ;Zm — N0, X'V )
k2 =
provided that Y F(|Zi|3) — 0. To verify this condition, it suffices to show that (i) > E(|Zu|?) —
=1 i=1

0; (ii) Y. E(|Zi2|®) — 0; (i4d) Y. E(|Z3]®) — 0. (iii) was verified in Lemma 4, so we focus on (i) and
i=1 '

1=1

(ii). For (i), note that ;E(|th|3) < \/LNE(’(l/kO —1)(1—koZ}/on)  koZ]/oN — 1]3) — 0 provided
E(—=(1=koZ]/on)3(koZ;/on)?) < C, which is easily verified by noting that —(1—koZ}/on) 3 (koZ!/on)? <

~(1 = koZi/on)"*(1 = koZi/on)? = 1. Lastly,
;E(|Z2t|3) < \/LNE (’_(1/168)109(1 —koZi/on) + (1/ko)(1 — 1/ko)(1 — koZé/UN)ilk()Zé/o’Nyg) 50

provided E (log(1 — koZ,/on)?) < C given the bound we obtained in case (7). By FR2 and integrating by

parts we have

E (log(l - kOZt//UN)g) = —/ log(1l — koz/aN)BdFs(niN) (2)
0
_ 1-FlEn-m1+2/em-n))
1- F(E(an))

® Le(m-ny (1 + 2/e(m-n)))
+/o L)

(log(1 + z/e(n-n)))* |

(14 2/(n-n) " *3(10g(L + 2/2(n-n)))?

X (1+z/e(m-n)) " (1/e(n-n))dz = Tin + Ton.
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Three repeated applications of L’Hopital’s rule and Proposition 1.15 in Resnick (1987) give 71,, = 0. For 72,
we have that given FR2 and again integrating by parts and letting t = 1+ z/e(,—n)

o0

Ton = /1 b 3(log (1))t~ Ldt + d(e(n_n)) /1 3(log(t))2t*a*1%(tp — D)dt + o(¢(e(n-n)))-

It is easy to verify that [ 3(log(t))?t~>~'dt = 5 and consequently T2, = 2 +O(¢((n—n))) which verifies

i1). By the Cramer-Wold theorem we have that i, LN 0,V1). Consequently, for any vector v € R2
y

k2 —4ko+2 1
be d 17 - —
we have y7 (UN(UN,kO) - VN ( b )) = N(0,vTVay) where Vo = _(2k0 11) 2k37];[;c%ki2k10)71
Eo(ko—1)  kZ(ko—1)2(2ko—1)
Again, by the Cramer-Wold theorem (’UN(O'N, ko) — VN ( ZU )) < N(0,V3). Hence, given equation (27),
k

provided that Hy(r%, k*) 2 H we have

\/N( EN__k; ) —Hlx/ﬁ( ZZ ) =H! (UN(UN,kO) —~ \/N( ZZ )) 4N (0,H WaH ).

To see that Hy(r, k*) 2 H, first observe that whenever (1,73) € Sr we have (7y, k) € Sg and conse-

quently (r%, k*) € Sg. In addition, from Theorem 2 and the results from Smith (1987) we have Hy (Fy, k) 2

H uniformly on Sz. By Theorem 21.6 in Davidson (1994) we conclude that Hy (ri, k*) 2 H. O
Theorem 4.

Proof. Let a € (0,1) and a, = 1 — & < a. We are interested in estimating q(a) which we write as
n g

q(a) = q(an) +yn,q- Estimating g(a,) by G(a,) and based on the GPD approximation we define an estimator

Ell

N, fOr YN o as Un.a = &qné“") (1 — ("(11\7“)) ) Note that, as defined, §n , satisfies

. 1/k

L Fla(an) +ine) = (1 - ’“LV) . (25)
n T Gn(an)

Note that for a chosen N, equation (28) is satisfied with a distribution function F that is not necessarily F.

However, given the continuity of F, there exists N satisfying the order relation a > 1 — N/n for which (28)

is satisfied by F. Hence, to avoid additional notation we proceed with F. We define the estimator for q(a)

as 4(a) = G(an) + Gn.a- For o, = q(a)(n(1 —a))~/2, arbitrary 0 < z and V,, = —ko/n/(1 — a)'/? we note
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that

P(on(G(a) —q(a)) <z) = P(l—a>1-F(q(an)+yna+ onz))
= P(Vu((1—a)— (1 - F(qla) + 0n2)))) > Va((1 — Fq(an) + yn.a + 0n2))
- (1=F(q(a) + 042))).

In addition, from the proof of Lemma 4 we have that lim, .. V,((1 —a) — (1 — F(q(a) + on2))) = z. Now,

let W, = Vo((1 = Flglan) + yna + 0n2)) — (1 — F(q(a) + 0,2))) and note that o~ e il oy, —

n(1 - F(q(a))) (% - 1) = _k_lf)Wn(l +0(1)). We first establish that

W~ Fla(@) (1 — Flala) £on2) 1)

1—F(q(a) + onz)
is asymptotically normally distributed. Without loss of generality consider yny = ¢(a,)(Zy — 1) for 0 <
ZN — Z < oo. Note that if Zy = Z, then yno = yv = q(an)(Z — 1). Then, q(a) + onz = q(an)Z(1 +

2((1 = a)n)~/2) = q(an)Zn. By FR2

(q(an)Zn)* 1 — F(q(an)Zn)
Q(an)a 1- F(Q(an))

kel FlalanZx)

=1+k(Zn)d(q(an)) + o(d(q(an)))

since a = —1/ko

where 0 < ¢(q(an)) — 0 as q(a,) — o0, k(Zy) = CUZLA=Y  Gince we assume that Nl/zi(ﬁ%(g(a")) — U, we
have that as Zn — Z, k(Zn)d(q(an)) — k(Z)N*1/2@ — 0 and consequently
~1/ky L — F(q(an)Zn) _172a —p) -
g BN g ()N L (N2, 2

We observe that for the function h(o,k,y) = —1log (1 - %y) we can write

1 - F(glan) +yn) _ 0 e T
1—#((}(6&1)) p( ( N> ayN))

and using the notation in Theorem 3 and the mean value theorem gives

= 7. * * * * N —1
h’(UNakayN)_h(UNakanN):( UN%h(UNak ayN) B_E;gh’(UNak ayN) )( I;N_ ko )
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for on = Mon + (1 — Ai)on and ki = Aokn + (1 = Xo)ko and A\, A2 € (0,1). It follows from on =

—kog(an) = —% that yy = % and from Theorem 3 we have

O'N%h(o'}kv;k*;yN> LN —kal(Z*1 — 1) and %h(o—}‘v,k*,ij) LN ngZog(Z) + k072(271 _ 1)

Hence, if ¢ = (—ky (27" = 1) ky%log(Z) + kg2 (27 = 1) ) and uff = ( LUTEM2hon) - uikolieliey) )

we can write

o ~
AV (2 ) 4 N b H V) and VR (. Fon) = how b)) = Ol (30

Now, we can conveniently write,

1 - Fglan) +yn) _ 1= Flglan) +yn) 1= Flg(an))

1 — F(q(an) +yn) 1—F(g(an)) 1-F(qlan)+yn)

Z ko g Mo

. . 1/k - —1/ko
1-F(q(an)+yn) _ k 1-F(q(an)) —1/ko _ k _
Note that W = (1 — &y—;fv) (Tg(an))) and ZN 0= (1 — giNN) = €$p(h(UN, kanN))

Furthermore from equation (29), Z}V/k“% —1=N"1/2 (—k(Z)@) + o(N~1/2). Hence,

L— F(qan) +yn) _ i/mo_ 1= Fla(an)) 11— Fg(an))
1= F(glan) +yn) "N (1=Flg(an)Zn)) (1 - F(G(an)))

S.Ip(—h/(&]v, I;a yN) + h’(UNa kOa yN))

1-F(q(an)) _ 1 = _ F(a(an))~F(q(an))

TTFGa)) = =7 (q(an)) and from Lemma 4 we have

W= Fla(@) (g _

Now, we note that T—F(q(an))

F(q(an)) — (1 — F(q(an))) <, N(0,1) as g(an) — oco. In particular, using the notation adopted in Lemma 4

we have that

n(l — F(q(ay)) - o n 1 B )
T Flglay)) O~ Flalan)) = (1 = Flg(an))) = ; (01~ Elaun)) + 0,(1)

Hence,

1 - Flglan) +yn) | _ ke 1= Fla(an)) 11— Flg(an))
1— F(q(an) +yn) N (1= F(g(an)Zn) (1 - F(G(an)))

S.Ip(—h/(&]v, I;a yN) + h’(UNa kOa yN)) -1
and by equation (30) and the Mean Value theorem we have
cap(=h(Gn .k, yn) + h(on, ko, yn)) = 1 = (h(En, k,yn) = hon, ko, yn)) + op(N/2).
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Therefore, we write

1 - Fglan) +yn) ) _ ko L= Flglan)) 1 - Fg(an))
W( 1>_\/N(ZN 5 1>+\/N<( ) 1)

Q

1 — F(q(an) +yn) (1 - F(q(an)Zn 1 - F(g(an))
- \/N(h(&Na I;a yN) - h(UNa ko, yN)) + 010(1)'

Since VN (Zjlv/ Fo % - 1) - — k(z)“cﬂ we focus on the joint distribution of the last two terms.

By equation (30) we have that

VR (o) = hows R = V(200 ) 0,0 G1)

and by Theorem 3 (adopting its notation) we have
VN (VI VR (V) =@ 0,0) (ow (ko) VR 07)),
F— ko b by

where the last vector in this equality depends on v N % which is asymptotically distributed as

S Zis+op(1), N1, Zio and 3, Zi1. Hence, we define vN (% — 1) =30 Zu,let0£d €
R4
My = ( XisiZn Y Zee i Zi Ypey Zu )

and consider d”11,, = Y"1, Z§:1 Zysds = Y4y Znt. Note that Z,; forms an iid sequence with E(Z,;) =0
and the asymptotic behavior of Y7 | Zy1, > 1 Zi2 and > ;| Z;3 was studied in Theorem 3. In addition
the asymptotic behavior of " | Z;4 was studied in Lemma 4. Recall that E(Z%) = n= (F (yn) + o(hs,))

and from Theorem 3 F(Z;1Z4) = o(n™t) and E(Z12Z44) = o(n™!). Here we examine

_ ko LM g (v
E(Zi3Z) = n((1— F(yn))(1 — F(q(an))))l/QE (qlnhsn /700 K ( hn ) dy)
q(an) _
~ Elgn)E (;; /7 Ky (yh;) dy) :

By Lemma 4 E(q1,) — F(yn) = O(h35™) and similarly we have E (ﬁ ffg:") Ks (yh%it) dy) — F(q(ay)) =

3

O(h3:). Since in Lemma 4 we have y,, = q(a,) + 02, then for r(z) = hy, [* Ks (%) dy we can write

— 00 3n

1 ‘I(an) y—¢€
E (qlng/ Ks ( 7 t) dy | = E(k(q(an) + onz)k(q(an)))(X{q(an)=yn} T X{a(an)#yn})-
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For z > 0 we have that q(a,) # yn implies y, > q(ay) so that

E(“(Q(an) + Unz)“(‘](an)))({q(ankyn}) < CX{q(an)<yn} =C (F(Q(an) + Unz) - F(Q(an>)) .

By FR2 L, oo HU2)12a2) = Llaln)) — 0, hence (1— F(q(an))) ™ E(r(q(an) + 0n2)r(q(an))X (glan) #p}) =

o(1) and E (qlnﬁ ffg:") K3 (yh%t) dy) = E (k*(q(an))) + o(1 — F(q(an))). Consequently,

ko 2 2 m+1
FE(Zi3Z14) = FE (k*(q(ayn))) + o(1 — F(q(an, — F*(q(an)) + O(h3,,
k
= ——(F(q(an)) +o(1))
17;211@0 _W 0 0
and V(Zin) = Ld"Vad + o(n~") where Vs = | ~ @01 ®0e-D 0 0| From the
" 0 0 ks —ko
0 0 —kq 1

verification of Liapounov’s condition in Theorem 3 we have that d711,, LN (0, dTV3d) and from the Cramer-

Wold theorem 11, -5 A(0, V3). Now, from equation (31)
S _ b
VR ) ~ o b)) = e (ot v (7)) w v ()

hence by letting A ; represent the j*" column of a matrix A, we write

1-F an) + E(Z)u(la — 1 2 1 -
m(l_Fggg%;+Z§; ) _ H2weop) (H IR TED S

+ ( Hi'vy+cH 1b2 ZZtB

s dmva () +;zt4+op<1>

- kB gy ﬁ( . )

+ ( —chH ! —chH ! —ch lbl—ch 1b2 1 )Hn—l—op(l).
Let n7 = ( —cl'HY —cfH' —clH'oy —cfHy'hy 1 ), then from the results above we have 5”11, 4,
N(0,7TV3n) where simple algebraic manipulations give n7Vsn = ¢l H-'VaH e, + 2¢] ( ?_ ZO ) + L
— ko

Consequently, if ¢ ~ N (—’“Z”‘CM, TH-"WyH ey + 26T ( f‘ ZO ) + 1), then
— RO

(e - (e (1)) £
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and for yy = q(an)(Zn — 1) with Zy — Z we immediately have

m<1—F<q<a>+0nZ> 1 (_cggl ( o ))) .

1—F(q(a) + 0,2)

Lastly, since —W,, /ko+0(1) = /n(1 — F(q(a))) (M - 1) and if /n(1 — F(q(a))) = /n(l — a) &

1—-F(q(a)+onz)

N1/2 that is, n(1 — a) — oo at the same rate as N, then

n—oo

W, % N ((—ko) (_%CO‘—P) —"H lim \/N( Z" )) k2 (chH%chb +oct ( 2=
’ _

which immediately gives, \/n(1 — a) (% — 1) < (1 where

(i~ N ((—ko) (—M — ' H™' lim VN ( z: )) k2 (chH%chb +2¢F ( f: ig ) + 1)) .

C n—oo

O
Theorem 5.
Proof. We write
Blale > ga) _ _ d@/0+F) (10 ) (% AP ORI
q(a)/(1 + ko) q(a)/(1 4 ko) q(a) 1+k q(a) 1+k
From Theorems 3 and 4 we have kljr’%“ = 0,(N~1/2) and % —1=0,(N~%2). Hence,
i(a)/(1+ k) q(a) k — ko
V(S LD 1) VR (T 1) - VE o1
a(a) 1+ Fo) 4(a) Tk ) T
VN (% 1)
= (1 —(14ko)™ 2(e) +0,(1).
( ( 0) ) ( \/N k—ko ZD( )
(5
Hence, it suffices to obtain the joint distribution of the vector P . From Theorem 4
VN (i — ko)

we have that \/N(M - ) — (=ko)V'N (M - 1) = o0p(1), where yn = ¢(a,)(Zy — 1) for

q(a) 1-F(q(an)+yn)

0< Zny — Z < 00. Also,

(—ko)\/ﬁ <1 — F(Q(an) + yN) _ 1) _ (_ko)—(ZP — 1),“(0[ - P) _ (_ko)cg’Hfl\/N ( 2;: ) + (_ko)nTHn

1 — F(q(an) +yn) p

+ Op(l)a
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n n n n T n
where 111" = ( NZy Y. Zvw . Ziz D74 ) KA N (0, V5) and the structure of Y Z;; for j =1,---,4
=1 =1 =1 =1 t=1

and V3 are given in Theorem 4. From Theorem 3

VN —ko) = VN (0 1)H1(b"> = (0 1)H1(UN(1,ko)—\/N(b" >>+op(1)

bk bk
> Zn
tﬁl
= (oo oonm ()| S
2 tﬁl
> Zi3
i=1
+ 0p(1)
Hence, we can write,
- —(ZP— a— — bcr
N (0 1)\ [ e g vE ()
- = b
VI (ko) \/N(Ol)H1<bk>
_3.T
+( ’;%’7 )Hn—i-op(l)
where 87 = ( (0 1)HY (0 1)H! ( zl ) 0 ) Consequently,
2
o (2P D)l _ bs
VF (88 -1 - (cho) ey VR (3 ))
3 — N(0,Vy).
m(k_ko_m( 0 1)H1(Z" ))
k

—konT —konT \"
where V; = ( 071 ) V3 ( 07 ) . Thus, it follows immediately that

- ) =E = Dula—p) (T -1 by
W<Q(a)/(1+k)_1>_(1 ko)) (=ko) , (=ko)cy H x/N(bk>

VN (0 1)H1(ZZ>

SN0 (1 = k)T ) Va(1 = ko) )T

Additional algebra, gives

i(a)/(1+ k) (27 = Dple = p) 1 by
n(l —a) (m—l> < N(ko p,u P + kot H nlingo\/ﬁ( by )

B lim VN ( 0 1)H1<b">,2>,

1 + ko n—oo bk

. 2—k
where ¥ = kgnT%,n—l-Zlf]’mnTVgG—l- m@TVgﬁ, with nTVan = (chHlnglcb +2¢f ( 1 kg ) + 1)

from Theorem 4. O
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Theorem 6.

Proof. a) We write

rixex(@) g —meo | (P09 gy g (Ao —ate)).
qvi[x,=x(a) m(x) +h'/2(x)q(a) (%Mlﬂ(x)) o) (%+h1/2(x)) o)

From Lemma 2, sup|m(x) — m(x)| = Op(L1,). As n — 00, a — 1 and g(a) — oo. Hence, given that h'/?(x)

x€g
is bounded away from zero for fixed x by assumption A3 2), we have that % = 0p(L1y)
Now, given A6 1) and n(l — a) «x N we have n(l—a)% = o0p(1). From Corollary 1,

sup|h'/2(x) — h/2(x)| = Op(L1n + Lan). Hence, given A6 1), n(1 — a) o« N and the fact that m(x) is
x€g

— (}fbl/2(x)7hl/2(x))
bounded for fixed x we have y/n(1 — a) TER )

(A2 () =h'2() 4(a) _
(MJrhl/z (x)) q(a) —

(m%’}f% — 1 and by Theorem 4 y/n(1 —a ( q(a)— ‘I(a)) LA N (u1,31), which gives the desired result.

= 0p(1). From Theorem 4 we have Zgag =140,(1),

which gives y/n(1 — a) op(1). Lastly, since g(a) — oo as n — oo, for fixed x we have

b) We write
E (VY > avix=x(@)) | _ (x) — m(x) WPx) —1Px) Bleder > q(a))
E (Yi|Y: > avyx,—x(a)) m(x) + h1/2(x)E(e|er > q(a)) (W + h1/2(x)) E(etler > q(a))

+

B2 (x) (E@tm > q(a)) — E(eiler > q(a>>>
(raftiiay + 7260 E(edler > 4(@)

As in part a), since m(x) + hY/2(x)E(g¢|e; > q(a)) — oo as n — oo, given Lemma 2 and A6 1) and

n(l—a) x N, \/n m(x)+h$2’(‘x;£z£fl)st>q(a)) = 0p(1). By equation (39) in Lemma 7 we can write

E(etler > q(a)) e an

(1+ ko) /(1 — a) (2248 + 0 (é(a(a))) )

E(etlet>q(a))
q(a)
T+ko

n(l_a)E<st|st>q<a>> Blede > al@)) _ e ><E<st|st>q<a>>_1> (E(stlet>q(a))>l

By Theorem 5, \/n (E<5t|5t>q<a)) 1) % N(p2, ) and by Lemma 7, ZE220) — 14 5(1). Since

T+ko

T+ko
n(l — a) x N we investigate the order of (1 + ko)% + (1 + ko) N'/2¢(g(a))o (1). We note that

CN'2¢(q(a)) 1 NY2C¢(q(an)) (a = p)p(g(a))

(p—a+D(1-a) (p—a+l)(l-a) a-p ¢(q(an))
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#(q(a))
#(a(an))”

N'2C¢(q(an))

and since by assumption o

— 1 we need only investigate As in Theorem 4, without loss

of generality, there exists a sequence Zy — Z such that ¢(a) = ¢(a,)Zy and we write &E;I(Ezi)))) = ¢((§((;(T;)HZ)J)V ).

Since, ¢ is regularly varying with index p < 0, % — 2ZP as n — oo and we have %

—

%. Similar arguments show that N'/2¢(q(a)) = O(1). Hence, given that kg = —a~! we have

Bl > 0(@) ~ B > a(@) N(@_ (- ZP,EQ) 2

E(ziler > g(a)) - alp—a+1)

An immediate consequence of equation (32) is that % =1+ 0p(1). Furthermore, given Corollary

1, assumption A6 1) and n(1 — a) x N we have that v/n(1 —a) 0 EZ?)E)X)fhjr/;fz)(x)) = 0p(1). Finally, since
E(etlet>q(a))

h1/2 (x)

m(x) 1/2
Belersatan T2 (%)

14 E (YiY: > qv,x,=x(a)) ) e o
' )<E(Yt|Yt > gy, x,=x(a)) 1) N(#z a(p_a+1)z ,22>,

asn—>oo,< )—>1,W6have

Lemma 1. Let w(X; —x;%) : R = R and g(¢) : R — R be measurable functions and define

1 & X; —x X — o\ (X — 2\ [ Xy — 2\ P2
st = =3 (X ) (Fez )T (Zum o) (R g @

=1

where K is a multivariate kernel given by K(x) = H?ZIIC(xj), hn > 0 is a bandwidth, for i,j =1,---,d
and p1,p2,p3 = 0,1. Assume that A1 and A2 are holding and that:

a) E(|g(et)|*) < oo for some a > 2;

b) w(X; —x;x) satisfies a Lipschitz condition of order 1, i.e., |w(X; —x;x) —w(X; —x¥; xF)| < C|x —x*|| g
for some C >0 and x # x* in R? and |w(X; — x;x)| < C for all x € RY;

c) The joint density of X; and X; conditional on &; and ¢; denoted by fx,x;e.c; (Xi, X;) < C.

Then, for an arbitrary compact set G C R, we have

oan 1/2
sup|s(x) — B(s(x))| = 0, ((lnzd) ) (34)

xeg n

provided that for a, B > 2, 8 > 0, we have
nlf%fwhz — 00 (35)
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and

n(B+L.5)(3+6)— §+0,75+%h;1»75d*%(d+3) (log n)0.25+0.5(de) 0. (36)

Proof. See Martins-Filho et al. (2012b). O

Lemma 2. Assume that the kernel K1 used to define m satisfies assumption A1 and assumptions A2 and
A3 are holding. Assume also that the bandwidth hiy, used to define M satisfies equations (35) and (36).

Then, if E(|e]*) < oo, E(h'?(X;)®) < 0o for some a > 2 and condition c) in Lemma 1 is holding

sughh(x) —m(x)| = Op (L1n), (37)
x€E
logn 1/2 s
where L1, = (nhfn) + hi,,.
Proof. See Martins-Filho et al. (2012b). O

Lemma 3. Assume that the kernel Ko used to define h satisfies assumption A1 and assumptions A2 and A3
are holding. Assume also that the bandwidth ha, used to define h satisfies equations (35) and (36). Then,

under the assumptions in Lemma 2, if E(|e? — 1]%) < oo and E(h(X;)*) < oo for some a > 2,

jg}g}lﬁ(X) — W(x)[ = Op (Lin + Lan), (38)

. 1/2 . 1/2
where L1, = ( Og") + hi,, and Loy, = ( Og") + h3,.

d d
nh{, nhg,,

Proof. See Martins-Filho et al. (2012b). O

Corollary 1. Under the assumptions of Lemma 3,

szetzg) |W2(x) — hY?(x)| = Op (Lin + Lan)  and szqu)|x{il(x)>0} —1] =0, (L1n + Lan),

) 1/2 . 1/2
where L1, = ( Og") +h3, and Lo, = ( Og") +hZ,.

d d
nh{, nhg,,

Lemma 4. Under assumptions A1-A6 and conditions FR1’ and FR2, if « > 1 we have

1/2 (j(an)_Qn(an) _ where a,, =1 — X~
e (Ll ) < 0,0, where <1 -
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Proof. See Martins-Filho et al. (2012b). O

Lemma 5. Leta, =1 — % and for i =1,--- N define Z; = ¢; — qn(ay) whenever e; > qn(a,) and for
i =1,---,Ny define Z! = &; — q(an) whenever ¢; > q(an). If Ay = %Zf\il %logg(Zi;aN,ko)aN -

NZl 1 (%logg( ioN,ko)on and Ay = NZl 1 aklogg(Zl,aN,ko) — NZl 1 aklogg( ;oN, ko), then

N2A, = blx/ﬁiq"(a"();g(a") + 0p(1) and NY2A, = meiq"(a;‘();%(a") + 0p(1), where by = _—0‘(21;“;‘),
14+ 3
b2 = ( 2(+a ) + 1+a)

Proof. The proof is identical to that of Lemma 3 in Martins-Filho et al. (2012a) by substituting their Uy, _ )

with E(n—N)- O

koZ! k2 \ L [ koz' o
Lemma 6. E (log (1-22) (1-22) (WD =~ L+ o2 + 0(6(em-n))
Proof. The proof is identical to that of Lemma 4 in Martins-Filho et al. (2012a) by substituting their Uy, _ )

with E(n—N)- [l

Lemma 7. Under conditions FR1 with o > 1, FR2 and a € (a,,1) witha, =1 -~ — 1 as n — oo, we

Bledeeala)) — 4 4 o(1).

T+ko

have

Proof. Denote the distribution of £, — g(a) given that e; > ¢(a) evaluated at z by F.,_q(a)|e;>q(a)(2). Since

F(z a F(q(a . L(z a z a)\
Fe—q(a)ler>q(a)(2) = ( +1Q(F)()q(a)()q( . , by FR2 we can write F,, _q(a)je,>q(a)(2) = 1 — (L(;r(qa()))) ( J;(qé)))
Observe that under FR1 oo = —1/k¢ and g(a,) = —on/ko, hence %{S’) =1- m = t,(2) and

we write Fst,q(a)|5t>q(a)(z) =1- %t (z )1/k0' Hence,

o0

Eeile: > q(a)) = gla) / (e — qla ))d(w n (e — a(a))g(a))

. o)
B —(E _ q(a)) (L(tn(EL(q(éC(LC)L;) ( )) ( q(a))l/k0> g?a)
)

> L(tn(e — q(a))q(a) — ala)) L/ ko a
+/q<a> L(q(a)) tn(e — q(a))"/*de + q(a)

tn(e — q(a))l/k“> and integrating by parts

Denoting the first term on the right side of the equality by I; and the second term by Is, we observe that

I = — lim e @) = — lim Sl (C)

== (1= F(gq(a)))/1 - F(e) Hw( _ __ ho(c—g(a)) )*”’““5%0 L(q(a))
N —Fo(a@)—q(an))
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By FR2 lim w =1, and since —1 < ko < 0 (a > 1), lim ( kofj‘l}‘jﬁ 7 =0. By
e €7 (1= s =RoGat@)—at@nn

FR1 and FR2, changing variables in I, we write

— ula * L(g(a)t) 1ko 5, a > ke a % 1k o a
f=gla) [ S wtods — g(a) ([0 mdn+ olata) [ e ok0ar + olotata)) )

_ ko C¢(g(a))
a0 + i) (et o olg(a)
where the last equality follows from [ t!'/*odt = —; f}m and [ t/kok(t)dt = m. Consequently,

Blerle > @) = {2+ at0) (=228 o(otata)) ) (39)
Since as n — 00, a — 1, then ¢(a) — oo and (¢(¢(a)) — 0, giving the desired result. O
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