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1 Introduction

Recently there has been a growing interest in the specification of nonparametric regression models in which
the regression errors’ correlation structure can be described parametrically. For example, Xiao et al. (2003)
consider a nonparametric regression with stationary error terms that have an invertible linear process repre-
sentation which encompasses all finite order ARMA (p,q) processes; Vilar-Ferndndez and Francisco-Ferndndez
(2002) consider a fixed design nonparametric regression whose errors follow an AR(1) process; Lin and Car-
roll (2000), Ruckstuhl et al. (2000), Wang (2003) consider a nonparametric regression for panel/clustered
data where the error term covariance structure follows a pre-specified parametric structure; Fan et al. (1996)
consider a nonparametric regression frontier model with errors whose covariance structure follows a para-
metric specification proposed by Aigner et al. (1977); Smith and Kohn (2000) consider the estimation of
a finite set of nonparametric regressions whose error structure follows the parametric seemingly unrelated
structure proposed by Zellner (1962).

These models can be viewed as extensions of the regression literature in two related but distinct ways.
First, they represent an extension of the vast Generalized Least Squares(GLS) linear and nonlinear parametric
regression literatures (Gallant, 1987; White, 2001) to the nonparametric regression setting, and as such
they represent improvements on the modeling of (un)conditional expectations. Second, they can be viewed
as extensions of the nonparametric regression literature from the typical case where regression errors are
independent and identically distributed (iid) to cases where specific parametric structures for correlation
and heteroscedasticity are allowed (Severini and Staniswalis, 1994). In either case, the usefulness of these
extensions in econometric and statistical practice is well recognized and documented (Pagan and Ullah, 1999;

Fan and Yao, 2003). In their most general form, these regression models can be written as,

where X; is a vector of regressors, Y; is a regressand and the error U; is such that

EU;)=0foralli=1,2,---, E(U;U;) = w;;(6p),00 € RP,p < 0. (2)



The important characteristic of (?7?) is that each element of the error covariance can be expressed as a
function w;;(#) of a finite set of parameters y. Previous works on the estimation of these models have
had two main objectives. The first is to establish the asymptotic properties of well known nonparametric
regression estimators such as local polynomial and Nadaraya-Watson estimators under the assumed error
correlation structure (Xiao et al., 2003; Vilar-Ferndndez and Francisco-Ferndndez, 2002). Although progress
in this direction has been made, it is unfortunate that most asymptotic results for traditional estimators
are specific to the assumed covariance structure and lack the generality that would allow their applicability
under alternative parametric structures for the error correlation. A more general result under covariance
structure (??) for the local linear estimator seems to be especially useful as this estimator has a number
desirable properties, such as design adaptability, reduced bias (as compared to Nadaraya-Watson estimators),
good boundary properties and mini-max efficiency (Fan, 1992; Fan, 1993; Fan and Gijbels, 1995). The first
contribution of this paper is to provide a set of sufficient conditions under which the asymptotic normality of
the local linear estimator can be established when the error correlation structure has the general parametric
structure in (??). These conditions encompass a number of models proposed so far in the nonparametric
literature as well as other structures that have been popular in the GLS parametric literature (Mandy and
Martins-Filho, 1994).

The second objective of the existing literature is to propose estimators that by incorporating the infor-
mation contained in the error covariance structure will lead to better performance - asymptotically or in
finite sample - vis a vis the traditional estimators (Severini and Staniswalis, 1994; Lin and Carroll, 2000;
Ruckstuhl et al., 2000; Wang, 2003). How to best incorporate the error covariance matrix information into
local polynomial nonparametric regression estimators is still an open question. Lin and Carroll (2000) show
that in typical random effects panel data models, when a standard kernel based estimator is used, it is better
to estimate the regression by ignoring the correlation structure within a cluster - the “working independence”
approach. An alternative kernel smoothing method proposed by Wang (2003) achieves smaller variance when
the correlation structure is taken into account. However, it is not clear how to generalize this approach to

the case of a general error covariance. A particularly promising approach has been the pre whiten method



proposed by Ruckstuhl et al. (2000) and adopted by Xiao et al. (2003). However, as in the case of the
local linear estimator, the asymptotic properties of this pre whiten estimator have been established only for
specific parametric structures of the error covariance (random effects panel data and autocorrelated errors).
In fact, as will be argued below, establishing the asymptotic normality of the pre whiten estimator in general
settings could be quite difficult. Hence, in the second part of this paper we propose a new two step estimator,
inspired by Ruckstuhl at al. (2000), that incorporates information contained in the error covariance structure
and is asymptotically normal under fairly mild restrictions on the parametric structure of the covariance.
Our estimator is an improvement over the traditional local linear estimator in that its bias is of the same
order but its asymptotic distribution has strictly smaller variance.

Our results are useful from at least two perspectives. First, since our results hold for generally speci-
fied parametric covariances, they eliminate the need to repeatedly establish asymptotic normality for both
estimators - local linear and the two step procedure proposed herein - under specific structures of w;;(6p).
Second, because both estimators are asymptotically normal and converge at similar rates establishing relative
efficiency is facilitated. At their technical core, both contributions in this paper can be viewed as extensions
to the results of Mack and Silverman (1982) and Masry and Fan (1997). These extensions are made possi-
ble by relying on inequalities for non stationary processes provided by Doukhan (1994) and Volkonskii and
Rozanov (1959). The rest of the paper is organized as follows. Section 2 provides the general characteristics
of the regression model we consider, defines the local linear estimator, gives a list of assumptions and the
two main theorems necessary to establish the properties of the local linear estimator for model (??)-(??). In
section 3 we define a new two step estimator based on the knowledge of w;;(y) and give sufficient conditions
for obtaining its asymptotic normality. We then obtain the asymptotic equivalence of the two-step estimator
based on w;;(fp) and its feasible version based on an estimator w;;(f), where  — 6y = 0,(1). Section 4 gives
two applications of our results that illustrate how our theorems encompass and extend previous results in
the literature. Sections 5 contains a Monte Carlo study that implements our two step estimator, sheds some
light on its finite sample properties, and compares its performance to that of existing estimators. Section 6

provides a summary of the paper.



2 A Nonparametric Regression Model with General Parametric
Covariance

Suppose there are n observations § = (Y1,---,Y,), & = (X1, -+, X,)" on the regressand and regressors
for the model (1)-(2). The objective is to estimate the regression function m(z) at some point x € R,
D < n.! There is a vast literature (Gyorfi et al., 2002) on how to proceed with estimation of m. Here, we
focus our attention on the local linear estimator (LLE) which was popularized by Fan (1992) due to its well
known desirable properties. Furthermore, our results for the LLE are easily extended for the also popular
Nadaraya-Watson estimator. Let ¢/ = (1,0), 1/, = (1,---,1) a vector of ones of length n and h,, > 0 a

sequence of bandwidths, then the LLE is defined as

m(r) = ¢ (R,K.Ry) "' R, K0 (3)

n
where R, = (1,,,% — 1), K, = diag {K (Xi*m)} . It will be convenient for our purposes to rewrite
i=1

hop,

(??) as m(x) = i S W (ﬂ;ﬂx) Y;, where W,,(z,z) = /S }(z)(1,2)' K (z) and

S, (x) = 1 Y K (Xh;I) YK (Xh;I) (XTf)z _ ( Sno(x)  Sna(z) ) .
e {2 (50) () s () Oy )~ (20 2229

To establish the asymptotic normality of rh(z) for model (?7?)-(??) we follow the traditional approach of

breaking the problem into two parts. First, we establish the uniform convergence in probability of the
components of R, K, R, after a suitable normalization. This is accomplished as an application of Theorem
1 which is given below. Second, we establish the asymptotic distribution of the R, K, vector (and of the
estimator itself) in Theorem 2. We now provide a list of general assumptions that will be selectively adopted
in these theorems and introduce some notation. In what follows C' always denotes a generic constant that
may take different values in #® and the sequence of bandwidths h,, is such that, h, — 0 and nh? — co as
n — oo.

AssumPTION Al. 1. Let f;(z) be the marginal density of X; evaluated at x, with f;(z) < C for all i

and z; 2. fi(d)(ac) is the d'* order derivative of fi(r) evaluated at z and we assume that \fi(l)(m)\ < C; 3.

1In what follows we proceed for simplicity with the assumption that D = 1. Mutatis Mutandis all results follow for D > 1.



|fi(x) = fi(2")| < Clz — 2| for all z,2'; 4. fikijmo(21, ..., To) denotes the joint density of X, ..., X, evaluated
at ..., 1, and we assume that fikijmo(21s ..., zo) < C for all zy,...,zo. 5. folz) =n"1Y 0" fi(z) — f(x)
as n — 0o where 0 < f(x) < 00; 6. Asn — 00 0 < infeeq|fu(z)| < C for x € G a compact set.
AsSsUMPTION A2. K(z): R — R is a symmetric bounded function with compact support Sk such that; 1.
JK(z)dz =1; 2. [2zK(z)de =0; 3. [2?°K(z)dz = o%; 4. for all z,2’ € Sk we have |K(z) — K(2)] <
Clx —a'|.

ASSUMPTION A3. w;;(6p) is the (4,j) element of Q = E(UU’) with |w;;(6p)] < C for all 4,j, @,(0) =
n~E3  wii(0) — ©(0) as n — oo where 0 < @(#) < oo for every § and @, (z,0) =n~"1 >0 wi(0) fi(z) —
wf(x,0) as n — oo where 0 < wy(z,0) < oo for every x and 6.

Let {R;} be a sequence of random variables defined in a probability space (S, F, P) and 3% be the o-algebra
of events generated by the random variables {R; : a < ¢ < b}, then (3%, 3%) = sup acsp pesa|P(ANB) —
P(A)P(B)| and a(m) = supra (S, S35%,,)- A stochastic process is said to be a-mixing if process ce(m) — 0
as m — o0o. Then we assume,

AsSUMPTION A4. 1. {(X;,U;)'}iz1,2,.. is an a-mixing process of size —2, which implies that 7% Jta(i)F <
oo for § > 2 and a > 1 —2/8; 2. We denote the joint density of (X;,U;)" by fx, v, (®i,u;), the density of
X; conditional on U; by fx,u,(x) with fx,u, () < C and the conditional density of X;, X; given Uy, U; by
Ix,x;\v.u, (i, x5) with fx, x 0,0, (i, 25) < C for all z;,x;; 3. There exists a sequence of positive integers
satisfying s, — oo and s, = o((nhy)/?) such that (ﬁ)l/ a(sp) — 0 asn — 0.

AssumpTION A5. m@(z) < C for all 2 and d = 1,2, where m(?(z) is the d* order derivative of m(x)
evaluated at z.

Our assumption Al requires the densities of regressor X; to be smooth and bounded functions, and
in the case where X; come from heterogeneous distributions, the average of the densities must converge.
This is automatically satisfied if X; come from the same distribution, or X; are part of a strictly stationary
sequence. Assumption A2 is a standard assumption for the kernel functions in the nonparametric regression
estimation. Assumption A3 ensures that the weighted average of the diagonal terms of the error covariance

converge as n — oo which is trivially met when there is a homoscedastic error structure. Under the mixing



conditions imposed in A4, the temporal dependence among {(X;,U;)’} will diminish as the time distance
increases, which is general enough to include many interesting cases like panel data models or autoregressive
model of order (p) (see section 4), while still allowing a central limit theorem to apply on the standardized
summation. We impose smoothness condition on m(z) in A5 so the standard Taylor approximations could
carry through.

We now state Theorem 1 which is a supporting result for the main theorems that follow. All proofs are
provided in Appendix 1.
Theorem 1 Let {(X;,U;)}, be a stochastic sequence of vectors, {v;}?_y be a uniformly bounded non

stochastic sequence in R and define

(X (X
i=1 n n

where g : R — RN is measurable. Assume that: 1. E(|g(U;)|**%) < C for some 6 > 0 and all i; 2.

supgea [ 19(U)|* fx, v, (@, U;)dU; < oo for some a > 1; 3. A2 and A4. For G a compact subset of R we have

. —1/2
supecals; (r) ~ Bls;(@))| = O ((MZZ)) ) :

provided that s, 8 > 2 we have that n(0+1/*)(B+15)+1.25-5/2p LT5=B/2(1, (1))0.25+8/2 _,

By taking v; = 1 and g(z) = 1 for all ¢ and x in Theorem 1 we have that supgec|sn,;(z) — E(sn,;(2))| =

2p+1
nh?

Ty 00 The last condition is consistent with

op(h?) for p > 0 and j = 0,1,2 provided that
n(e‘*‘l/s)(ﬁ'*‘l"r’)‘H'%_B/QhE1'75_[1/2(ln(n))o'%“‘ﬁ/2 — 0asn — oo for § > 0 and s > 2. Consequently, if
p=1, % — 0o we have that supxegh%|sn7j(x) — E(sp,j(2))] = 0p(1).

The next theorem establishes the asymptotic v/nh, - normality for the local linear estimator under
general parametric covariance structure. We stress that the importance of the result lies in the fact that
the regression errors are not restricted to be (iid) or even weakly stationary. We do assume, however, that
{X;}i=1,2,... and {U;}i=1,2,... are independent processes.

Theorem 2 Let {(X;,U;)}", be a stochastic sequence of vectors and assume that Y; = m(X;) 4+ U; fori =

1,2,--, {X;}iz=1,2,... and {U;}i=1,2,... are independent with E(U;) =0 for alli=1,2,---, E(U;U;) = w;;(00)



0o € R?,p < co. If we assume that A1-A5 are met and E(|U;|**?) < C for some 0 > 0 and all i, then

(nhy) /2 ((z) — m(z) — Bpa(z)) > N <o, W / K2(¢)d¢) (5)

where By, 1(x) = %?‘J%m(z) (z) + 0p(h2), provided IZ}(:;) — 0 and h2In(n) — 0.

In the case where {(X;,U;)’'} is an iid sequence with f(x) being the marginal density for X; and w(6)
the variance of U;, the asymptotic variance is simplified to be % | K 2(¢)d¢. Theorem 2 can therefore be
seen as as a generalization of the classic asymptotic normality result for local linear estimation under the

iid assumption. Examples in Section 4 illustrate the applicability of this general result in regression models

where the error covariance has a random effects panel data structure, and an AR(p) structure.
3 Two Step Estimation - Asymptotic Normality

The estimator m(z) studied in the previous section has the desirable property of being v/nh,-asymptotically
normal. However, the fact that none of the information provided by the error covariance structure is used in
its construction suggests that alternative estimators can provide improved performance. How to incorporate
the covariance structure in defining an alternative estimator has been the subject of various papers (see,
inter alia Severini and Staniswalis, 1994 and Lin and Carroll, 2000), but one promising approach has been a
two step procedure that transforms the model to obtain spherical regression errors. The motivation behind
the procedure is quite simple. Let () be an n x n matrix with (i, ) element given by w;;(6o), P~'(o)
an n x n matrix with (4, j) element given by v;;(6y) and P(6p) an n x n matrix with (¢, j) element given by
pi;(6o) such that Q(0y) = P(6p)P(0y)". Let m' = (m(X1),....,m(X,)), U = (Ui,...,Uy), I, be the identity

matrix of size n and define Z = P=1(0p)y + (I, — P~ (6p))mi. Then,
Z =m+ P 1 (00)U =1 +e. (6)

Given that the components of the stochastic process {U;}i=12, .. can be written U; = 25:1 pije; where
qg=12,..,n,if {e;}i=1,2,... is an independent identically distributed process with zero mean and variance
02 then the model described in (??) is the standard nonparametric regression model with spherical errors.

The difficulty in dealing with such model stems from the fact that the regressand Z is not observed since



m and the components of P~1(fy) are generally unknown - since 6 is unknown - and must be substituted
by suitable estimates. Hence, implementation normally requires a first stage estimation in which m(x) and
estimators for the elements of P~1(6y), say P~(#) (normally using residuals U; = Y; —m(X;)), are obtained,
and a second stage in which the regressand Z = P~1(0)§ + (I, — P~())m is used in (??). The asymptotic
properties of the resulting estimator are not known in general, but Xiao et al. (2003) have obtained v/nh,,-
asymptotic normality for a stationary error structure that has an invertible linear process representation
U = Z;io cjer—j. A key feature of their structure is that the diagonal elements of P~1(f) are all equal to
1, a property that we will see below has important consequences in establishing the asymptotic normality
of the estimator. Since this cannot be generally assumed we will propose a slightly different estimator that
circumvents the difficulties we encountered with the estimator for general models.

In what follows we will restrict ourselves to stochastic processes {U; }i—1 2,... that can be constructed from
linear transformations of iid processes. Hence, we assume:
AssSuMPTION A6. The components of the stochastic process {U;};=1.2 .. can be written as U; = 23:1 Dij€j
where ¢ = 1,2,...,n and {&;};=1,2,.. is an independent identically distributed process with zero mean and
unit variance.

For economy of notation we also write p;;, vij, P and P~ where it is well understood that all of these

variables depend on 0. Let H = diag{v;;'}}, and define Z = HP~'/ 4 (I,, — HP~')s%. Then,
Z=m+HP'U=m+7. (7)

Given assumption A6 {7;};=1,2, . is an independent heterogeneous sequence with E(y) = 0 and E(yy') =
H? = diag{v;;*}7,.

As above, the regression error 4; in the transformed regression (??) is independent and heteroscedastic,
but the vector of regressands is unknown. If m(X;) is estimated at a first stage by m(X;), then the only
source of ignorance about Z is due to P~! or the fact that 6y is unknown. Theorem 3 below we focus on

establishing the asymptotic normality of the estimator

m(z) = ¢ (R,K,Ry) ' RLK,Z (8)



where Z = HP~'j— (HP~! — I,), 1’ = (m(X1),...,m(X,)) and for the moment we assume that 6y, and
therefore P! (and consequently H), is known.

Theorem 3 Let {(X;,U;)}; be a stochastic sequence of vectors and assume that Y; = m(X;) +U; fori =
1,2, -, {Xi}tiz1,2,. and {U;}iz1,2,... are independent with E(U;) =0 for alli=1,2,---, E(U;U;) = wi;(6o)
6o € RP,p < co. Consider the estimator m(x) described above, such that h, is the bandwidth used in the
first stage estimation and g, is the bandwidth used in the second stage of the estimation. If we assume that

A1-A6 are met and E(|U;|**%) < C for some 0 > 0 and all i, then,

o)
(1) 2 (a) = ) = By ) (0, 2550 [ 1200 ©)
where By, 1(z) = %iJ%(m@)( ) +0,(92), @p(2,00) = limy_oot S50, fi(z)v;;? provided that: 1. % — 0 and
gn = O(n15); 2. sup; 37 L ||ZJ|| O(1) and sup; 375_; s JL’L“ =0(1).

We note that difference between the variances of the asymptotic distributions of m(z) and m(x) is given

by,

limn—m)o = 2 Zfz (Wu 00 )/K2 (10)

By Theorem 12.2.10 in Graybill (1983) that p;;v; > 1. Consequently,

1 1
2 2
Dii = 2 = w;i(0,) = pi; + E Dij 2 2

i Jj=1,j#1 Vi

which establishes that m(x) is efficient relative to m(x). The improvement over local linear estimation is
obtained even though 7 (z) ignores the heteroscedastic structure of the error.

Notice also that we impose two more assumptions in Theorem 3. The first one relates to undersmoothing
in the first stage regression so that the magnitude of the bias created by 7 (z) will be smaller than the leading
bias term in the second stage. This assumption is common in two stage nonparametric regression estimation,
e.g., Assumption 7 in Xiao et al. (2003), Assumption B5 in Su and Ullah (2003) and Remark 1 in Wang
(2003). The second assumption is essentially uniform summability of the rows of error covariance, which is
a sufficient condition used in the proof of Theorem 3 to control the order of magnitude for summation terms
showing up in the second stage. Similar assumptions have been used in the literature, i.e., Assumption A.3

in Francisco-Fernandez and Vilar-Fernandez(2001) and Assumption 5 in Xiao et al. (2003).



An important part of the proof in Theorem 3 is that Z; = m(Xi)=> 0 i ot (M(X;)=m(X;)) 4. Ifin-

Vii

stead we were considering the estimator m(z) = ¢’ (R, K, R,) " R, K,Z where Z = P~1jj—(P~'—1I,)rn, then
2= m(X) i — Sy vy (R(X,) —m(X,) + (0(X) ~m(X,)) and By(x) = b S0 K (5ex) 2
would have an extra term given by Tﬁﬁ Y K (%) (m(X;) —m(X;)) which cannot easily be shown
to be 0,((ng,)~/?) under the general conditions we consider. By construction, whenever the diagonal ele-
ments of P~! are equal to 1 this extra term does not appear even when Z = P~1¢ — (P~! — I,,)m. Hence,
we have the following result which we state as a Corollary to Theorem 3.

Corollary 1 Let {(X;,U;)}, be a stochastic sequence of vectors and assume that Y; = m(X;) +U; fori =
1,2, {Xi}tiz1,2,. and {U;}iz1,2,... are independent with E(U;) =0 for alli=1,2,---, E(U;U;) = w;;(6o)
6o € RP,p < co. Consider the estimator m(x) described above, such that h, is the bandwidth used in the

first stage estimation and g, is the bandwidth used in the second stage of the estimation. If we assume that

A1-A6 are met and E(|U;|>T%) < C for some 6 > 0 and all i. Then,

ngn) 2 (i(z) — m(z) — Bpi(z)) S N 2
() 2(i(a) = ) = B () 4 N (0, 71 [ K200 )

provided that: 1. Zﬂ — 0 and g, = O(n=1/%); 2. sup; > ity ligl = O(1) and sup; 377, ;v = O(1);
3. P=Y(00) is such that vi;(6p) = 1 for all i.

The use of Theorem 3 and its Corollary is restricted in practice due to the fact that the parameter 8 used
in defining P is generally unknown and must be estimated. Hence, we now turn our attention to a feasible
estimator m(z) = ¢ (R,K,Ry)” ' R,K,Z where Z = H(0)P~1(8)§ — (H(§)P~1(6) — I,,)m and for which
6 — 0y = 0,(1). The next theorem provides sufficient conditions under which Vgn ((x) — m(x)) = op(1).
As such, it gives conditions under which the the feasible estimator is asymptotically equivalent to m(z),
therefore inheriting its desirable properties, namely asymptotic normality and efficiency relative to the LLE.
The theorem can be viewed as an extension of the theorem in Mandy and Martins-Filho (1994) to the case
of nonparametric regression.

Theorem 4 Suppose that all assumptions in Theorem & are holding and assume in addition that:

TA 4.1: H(0)P~Y(0) has at most W < oo distinct nonzero elements for every n, denoted by gun(0) for

10



w=1,2,...,W. That is, there are n> — W elements that are either zero or duplicates of other nonzero
elements in H(0)P~1(0). For each w, guwn(0) converges uniformly as n — oo to a real valued function g.,(0)
on an open set O containing 0y, where g, is continuous at Oy.

TA 4.2: The number of nonzero elements in each column (and row) of H(0)P~1(0) is uniformly bounded by
N as n — oo.

TA 4.3: There exists C < 0o such that Y i, |wi;(8)] < C for everyn=1,2,... and j =1,2,...

If 0 — 6y = 0,(1) then we have

V1gn(

3>
—~
8
~
\
S.
—~
2
|
)
bS]
—~
—
~—

4 Selected Applications

In this section we provide two applications for the results we have obtained. The first deals with clustered
or panel data models. Here, the asymptotic normality result we obtain for local linear and the two stage
estimator is novel. The second application is for nonparametric regression models with autoregressive errors
of order p, which have been studied by Vilar-Ferndndez and Francisco-Ferndndez (2002) for the case where
p = 1 under fixed design regressors. The examples illustrate the applicability of our theorems to popular

nonparametric models and reveal the ease of verifying the conditions listed in Theorems 3 and 4.

4.1 Clustered or Panel Data Models

We focus on the regression models for clustered data proposed by Ruckstuhl et al. (2000) and also studied
by Wang (2003). The model is a direct extension to the nonparametric regression setting of the one-way

random effects model that is popular in the panel data literature (Baltagi, 1995). Consider
Yij=m(Xiy)+aoi+eyi=1,..,N;j=1,.,J, (12)

where {a;}i—1 ... are independent with E(a;) = 0 and V(o) = 02 for all 4; {€;;}i j=1,2,.. are independent
with E(e;;) =0 and V(e;;) = o2 for all i, j and the processes {a;}i=1,2,.. and {€;;}; j=1,2,... are independent.
Ruckstuhl et al. (2000) assume that {X;}i=1,2,... where X! = (X;1, ..., X;s) is an independent and identically

distributed vector sequence with the marginal density of X;; given by f;.

11



We define Y/ = (Yi1,....Yis), ¥ = (Y{,...Y), X! = (Xi1,.... Xiy), & = (X{,...,X}y) and U;; =
a; + €;5. Then, given the assumptions on «; and ¢;; we have that for U] = (U, ...,Uiy), E(U;U]) =
S =02l;+021,1; and if U = (U], ..., Uy)", EQUU') = Iy ® ¥ = Q(02,02). In this context we have that
m(z) = e (RLK, R, ) R! K,§ where R, = (15,7~ 1ny2), K, = dzag{ (%) }ijj—1' Let n = NJ,

nh Zz lzj IW”( IJHI’ ))/ZJ

We assume A1.1-4 and verify that A1.5-6 hold since f,(z) = ijl fj(z) and as assumed in Ruckstuhl

then the LLE estimator can be written as m(z) =

et al. (2000) if 0 < f;(z) < C we have 0 < f,(x) < B. A3 is verified since 0 < 02,02 < C and consequently
IS wii(02,0%) = 02 +02 and wy(z,02,02) = (62 +02) fu(z). Now, since the process {X;} is independent
and identically distributed, {X;;} is such that a(t) = 0 for all ¢ > J. Similarly, since {a;} is independent
and {e;;} is independent, we have that U;; and Uy is independent for all ¢ # ¢’ for all j, j* and therefore
a(t) = 0 for all t > J, verifying A4 given the independence of {X;} and {U;;}. A6 is easily verified by the
independence of {a;} and {¢;;} and noting that U = Pv where v is a vector of iid random variables with
E(v;) =0 and V(v;) = 1. Hence, we conclude that

7 (m@)_m(@_(ag(m”;(x)ggw(gg)))iN<o "*‘JZ / K20 d¢> (13)

From Wansbeek and Kapteyn(1983) we have that P~'(¢2,02) = Iy ® V2 where

1 ¥ ... %
Vd Vd
Yo 1 ...
Vd Vd
VY2 =y, ) (14)
Yo Yo 1
Vd Vd

where vg = - — (1 — ﬁ) J(17' and vy = ( — %) 5o and 01 = /Jo2 + o2. Hence, since 0 < 0,02 < C

g1

and J is finite, we have that the sum of the elements in every row and column of HP~! (excluding the

diagonals) is (J — 1)2¢ < C, which satisfies condition 2 in Theorem 3. TA 4.1 is met with W =

2

g1(02,02) = vg/vg and ga(02,02) = 1 the uniform convergence is trivial as neither function depends on n and

the continuity is easily verified. TA 4.2 is met with X = .J and TA 4.3 is met since Y |w;;(60)| < Jo2 +02.

Consistent estimators for 02 and o2 are given by ¢2 = m PO ijl(Yij —m(Xi;) — (V; —my))?
22 _ 1 N (v —\2 1 J _ 1 J .
and 62 = 2,0, (Y —m;)? — 562, where V; = Zj:1 Yij and m; = 5> 5, m(X;;). Thus, we conclude
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that

o (m(x)—m(x)—(J?(m(QQ)(x)gz-i-Op(gﬁ)))iN 0, (1}_221;]-5))) [wHoas | as)

4.2 Nonparametric Regression with AR(p) Errors

We now consider

Yi=m(X;)+ U, fort=1,..,n (16)

where {X;} is independent of {U;}, satisfies assumption A1, A3 and is a-mixing of size —2. U, is strictly
stationary with U; = riU;—1 + r2U;i—2 + ... + rpU;—p + v; for i = 0,+1,4+2, ... where v; ~ 4id(0,0?) with
probability density function f,(z). Then {U;} satisfies the relevant portions of A3. Pham and Tram (1985)
show that {U;} is a-mixing with a(j) — 0 exponentially as j — oo, which gives {U;} is of size —a for all

a € RT, therefore satisfying A4.1. Hence,

3 (o) = mio) ("5 0,600 ) ) £ v (0.2 [ k2 (6)a) (")

where 7(0) is the variance of the AR(p) process.
Following Mandy and Martins-Filho (1994) we note that since 0 < 02 < C we can find a matrix p X p

lower triangular matrix A such that

AE((u1, oy up) (un, ooy up)) A’ = 0?1, and

A | 0 0
—_——— — == == —— { —_——— — === == = :
1 —rp -7 1 0 0
P (90) = 0 —rp . | -7y 1 0 (18)
0 0 | —rp -ry 1
where 0y = (r1,72, ..., 7p,0%). Since there are a finite number of bounded nonzero elements in each column

and row of P71(fy), conditions 1 and 2 in Theorem 2 are automatically met. Also, since P~! is a lower
triangular matrix where all elements that lie more than p positions away from the main diagonal are zero,

verifying TA 4.2 with X = p+ 1. Also, there are at most W = p(p+1)/2+ (p+ 1) distinct functions in P~1,
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all of which are independent of n for n > W (implying uniform convergence trivially) and continuous at 6,
since the operations involved in obtaining A are continuous when 0 < ¢2 < C. This verifies TA 4.1.
To verify TA 4.3 we note that an AR(p) process can be written as a p-dimensional VAR(1) process

e; = Re;_1 + ¢;, where ¢; = (Ui7p+1-~-Ui)/7 g, = (0, ...07’1)1')/, and

0 1 0 0
= . . 1
R § o (19)
0 0 1
Tp rp71 9 1

If the process is strictly stationary then the absolute eigenvalues of R are less than one, and also F (eie;.) =
RIi=IIE(ege}) for arbitrary t. From the definition of e;, the sum > | |[E(U;U;)| is the lower right element

of Y71, |E(ei€];)| where the absolute value is taken element-wise. But,

n

Y E(eie))] <2 |Bleiep)| < 2 (Z IRiI> | E(eocp)]
i=1 1=0

i=1

and re-writing |R’| in Jordan Canonical form yields,

Y 1E(eie))] < 21J] (Z Ail) |77 E(eoep)]
i=1 1=0

where A is a diagonal matrix involving the eigenvalues of R and J is a fixed matrix depending only on R.
Since the absolute eigenvalues are less than one >~ |A;| converges, which verifies TA 4.3.

Consistent estimators 7; for r;, ¢ = 1, ..., p can be obtained (see Vilar-Ferndndez and Francisco-Fernandez,
2002) by defining residuals U; = Y; —1i(X;) and performing least squares estimation on the following artificial
regression,

[71' = TlUi—l + ’I“QUi_Q + ...+ eri_p +v;fori=p+1,p+2,...

where ¥; is an arbitrary regression error. Hence, we conclude

o () = ma) — (o325 g2 o)) ) 4 v (0.5 [ 2(60) (20
5 Monte Carlo Study

In this section, we perform a Monte Carlo study to implement our two step estimator, henceforth referred

to as 2SLL, and illustrate its finite sample performance. We consider a one-way random effects panel data
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and an AR(2) parametric covariance structures, under which the asymptotic properties of 2SLL and of LLE
are provided in the previous section.

For panel data structure, the data generating process (DGP) is given by (12), where the univariate
pseudo random variable X;; is generated independently from an uniform distribution with support [—2,2].
The pseudo random variable «; is independently generated from a normal distribution with zero mean and
variance 02 = 4, and €;; is independently generated from a standard normal distribution. We investigate

three function specifications for m(z): mq(z) = sin(0.75z), ma(z) = 0.5 + lmp(_“) and ms(z) = 1 —

Tteap(—da)
0.9exp(—2x2). my(z) was used by Fan (1992) to illustrate the advantage of LLE over Nadaraya-Watson and
Gasser-Miiller estimators, and msq(z) and mg(z) were used by Martins-Filho and Yao (2006) to model the
volatility of financial asset returns. All specifications for m(-) are nonlinear and twice differentiable. We fix
J = 2 and consider three sample sizes n = 100,150 and 200.

For the AR(2) structure, the DGP is given by (16), where the univariate pseudo random variable X; is
generated independently from an uniform distribution with support [—2,2]. For the error U; = r1U;—1 +
roU;_o + v;, we set 71 = 0.5,79 = —0.4 and generate the pseudo random variable v; independently from
a standard normal distribution. It is straightforward to verify that for this choice of parameters {U;} is a
stationary process. The same three functional forms for m(-) given above are adopted. We consider three
sample sizes n = 100, 200, and 400.

The implementation of our 2SLL estimator requires the selection of bandwidth sequences h,, and g,.
We select the bandwidth g, using the rule-of-thumb data driven plug-in method of Ruppert et al. (1995)
and let h,, = (nJ)_%gn in the panel data model and h,, = n~ 10§, in the AR(2) model. An Epanechnikov
kernel is utilized throughout the simulations. We note that the choice of bandwidth and kernel satisfies the
requirements in Theorems 2 and 3.

For comparison purpose, we include in our simulations several estimators proposed in the extant literature.

Ullah and Roy (1998), Lin and Carroll (2000) and Henderson and Ullah (2005) consider the panel data model

and local linear estimators based on transformed observations to incorporate the information contained in
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error covariance structure in a specific fashion. Their estimators are defined as
bilx) = ¢ (R,Wo(x)Ra) " R, W, ()7

for i = 1,2 and Wy(x) = (P71)'K,P~! and Wy(x) = K;%Q*IK;%. Essentially, 6;(z) is a LLE on the
transformed observations K, %P_lgj and K, %P_lf, while 52(90) is obtained using transformed observations
PK, %gj and P71K, % Henderson and Ullah (2005) provide feasible versions of &;(z) by estimating
the unknowns in Q consistently. Henceforth, we refer to §;(z) as HUi and their feasible versions as FHU.
We note that their estimators for the parameters in the covariance matrix coincide with those provided in
section 4.1. For the panel data structure, we also consider the two step estimator proposed by Ruckstuhl et
al. (2000), henceforth referred to as RWC, which is more efficient than the local linear estimator, and follow
their suggestion to set 7 = o.. Note that if we set 7 = i, then RWC coincides with 2SLL. The unknown
parameters in ) are estimated as described in section 4.1.

For the AR(2) error structure, we consider the two step estimator proposed in Vilar-Ferndndez and
Francisco-Ferndndez (2002), henceforth referred to as VFF. Their estimator is defined for AR(1) model and
they show that under fixed design, VFF outperforms the LLE in finite sample. We consider VFF under a

random design with an AR(2) covariance structure, where

1
((1+r2)(1+ri::2)(1_r1_r2)) 2 0 0 0

—2
_@ 1—r2 0 0 0
P= e 1 0
0 —Tr2 -r 1 0
0 0 —-rg -1 1

Since H in 2SLL is a diagonal matrix with the diagonal element being the reciprocal of that in P~!, we
observe that VFF differs from 2SLL only in the treatment of the first two observations, hence the estimators
are asymptotically equivalent. Hence, we expect the estimators will have similar finite sample performance,
which is confirmed in the Monte Carlo study. Although HUi were initially proposed for a panel data error
structure, it is straightforward to adapt it to the AR(2) structure. We follow the procedures in section 4.2

to estimate the unknown parameters in (2.
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In total, for the panel data structure we consider nine estimators: LLE, four infeasible estimators where
we utilize the true covariance matrix parameters which are available in the simulation study - HU1, HU2,
RWC, 2SLL, and four feasible estimators - FHU1, FHU2, FRWC, and F2SLL, where we attach the letter “F”
in front of the acronyms to indicate the unknown parameters in the covariance matrix are estimated. For
the AR(2) error structure we consider nine estimators: LLE, HU1, HU2, VFF, 2SLL, FHU1, FHU2, FVFF
and F2SLL. All the estimators, except 2SLL and F2SLL, are implemented with bandwidth g, described
previously. For each experiment design, we perform 1000 repetitions, evaluate m(x) at twenty equally
spaced points over the support interval for the regressor (X) and obtain the average bias, standard deviation
and root mean squared error of each estimator. To avoid evaluation over areas of support where data are
sparse, we exclude the lower and upper 5% of the support interval. The results are reported in Tables 1 and
2 (Appendix 2) for the panel data error structure and AR(2) structure, respectively.

As the sample size increases, across all experiment designs, all estimators generally perform better in
terms of averaged standard deviation, root mean squared error and bias, where exceptions occur in bias,
whose magnitude is much smaller. This confirms the asymptotic results in Section 4, and agrees with
the consistency of the alternative estimators. In terms of the relative performance measured by standard
deviation and root mean squared error, when panel data and infeasible estimators are considered, we observe
that 2SLL consistently performs the best, followed closely by RWC estimator. For all three functional forms
considered, we notice the reduction of standard deviation and root mean squared error by 2SLL and RWC
over LL are well over 15%. These results are consistent with our Theorem 3, as well as Theorem 4 in
Ruckstuhl et al. (2000), which suggests that two-step estimation properly accounting for the covariance
information can improve upon classical local linear estimator. LLE carries similar standard deviation and
root mean squared error as HU2, but both LLE and HU2 always outperform the HU1 estimator. Hence,
HUi estimators do not seem to provide gains in terms of efficiency over LLE, at least under the panel
data error specification. When the AR(2) model is considered, across all specifications for m(z), VFF and
2SLL perform similarly and outperform all the other alternatives. The improvement in efficiency from both

estimators against LLE is over 10%. Again this is consistent with our Theorem 3 as well as the comments
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above regarding the similarity in the two estimators. In addition, our results indicate that the simulation
results in Vilar-Ferndndez and Francisco-Ferndndez (2002) carry through in the case of the DGP we specify.

For the AR(2) error structure, both HU1 and HU2 estimators outperform the LLE, with HU1 outper-
forming HU2. The asymptotic distributions for the HUi estimators under an AR(p) structure are unknown,
but based on our simulations these might be viable alternatives. As we expected, the feasible estimators
perform slightly worse than the infeasible estimators, where exceptions occur for the HUi estimators under
the panel data error structure. We notice that the extra burden in computing the unknown parameter is
minimal since the increase in magnitude of average standard deviation and root mean squared error is small.
Consequently, the observations regarding the relative performance among alternative estimators are largely
maintained as those for their infeasible versions. This observation gives support for our Theorem 4 in that
feasible 2SLL, obtained by estimating the unknown parameters of the covariance matrix, is asymptotically

equivalent to its infeasible version and outperforms the traditional LLE.
6 Summary

In this paper we provide sufficient conditions for the asymptotic normality of the local linear estimator
proposed by Fan (1992) in regression models where the regression error has a non spherical parametric
covariance structure and the regressors are dependent and heterogeneously distributed. In this context, it
seems natural to define an alternative estimator that incorporates the parametric covariance structure in
an attempt to reduce the variance of the asymptotic distribution. We propose a two step estimator that
incorporates the parametric information given by the error covariance and provide sufficient conditions for
obtaining its asymptotic distribution. A feasible version of the two step estimator that substitutes true
parameter values with consistent estimators is shown to be ,/ng, asymptotically equivalent in probability
to the two step estimator under some easily verified conditions. A Monte Carlo study reveals that the
asymptotic results for our estimator are confirmed in finite samples and that our estimator can outperform

previously proposed estimators.
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Appendix 1

Theorem 1: Proof We prove the case where j = 0. Similar arguments can be used for j = 1,2. Let
B(zo,r) = {z € R : |z —x¢| < r} for r € RT. G compact implies that there exists o € G such that
G C B(zg,r). Therefore for all z,2’ € G, |t — 2’| < 2r. Let h, > 0 be such that h, — 0 as n —

oo where n € {1,2,3---}. For any n by the Heine-Borel Theorem there exists a finite collection of sets

~-1/2 In . —1/2 1/2
{B <xk, (h%) >} such that G C Uy B (x;€7 (h%) > for x, € G with [,, < (h%) r. The

proof has three steps.

(1) We show that
supsec|so() — E(so(x))| < mazi<p<i, |so(x) — E(so(2))| + C(nhy) 2,

(2) Let s§(z) = (nhy,) 130 K (Xh—;””) g(Ui)viI(|g(U;)| < B,,) where By < By < ...suchthat ) .o B;® <
oo for some s > 0 and I(-) is the indicator function. We show that
supzec|so(x) — 55 (x) = E(so(w) = 55 ()] = Ous(B, %),
~1/2
(3) LetO<A<oo,ﬂ>2andan:("h") A, we show that

in(n)

P (mazixst, |58 (o) — B(s8 (00)] > e0) = O(BI 5013578/ 2 1757812 1 (1) 025+/2)

—1/2
Step 1: For x € B <xk, (%) )a

[so(2) — so(x)]

() - () o

T — X
hn,

IN
3‘H
iM-

Q

9(0i)u by A2,

IN

—-1/2 n n
n 1 _ 1
h%c <h%) - § :|g(Ui)vi| < C(nh?) Wﬁ § :|g(Ui)|

i=1 i=1

By the measurability of g and A4 {|g(U;)|}i=1.2.... is a-mixing of size -2. Furthermore, given that F(|U;|**%) <
C for some 6 > 0 and all i, we have from McLeish’s LLN (see White, 2001, p.49) that = > " | |g(Y;)| —

%Z?:1 E(lg(Y:)|) = op(1) and since lZ?:l E(|lg(U;)]) < C we have |so(x) — so(zx)| < C’(nh%)fl/2 and

n
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similarly, E(|so(z) — so(z)]) < C(nh2)~'/2. Combining the two results, sup,cq|so(z) — E(so(z))| <
mazi<k<i, |so(zx) — B(s(xx))] +2C(nh) /2.
Step 2: supgeglso(x) — s¥(x) — E(so(x) — sF(x))] < Ty + Ty, where T1 = supec|so(z) — s&(z)| and

Ty = supgec|E(so(x) — sf(x))|. We show that Ty = o0,s(1) and T, = O(B}™*) for s > 0. Ty =

supgec |(nhy) >0 K (Xh;m) g(U)vI(|g(U;)| > B,)|. By the Borel-Cantelli Lemma for any € > 0 and
for all m satisfying m’ < m < n we have P(|g(U,,)| < By) > 1 — € and by Chebyshev’s Inequality and the
increasing nature of the B; sequence, for n > N € R we have, P(|g(U;)| < B,,) > 1 — ¢ for i < m’. Hence,
for n > maz{N,m} we have that for all i < n, P(|g(U;)| < Bp) > 1 — € and therefore I(|g(U;)| > B,) =0

with probability 1, which gives T1 = 045(1).

1 — X —
E(so(z) — 5§ (x)) = —— // K ( i ) g(U) v fx, v, (Xi, Up)dX;dU;
i nh zz—; l9(Us)|>Bn I

IN

O n
nZSUPmEG/l( l9(Ui)|fx. v, (2, Us)dU;
i=1 9

U;)|>Bn

By Holder’s inequality, for s > 1,

1/s 1-1/s
[ e 09d0 < ([l e vas) ([ 100001 B fx oo, U000)

l9(Us)|>Bn

where the first integral after the inequality is uniformly bounded by assumption and since fx, |y, (z) < C,
we have by Chebyshev’s Inequality ([ I(|g(Us)| > Bn)fx..0,(z, Us)dU;) ™* < C(P(|g(Us)] > Bn))= Y/ <
CBL=*. Hence, To = O(BL™%).

Step 3: P (mazi<p<i, ‘sg(xk) - E(s(?(xk))‘ >e,) < Zi“:l P (’ség(xk) - E(soB(xk))’ > ey) and let s§ (i) —

E(S(I)B(xk)) = %Z?zl Z; where

1 X1 — 1 Xz -
Zi= a2 ) gt o) < B - B (1

) st < 5.)
By the uniform bound on v;, A2 and |g(U;)|I(|]g(U;)| < B,) < B, we have that |Z;] < Ch,;'B,. Let
[|Zilloo = inf{a: P(Z; > a) = 0}, then supi<i<n||Zi||oo < C’f—:. Then, from Theorem 1.3 in Bosq(1996) we

have that for each ¢ = 1,2, ..., [n/2]

1 —e2q 4CB,\'? n
- < n —
P(n . >E"> < e (i) v (1 52)on ([37))

>z
1=1
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where v2(q) = 302@) + Canjﬂ p=n/2q,

. . . . 2
o*(q) = mazo<j<ag1E ((([Jp] +1—3) Zijpi1 + Zigpi2 + - + Zigp + (G + Dp =[G+ Do) ZiG1)p+11) )

and [a] denotes the integer part of a € R. We first note that %"02(q) = O(1). To see this note that,

o%(q) < mazo<j<ag—1 > E(Z})+2 > \E(Z1Z;)]
lip]<i<[(G+1)p+1] [Pl +1<I<[G+D)p] [fp]+1<i<[(j+1)p+1]

<
I<i
Given A4.2 and E(|g(U;)|**?) < C for some 6 > 0 and all i we have after some simple algebra
> E(Z}) < O(p/hn).
lip]<i<[(i+1)p+1]
Using Theorem(3)1 in Doukhan (1994), for 6 > 2 we have that |E(Z;Z;)| < Ch;2+2/5(a(i—l))1_2/5. Now, for
any [ such that [jp] + 1 <1 < [(j + 1)p] we have that 3111 icisyn)pr) [B(ZiZ:)| < S ME(ZiZ0y)| +
px—1

1 |E(ZiZ—;)| where px = [(j + 1)p + 1] — [jp] + 1. Letting d,, be a sequence of integers such that

dph, — 0 we can write

px—1 dn, px—1
Y IE(ZiZii)| =Y |E(ZiZi) |+ Y |[B(ZiZi) = T+ T
1=1 i=1 i=dn,+1

and it can be easily shown that J; = o(h,,') and Jo = O(h,;!). Similarly we obtain Zfi;l |E(Z1Z,—;)| =
O(h;;!). Combining the results on the variance and covariances we have that %UQ(Q) < C for n sufficiently
large. Hence, we have that ph,v?(q) < C+CpB,¢, and choosing p = (B,&,) ! we have that for n sufficiently

2

large ph,v?(q) < C. Then, dexp (%(5)) < dexp (_i%gh") < 4n~71oc. Now,

40 B\ V/? n B, \/? hne 1/2 n
22 (1 n — = 22(=2 Rl | —
(e5m) e () - =(&) e (Gree) ()

and since hga" — 0 as n — oo we have that for n large enough and by A4, for § > 2

40 B, \ n B\ /2 n
22 (1 n — < e e [
(+5m) w(lz]) < o(2) wregm

< Cnh;1/2B£+1'55£+0'5

ThU.S7 P (maxlgkgln

st (xe) — E(s8 (zr))| > en) < CZ:L/Q (4n_% + CnhﬁlﬂBS“'%g“‘o's) and if A is

chosen such that % > 1 the first term in the summation to the right of the inequality is negligible and
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st (zk) — B(s§ (vr))] > €n) < CBS+1'5(ln(n))0‘25+5/2n1'25_5/2h51‘757’6/2 and

we have that P (maxlgkgg”

therefore
P (mazy<k<i, |s§ (1) — E(sf (2x))]) = OB (In(n))0 20021 25=5/2y J1LT520/2),

Lastly, if B, ~ n'/**? for s > 2,0 > 0 we have that sup,eg|so(x) — s§(x) — E(so(z) — sF(z))| = o(n=1/?)

and if n(0+1/$)(B+L5)+1.25-5/2p LT5=B/2 (1 (1))0.2548/2 _, () a5 1y — 00, then
P (mazi<p<i, |56 (or) = B(s§ (22))] = en) = Op(1)

which completes the proof.

Theorem 2: Proof Note that m(z) = i S W (X;L:C”,sc) (m(x) +mW(2)(X; — ) and put S(z) =

Ja(z) 0 ; _ 1y X,z : f_y (1) ,
( 0 ofu(x) ) Then m(z)—m(z) = - 12/:;_1 Wn( = ,1‘) Y, where Y;* = Y;—m(z)—mY (z)(X,—

2). Let An(@) = i (¢ (Su(@)7 = S@) ) e) 7, Dal@) = @) = ml@) = 5ty Ty K (522) 7

n

Then,

IN
>
3
N
3
&
S
> =
N

by Holder’s Inequality. Under the conditions of Theorem 1 supyeg |sn,;(z) — E(sp j(x))] = op(hy) for

3
nh;,

7 =0,1,2 provided that iy O Now, supea ‘sn,z(x) — a%(fn(x)| < supzec |Sn2(z) — E(sn2(z))| +

suprec | E(sn2(x)) — 0% fu(@)|, but
supace [Blonal@) ~ @] < LS [ PRI+ hat) — 1)l < hCok
i=1
given Al and A2. Therefore, supyec |sn2(2) — 0% fu(2)| < 0p(hn) + O(hy) = Op(hy) and similar argu-
ments give supzec |5n,0(@) — fu(2)| = Op(ha) and supyec |sn,1(2)] = Op(hn). As a result, A, (z) = Oy(1)
uniformly in G. We now turn our attention to B,(x) = mZ?:lK (XT;I) Y*. Since, Y* =

m(X;) — m(z) —mM (2)(X; — ) + U; and K has a bounded support Y;* = 3m® (z)(X; — z)? + U; + 0, (h2)

)u

and

n

A Xi—a\ 1 X, —z\2 1 1 & X, —x
B0 = 7y ok () e (57) *fn<x>nhn;K( e

=1
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+ o(h2)

11 X
— E K
x) nhy, 4 (
=1
We examine each B,, ;(z) for j = 1,2,3 separately.

Buse) = 70 ((n,ﬂ Sr (%) fn(af)> n fn<x>> o{2) and
1

|Bn,3(x)|

(E) = Bn’l(x) + Bn,Z(x) + Bnd(x)

IN
?ﬂ
&
7 N\

+ ﬁ(fﬂ)) o(h2)

Since fn(z) — f(z) as n — oo, |Bu3(x)| < (Op(hy) + 1)o(h2) = 0,(h2). Furthermore, if infrec|fn(x)] > 0

e
as 1 — 00, supyeG|Bna(@)| = 0p(h7). Bualw) = %sn 2(z) and therefore by Theorem 1, given that
an:ceG‘JFn(ICﬂ >0asn— oo
— h—% 2 @) L _ 42 F _ h3
SupgeG|Bn,1(z) oxgm“(z)] < C SUPrea|sn2(x) — 0% fu(x)] = O,(h3).
2 2infoec fo(z)

Hence By, 1(z) = %a%m@) (z) + 0p(hZ) uniformly in G.

Let Z; nK (Xh—:’”) U; then B, o(x) = ﬁ%gll Z;. Since the processes {X;}* , and {U;}!,

are independent and E(U;) = 0, E(Z;) = 0. Now note that V(Z;) = hlsz(K2 (%))E(Uﬁ) =
h%wii(t%) [ K2(¢) fi(x + hng)de. Since |w;;(0)] < C and fi(xz) < C we have that h,V(Z;) < C [ K?(¢)d¢

and sup;h,V(Z;) = O(1). We now consider

N7 leov(Zi, Z)) = > |E(Zi, Z;) Z (Zis Zisi)| + D |E(Ziy Zimj)-
J=1,i#j J=1i#] j=1 i=1

. . n dn 71
First write >0 |E(Z;, Zitj)| = 3250 |B(Zi, Zivy)| + ZJ a0, |E(Zi, Zitj)| = Jni + Jn2, where dy is a
sequence of integers such that d,, — oo and d,h, — 0. Then,
dn—1

1 Xi—x Xi+j—1‘
Jon = Z 2‘EK< i )K< i )UiU”"'

- Z isss 00)] [ K (01) K (60) Fuses(o -+ hun, o+ hda)dirdon
d

IN

(/K (¢1) d¢1> =C(d, — 1) < Cd,.

Since dy,h,, — 0 we have that h,J, 1 < Cdyhy, = o(1) and J,, 1 = o(h, ). Given that K(-) is measurable we

have that Z; is o(X;, U;) measurable, where o(X;,U;) is the o-algebra generated by (X;,U;). By Theorem

23



3(1) in Doukhan (1994) with p = ¢ = > 2 we have
_2
|B(Zi, Zisj)| < 8E(1Zi|°)E(| Ziv;1°)(0(Xs, Us), 0( X, Ui )) 5

Where CY(CT()(Z‘7 Ul), (T(Xi+j, Ui+j)) = SupAEU(X,-,U¢),BEU(X,-+j,Ulurj)|P(AQB)7P(A)P(B)" NOW deﬁne fioo =
0(' . '7Xi715 UiflaXZﬁ U’L)? .7:,?_72] = U(Xi+j7 U’i+j7Xi+j+1a Ui+j+17' . ) and Ot(]) = Sup;«x (-7:7007]:1-&-3) Then7

a(o(X;,Us), 0(Xitj, Uirj)) < aj). Also,

1 X; —
Bz = Bt e (50 ()

<|U\h‘*+1/K‘S fil@ + hnd)dd

IN

MWWﬂ“/WWwwAI

IN

Ch—5+1

Similarly E|Z;;|° < Ch;?+! and we have |E(Zi, Ziy ;)| < 8(Ch;,%t1)2/0a(j)1 =% = Ch;2+%a(j)1—%, Hence,

942 o
Chy "3 E;‘;dn a(j)*~% and since j > d, we have that for some a > 1 — 2 > 0, 2 w1 and

Jn2 o

)

IA

942 2_
Jno < Chytida Z;‘;dn’j“a(j)l’%. But, 3272, j%a(j )1=% — 0 by A4 as n — oo. Now, hi 'd-a =
-1
_asd_ -2
((hnd;iz)l_g) and choosing d,, such that ha 5d‘}l = 1 the right hand side of the last equality is

equal to 1 and we have J, 2 = o(h,'). This is obviously consistent with d,h, — 0 in the sense that

5%‘52 >1=a>1- %. Furthermore, it is easily seen from the developments above that sup;|Jp 1| +
sup;|Jn.a| = o(h; 1) and h,sup; > =1 |1E(ZiZi1j)| = o(1). Similar arguments show that 337 |E(Z:Z;—;)| =
o(hy,') and hysup; Y05y |E(ZiZitj)] = o(1). Hence, combining results we have Y77, ., |cov(Z;, Z;)| =
o(h, ') and sup; Y0, i lcov(Zi, Z;)| = o(h,'). Now, observe that V (371, Zi) = 5 Y1y E(Z7) +

27 2oimt 2o i B(ZiZy) = Vi1 + Vo,

Vn,l = 77,22}1, wu 00 /K2 fz x+hn¢) fl %Z wn 00 /K2 fz ) ¢
=1

= an,1 + V712,1

By the Lipschitz condition on f;(z) and A2 [V;},| < C-5 3" | w;i(0o) and therefore nh, [V,1,]| < o S | wii(6o)
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and by A3 we have nhy |V, || = O(hy). Also,

nha V2, = [ K20)d6% 3" ilw)wn(6n) — @y (w.00) [ K2 (0)do
i=1

Hence, "= 3" | E(Z?) = @¢(x,00) [ K2(¢)d¢ + O(h,). Now,

n

n

niz Y Bz < S hasups 3. |B(Z25)] = ol1)
i=1j=1. i=1

=Lt

where the last equality follows from our previous results. Hence, we have that

We now consider B, o(z). Here we adopt the method first proposed by Bernstein (1927) and adopted by
Masry and Fan (1997) to partition the sums in large and small blocks. First, partition the set {1,---,n} into

2k, +1 subsets with large blocks of size r, and small blocks of size s,, and k,, = {T e } Let Zy,; = VhnZip1

fori=0,1,---,n—1so that Bua(2) = 7oy ey Zi and Vaha t 337, Zi = = 22120 Zni Now let

J(rn+sy)+rp—1

n = > Zpifor 0<j <k,—1
i=4(rn+sn)
(G+1)(rntsn)—1

& = > Znifor 0<j<k,—1
i:j(rn"!‘sn)'i‘rn
n—1
Cj = Z Zn,i
i=kn (Tn+sn)

and write, Vil S0 Zi = e (SR + X0 G+ G) = (@ + QU + Q). We show that

1
TL
2
E ((\/lﬁQ%) ) — 0, E <( ”’) ) — 0, then the asymptotic distribution of B, 2(z) is determined by

kp—1 k 71 k 71 kp—1
L@, Note that E((ﬁ@ﬁ) ) - ;E((ZJ 0\ &) ) (]2) Sk L (&)
1/
and by A4 there exists ¢, — oo such that g,s, = o((nhy,)/?), ( ) = o(1). Then defin-
. 7_Lnl/2 s onnl/Q - r 7_Lnl/2 s
ing r, = [%] as n — oo we have 2 = 7[(((”:"))1/2/)551 — 0, ™ = [7( hq: }% =0, GrSE =
nhy)'/? na(sy 1/2 . i+1)(rp+sn)—1
[( o } 7 = O 7ralen) = [mhn(ﬂ/)j ~ (hl) 4nar(sn) — 0. Since & = TS0 Z, 5 we
have
1 kn,—1 h kn—1 sn kn—1 s, Sn
~ ) B = —- DD B Z i eyirare) T D E(Zj(r,+5)470+0Zj(rn+sn)+1.+5)
Jj=0 Jj=0 6=1 j=0 6=15§=1,6+#6



k}nf S“ kn* Sn Sn
But £ Y B J(rn+sn)+rn+0) =5 Z oy hnsupi E(Z7) < Ciknsn < Cie- = o(1). Also,

since sup; Z?’:Li# lcov(Z;, Z;)| = o(hy;, 1),

kn—1 s, h kn—1 s, Sn

n
Z Z Z E( y(rn+en)+rn+92 (rn+sn)+m+6 < o \COU(Zj(rn+sn,)+m+97Zj(rn+sn)+rn+6)|
=0 0=15=1,6#0 j=0 6=15=1,66

Sn

kn—1 n kn ;
< %ijo S 1 M SUD; (1, t5,) 47 +0 Zl 115 (rn+sn)+rn+6 |COU(Zj(Tn+sn)+rn+9> Z)| = 0(1)5871 <o(1) T tsn

2
o(1) and therefore %E«Zf olfJ)) = o(1). Now, && = hn 3250, 252, Zj(rutsn)+ra+ LUt n+sn)+ra+0

and consequently

kn—l kn—1

, -
Y Y meE)| < B (Zjrts)r 6 Z1(rsn)+r40)]
j=0 1=0,l#£j j=0 1=0,l#j §=1 6=1

and since j # [ the distance between the indexes must be greater than r,, as |j(r, + $n) + 7o+ — (I(ry, +

Sp) +rn+0)| >ry+1>r,. Thus,

1 kn—1 kp—1 n—rn h n—1 n
- > Y EGa)| < 2* > Z E(Z:Z;)| < 2%2 > E(Z:2;)|
7=0 1=0,l#j =1 j=i+r, i=1 j=i+1
};—ni E”: E(Z;Z;)| < — Zh sup; Zn: |cov(Z;, Z;)| = o(1)
1=1 j=1,i#j Jj=1j#i

2
Combining the results above we have that E ((\}EQZ) > = 0(1). We now turn our attention to the Q!

term.
1 2 1 n—1 1 n—1 n—1
" _ 2 . .
() = i S il 88 s
i=kyn (rn+sn) i=kn (rn+sn) j=kn(Tn+sn),i1#]
h n—1 h n—1 n—1
= ;n E(Z%.) + ;n > > E(Zit1Zj11).
i=kn (rn+sn) i=kn (rn+5sn) j=kn(Tn+sn),i#]
Given sup;h, E(Z?) < C we have that "= Z?:iki(rnﬂn) E(Z2,) <1 ZZ o (-5 SUPin E(Z 2y =Cn~t(n—

kn(rn + 8,)) = o(1), since by construction n — k, (1, + 8,,) < 7, + 5, and therefore n=(n — (r, + s,)) <

n=Y(r, + sn) = o(1). Now,

n—1 n—1 n—1 n—1
hn 1
o E E E(Zix1Zj41) < - E hy E lcov(Zit1, Zj41)|
i=kn (rn+sn) j=kn(rn+sn),i#j i=ky (rn+sn) J=kn (Tn+sn),i#]

26



n—1 n
1
- E supih, | E ‘|cov(Zi,Zj)|
izkn(rn"l‘sn) j=1,i#j

< 0(1)%(71 o (rn + 51)) = o(1)

IN
\

2
and by combining the results above we have E ((\}EQ;{’) ) = 0(1). We now turn our attention to the Q7

term. n; = 23_7;?1);”” Zy,; for 0 < j <k, —1 and by construction n; = BL/? Zzgﬂjbi);;”_l Zi+1. Now

let .7-"27 be the o-algebra generated by the random variables {X;, U; : i <t < j}, i.e., ff =o0(X;, Ui,--, X5, U;)

so that n; is .?'j(:n_tjn))_t]r measurable. Note that j(r, +s,)+1—((7 — 1)(rs +8n) + ) = s, + 1 and if we

define V; = exp(itn;), by Lemma 1.1 in Volkonskii and Rozanov(1959) we have,

kn—1 kn—1 kn—1 kn—1
E{J]Vvi|- 11 EO))|=|E [expit Y n) | = [] Elexp(itn;))| < 16(kn — Do(sn +1).  (22)
j=0 j=0 j=0 j=0

(kn — Da(s, +1) <

< hoa(sn+1) = ﬁ%a(sn + 1) and since by construction = — 0, *a(s,) — 0

we have that 16(k,, — 1)a(s, + 1) — 0. Thus, by Corollary 14.1 in Jacod and Protter(2002) {n;}o<j<k.,—1

forms a sequence which is independent as n — co. Now, 1; = hl/ 2 ZJ_TJ"(;T_T;)S:)T nt Zi+1 and
1 ko kn—13(rn+sn)+rn—175(rn+sn)+rn—1
LTINS S S S C
Jj=0 i=5(rn+sn) I=j(rn+sn)
kpn—1J(rn+sn)+rn—1 kn—1J(rn+sn)+rn—17(rn+sn)+rn—
= — Z Z B(Z%4) JF — Z Z Z E(Zi+1Zl+1)
j=0 i= ](rn+sn) j=0 i= ](rn"!‘sn) lzj(rn,+371)7i#l

= InJ,+’In2-

Also,

‘In72| = E(Zj(rn+sn)+6’Zj(rn+sn)+5)

< ;" |COU(Zj(rn+sn)+0; Zj(rn,+sn)+5)|
=0 6=16=1,040
1 k?n—l Tn n
< - B SUDj (1 5140 Z lcov(Zj(r, +s,)+0, Z1)
j=0 0=1 I=1,l#j(rn+sn)+0
knrn Tn
_ 1 < 1 = 1).
0( ) n _-0( )Tn +’sn O( )

For the term I,, 1 note that E(Z?) = iwii(eo) J K*(¢) fi(x + hnd)dg and from Taylor’s expansion |f;(z +
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hno) — fi(x)| < O(hy,). Therefore,

kn—17(rn+sn)+rn—

n Z Z <hlnwi+1,z‘+1(90) /K2(¢)(fi+1(ff + hn®) — fiy1(x))dd

= i=j(rn+sn)

+ hlwi+1,i+1(90)fi+1(33)/K2(¢)d¢> =Iy11+ 112

looking at the last two terms separately we have,

kp—14(rn+sn)+rn—1

| < fZ > wie(6) / K@) for1 (@ + had) — firr(@)]do
J=0  i=j(rn+sn) "
—1j(rn+sn)+rn—1
< /K2 d¢ Z Z Wit1,i+1(0o)

i= ](Tn"l“;n)

and since = Zk —1 f(zrj"(js:):_;"_l witt,i+1(00) < n7tY"  wi(Bo) — @(0y) as n — oo we have that

[In11] = O(hy).

k —1J(Tntsn)+rn—

n 12 /K2 d¢ Z Z w7,+1 ’L+1 60 fz+1 /K2 d(b Zwu 90 fz

—J(Tn+5n)
k7,,71(j+1)(7‘rt,+sn,) 1 1 n—1
Z > witi+1(00) fir1(z) + - > wirripa(0o) fira(x /K2
J=0 i=j(rpn+sn)+ra i=kn(rn+sn)

Now, n~! E:L:l wii (00) fi(z) — @s(x,0p) < 0o by A3 and since |w;;(00)], fi(x) < C,

k —1(G+1)(rn+sn)—1

n Z Z wit1,i+1(00) fir1(z) < C

J=0 i=j(rn+sn)+rn

Sn

— 0.
Tn + Sp,

Similarly, - ZZ or (P -b) WitH1, i+1(00) fix1(x) — 0. Combining the above results we have that I,,; =

(z,60) [ K?(¢)dp + o(1) + O(hy,), and given that I, 5 = o(1) we conclude that

Z (n7) = ws(x,600) /K2 )do + o(1) + O(hy,).

7=0

1

n
Nowlet JzQ}, = 32525 Zyn where Zin = gz SIS T K (B9 ) Uy and 87 = 252" B(Zn
E(Z;n))?, where S2 = Zf;gl LEMm}) — wy(z,00) [ K*(¢)d¢ as n — oo. We first observe that if we define
L@’ and let Yy, (\) = E(exp(iA\W,,)) be the characteristic function of W,, we have,

kn—1 kn—1
X 1 T ) 1
[, ) = eap(=\2/2)| < |E | eap(in 3 —eny) | = [] Bleap(id—7ze—,)
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Fe—1
n . 1 ,
H E(exp(z/\mnj) —exp(—A?/2)| = A1 + A

But A; = o(1) by the result on equation (??) and A = o(1) by Lindeberg’s CLT (Theorem 23.6 in Davidson,

1994), which is implied by Liapounov’s condition. Hence,

~ Zjn d k1 |2, 2+9

Z S— — N(0,1) as n — oo provided that lim, oo Y ;0" £ = 0 for some § > 0.

=0 n
kn=l 1240 ] Fnzl J(ratsn)+ra—1 X . 2o

Zijn _ 2\—1-58/2 5/2_ i1~ _
D E|| = T e YB3 K(hn )UM
j=0 i=j(rn+sn)
1 kn—1J(rn+sn)+rn— Xjoy —a 246
< (S2)7102(nh,) 02210 Z Z h—E ‘K (%) Uit

i=j(rn+sn)

‘2-‘1-5

by the ¢, inequality. Furthermore, ;- E ’K (W) Uit =LE (K (@)) E \Ui+1|2+6 and given

that E|U;11)*™° < C we have that

IE’K<X”};_$> Uisn

2446

<c / K*(6) fus (2 + hud)d < C

by A2. Therefore,

2445

1 1 Xi1 — n
. e G e e
n =0 imj(rmtsn) n n Tn + Sn
2 2 kn, —1 Z; 249
and since Sy — @y (0o, z f K?(¢)d¢ as nh, — oo we have lim,_ z B |2 =0.

Shn

Finally, combining the results of Qf NG . and %2 we conclude that (nhn)Y/2 B, 5(z) 5 N (0, ©slzbo) JK2(¢ dqb)

vn Fl2)?

as n — oo. Together with B, 1(z) = hz" o2.m®(z) + ) gives,

(o s (57) - ) (0555 [ o) s
B,

i=1
(%) and by applying Theorem 1 to f,(x)B, ()

Now, we note from our previous results on B, 1(z),

-1/2
with g(U;) = U, j = 0 and v; = 1 for all i we have, -1 37" 1K< )Y*op(hi)+op<(h’;’%) )

1 n X;—
and - Zi:1K< h

n

1/
(nhy)2|Dy(2)] < <nhn>”2op<hi>+<nhn>1/20p((h”l"(")) )

n

z) (XT;I> Y =0,(h2) + 0, ((%)_1/2) uniformly in G. Hence,
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Now, provided that h2In(n) = o(1) the right hand side of the inequality is o(1) and we have

nhp)Y? (m(z) — m(z) — T 4, M 2 as n — oo
(172 () = (o) = B ) ¥ (0. 24220 [ 260 .

Theorem 3: Proof Let Z; be the it" component of the vector Z. Note that 7i(z)—m(z) = ﬁ S W (Xg;m , x) Z?,

where Z = Z; — m(z) — mM(2)(X; — 2). Let A,(xr) = = (e’ (Sp(z)~t = S(x)*1)2e> 1/2, D,(z) =

gn

m(x) —m(z) — m Y K (X;_‘”) Z¥. As in Theorem 1

Duf@)l = S @ =S | ?KEK( )g(X)‘Z)Z

In i
gnAn( ( ( )Z +

IN

(55 (5.7) 7))

and A, (z) = O,(1) uniformly in G. We now turn our attention to B, (z) = m Y K (Xi_””) Zr.

9n
Since, Z; = m(X;) — i 1ji Zi (m(X;) —m(X;)) + v we have
1 1 & X; — (2) 1 1 & X, —
fa(2) ngn = In 2 fn(@) ngn = In

o 11 Xi—z\ 1 1
+ o) i 2 (o) T B

i=1

= Bn,l(x) + Bn,g(l‘) + Bmg(l‘) — Bn74(l‘)

We examine each B,, j(z) for j = 1,2, 3,4 separately. From Theorem 2 B, 1(z) = %o’%m@) (z) + 0,(g2),

By, 3(x) = 0,(g2) uniformly in G. Also, from Theorem 2, (ng,)'/2B,, »(z) — N (0, ‘“ﬁ{iﬁ“ Ik K2(¢)d¢) where

Wy (x,00) = limp ooy L Yoiy fi(z)v;°. We now examine B,, 4(z). From the definition of V;* and Theorem 2

K2

() ~mlX) = ,ZK(XI %) () = m(x;) - ()% - X))

s g () aoton (i) )

and therefore we can write B, 4(x) = B, 41(x) + By, ,a2(x) + By, 43(x) where,

Puale) = Lok e () < () o =)

’Ll]lll
J#i

- mO0)(X - X))
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B = g () F ()

i=1 ‘];él =1 9n
VE
Bnus(x) = ZZ””K 0,0+ 0, [ (22)
s ngnfn i=1 j=1 Vi 9n PR P ln(n) " )

ji

We look at each of these terms separately. Note that

Vij —x 1 = X, — X;
Bn,41(x) ngnfn ; Z vi K ( dn ) {nhnfn(XJ) ;K <hnj> (m(X) = m(XJ)
J#Z

mD(X;)(X; - X)) |

and the term inside the curly brackets {-} is O,(h2) uniformly in G from Theorem 2. Hence,

|Uzj| -z
[Bnai(z)] < Op(hy) ———
g ngnfn ; |Uu|
J#t
1 & X — [vij]

< o LS ) a

g ngnfn(f) ; In Z | u|

J#Z
1 - X;—a

oo Sk (£2)

g ngn fn(2) ; In

where sup; > 71— ||ZJ || = O(1) by assumption. Furthermore, from Theorem 1 —— Zl 1 K ( ) 0,(1)
125 Tvii g

and by assumption Al f, () — f(x). Hence, supyec|Bna1(z)| = Op(h2). Using similar arguments and

3 nhy 2
Theorem 2 we have supyec|Bna3(x)| = Op(hs) + O, ((ln(;;)> hn>.

i= z:l

J#l

= nfn Z U )\ln

X —X;
K=
gn ) ( hy >

Note that E(B,, 42(x)) =0 and

V((ngn)/?Bpas(z)) = nfn QZZE UrUi Ain () Aien (7))

I=1k=1

nf 2 ZZW“@ 00) [ E(Ain () Aken (2)) ]

=1 k=1
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We denote a;; = o , K= K( ) K=K (th;ﬂXJ) and examine

|E()‘ln(m)/\kn(x))| = ZZ Z Z n2 j)fn(Xo)aijamoKiKmKlekO

i=1 j=1 m=1 o=1

J;ﬁl o#Em

K, K, K Ko
ZZ Z Z n2g 2h2|aw|\ Umo| E (()fi(t))

i=1 j=1 m=1 o=1

VE) o#m

IN

Since infrec|fn(r)] > 0 we have

n n n

V((ngn) 2By in(a) < nf?;yzz st 33 30 S el 6, 1 )

=1 k=1 i=1 j=1 m=1 o=1 9nltn
J#i o#m
n 1] mo
= T3 |wii (6o)] ——— FE (KK, K;K},)
Ao 2 O 22 2 0 Ry P UGt
j#£i o#m
o D D w0l DD D0 D S s B (G K Ko Ko)
nfa(2)? = o i1 =1 m=1 o1 U 9nltn
k#l JFi o#m
= T1n+T2n

We need to show that Ty,,T%, = o(1). The strategy we use is to establish the order of the partial sums
that emerge from considering all possible combinations of the indexes I, k, 4,5, m, 0 in Th,,Ts,.2 Each of

these partial sums are shown to be o0,(1) by first establishing the order of m, = h2 > E(K; K,,,K;;K),) and

n9n

Pn = h2 > E(K; KK jKyo). Here we show the cases in which [ and k are distinct from the indexes in the

n9In

four inner sums, i.e., i,7,m,0.> We need to consider seven cases, and given Al we have from calculating
the expectations the following bounds: Case 1 (i = m and j = 0): 7, < ﬁ7 Pn < %; Case 2 (i = o and

jzm)wnS%,pngC;CaseB(i:m) wngg—,png— Case 4 (i = 0), Case 5 (j = m), Case 7

(i£j#m+#o0) m <C, p, <C; Case 6 (j =0): m, < hg’ pn < C. We now denote the partial sums
associated with V((ngn)l/anAg(x)) in each of these cases by s;, i = 1,...,7. Hence, we have the following

inequalities, where the first term refers to the partial sums in 77, and the second term refers to the partial

sums in T5,, for each case.

s1 < thw" n ZZ |a;|* Zgn Z |wik (B0)] | n™° ZZ jai; |

i=1 j=1 nYn f" = i=1 j=1
J# k#l JFi

2See the note on indexes in the end of this appendix.
3Bounds for all other cases described in appendix 1 are available from the authors upon request.
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n

Cw N C & _
52 < 7271 QZZ lajillai;| | + o Zgnz |wir(Go)] | n 222 |ajillai;|
h”‘f” i=1 j=1 nf"(m) =1 k=1 i=1 j=1
J#i k#l J#i
C@ _ c = =
N Z ] e DY I RACHI LD 9p I Z a0
f i=1 j=1 ngnfn(‘r) 1=1 k=1 i=1 j=1
JFi 0751757 k#l JF 075175]
Cong C < -
< ey WYY Z ol | + gy 2 9n 2 e (60l WYY Z [@mil
i=1 j=1 (¥ =1 k=1 i=1 j=1
J#i m?’“#ﬂ k#l JAi m?’“#]
Cing C < =
2 G223 3 Z ol | + 320 et {230 s Z @l
”(x) i=1 j=1 n ”(x) =1 k=1 i=1 j=1
JF#i 03515@ k#l J#i 075175]
Cling _ C - - _
SGShi%(n) 222‘“1]' Z lamg| | + 72( )Zgn2|wlk (0o)| | QZZMU‘ Z | @yl
nin n z i=1 j=1 m= n n z =1 k=1 =1 j=1 m=1
J#i WL#Z#J k#l J#i m#iF£]
2 2
Cing C = =
1S By 2 DO) IR [ EESE S SITACHIE Fal D Oh I
f i=1 j=1 n”(x)lzl k=1 i=1 j=1
J#i k#l J#i

By assumptions A1.6 and A3 we have that £ 37" | wy(60) — ©(69) and infeei|fn(z)| > 0. Furthermore, we

note that from Theorem 1 g, 370, ;. lwik(6o)| = o(1) and consequently, provided that sup; >-;_; 4, |‘Z”|| =

O(1) and sup; 3254 ;. % = O(1) the first term and second terms in each case are o(1).

Therefore, By, 42(z) = 0,((ng,)~/?) and B, 4(z) = O,(h2) + 0,((ngn)~'/?) + O, ((%ln(n))l/Q) Now,

provided that ’gl” — 0 and ln(; — oo we have that the last term is o(g2) and we obtain B, 4(z) =

Op(h2) + 0,((ngn)~'/2) + 0,(g2). Now, if g, = O(n~1/®) then (ng,)'/?B, 3 = 0,(1) and consequently we

have,

7 (Bute) — (o502 062 ) ) 4 v (0.2 [ i) (23)

Lastly, it follows from arguments similar to those in the proof of Theorem 2 that
A o, mP)(z) , 2 wy(x, 2
g (1) = m(e) — (k"5 op(a) ) ) 4 (0.5 [ K20y (24

which proves the theorem.
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Theorem 4: Proof /ng,(m(x) — m(x)) = €'S;* o 1Xv In o where ¢; =
g S K (57) (457w

—U;) and since S, !(z) = O,(1) and K has compact support, it

S (@i (0) = aij (00)) (m(X;) — m(X;

suffices to show that ﬁ SrLK <X713

op(1). Hence, we must show that,

o
3
—_
Q
S
|

and

bum =S Y K (Xi - z) (ai5 (0) — a15(80)) (2(X;) — m(X;)) = 0p(1) (26)

Qn

o o Dol SR E=

wW=1j€l,4n
J#i

+ zn: K (Xi — x) (ai;(0) — ai; (60))U;

oy In
éu,ﬁ,v:l[iwn»]?él

<.

= S K (FE) () - gm0

9n

j 7 (FE) () - (oo

In

9n

w n
- = Z S K(X"“’”) (G (60) = 9 (601U

But given TA 4.1, the consistency of 6 and the fact that W is finite and does not depend on n, it suffices to

1 n n X;
show that an = —=—= Doict 2jelinnjri K ( :

_I) U; = Op(1) for arbitrary w. Given the independence of

{X;} and {U;} and taking expectation of the square yields,
2

E(a2, ngn;E(K?( x))E T;;MUT

TH#%

L5 5 (S5 (5 s

n
117—51 wn J=1 €1, g

‘r;éz J#i t;ég
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S 22 2 lewl+=Ed D) > Y b

1=1 7€ n t€Liuwn 1=1 7€lypn i=1 t€ljyn
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By TA 4.2 7 belongs to at most N different index sets I;,,, (the same for ¢) hence given that |w,,| is bounded

the first term on the right hand side of the last inequality is bounded by C®2. For the second term, note

that Z?:{ Zteljwn

JFi t#j

wir] KNI | |wir| < OR by assumptions TA 4.3, hence

%Z S5 S ] < gaON2 = o(1).

1=1 7€l i=1 t€ljyy

TEL JFL t£j

The same manipulations used above show that

w
B =3 () — gun0) 3" Y K ( )<m<xj>—m<xj>>

N
w=1 g" i=1 j€lyn

J#i

and therefore we need only show that \/7 Dy ZJEI“M (@) ((X;) —m(X;)) = Op(1). Let K; and

Ki; be as defined in the proof of Theorem 3, then we can write

AL X (%

=1 J€EL;qw
i

) (X)) —m(X})) = Bunlz) + Ban(a) + Ban(a),

N

where

Pin(w Z > nhfffl’ m(X;) —m(X;) —mM(X;)(X; - X;),

N
g" i=1 jelp, 1=1
J#i

n

. ZZHK( ) w( %)“)).

i=1 jel;,
J#i

We show that 3, (z) = O,(1) for i = 1,2, 3. From Theorem 2,

Bin(@)] < W20 Z YK

n
gn i=1 J€Liwn
J#i
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1 < , n
< NhiOp(l)(ngn)l/Z@ ;Ki < R(ngn)?h20,(1) since % Yo Ki = 0,(1).
= 0,(1) provided g, = O(n='/%), h,, = O(n=1/?).
Also,
nhy, 1/2 1 <
o) < W) 20,0 3 K () ) 20,03k
=1 n i
nh. \ ~1/2
<N (nga) 20, (1) 4 8 ( ) (g 20,(1) = ((090) 72+ (guhaln())/2) X0, (1)

= 0,(1) provided g,, = O(n='/%), h,, = O(n=1/?).

We now examine (B2, (x). We write,

ﬂzn(l‘) _ \/@ Z Nh Z Z K; Kl]

=1 €I,

JA

KKy
Vg E Uicn where ¢ = e 370 Zjerm FRCOE

l 1

Since {X;} and {U;} are independent it is easy to verify E(8B2,(x)) =0 and

1 n n
V(Bon(z)) = EZZE UUk)E(cnicnr)
1=1 k=1
< I ZZ |lwik (00)|| E(cnicnk)| and since infreq|fn(z)| > 0,
"=
gn n n
< C;Z |wir(6o)] 2h2 2 Z Z Z Z (KB Km Kro)
=1 k=1 ”z‘ 1 j€l;n Mm=1 o€lmwn
J#i oFm
n 1
R SRITES S5 3 S SR LI R
=1 =1 j€ljyn M=1 o€Imwn ndn
];éz o£m
n 1
D) NENDIED D B D DT I s
=1 k=1 i=1 je€Ipp M=1o0€Imuwn "g”
k#l VED) o#£m

= Tln + TQn-

We need to show that T, T, = O(1). We adopt the same strategy used in Theorem 3, i.e., establish the
order of partial sums that emerge from considering all possible combinations of the indexes I, k, 4, j, m, 0 in
Th1, Ty 2. Each of these partial sums is bounded by establishing the order 7, = E(KiKlemKlo)ﬁ and

Pn = E(KiKlekao)@
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We need to show that T1,, T2, = o(1). The strategy we use is to establish the order of the partial sums
that emerge from considering all possible combinations of the indexes I, k, 1,7, m, o0 in Th,,Ts,.* Each of

these partial sums are shown to be o0,(1) by first establishing the order of 7, = hQQ

> B (K; K, Ki;K),) and
Pn = ﬁE(KiKmKUK;w). Here we show the cases in which [ and k are distinct from the indexes in the
four inner sums, i.e., i,,m,0.> We need to consider seven cases, and given Al we have from calculating
the expectations the following bounds: Case 1 (i = m and j = 0): m, < %%7 pn < g%; Case 2 (i = o and
j:m)ﬂngh%,pngC; Case 3 (i = m): anﬁ,pngﬁ; Case 4 (i = 0), Case 5 (j = m), Case 7
(i#£j#m=#o0): 71, <C, p, <C;Case 6 (j =o0) m, < %, pn < C. We now denote the partial sums
associated with V ((ngn)'/?B,, 42()) in each of these cases by s;, i = 1,...,7. Hence, we have the following

inequalities, where the first term refers to the partial sums in 73, and the second term refers to the partial

sums in 75, for each case.

51 < ni B NC ZgnZ\wlk (60)l, C;Zn_ + QZgnZ\wzk (6o)]

k;él k;él

onz_oon? & " CNg_

e D gn Y lwn(bo)]sa < - Zgnz |wir (0o)]-
n p— —
=g g
Case 5 is identical to Case 4 and
CN2%g,,
s¢ < hgn W + Zgn Z |lwik(00)], 57 < CD, g, N2C + — Con ZZ |wi (00) N2,

nhin =1 k=1 =1 k=1
k#l k#l

Hence, given Al and the fact that from Theorem 1 g, Zzzl,#k |wik(60)| = o(1) we conclude that in each
case the first and second terms are O(1).

Note on Indexes: To construct the set of all index combinations for the six-fold sums we first note that
for the four inner sums we need to consider seven different possible cases for ¢, j,m,0: Case 1 (i = m and
j=o0,1#j); Case 2 (i =0 and j = m, i # j); Case 3 (i = m, but 4, j, o distinct); Case 4 (i = o, but %, j,m
distinct); Case 5 (j = m, but i, m, o distinct); Case 6 (j = o, but i, j,m distinct); Case 7 (i # j # m # o).
In each of these cases we must then investigate all possible subcases where [ and & are equal or distinct from

the indexes considered in T4, and T5,,.

4See the note on indexes in the end of this appendix.
5Bounds for all other cases described in the appendix 1 are available from the authors upon request.
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Case 1: For the term Ty, there are 3 subcases: 1.1) [,4,j distinct; 1.2) I = ¢ and 4, j distinct; 1.3) | = j
and 4, j distinct. For the term Tb,, there are 7 subcases: 1.1) I, k, i, distinct; 1.2) k =i, [, k, j distinct; 1.3)
k=3, l ki distinct; 1.4) | =i, I, k, j distinct; 1.5) I = j, I, k, i distinct; 1.6) I =4, k = j, [, k distinct; 1.7)
l=j, k=1, k distinct.

Case 2: The subcases are identical to those in Case 1.

Case 3: For the term T1,, there are 4 subcases: 3.1) 1,1, j, 0 distinct; 3.2) | =4 and i, j, o distinct; 3.3) [ = j
and i, 7,0 distinct; 3.4) | = o and i, j,0 distinct. For the term Ty, there are 13 subcases: 3.1) I, k,1,j,0
distinct; 3.2) k = 4, I, k, j,0 distinct; 3.3) | = 4, i, k,j,0 distinct; 3.4) k = j, i,1, 4,0 distinct; 3.5) | = j,
Ik, i,0 distinct; 3.6) | = o, I, k, 4, j distinct; 3.7) k = o, 1,4, j, k distinct; 3.8) | =i, k = j, [, k, o distinct; 3.9)
l=j,i=k, 1k odistinct; 3.10) | =i, k = o, I, k, j distinct; 3.11) | = o, i = k, I, k, j distinct; 3.12) | = j,
k = o, 1,1,k distinct; 3.13) I = 0, k = 7, I, k, ¢ distinct

Case 4: For the term T, there are 4 subcases: 4.1) I, 4, j, m distinct; 4.2) [ = m and 4, 5,1 distinct; 4.3) [ =4
and i, j,m distinct; 4.4) | = j and 4, j,m distinct. For the term T5,, there are 13 subcases: 4.1) I, k, 4,7, m
distinct; 4.2) k = m, 1, k, j,i distinct; 4.3) | = m, 1,1, k,j distinct; 4.4) k = 4, [, k, j, m distinct; 4.5) | = 1,
Ik, j,m distinct; 4.6) k = j, I, k,i,m distinct; 4.7) I = j, m, i, j, k distinct; 4.8) | =m, k =i, [, k, j distinct;
49) 1 =i, m =k, Ik, j distinct; 4.10) { = m, k = j, I, k, i distinct; 4.11) [ = j, m = k, I, k, i distinct; 4.12)
l=1, k=3, mk distinct; 4.13) [ = j, k =4, |, k, m distinct.

Case 5: identical to Case 4 due to symmetry.

Case 6: For the term Tj,, there are 4 subcases: 6.1) [, 1, j, m distinct; 6.2) [ = ¢ and I, m, j distinct; 6.3) I = m
and i, 7,0 distinct; 6.4) I = j and 4,1, m distinct. For the term Tb,, there are 13 subcases: 6.1) I,k, 4,7, m
distinct; 6.2) k =14, I, k, j, m distinct; 6.3) | = i, I, k,m, j distinct; 6.4) k = m, I, k, j,4 distinct; 6.5) | = m,
l,k,i,j distinct; 6.6) k = j, [, k,i,m distinct; 6.7) | = j, m,4,l, k distinct; 6.8) | =i, k = m, [, k, j distinct;
6.9) k=14, m=1,1,k,j distinct; 6.10) I = ¢, k = j, I, k, m distinct; 6.11) | = j, i = k, I, k, m distinct; 6.12)
l=m, k=j,1ilk distinct; 6.13) [ = j, k = m, [, k, 4 distinct.

Case T: For the term T}, there are 5 subcases: 7.1) l £ i # j #m # 0; 7.2) l =4 and [, j,m, o are distinct;

7.3) I = j and l,4,m, o are distinct; 7.4) | = m and i, 7,1, 0 are distinct; 7.5) I = o and i, j,m, [ are distinct.
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For the term Ty, there are 21 subcases: 7.1) Il £k £ i £ j#m #0; 7.2) 1 =14, j =k and [,j,m,o are
distinct; 7.3) | = k,j = [ and 4,7, m, o0 are distinct; 7.4) | = i,k = m and 14, j, m, 0 are distinct; 7.5) i = k,
Il = m and i, j,m,o0 are distinct; 7.6) | =i, k = o and 4, j, m, 0 are distinct; 7.7) i = k, l = o and ¢, j,m,0
are distinct; 7.8) [ = j, k = m and 4, j,m, o are distinct; 7.9) j = k, [ = m and 4, j, m, o are distinct; 7.10)
l=j, k=oandi,jm,o are distinct; 7.11) j = k, I = 0 and i, j,m, 0 are distinct; 7.12) [ = m, k = o and
1,7, m, o0 are distinct; 7.13) m =k, | = o and 1, j, m, o are distinct; 7.14) i = k, I, k, j, m, o are distinct; 7.15)
i=1,1,k j,m,o are distinct; 7.16) j = k, I, k,i,m, o are distinct; 7.17) I = j, I, k,i,m, 0 are distinct; 7.18)
m =k, l,k,i,j,0 are distinct; 7.19) m =1, I, k, 1, j, 0 are distinct; 7.20) o = k, I, k, 1, j, m are distinct; 7.21)

l=o,l,k, 1,7, m are distinct.
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Appendix 2

TABLE 1 AVERAGE BIAS(x1072)(B), STANDARD DEVIATION(S) AND ROOT MEAN
SQUARED ERROR(R) WITH PANEL DATA MODELS AND J = 2

n = 100 my(x) ma(x) ms(x)
estimators B S R B S R B S R
LLE 335 336 336 392 333 335 1.078  .349 .356
HU1 -709 472 474 721 467 477 -10.294 519 569
HU2 315 338 .338 175 .333  .335 420 .352 .358
RWC 322 284 285 318 281 285 1449 294 .306
2SLL 278 27T 278 268 275 278 1.042 289 .298
FHU1 =707 463 465 755 460 .470 -9.999 .506 .551

FHU2 329 337 337 163 333 .335 431 351 357
FRWC 327 285 286 .320 282 .286  1.451  .296 .308
F2SLL 289 280 .280 .271 277 280 1.056  .291 .300

n = 150 mq(z) ma(x) ms(z)
estimators B S R B S R B S R
LLE -020 271 272 -118 270 .2v4 1371 285 .295
HU1 -496 373 375 -416 374 385 -9.795 423 479
HU2 093 271 272 304 273 276 906  .289 .297
RWC -.047 228 230 -.121 229 .236 1.694 242 .257
2SLL -.051 223 224 -162 .225 .230 1.364 .238 .249
FHU1 -.502 368 370 -.409 .370 .381 -9.597 419 471
FHU2 102 271 271 297 272 276 931 289 .297

FRWC -.048 229 231 -120 .230 .236 1.689 .243 .257
F2SLL -.054 224 225 -158 226 .231 1.365 .239 .250

n = 200 my(x) ma(x) ms(x)
estimators B S R B S R B S R
LLE -.348 237 237 -.638 .237 .240 .120 249 256
HU1 =397 330 335 203 .334 348 -10.232 376 451
HU2 -.604 237 237 -955 .239 241 .062 247 253
RWC -372 198 199 -705 .201 .207 .364 209 221
2SLL =387 194 194 -.652 197 .201 125 204 213
FHU1 -.393 327 331 210 .331 .345 -10.050 .373 .443
FHU2 -.602 .236 .237 -.953 .238 .241 .061 247 253

FRWC -371 199 200 -.706 .202 .207 .365 210 221
F2SLL -383 194 195 -.652 197 .201 129 205 214
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TABLE 2 AVERACE BIAS(B), STANDARD DEVIATION(S) AND ROOT MEAN
SQUARED ERROR(R) wiTH AR(2) MODEL

n =100 m1(x) mo () ms(x)
estimators B S R B S R B S R

LLE 081 227 .227 149 .225 229 510 .245 .252
HU1 -.285 .207 .208 415 .210 .213 -.623 .236 .241
HU2 214 221 221 419 .220 .223  .648 .239 .246
VFF 071 202 .203 .243 .203 .207 .567 .220 .228
2SLL 089  .203 .203 .228 .203 .208 .554 .221 .228
FHU1 -.284 212 212 .357 213 .216 -.838 .243 .248

FHU2 198 221 222 419 220 223 .662 .239 .246
FVFF 069 203 .204 225 204 .209 576 .222 .230
F2SLL 085  .204 .205 .212 .205 .209 .561 .222 .230

n = 200 m1(z) mo(x) ms(x)
estimators B S R B S R B S R
LLE 384 156 .157 011 .162 .166 .452 171 179
HU1 214 146 .147 273 151 155 -.649 .166 .171
HU2 335 153 .154 038  .158 162 418 170 .177

VFF 420 141 142 -.018 145 149 422 154 162
2SLL 424 142 142 -.017 146 .150 419 154 .162
FHU1 230 147 148 264 152 155 -.633 .169 .174
FHU2 347 153 154 015 158 .162 419 170 .176
FVFF 412 141 142 -.029 145 150 435 154 .162
F2SLL 415 142 142 -.023 146 .150 435 154 .163

n = 400 m1(x) mo () ma(x)
estimators B S R B S R B S R
LLE -174 111 112 -102 114 119 332 128 135
HU1 -.484 103 .104 .089 .108 .113 -.513 .125 .128
HU2 -.181 .108 .109 .000 .112 .117 332 .126 .132
VFF -.184 .099 .101 -.113 .102 .109 .297 .114 121
2SLL -.188 .099 .101 -.115 .102 .109 .290 .114 121
FHU1 -.488 .104 .105 .063 .109 .113 -.515 .127 .130
FHU?2 -.193  .108 .109 -.009 .112 .117 327 .126 .132
FVFF -.182 .099 .101 -.113 .103 .109 .295 114 .122

F2SLL -.188 .099 .101 -114 .103 .109 .289 114 .122
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