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1 Introduction

Test for the presence of relevant variables or for omitted variables has been of interest in regression

analysis since it is often used to support, reject an economic theory or considered for model selection.

Conventional tests, including the t and F tests, specify particular parametric forms in the null and

alternative hypothesis, are not consistent or do not have good power since the deviation from the null

does not always lead to the path dictated in the alternative. Nonparametric tests therefore have appeal

to practitioners, given that the test has power in all deviations from the null, see Li and Racine (2007).

Nonparametric test for relevant variables, and for functional form specification, a related topic, has

been the focus of many recent papers, see Hart (1997) for a review of the use of nonparametric regression

methodology in testing the fit of parametric regression models. Fan and Li (1996), Zheng (1996), Li

and Wang (1998), Li (1999), Lavergne and Vuong (2000), Hsiao et al. (2007) and Gu et al. (2007)

propose consistent tests of the functional form, and omitted variables with a kernel based test that is the

sample analog of a moment condition. Ullah (1985) suggests testing for the correct parametric regression

functional form based on the difference between sums of squared residuals. This approach has been

taken in Dette (1999), and Fan and Li (2002) to test a parametric functional form specification. Hardle

and Mammen (1993) construct a test with the integrated squared difference between the parametric and

nonparametric kernel fit, to decide whether the parametric model could be justified. Among others,

Azzalini et al. (1989), Azzalini and Bowman (1993) propose using nonparametric kernel regression to

check the fit of a parametric model with a pseudo likelihood ratio test. Fan et al. (2001) introduce the

generalized likelihood ratio (GLR) tests, which exhibit the Wilks phenomenon and are asymptotically

optimal. They can be used to test the goodness-of-fit for a family of parametric models. Hong and Lee

(2009) propose a loss function based model specification test, which enjoys the good properties of the

GLR test. From a technical perspective, we note that above approaches utilize the fact that the test

statistic is a degenerate U-statistic after proper normalization, and converges at a rate faster than
√
n.

Different techniques have been used in constructing consistent tests for omitted variables. Racine (1997)

proposes a significance test based on nonparametric estimates of partial derivatives, employing pivotal

bootstrapping procedures. Hidalgo (1992) uses random weighting and Gozalo (1993) introduces the

random search procedure, where the test statistic’s distribution is determined by a random term whose

order is larger than the degenerating U-statistic. Yatchew (1992) uses sample splitting to circumvent the
√
n-degeneracy problem in a nested situation, and Lavergne and Vuong (1996) treat the non-nested case.

On a related subject, the goodness-of-fit measure such as coefficient of determination or R2 provides

a concise summary of regression model, i.e., the variability of regressand y explained by the variability

of regressors. Nonparametric estimation of R2 has been considered by, among others, Doksum and

Samarov (1995), and Martins-Filho and Yao (2006). Recently Huang and Chen (2008) propose a R2

estimator based on local polynomial regressions. It has a sample ANOVA decomposition that the total

sum of squares is equal to the explained sum of squares and the residual sum of squares, facilitating the
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interpretability of nonparametric R2 estimations. We think the nonparametric R2 estimators provide

useful statistics for testing many popular hypotheses in econometrics and statistics, and could play an

important role just as R2 plays in the parametric setup. It is well known that many LM-type and residual

based test statistics in the parametric framework can be formulated as nR2 (Green (2000)), where n is

the sample size and R2 is the coefficient of determination from some residual based and parametrically

specified auxiliary regressions. In case the functional form in the auxiliary regressions is misspecified,

these tests may lead to misleading conclusions. The nonparametric R2 estimator allows the functional

form to be flexible, thus avoids misspecifications. It provides the basis to construct nonparametric tests,

as the analogue of the parametric residual based test. For example, Su and Ullah (2012) propose a

nonparametric goodness-of-fit test for the conditional heteroskedasticity.

In this paper, we propose new tests for the presence of continuous relevant variables based on estima-

tors of the nonparametric R2 of a theoretical ANOVA decomposition or the nonparametric coefficient of

determination considered by Doksum and Samarov (1995) in a regression model. Different from Doksum

and Samarov (1995) whose focus is on estimation of R2, where the nonparametric R2 estimator is con-

structed with the leave-one-out local constant estimator and with a weight function that is equal to zero

near the boundary of the support of regressors, we construct the nonparametric R2 estimators R̂2 for

the simple regression and R̂2
G for the multiple regression with a local linear estimator which is known to

possess better boundary properties. In addition, simulation results in Tables 2-4 in Doksum and Samarov

(1995) indicate that nonparametric R2 estimator based on local linear estimators could outperform that

based on leave-one-out local constant estimators. Furthermore, we include an indicator function in the R2

estimators such that they are always within [0, 1], while two of the estimators by Doksum and Samarov

(1995) may be negative or greater than one with some small probability. Focusing on the estimation

of R2 for R2 ∈ (0, 1), their results only imply degenerate normality when R2 = 0 or 1. They mention

in their Remark 2.7 the need to study the terms in the expansions to obtain a meaningful distribution

convergence result, which is a nontrivial task.

Constructing new tests when R2 = 0 under the null hypothesis to assess significance of explanatory

variables is the focus of our paper. First, using the fact that our nonparametric R2 estimators are small

and close to zero under the null that some regressors X are irrelevant, but lie away from zero under

the alternative that X are relevant, we develop the test statistic T̂n based on a properly normalized R̂2.

Under the null (R2 = 0) and a sequence of Pitman local alternatives, T̂n is asymptotically normal at a

rate of nh
1
2
n . Under the global alternative hypothesis (0 < R2 < 1), the asymptotic normality of R̂2 −R2

is obtained at rate
√
n, thus, the rates of convergence are different in both cases. The result enables us to

obtain the consistency of the proposed test. Second, we further propose a Wild bootstrap/bootstrap test

and show that it can approximate the null distribution of the test statistic. These two results enable us

to propose an asymptotic test as well as a bootstrap test based on two estimators considered by Doksum

and Samarov (1995). We obtain their asymptotic properties and compare them via simulations together

with above tests. Third, we propose the generalized nonparametric R2 (R̂2
G) based tests, T̂nG, and the
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bootstrap test T̂ ∗
nG in the multiple regression model, obtain their asymptotic properties, and demonstrate

their validity in testing significant variables theoretically and empirically in simulations.

Our test statistic has the following features. We test a nonparametric null that the variables are

not present against a nonparametric alternative. Our tests do not use either the randomization or the

sample splitting, and deal with the
√
n-degeneracy problem by obtaining the distribution of test statistic

directly at rate nh
d
2
n , where d is the dimension of regressors. The tests are easy to conduct as they are

based on local linear regressions, and they can detect sequences of local alternatives that differ from

the null at the rate of (nh
d
2
n )−

1
2 . The test does not require any knowledge of the true likelihood, nor

does it require homoskedasticity of the regression errors. When we test for the overall significance,

the test is related to the GLR test, but they are numerically different. Under the homoskedasticity

assumption, they have the same asymptotic distribution, and the test exhibits the Wilks phenomenon

and is asymptotically optimal. Simulation result indicates that our test behaves well in finite sample

compared to some alternatives available in the literatures.

The plan of our paper is as follows. We define the R2 estimators and test statistics in Section 2, state

the assumptions and the asymptotic properties of the estimators and tests in Section 3, conduct a Monte

Carlo study to illustrate the tests’ finite sample performance and compare them with other alternatives

in Section 4, and conclude in Section 5. Table 1 is provided in Appendix 1 and the proof of Theorem

6 is relegated to Appendix 2. The statement of three lemmas, the detailed proofs of Theorems 1-5 and

remarks 1 and 2 are collected in a separate Appendix (Yao and Ullah (2013)).

2 A nonparametric R
2 test

2.1 Asymptotic nonparametric R
2 tests

Let’s consider a nonparametric regression model

yt = m(Xt) + εt, t = 1, 2, · · · , n, (1)

where m(Xt) = E(yt|Xt), E(εt|Xt) = 0, V (εt|Xt) = σ2(Xt) and Xt ∈ <d.

For the ease of illustration, we start by considering d = 1 and whether Xt ≡ xt is present. If xt does

not show up, then E(yt|xt) = µ = E(yt). So the null and alternative hypotheses are

H0 : P (E(yt|xt) = µ) = 1, H1 : P (E(yt|xt) = µ) < 1.

UnderH0 that xt is not present inm(xt), any goodness of fit measure should be close to zero. Following

Doksum and Samarov (1995) to construct the nonparametricR2 measure based on the theoretical ANOVA

decomposition of variance, V (y) = V (E(y|x))+E(V (y|x)) = V (m(x))+Eσ2(x), the theoretical coefficient

of determination is R2 = V (E(y|x))
V (y) = V (m(x))

V (y) = 1 − E(y−m(x))2

V (y) . We focus on the local linear estimator

m̂(x) = α̂ for m(x) popularized by Fan (1992) due to its well known desirable properties, where

(α̂, β̂) = argmaxα,β

n∑

t=1

(yt − α− β(xt − x))2K(
xt − x

hn
).
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K(·) : < → < is a kernel function and 0 < hn → 0 as n → ∞ is a bandwidth.

We propose the following nonparametric R2 estimator,

R̂2 =






1 −

1
n

n∑

t=1
(yt − m̂(xt))

2

1
n

n∑

t=1
(yt − ȳ)2






I(

1

n

n∑

t=1

(yt − ȳ)2 ≥ 1

n

n∑

t=1

(yt − m̂(xt))
2). (2)

ȳ is the average of y and I(·) is the indicator function. Note that in general 1
n

∑n
t=1(yt−ȳ)2 6= 1

n

∑n
t=1(yt−

m̂(xt))
2 + 1

n

∑n
t=1(m̂(xt) − ȳ)2. R̂2 resembles the nonparametric R2 estimator η̂2

1 proposed by Doksum

and Samarov (1995). The main differences lie in that we use the local linear estimator which possesses

good boundary properties and include the indicator function I(·) such that R̂2 always takes value in [0, 1],

while η̂2
1, constructed with the leave-one-out local constant estimator and with a weight function that is

equal to zero near the boundary of the support of the regressors, may be negative or greater than one

with some small probability. The smaller the value of R̂2, the worse the fit. In the extreme case that no

regressors in xt can explain yt, we expect a value close to zero in a given sample of {yt, xt}n
t=1.

We construct the test statistic based on a properly centered and scaled R̂2. Specifically, define the

marginal density of xt at x as f(x). Suppose we know f(xt), εt and σ2(x). Define

An = 1
n3h2

n

n∑

t=1

n∑

i=1
t 6=i

K2(xi−xt

hn
)

ε2i
f2(xt)

, A1n = − 2
n2hn

n∑

t=1
K(0)

ε2t
f(xt)

, σ2
φ = 2E σ4(xt)

f(xt)

∫
(2K(ψ) − κ(ψ))2dψ,

with κ(ψ) =
∫
K(x)K(ψ + x)dx as the convolution of kernel function K(·), and VT =

σ2
φ

(V (y))2
. We

construct the infeasible test statistic as

Tn =

nh
1
2
n{R̂2 + I( 1

n

n∑

t=1
(yt − ȳ)2 ≥ 1

n

n∑

t=1
(yt − m̂(xt))

2) A1n+An

1
n

n
P

t=1
(yt−ȳ)2

}
√
VT

.

Under H0 and assumptions in next section, we show in Theorem 1 that Tn asymptotically has a

standard normal distribution, which provides the asymptotic theory to construct hypothesis tests. Here

An and A1n are the “bias” terms used to center R̂2 around zero and σ2
φ/(V (y))2 are the asymptotic

variance of the centered nh
1
2
n R̂2. We need to estimate the unknowns in Tn to implement the test. We

consider the Rosenblatt (1956) density estimator for f(x) as f̂(x) = 1
nhn

n∑

t=1
K(xt−x

hn
). Let ε̃t = yt − ȳ.

We note that under H0, ε̃t can estimate εt at rate
√
n since ȳ is a

√
n consistent estimator for µ. Define

Ân = 1
n3h2

n

n∑

t=1

n∑

i=1
t 6=i

K2(xi−xt

hn
)

ε̃2i
f̂2(xt)

, Â1n = − 2
n2hn

n∑

t=1
K(0)

ε̃2t
f̂(xt)

, V̂T =
σ̂2

φ

( 1
n

n
P

t=1
(yt−ȳ)2)2

,

and1 σ̂2
φ = [ 1

n2

n∑

t=1

n∑

i=1
t 6=i

K(xi−xt

hn
)

ε̃2i ε̃2t
hn f̂2(xt)

](
∫

2(2K(ψ)−κ(ψ))2dψ). We construct the feasible test statistic as

T̂n =

nh
1
2
n{R̂2 + I( 1

n

n∑

t=1
(yt − ȳ)2 ≥ 1

n

n∑

t=1
(yt − m̂(xt))

2) Â1n+Ân

1
n

n
P

t=1

(yt−ȳ)2
}

√

V̂T

. (3)

1An alternative consistent estimator σ̃2
φ = 2

n2

n
P

t=1

n
P

i=1
t 6=i

ε̃2i ε̃2t
hnf̂2(xt)

(2K( xi−xt
hn

) − κ( xi−xt
hn

))2 can also be used in place of σ̂2
φ.
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Inclusion of indicator function I(·) makes sure that the nonparametric R2 estimate is within the range

of zero to one. Since I(.) converges to one in probability as shown in the proof of Theorem 3, we expect

the test statistic without the indicator function is equivalent to T̂n asymptotically in distribution, though

numerically the test statistics are different. We use the residual ε̃t from the null model to define Â1n and

Ân in T̂n. This eliminates the asymptotic “bias” and the test has the right size. Furthermore, T̂n has a

local power as noted later in Theorem 2, and is consistent as shown in Theorem 4.

Doksum and Samarov (1995) have proposed three alternative nonparametric R2 estimators. By

introducing a weight function w(x) supported on a set where the density of x is bounded away from zero,

they consider the weighted R2 measure as η2
w =

R

(m(x)−µy,w)2f(x)w(x)dx
σ2

y,w
, where µy,w =

∫
w(x)yf(x, y)dxdy

and σ2
y,w =

∫
(y − µy,w)2f(x, y)w(x)dxdy. We note that η2

w is also equal to corr2w(m(x), y), the square

of the weighted correlation measure between m(x) and y. The first two R2 estimators are motivated by

η2
w and constructed as η̂2

1 =

1
n

n
P

i=1
w(xi)[2yim̃(xi)−m̃2(xi)]−ȳ2

w

S2
y

, and η̂2
2 =

1
n

n
P

i=1
(m̃(xi)−m̄)2w(xi)

S2
y

, where m̃(xi) =

((n−1)hn)−1 P

j 6=i

yjK(
xj−xi

hn
)

((n−1)hn)−1
P

j 6=i

K(
xj−xi

hn
)

= g̃(xi)

f̃(xi)
is the leave-one-out local constant estimator, m̄ = 1

n

n∑

i=1
m̃(xi)w(xi), and

S2
y = n−1

n∑

i=1
(yi − ȳw)2w(xi) for ȳw = n−1

n∑

i=1
yiw(xi). The third estimator is motivated by corr2w(m(x), y)

and constructed as η̂2
3 =

[ 1
n

n
P

i=1

(m̃(xi)−m̄)(yi−ȳw)w(xi)]
2

1
n

n
P

i=1

(m̃(xi)−m̄)2w(xi)s2
y

.

Now we extend the test T̂n in equation (3), and develop two tests based on η̂2
1 and η̂2

2 for d = 1. Though

the simulation results in Doksum and Samarov (1995) recommend η̂2
1 and η̂2

3 over η̂2
2 when estimating

the nonparametric R2 as η̂2
2 is sensitive to the choice of bandwidth, we find that η̂2

3 can not be directly

used to construct a test statistic as its denominator converges in probability to zero under H0. Based on

leave-one-out local constant estimators, they are T̂1n =
nh1/2[η̂2

1+(S2
y)−1T̂n0]√

σ̂2
φ1/S4

y

and T̂2n =
nh1/2[η̂2

2−(S2
y)−1T̂n0]√

σ̂2
φ2/S4

y

,

T̂n0 = 1
n(n−1)2h2

n

n∑

i=1

n∑

j=1
i 6=j

K2(
xj−xi

hn
)ε̃2j

w(xi)

f̃2(xi)
, σ̂2

φ1 = 1
n2

n∑

t=1

n∑

i=1
t 6=i

K(xi−xt

hn
)

ε̃2i ε̃2t
hn f̃2(xt)

w2(xt)2
∫
(2K(ψ) − κ(ψ))2dψ,

σ̂2
φ2 = 1

n2

n∑

t=1

n∑

i=1
t 6=i

K(xi−xt

hn
)

ε̃2i ε̃2t
hn f̃2(xt)

w2(xt)2
∫
κ2(ψ)dψ and ε̃i = yi − ȳw. The tests bear resemblance to T̂n

as they are based on appropriately centered and scaled R2 estimators. Besides the difference in the R2

estimators, we notice that there is only one “bias” term in T̂in for i = 1, 2 and they are the same except

for the opposite sign. We note that the scaling factors σ̂2
φ1 and σ̂2

φ2 differ only on a constant factor related

to the kernel function, while they deviate from σ̂2
φ in T̂n further in the residuals and the weight function.

Let us consider a more general regression model

yt = m(Xt) + εt, t = 1, 2, · · · , n, (4)

where X′
t = (x1t, x2t)

′ ∈ <d1+d2 , d = d1 + d2, and E(εt|Xt) = 0. Under the null hypothesis that x2t are

irrelevant, we have H0G : P (E(yt|Xt) = E(yt|x1t)) = 1. Thus,

E(yt −E(yt|x1t))
2 = E(yt −E(yt|Xt))

2 +E[E(yt|Xt) − E(yt|x1t)]
2,
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and the last term is equal to zero only when the null hypothesis is true. A generalized version of the

coefficient of determination is R2
G = 1 − E(yt−E(yt|Xt))

2

E(yt−E(yt|x1t))2
in equation (4.9) of Doksum and Samarov

(1995). They use the estimator η̂2
3 to estimate R2

G, but as we point out before, η̂2
3 is not suitable for

constructing the test statistic as its denominator converges to zero under H0G. It motivates us to consider

the generalized nonparametric R2 estimator

R̂2
G =







1 −
1
n

n∑

t=1
(yt − m̂(Xt))

2

1
n

n∑

t=1
(yt − r̂(x1t))2






I(

1

n

n∑

t=1

(yt − r̂(x1t))
2 ≥ 1

n

n∑

t=1

(yt − m̂(Xt))
2),

where m̂(Xt) is the multivariate local linear estimator of m(Xt) = E(yt|Xt). We estimate the conditional

mean r(x1t) = E(yt|x1t) by r̂(x1t) = α̂0, where α̂0 is the local linear estimator constructed from (α̂0, α̂1) =

argmaxα0,α1

∑n
i=1(yi − α0 − (x1i − x1t)α1)

2K1(
x1i−x1t

h1n
), in which K1(·) : <d1 → < is a kernel function,

and 0 < h1n → 0 as n → ∞ is a bandwidth, which is assumed to be the same for all elements in x1t. We

can construct the generalized nonparametric R2 test as

T̂nG =

nh
d
2
n {R̂2

G + I( 1
n

n∑

t=1
(yt − r̂(x1t))

2 ≥ 1
n

n∑

t=1
(yt − m̂(Xt))

2) Â1nG+ÂnG

1
n

n
P

t=1

(yt−r̂(x1t))2
}

√

V̂TG

. (5)

Here, we define the multivariate Rosenblatt (1956) density estimator f̂(Xt) = 1
nhd

n

n∑

i=1

K(Xi−Xt

hn
),

ÂnG = 1
n3h2d

n

n∑

t=1

n∑

i=1
t 6=i

K2(Xi−Xt

hn
)

ε̃2i
f̂2(Xt)

, Â1nG = − 2
n2hd

n

n∑

t=1
K(0)

ε̃2t
f̂(Xt)

, V̂TG =
σ̂2

φG

( 1
n

n
P

t=1
(yt−r̂(x1t))2)2

,

σ̂2
φG = [ 1

n2

n∑

t=1

n∑

i=1
t 6=i

K(Xi−Xt

hn
)

ε̃2i ε̃2t
hd

n f̂2(Xt)
](

∫
2(2K(ψ) − κ(ψ))2dψ), and ε̃t = yt − r̂(x1t).

2.2 Bootstrap tests

The asymptotic distributions of the nonparametric R2 estimators and tests are provided in the next

section. For d = 1, one can perform the test for H0 by comparing the value of T̂n with its asymptotic

critical values. However, many papers have revealed that the asymptotic normal approximation performs

poorly in finite sample settings. Specifically, the consistent nonparametric test often suffers from sub-

stantial finite sample size distortions, as the distribution of the nonparametric test statistic approaches

asymptotically the normal distribution at a slow convergence rate (e.g., Hardle and Mammen (1993), Li

and Wang (1998), Fan et al. (2006), Hsiao et al. (2007), and Gu et al. (2007)). Therefore, we provide a

Wild bootstrap test as a viable alternative for approximating the finite sample null distribution of the

test statistic T̂n. Let ε̂t = yt − m̂(xt) for t = 1, · · · , n. The bootstrap test contains the following steps:

Step 1: generate ε∗t as the wild bootstrap error. For example, ε∗t is generated independently from the

two point distribution F̂t such that ε∗t = aε̂t for a = 1−
√

5
2 with probability p =

√
5+1

2
√

5
, and ε∗t = bε̂t for

b = 1+
√

5
2

with probability 1− p. It is called the wild bootstrap error because we use only single residual

ε̂t to estimate the conditional distribution of εt given xt by F̂t. It does not mimic the iid structure of

{xt, yt}n
t=1. It is easy to verify that EF̂t

(ε∗t ) = 0, EF̂t
(ε∗t )

2 = ε̂2t , and EF̂t
(ε∗t )3 = ε̂3t .
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Step 2: generate y∗t according to the null model, i.e., y∗t = ȳ + ε∗t , for t = 1, · · · , n. Then use the

bootstrap sample {xt, y
∗
t }n

t=1 to estimate m(xt) under H0, which gives µ̂∗ = 1
n

n∑

t=1
y∗t . We define the

bootstrap residual based on H0 as ε∗t,0 = y∗t − µ̂∗ for t = 1, · · · , n.

Step 3: obtain the nonparametric bootstrap residual as ε∗t,b = y∗t −m̂∗(xt), t = 1, · · · , n, where m̂∗(xt)

is the local linear estimate obtained with the bootstrap sample {xt, y
∗
t }n

t=1.

Step 4: compute the bootstrap test statistic

T̂ ∗
n =

nh
1
2
n {R̂2∗+I( 1

n

n
P

t=1

(ε∗t,0)
2≥ 1

n

n
P

t=1

(ε∗t,b)
2)

Â∗
1n+Â∗

n

1
n

n
P

t=1
(ε∗t,0)2

}

√
V̂ ∗

T

, R̂2∗ =



1 −
1
n

n
P

t=1

(ε∗t,b)
2

1
n

n
P

t=1
(ε∗t,0)

2



 I( 1
n

n∑

t=1
(ε∗t,0)

2 ≥ 1
n

n∑

t=1
(ε∗t,b)

2),

Â∗
n = 1

n3h2
n

n∑

t=1

n∑

i=1
t 6=i

K2(xi−xt

hn
)
(ε∗i,0)

2

f̂2(xt)
, Â∗

1n = − 2
n2hn

n∑

t=1
K(0)

(ε∗t,0)
2

f̂(xt)
, V̂ ∗

T =
σ̂2∗

φ

( 1
n

n
P

t=1

(ε∗t,0)
2)2
,

and2 σ̂2∗
φ = [ 1

n2

n∑

t=1

n∑

i=1
t 6=i

K(xi−xt

hn
)
(ε∗i,0)

2(ε∗t,0)
2

hn f̂2(xt)
](

∫
2(2K(ψ) − κ(ψ))2dψ).

Step 5: repeat above four steps B times, and B a large number. Then the original test statistic T̂n

and the B bootstrap test statistics T̂ ∗
n give us the empirical distribution of the bootstrap statistics, which

is then used to approximate the finite sample null distribution of T̂n. The p-value is obtained as the

percentage of the number of times that T̂ ∗
n exceeds T̂n in the B repetitions.

For the tests based on alternative nonparametric R2 estimators, we extend the test T̂ ∗
n and propose

the following bootstrap test T̂ ∗
1n based on T̂1n using ε̂t = yt − m̃(xt) for t = 1, · · · , n.

Step 1: generate ε∗t as in step 1 of the bootstrap test T̂ ∗
n .

Step 2: generate y∗t = ȳw + ε∗t for t = 1, · · · , n. Then use the bootstrap sample {xt, y
∗
t }n

t=1 to estimate

m(xt) under H0, which is ȳ∗w = 1
n

n∑

i=1
y∗i w(xi). Define the bootstrap residual based on H0 as ε∗t,0 = y∗t − ȳ∗w .

Step 3: obtain the nonparametric bootstrap residual as ε∗t,b = y∗t − m̃∗(xt) for t = 1, · · · , n, where

m̃∗(xt) is the leave-one-out local constant estimate obtained with the bootstrap sample {xt, y
∗
t }n

t=1.

Step 4: compute the bootstrap test statistic T̂ ∗
1n =

nh1/2 [η̂∗2
1 +(S∗2

y )−1T̂∗
n0]√

σ̂∗2
φ1/S∗4

y

, with S∗2
y = 1

n

n∑

i=1

(ε∗i,0)
2w(xi),

η̂∗21 =

1
n

n
P

i=1

w(xi)[2y∗
i m̃∗(xi)−m̃∗2(xi)]−ȳ∗2

w

S∗2
y

, T̂ ∗
n0 = 1

n(n−1)2h2
n

n∑

i=1

n∑

j=1

i 6=j

K2(
xj−xi

hn
)(ε∗j,0)

2 w(xi)

f̃2(xi)
, and

σ̂∗2
φ1 = 1

n2

n∑

t=1

n∑

i=1
t 6=i

K(xi−xt

hn
)
(ε∗i,0)

2(ε∗t,0)
2

hn f̃2(xt)
w2(xt)2

∫
(2K(ψ) − κ(ψ))2dψ.

Step 5: as in step 5 of the bootstrap test T̂ ∗
n , with T̂n replaced by T̂1n.

The bootstrap test T̂ ∗
2n based on T̂2n is defined with steps 1-3 as above, but with

Step 4: compute the bootstrap test statistic T̂ ∗
2n =

nh1/2 [η̂∗2
2 −(S∗2

y )−1T̂∗
n0]√

σ̂∗2
φ2/S∗4

y

, with m̄∗ = 1
n

n∑

i=1
m̃∗(xi)w(xi),

η̂∗22 =

1
n

n
P

i=1

(m̃∗(xi)−m̄∗)2w(xi)

S∗2
y

, σ̂∗2
φ2 = 1

n2

n∑

t=1

n∑

i=1
t 6=i

K(xi−xt

hn
)
(ε∗i,0)

2(ε∗t,0)
2

hn f̃2(xt)
w2(xt)2

∫
κ2(ψ)dψ.

Step 5: as in step 5 of the bootstrap test T̂ ∗
n with T̂n replaced by T̂2n.

2An alternative estimator σ̃2∗
φ

= 2
n2

n
P

t=1

n
P

i=1
t 6=i

(ε∗i,0)2(ε∗t,0)2

hnf̂2(xt)
(2K( xi−xt

hn
) − κ( xi−xt

hn
))2 can also be used in place of σ̂2∗

φ
.
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For the test in the general regression model, we construct the bootstrap test T̂ ∗
nG following the five

steps of T̂ ∗
n , where the univariate xt is replaced with Xt, with steps 2 and 4 replaced by

Step 2: generate y∗t = r̂(x1t) + ε∗t according to the null model. The bootstrap sample is {Xt, y
∗
t }n

t=1.

We use the bootstrap sample to estimate m(Xt) = r(x1t) under H0G by r̂∗(x1t), which is obtained with

the local linear estimator by regressing y∗t on x1t. We define the bootstrap residual based on H0G as

ε∗t,0 = y∗t − r̂∗(x1t) for t = 1, · · · , n.

Step 4: compute the bootstrap test statistic T̂ ∗
nG =

nh
d
2
n [R̂∗2

G +
(Â∗

nG+Â∗
1nG)

1
n

n
P

t=1
(ε∗t,0)2

I(·)]

√
V̂ ∗

TG

, for

R̂∗2
G = (1 −

1
n

n
P

t=1
(ε∗t,b)

2

1
n

n
P

t=1

(ε∗t,0)
2
)I(·), Â∗

nG = 1
n3h2d

n

n∑

t=1

n∑

i=1
t 6=i

K2
it

f̂2(Xt)
(ε∗i,0)

2, Â∗
1nG = − 2

n2hd
n
K(0)

n∑

t=1

(ε∗t,0)
2

f̂(Xt)
,

V̂ ∗
TG =

σ̂2∗
φG

( 1
n

n
P

t=1
(ε∗t,0)

2)2
, σ̂2∗

φG = 1
n2

n∑

t=1

n∑

i=1
t 6=i

Kit
(ε∗i,0)

2(ε∗t,0)
2

hd
n f̂(Xt)

∫
2(2K(ψ) − κ(ψ))2dψ, ε∗t,b = y∗t − m̂∗(Xt) and

I(·) = I( 1
n

n∑

t=1
(ε∗t,0)

2 ≥ 1
n

n∑

t=1
(ε∗t,b)

2).

3 Asymptotic properties

We characterize the asymptotic behavior of the test statistics when d = 1 with the following assumptions:

A1. {xt, yt}n
t=1 is independently and identically distributed (IID). A2. 0 < V (y) <∞.

A3. E(ε|x) = 0, V (ε|x) = σ2(x), σ2(x) is continuous at x and Eσ2(x) <∞.

A4. Define the marginal density of x by f(x), we have (1) 0 < Bf ≤ f(x) ≤ B̄f < ∞ for all x ∈ G, G

compact subset of <. (2) ∀x, x′ ∈ G, |f(x) − f(x′)| < mf |x− x′| for some 0 < mf <∞. (3) f(x)
is uniformly continuous at x, ∀x ∈ G.

A5. 0 < Bm ≤ m(x) ≤ B̄m <∞ for all x ∈ G, where m(x) : < → < is a measurable twice continuously
differentiable function in <, |m(2)(x)| < B̄2m <∞ for all x ∈ G.

A6. As n → ∞, nh2
n → ∞, nh6

n → 0.

A7. K(.) : S → < is symmetric density function with compact support S ⊂ < s.t.
(1)

∫
xK(x)dx = 0. (2)

∫
x2K(x)dx = σ2

K <∞.
(3) ∀x ∈ <, |K(x)| < Bk <∞. (4) |ujK(u) − vjK(v)| ≤ ck|u− v|, for j = 0, 1, 2, 3.

A8. For some δ > 0, E(|ε|2+δ|x) <∞, fx|ε(x) <∞, f(x, ε) is continuous around x.

A9. (1) Eσ4(x) <∞. (2) E(ε4i |x) <∞. A10. ED4(x) <∞, D(x) is a continuous function of x.

We assume the conditional variance σ2(x) to be continuous at x in A3, and f(x) and m(x) to be

smooth and bounded in A4 and A5. They enable the use of Taylor expansion. A6 places restriction on

the choice of bandwidth, and they are no more restrictive than that used in a nonparametric regression.

Specifically, an optimal bandwidth in the kernel regression of order O(n− 1
5 ) can be used. A7 requires a

bounded symmetric kernel function that satisfies Lipschitz condition. Thus, the popular Epanechnikov

kernel can be used. These are commonly used in nonparametric kernel regression (Martins-Filho and

Yao (2007)). A8 places additional conditional moments assumption on ε, which enables us to obtain the

distribution of R̂2 in Theorem 3 with central limit theorem. The null distribution of the test statistics is

8



obtained in Theorem 1 with additional moment assumption in A9. To derive the local power, we need the

function D(x) in the local alternative to have fourth moment and to be smooth in A10, which facilitates

deriving the asymptotic distribution of tests under local alternatives in Theorem 2.

Theorem 1 Under H0 and assumptions A1-A4, A6-A9 we have (a) Tn
d→ N(0, 1). (b) T̂n

d→ N(0, 1).

It shows that asymptotically the unknown items could be replaced with the estimates and T̂n behaves

similarly to Tn. It provides basis for us to conduct hypothesis tests. For example, we can compare T̂n

with the one sided critical value z1−α, i.e., the (1−α)th percentile from the standard normal distribution.

We reject the null when T̂n > z1−α at the α significance level.

Next, we examine the asymptotic local power of the test. Define the sequence of Pitman local

alternatives as H1(ln) : m(xt) = µ + lnD(xt), where ln → 0 as n → ∞. D(xt) is a non-constant

continuous function, indicating the deviation of m(xt) from the constant.

Theorem 2 Under H1(
1

q

nh
1
2
n

) and assumptions A1-A4, A6-A10, we have

1. Tn
d→ N(V (D(x))√

σ2
φ

, 1). 2. T̂n
d→ N(V (D(x))√

σ2
φ

, 1).

From Theorem 2, we note that the local power of the test T̂n satisfies P (T̂n ≥ z1−α|H1(
1

q

nh
1
2
n

)) →

1 − Φ(z1−α − V (D(x))√
σ2

φ

) as n → ∞, where Φ(·) is the cumulative distribution function of the standard

normal distribution. It implies the test has non-trivial asymptotic power against local alternatives that

deviate from the null at the rate of (nh
1
2 )−

1
2 . The power increases with the magnitude of V (D(x))√

σ2
φ

. By

taking a large bandwidth we can make the magnitude of the alternative (of order ln) against which the

test has non-trivial power arbitrarily close to the parametric rate of n− 1
2 . Hong and Lee (2009) and

Fan et al. (2001) show that when a local linear smoother is used to estimate m(·) under H1(ln) and

the bandwidth is of order n−2/9, the GLR test can detect local alternatives with rate ln = O(n−4/9),

which is optimal according to Lepski and Spokoiny (1999). By Theorem 2, with hn = O(n−2/9), we

note ln = O(n−4/9), thus the test T̂n achieves the optimal convergence rate as well, and it is a powerful

nonparametric test procedure. The choice of hn is consistent with what we assume in A6.

Under fixed alternative H1 that m(xt) 6= µ, we obtain the asymptotic normal distribution for R̂2.

Theorem 3 Under the alternative H1 and assumptions A1-A8,
√
n(R̂2 − R2)

d→ N(0,
E(W2

t )
V (y)2

), where

Wt = ε2t − Eσ2(xt)
V (yt)

(yt − E(yt))
2.

Note E(W 2
t ) is a global measure by the IID assumption A1 and the bias of R̂2 vanishes asymptotically

with assumption A6. The result complements Doksum and Samarov (1995) by providing the asymptotic

distribution of R̂2 constructed from the local linear estimator, and allows the construction of confidence

interval for R2, which measures the fit of the model. It provide useful information about the type II

error of the test at any particular point of the alternative, if the test accepts the null hypothesis. This is

particularly important for the application of a goodness-of-fit test, since the acceptance of the null will

lead to a subsequent data analysis adapted towards the model under H0, so it is desirable to estimate

the corresponding probability of an error of this procedure at any particular point in the alternative. For

example, at significance level α, we reject H0 if T̂n > Z1−α, or fail to reject H0 if T̂n ≤ Z1−α for the test

9



statistic T̂n defined in equation (3). So we fail to reject H0 when

R̂2 − I(
1

n

n∑

t=1

(yt − ȳ)2 ≥ 1

n

n∑

t=1

(yt − m̂(xt))
2)

Â1n + Ân

1
n

n∑

t=1
(yt − ȳ)2

≤ Z1−α

√

V̂T

nh
1
2
n

.

Given the result in Theorem 3, for a particular point in H1 : E(yt|xt) = m(xt) and R2 6= 0. So the

probability of type II error is approximated with Φ(
√

n
r

E(W 2
t )

V (y)2

(
Z1−α

√
V̂T

nh
1
2
n

− R2)), since Â1n and Ân are of

order Op(
1

nhn
) each. It also helps to establish the global consistency of the test T̂n in Theorem 4 below.

Theorem 4 Under H1, and assumptions A1-A9, we have P (T̂n > cn) → 1, for any positive constant

cn = o(nh
1
2
n ). Thus the T̂n test is consistent.

Theorem 5 Assume assumptions A1-A9, we have T̂ ∗
n

d→ N(0, 1) conditionally on W ≡ {xt, yt}n
t=1.

It indicates the bootstrap provides an asymptotic valid approximation to the null limit distribution

of T̂n. Theorem 5 holds regardless of whether H0 is true. When H0 is true, the bootstrap procedure

will lead asymptotically to correct size of the test, since T̂n converges in distribution to the same N(0, 1)

limiting distribution under H0 as in Theorem 1. When H0 is false, T̂n will converge to infinity as shown

in the proof of Theorem 4, but asymptotically the bootstrap critical value is still finite for any significance

level α different from 0. Thus P (T̂n > T̂ ∗
n) → 1 and bootstrap methods is consistent.

Remark 1: We state the asymptotic properties of the alternative tests, where the proof is sketched in

Yao and Ullah (2013). (1) With conditions 1-7 in Doksum and Samarov (1995), R1-R4 in Yao and Ullah

(2013) and H0, T̂in
d→ N(0, 1) for i = 1, 2. (2) With conditions 1-7, R1-R5 and H1, P (T̂in > cn) → 1 for

any positive constant cn = o(nh
1/2
n ). Thus, the T̂in tests are consistent for i = 1, 2. (3) With conditions

1-7, R1-R5, T̂ ∗
in

d→ N(0, 1) conditionally on W = {xt, yt}n
t=1 for i = 1, 2.

Now we provide the properties for tests in the more general case (d > 1). For a generic function g(x1t),

we define g(·) ∈ Cv1

1 if g(x1t) is v1−1 times continuously differentiable, with its (v1−1)th order derivative

uniformly continuous on G1, and supx1t∈G1
| ∂j

∂xj
1t

g(x1t)| < ∞ ∀j = 1, · · · , v1 − 1. Here G1 is a compact

subset of <d1 . Similarly, we denote a generic function g(Xt) ∈ Cv if g(Xt) is v − 1 times continuously

differentiable, with its (v− 1)th order derivative uniformly continuous on G, a compact subset of <d and

supXt∈G | ∂j

∂Xj
t

g(Xt)| <∞ ∀j = 1, · · · , v − 1. We introduce the following additional assumptions.

B0. (1) {Xt, yt}n
t=1 is IID. Xt ∈ <d for d < 8 and yt ∈ <. (2) 0 < E(yt − E(yt|x1t))

2 < ∞. (3) For
εt = yt −m(Xt), E(εt|Xt) = 0, V (εt|Xt) = σ2(Xt), 0 < E(ε2t ) <∞, and σ2(Xt) ∈ Cv.

B1. (1) Define the marginal density of x1t as f1(x1t), and 0 < Bf1
≤ f1(x1t) ≤ B̄f1 <∞ for all x1t ∈ G1.

∀x1t, x1τ ∈ G1, |f1(x1t) − f(x1τ )| < mf1 ||x1t − x1τ || for some 0 < mf1 <∞. f1(x1t) ∈ Cv1

1 .

(2)Define the marginal density of Xt as f(Xt), and 0 < Bf ≤ f(Xt) ≤ B̄f < ∞ for all Xt ∈ G.
∀Xt, Xτ ∈ G, |f(Xt) − f(Xτ )| < mf ||Xt −Xτ || for some 0 < mf <∞. f(Xt) ∈ Cv.

B2. 0 < Br ≤ r(x1t) ≤ B̄r <∞ for all x1t ∈ G1, where r(x1t) : <d1 → <, and r(x1t) ∈ C
max{v,v1}
1 .

B3. As n→ ∞, (1) nh2d1

1n → ∞, and nh
d
2
nh

2v1

1n → 0. (2)
hd

n

h
2d1
1n

→ 0. (3) nh2d
n → ∞, and nh

d
2
nh2v

n → 0.

B4. (1) K1(.) : S1 → < is kernel function of order v1, with compact support S1 ⊂ <d1 such that
|K1(x)| < Bk1 <∞. |ujK1(u) − vjK1(v)| ≤ ck1 ||u− v||, for j = 0, 1, 2, 3.
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(2) K(.) : S → < is kernel function of order v, with compact support S ⊂ <d such that |K(x)| <
Bk <∞. |ujK(u) − vjK(v)| ≤ ck||u− v||, for j = 0, 1, 2, 3.

B5. 0 < Bm ≤ m(Xt) ≤ B̄m <∞ for all Xt ∈ G, where m(Xt) : <d → <, and m(Xt)) ∈ Cv.

B6. E(ε4t |Xt) <∞, fX|ε(X) <∞, f(X, ε) is continuous around X.

B7. ED4(X) <∞ and D(X) is a continuous function of X.

B0, B6 and B7 are the multivariate version of assumptions A1-A3 and A8-A10, except that we restrict

attention to the case d < 8 and we assume σ2(·) to be a smooth function. The conditions in B1, B2

and B5 assume the smoothness and boundedness for the densities of x1t, Xt and the conditional mean

functions r(x1t), m(Xt). They allow us to perform Taylor expansions on r(x1t) and m(Xt), which shows

up in the generalized test statistic. Assumptions B3 and B4 place further requirements on the bandwidth

choices and kernel functions, allowing us to use a higher order kernel to control the order of the bias or

variance terms introduced in the estimation. Specifically, B3(1) and (2) control the bias and variance

terms when estimating r(x1t), while B3(3) controls the bias term when estimating m(Xt). If d > 2d1, h1n

and hn can be of the same order, and v = v1 can be used for simplicity. The assumptions are similar in

spirit to those imposed in Lavergne and Vuong (2000). As indicated in the asymptotic properties below,

the estimation of r(·) does not have impacts on the asymptotic distribution.

Theorem 6 provides the theoretical results for the generalized test statistics. Specifically, (I) gives the

asymptotic null distribution of T̂nG, (II) characterizes its asymptotic local power, and (III) shows the

global consistency of T̂nG. The use of the bootstrap test T̂ ∗
nG is justified with result (IV).

Theorem 6

(I) Assuming B0-B4 and B6, under H0G, we have T̂nG
d→ N(0, 1).

(II) Assuming B0-B4, B6 and B7, under the Pitman local alternativeH1G(ln) : m(Xt) = r(x1t)+lnD(Xt),

where ln = n−1/2h
−d/4
n , we have T̂nG

d→ N((σ2
φG)−1/2E[D(Xt) − E(D(x1t, x2j)|x1t)]

2, 1), where σ2
φG =

E
σ4(Xt)
f(Xt)

2
∫
(2K(ψ) − κ(ψ))2dψ.

(III) Assuming B0-B6, under H1G that E(yt|Xt) = m(Xt), we have P (T̂nG > cn) → 1 for any positive

constant cn = o(nh
d/2
n ). Thus the T̂nG test is consistent.

(IV) Assuming B0-B6, we have T̂ ∗
nG

d→ N(0, 1) conditionally on W = {Xt, yt}n
t=1.

Remark 2: With homoskedasticity and bounded support for X, the bootstrap test T̂ ∗
nG can be simply

implemented by (i) In step 1, generate ε∗t as the bootstrap error. For example, we resample with replace-

ment from centered {ε̂t}n
t=1 to obtain {ε∗t}n

t=1. (ii) Follow steps 2-3, using ε∗t defined in (i). (iii) Calculate

only R̂∗2
G in step 4. (iv) Step 5: repeat steps 1-4 B times, then use the original R̂2

G and the B bootstrap

test statistics R̂∗2
G to obtain the empirical distribution of the bootstrap statistics. The finite sample null

distribution of T̂ ∗
nG is the same as the empirical distribution in step 5 above. This is due to the fact the

other items in T̂ ∗
nG are independent of the DGP characteristics under the null and homoskedasticity, so

we do not need to use the Wild bootstrap to preserve the heteroskedasticity structure.
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4 Monte Carlo Study

We provide a Monte Carlo study to implement our proposed test statistics and illustrate their finite

sample performances relative to several popular nonparametric significance test statistics. We follow Gu

et al. (2007) and Lavergne and Vuong (2000) to consider the following data-generating processes:

DGP0 : yt = 1 + β0zt + β1z
3
t + ut,

DGP1 : yt = 1 + β0zt + β1z
3
t + γ1xt + ut, and

DGP2 : yt = 1 + β0zt + β1z
3
t + γ2sin(2πxt) + ut.

(6)

zt and xt are IID uniform on [−1, 1] and ut is from a normal N(0, σ2(xt)). DGP0 corresponds to the null,

where xt is irrelevant. So we investigate the size of tests with DGP0. We follow Fan and Li (2000) to call

DGP1, DGP2 a low and a high frequency alternative, respectively, under which we can compare the power

of tests. DGP2 is used in Fan and Li (2000) to demonstrate that a smoothing test can be more powerful

than a non-smoothing test against high-frequency alternatives. Since E(xt) = E(sin(2πxt)) = 0, E(yt|zt)

remains the same across all data generating processes. {γ1, γ2} are set to be {0.5, 1}.
We consider two data generating processes described by (6). The simple regression model is denoted

by (S), where we set {β0, β1} = {0, 0}, and σ2(x) = x2. The conditional heteroskedasticity is present and

zt is omitted in (S), and the null and alternative hypothesis correspond to H0 and H1, respectively. The

multiple regression model is denoted by (M), where {β0, β1} = {−1, 1}, and σ2(x) = 1. So zt is present

with homoskedasticity, and the null and alternative are H0G and H1G, respectively.

The implementation of our test statistics requires the choice of bandwidths hn and h1n. To make

a fair comparison, we choose the same bandwidth sequence for all tests. Under (S), we select ĥn with

cR(xt)n
−1/3, where R(·) is the interquartile range. Under (M), ĥ1n is selected as R(zt)n

−1/4+2δ, ĥn for

zt is R(zt)n
−1/4+δ, and ĥn for xt is cR(xt)n

−1/4+δ, where δ = 0.01 is utilized to satisfy the assumption

B3. We consider the constant c to be 0.5, 1 and 2 to investigate the sensitivity of results to the smoothing

parameter’s choice, where we follow Lavergne and Vuong (2000) to use similar bandwidth for the regressor

zt that is common to both the null and alternative. We utilize the Epanechnikov kernel with support

[−
√

5,
√

5], i.e., K(u) = 3
4
√

5
(1 − 1

5
u2)I(|u| ≤

√
5) in (S) and the product of the Epanechnikov kernel in

(M). The above choices of bandwidth and kernel function satisfy our assumptions A6, A7, B3 and B4.

Under (S), we consider our tests T̂n, T̂ ∗
n , the four alternative tests T̂1n, T̂ ∗

1n, T̂2n, T̂ ∗
2n proposed in

section 2, λn, Ĵn and Ĵ∗
n. We use the weight function w(x) = I(f̂(x) ≥ 0.01) as in Doksum and Samarov

(1995) for T̂1n, T̂ ∗
1n, T̂2n and T̂ ∗

2n. λn is the GLR test by Fan et al. (2001), motivated with normal error

term and constructed as λn = n
2 ln

RSS0

RSS1
(≈ n

2 (RSS0

RSS1
− 1) under the H0), where RSS0 =

n∑

t=1
(yt − ȳ)2, and

RSS1 =
n∑

t=1
(yt−m̂(xt))

2, also see Ullah (1985). It is somewhat related to our test as they are constructed

with the sum of squared residuals (RSS) from H0 and H1. One can show in testing overall significance

and with homoskedasticity, they have the same asymptotic distribution, but they are always different

numerically. Our test T̂n can be constructed directly without simulations, while the GLR test is generally

implemented with simulations. Ĵn and Ĵ∗
n are based on equations (5) and (9) in Gu et al. (2007), where

we modify them so that their first stage estimation can simply be replaced by a sample mean under H0.
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Under (M), we include our test T̂nG and T̂ ∗
nG implemented as in Remark 2,3 and five alternatives Ĵn,

Ĵ∗
n, Ĵw,n, Ĵ∗

w,n and T̂lv . The alternative tests are based on H0G such that E(yt|zt, xt) = E(yt|zt). Thus

let vt = yt−E(yt|zt), H0G implies E(vt|zt, xt) = 0. Note J = E([E(vt|zt, xt)]
2f(zt, xt)) ≥ 0, and J = 0 if

and only if H0G is true, where f(zt, xt) is the joint density of zt and xt. Ĵn and Ĵ∗
n are considered in Fan

and Li (1996), Zheng (1996), and Gu et al. (2007). Ĵn in equation (5) of Gu et al. (2007) is the sample

analog of J and replaces the unknown E(vt|zt, xt) and f(zt, xt) with the leave-one-out kernel estimates.

The bootstrap version Ĵ∗
n is provided in their equation (9). The density-weighted test statistic based on

J has the advantage that the density function does not have to be bounded away from zero. The sample

analog version is Ĵw,n in their equation (6) and the bootstrap version is Ĵ∗
w,n in equation (12). We follow

their simulation to choose the product standard normal kernel, the rule-of-thumb bandwidth sequences

and multiply the bandwidths for smoothing zt and xt by the constant c indicated above to examine

the sensitivity of test results. T̂lv by Lavergne and Vuong (2000) page 578 is also based on the term J

above and it substantially reduces the bias of the test. We use their equation (2.2) as their asymptotic

variance estimator, which is computationally less demanding. We follow their suggestion to choose the

product Epanechnikov kernel, the rule-of-thumb bandwidth sequences and multiply the bandwidth for xt

the constant c to investigate the sensitivity of test result to the bandwidth’s choice.

We consider two sample sizes, 100 with 1000 repetitions, and 200 with 500 repetitions. For all the

bootstrap test statistics, the bootstrap repetition times B is fixed to be 399. We summarize the experiment

results in terms of empirical levels of rejections for each test statistics at the significance level α = 0.05 in

Table 1 in Appendix 1. The top two panels are for (S) and the bottom two for (M). The results for DGP0

correspond to the size of tests, since the null hypothesis is maintained. We provide evidences about the

power of tests in DGP1 with the low frequency alternative and in DGP2 with high frequency alternative.

When the sample size increases from 100 to 200, there is weak evidence that the size of each test

improve towards the designated level, especially under (S), but the power of each test increases signifi-

cantly in DGP1 and DGP2. The observation confirms our results in Theorems 1, 4, 5 and 6 that T̂n, T̂ ∗
n ,

T̂nG and T̂ ∗
nG are consistent. It is consistent with the results in Gu et al. (2007), Lavergne and Vuong

(2000) and Fan et al. (2001) that the other test statistics considered are consistent as well. By examining

results for DGP1 and DGP2, we find the expected result that it is harder to conduct test in the multiple

regression context (M) than the simple regression (S), as the power of test statistics in (M) is smaller than

that in (S). The performance of the tests is indeed sensitive to the choice of c in the bandwidth, though

the impact seems to be in a nonlinear fashion and differ across different test statistics for the size under

DGP0, consistent with that in above mentioned papers. Being oversized in general, the performance of

T̂nG seems to be relatively more sensitive to c in (M), while that of T̂ ∗
nG is fairly robust. There are weak

evidence that the power of each test increases with c under GDP1, but decreases with c under GDP2. It

3Since x and z are independent, then H0G implies E(y|x) = E[E(y|x, z)|x] = E[E(y|z)|x] = E(y) = µ, H0 and H1

in section 2.1 can be used, thus T̂n and T̂ ∗
n are valid test statistics. In this case, we only need to select the bandwidth

parameter for x and perform a single nonparametric regression of y on x to conduct the tests. We use T̂nG and T̂ ∗
nG to

provide a fair comparison since all the alternative tests involve regressions with multiple regressors.
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is easy for all to reject the null under the high frequency alternative in DGP2 relative to DGP1.

To facilitate the comparison in terms of the size, we insert a (1) or (2) on the test’s upper right corner

to indicate that it is the closest or the second closest to the target significance level. In (S), the best

performing tests are T̂ ∗
2n, followed by T̂ ∗

n , by T̂n, λn, or T̂ ∗
1n, then by T̂1n. Ĵn and T̂2n are fairly undersized.

Ĵ∗
n improves over Ĵn, but not significantly. In (M), our bootstrap test T̂ ∗

nG clearly outperforms the others

in terms of being closest to the desired target size. The next best is T̂lv , followed by Ĵ∗
w,n, and by Ĵ∗

n .

The asymptotic tests Ĵn and Ĵwn are fairly undersized, while T̂nG is oversized. The observation here is

consistent with Gu et al. (2007), which show that in finite sample Ĵ∗
n and Ĵ∗

w,n substantially improve

upon Ĵn and Ĵw,n. It is also consistent with Lavergne and Vuong (2000) that T̂lv significantly improves

the performance over Ĵn and Ĵw,n. The results indicate that T̂lv competes well with the bootstrap tests

Ĵ∗
n and Ĵ∗

w,n. Overall, our proposed bootstrap test statistic T̂ ∗
nG captures the desired target size well

compared with Ĵ∗
n, Ĵ∗

w,n and T̂lv in (M), while T̂ ∗
n and T̂n are fairly satisfactory when compared with

other alternatives in the (S), and the bootstrap tests T̂ ∗
2n, T̂ ∗

1n or λn are valuable competitors.

Now we compare the power with a low frequency alternative in DGP1. In (S), all tests exhibit power

close to one and the difference is relatively small, with Ĵn showing slightly lower power that others in

small sample. In (M), the best tests are frequently Ĵ∗
n, Ĵ∗

w, or T̂nG, followed closely by T̂ ∗
nG. Their powers

are much larger than those of T̂lv , Ĵn and Ĵw,n. With the high frequency alternative in DGP2, the power

of all tests are much closer to one, with exceptions on Ĵn and Ĵw,n in (M). In (S), T̂1n, T̂
∗
1n, T̂2n and T̂ ∗

2n

seem to be influenced more by the bandwidth. In (M), the relative performance of the tests are similar

to what we observe in DGP1, where the only exception occurs when c = 2 and T̂lv performs better.

Based on above observation, we conclude that our proposed bootstrap test statistics T̂ ∗
n and T̂ ∗

nG

perform well in the finite sample study. Their sizes under the null hypothesis are close to the target level.

T̂ ∗
n , together with λn, T̂ ∗

2n and T̂ ∗
1n, exhibit reasonable power in (S), while T̂ ∗

nG and T̂nG, together with

Ĵ∗
n and Ĵ∗

w,n demonstrate much larger empirical power than the rest in (M). We found that T̂nG’s size

performance is relatively sensitive to the choice of bandwidth, so we recommend the bootstrap tests T̂ ∗
n

and T̂ ∗
nG rather than the asymptotic tests. The newly proposed tests T̂ ∗

1n and T̂ ∗
2n show good size and

power performances in simple regression, which might deserve further investigation in the general set-up.

5 Conclusion

We propose nonparametric R2 based tests for the presence of relevant variables in a regression model.

Under the null hypothesis that the variables are irrelevant, we establish their asymptotic normality at

rate nh
d
2
n . Our test is consistent against all alternatives and detects local alternatives that deviate from

the null at rate (nh
d
2
n )−

1
2 . We further propose the Wild bootstrap/bootstrap test to approximate the null

distribution. The asymptotic normality of the nonparametric R2 estimator at rate
√
n is also established

under the alternative hypothesis, which facilitate inference with the nonparametric R2 estimator. We

illustrate their finite sample performance in a Monte Carlo study. The bootstrap tests capture the size

well, exhibit reasonable power, and provide viable alternatives that complement other tests available.
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Appendix 1: Table

Table 1: Empirical levels of rejections with α = 5%,((S), σ2(x) = x2) and
((M), σ2 = 1). Size of test statistics for DGP0(Null). Power of test statistics for

DGP1 (low frequency alternative) and DGP2 (high frequency alternative).

(S) n = 100 DGP0 DGP1 DGP2

σ2(x) = x2 c = 0.5 1 2 0.5 1 2 0.5 1 2

T̂n .065 .070 .047(1) .957 .982 .994 1 1 .913

T̂ ∗
n .072 .061 .054(2) .953 .980 .993 1 1 .903

Ĵn .019 .014 .006 .919 .964 .971 1 1 .920

Ĵ∗
n .042 .019 .005 .952 .966 .965 1 1 .887
λn .062 .060 .039 .951 .981 .993 1 1 .899

T̂1n .056(2) .039 .011 .954 .980 .989 1 1 .300

T̂ ∗
1n .062 .059(2) .035 .956 .987 .997 1 1 .410

T̂2n .034 .020 .005 .970 .980 .960 1 1 .175

T̂ ∗
2n .054(1) .049(1) .032 .982 .991 .994 1 1 .527

(S) n = 200 DGP0 DGP1 DGP2

σ2(x) = x2 c = 0.5 1 2 0.5 1 2 0.5 1 2

T̂n .062 .058(2) .082 1 .998 1 1 1 1

T̂ ∗
n .048(2) .048(1) .076 1 .998 1 1 1 1

Ĵn .022 .020 .020 1 .998 1 1 1 1

Ĵ∗
n .030 .022 .020 1 .998 1 1 1 1

λn .052(2) .048(1) .072(2) 1 .998 1 1 1 1

T̂1n .042 .030 .028(2) 1 .998 1 1 1 .980

T̂ ∗
1n .054 .052(1) .074 1 .998 1 1 1 .988

T̂2n .028 .024 .016 1 .998 1 1 1 .896

T̂ ∗
2n .050(1) .048(1) .064(1) 1 1 1 1 1 .996

(M) n = 100 DGP0 DGP1 DGP2

σ2 = 1 c = 0.5 1 2 0.5 1 2 0.5 1 2

T̂nG .027 .120 .077 .193 .623 .696 .910 .820 .409

T̂ ∗
nG .073 .053(1) .051(1) .383 .489 .606 .986 .698 .321

T̂lv .035(1) .040(2) .025 .203 .308 .319 .935 .945 .337

Ĵn .002 .008 .000 .202 .278 .133 .955 .425 .018

Ĵ∗
n .068(2) .070 .060(2) .540 .628 .696 .996 .899 .361

Ĵw,n .006 .008 .000 .207 .276 .146 .948 .436 .023

Ĵ∗
w,n .065(1) .063 .064 .519 .588 .678 .996 .887 .342

(M) n = 200 DGP0 DGP1 DGP2

σ2 = 1 c = 0.5 1 2 0.5 1 2 0.5 1 2

T̂nG .134 .144 .098 .760 .906 .908 1 1 .780

T̂ ∗
nG .050(1) .050(1) .042(1) .652 .820 .860 1 .998 .660

T̂lv .036(2) .028(2) .024(2) .420 .566 .622 1 1 .982

Ĵn .006 .002 .002 .568 .688 .544 1 .996 .140

Ĵ∗
n .072 .072(2) .082 .774 .890 .914 1 1 .746

Ĵw,n .004 .004 .002 .560 .650 .544 1 .996 .146

Ĵ∗
w,n .064(2) .072(2) .080 .768 .880 .900 1 1 .724
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Appendix 2

Below we outline the proof of Theorem 6 only. The proof of Theorems 1-5 and remarks 1 and 2 are

provided in a separate Appendix (Yao and Ullah (2013)), which is attached.

Theorem 6: Proof.

(I) We observe that under H0G, yt = r(x1t) + εt and E(εt|x1t) = 0, thus

1
n

n∑

t=1
(yt − m̂(Xt))

2 = 1
n

n∑

t=1
ε2t − 2

n

n∑

t=1
(m̂(Xt) − r(x1t))εt + 1

n

n∑

t=1
(m̂(Xt) − r(x1t))

2.

Since m̂(Xt) is the local linear estimator, for 0d a d× 1 vector of zeros, we can write

m̂(Xt) − r(x1t) = 1
nhd

n

n∑

i=1

(1, 0′d)S
−1
n (Xt)(1, (

Xi−Xt

hn
))′K(Xi−Xt

hn
)yi∗, Sn(Xt) =

(
s0n(Xt) s1n(Xt)
s′1n(Xt) s2n(Xt)

)

,

sjn(Xt) = 1
nhd

n

n∑

i=1

K(Xi−Xt

hn
)(Xi−Xt

hn
)j for j = 0, 1, s2n(Xt) = 1

nhd
n

n∑

i=1

K(Xi−Xt

hn
)(Xi−Xt

hn
)′(Xi−Xt

hn
), yi∗ =

yi − r(x1t) − (Xi −Xt)[r
(1)′(x1t), 0

′
d2

)]′ = εi + (1/2)(x1i − x1t)r
(2)(x1it)(x1i − x1t)

′, and x1it = λix1i +

(1 − λi)x1t for λi ∈ (0, 1). Define I1(Xt) = 1
nhd

nf(Xt)

n∑

i=1
K(Xi−Xt

hn
)εi(1 + op(1)) and

I2(Xt) = 1
2nhd

nf(Xt)

n∑

i=1
K(Xi−Xt

hn
)(x1i − x1t)r

(2)(x1it)(x1i − x1t)
′(1 + op(1)), we follow Theorem 1 (a)’s

proof step (2) to obtain m̂(Xt) − r(x1t) = I1(Xt) + I2(Xt) and

1
n

n∑

t=1
(yt − m̂(Xt))

2 = 1
n

n∑

t=1
ε2t − 2

n

n∑

t=1
(I1(Xt) + I2(Xt))εt + 1

n

n∑

t=1
(I1(Xt) + I2(Xt))

2.

We show in sequence the following results

(i) 1
n

n∑

t=1
(yt − m̂(Xt))

2 = 1
n

n∑

t=1
ε2t − 2

n

n∑

t=1
I1(Xt)εt + 1

n

n∑

t=1
I2
1 (Xt) + op((nh

d/2
n )−1), which follows from

(1)− 2
n

n∑

t=1
I2(Xt)εt = op((nh

d/2
n )−1).(2) 1

n

n∑

t=1
I2
2 (Xt) = op((nh

d/2
n )−1).(3) 1

n

n∑

t=1
I1(Xt)I2(Xt) = op((nh

d/2
n )−1).

(ii) 1
n

n∑

t=1
(yt−r̂(x1t))

2 = 1
n

n∑

t=1
ε2t − 2

n

n∑

t=1
(r̂(x1t)−r(x1t))εt+

1
n

n∑

t=1
(r̂(x1t)−r(x1t))

2 = 1
n

n∑

t=1
ε2t +op((nh

d/2
n )−1).

(iii) ÂnG −AnG = op((nh
d
2
n )−1), Â1nG −A1nG = op((nh

d
2
n )−1), and V̂TG − VTG = op(1).

Let AnG = 1
n3h2d

n

n∑

t=1

n∑

i=1
t 6=i

K2(Xi−Xt

hn
)

ε2i
f2(Xt)

, A1nG = − 2
n2hd

n

n∑

t=1
K(0)

ε2t
f(Xt)

, A2nG = − 2
n2hd

n

n∑

t=1

n∑

i=1
t 6=i

K(Xi−Xt

hn
) εiεt

f(Xt)
,

VTG =
σ2

φG

(Eε2t )2
for σ2

φG = E σ4(Xt)
f(Xt)

2
∫
(2K(ψ) − κ(ψ))2dψ, and for Kij = K(

Xi−Xj

hn
),

A3nG = 1
n(n−1)

n∑

t=1

n∑

i=1
t 6=i

[ εiεt

hd
n
E( 1

hd
nf2(Xj)

KijKtj |Xt, Xi) + εtεi

hd
n
E( 1

hd
nf2(Xj)

KtjKij|Xi, Xt)].

We can write 2
n

n∑

t=1
I1(Xt)εt = 2

n2

n∑

t=1

n∑

i=1

1
hd

nf(Xt)
Kitεiεt(1 + op(1)) = −(A1nG + A2nG)(1 + 0p(1)), and

we can follow Theorem 1 (a)’s proof step (2)(ii) to obtain

1
n

n∑

t=1
I2
1 (Xt) = 1

n3h2d
n

n∑

t=1

n∑

i=1

n∑

j=1

KitKjt
εiεj

f2(Xt)
(1 + op(1)) = (AnG +A3nG)(1 + op(1)).

Furthermore, we follow Theorem 1 (a)’s proof step (3) to obtain

nh
d/2
n (A2nG +A3nG)

d→ N(0, σ2
φG). So results (i) and (ii) above give

nh
d/2
n ( 1

n

n∑

t=1
(yt − r̂(x1t))

2 − 1
n

n∑

t=1
(yt − m̂(Xt))

2 + (AnG + A1nG)(1 + op(1)))
d→ N(0, σ2

φG). Since (ii)

implies 1
n

n∑

t=1
(yt − r̂(x1t))

2 p→ Eε2t > 0, I( 1
n

n∑

t=1
(yt − r̂(x1t))

2 ≥ 1
n

n∑

t=1
(yt − m̂(Xt))

2)
p→ 1, we obtain

nh
d/2
n [R̂2

G + I( 1
n

n∑

t=1
(yt − r̂(x1t))

2 ≥ 1
n

n∑

t=1
(yt − m̂(Xt))

2) AnG+A1nG

1
n

n
P

t=1

(yt−r̂(x1t))2
]

d→ N(0, VTG). This result and

(iii) give the desired the claim in (I).
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We show the claims (i)-(iii) below.

(i) (1) Define ψnti = 1
hd

nf(Xt)
K(Xi−Xt

hn
)(x1i − x1t)r

(2)(x1it)(x1i − x1t)
′εt, and we can write

− 2
n

n∑

t=1
I2(Xt)εt = − 1

n2

n∑

t=1

n∑

i=1
t<i

[ψnti + ψnit
︸ ︷︷ ︸

φnti

](1+op(1)) = −un(1+op(1)), where un is a U-statistic. Since

E(εt|Xt) = 0, we apply Lemma 1 to obtain un = 1
n

n∑

t=1
E(ψnti|Wt)+Op(n

−1(Eφ2
nti)

1/2) for Wt = (Xt, εt).

Since Eφ2
nti = O(h4

nh
−d
n ), with assumptions B1, B2 and B4, for ψ = (ψ1, ψ2) and λ ∈ (0, 1),

E[E2(ψnti|Wt)] = E[
εth2

n

f(Xt)

∫
K(ψ)ψ1r

(2)(x1t + λhnψ1)ψ
′
1f(x1t + hnψ1, x2t + hnψ2)dψ]2 = O(h2v

n ).

So − 2
n

n∑

t=1
I2(Xt)εt = Op(n

−1/2hv
n) + op((nh

d/2
n )−1). With assumption B3(3), we have the claimed result.

(2) Let ψntij = 1
h2d

n f2(Xt)
K(Xi−Xt

hn
)(x1i−x1t)r

(2)(x1it)(x1i−x1t)
′K(

Xj−Xt

hn
)(x1j−x1t)r

(2)(x1jt)(x1j−x1t)
′,

When t 6= i 6= j, 1
n

n∑

t=1
I2
2 (Xt) = 1

2n3

∑ ∑∑

1=t<i<j=n

φntij is a U-statistic with φntij = ψntij + ψnitj + ψnjit.

We apply Lemma 3 here and use its notations.

First, σ2
3n = Eφ2

ntij = O(h8−2d
n ), thus H

(3)
n = Op((n

−3h8−2d
n )1/2) = op(n

−1). Similarly, σ2
2n ≤

CE[E2(φntij|Wi,Wj)] = O(h8−d
n ). Thus, H

(2)
n = Op((n

−2h8−d
n )1/2) = op((nh

d/2
n )−1) with assumption

B3(3). So we have 1
n

n∑

t=1
I2
2 (Xt) = 1

2(θn + 3
n [

n∑

t=1
ψ1n(Xt) − nθn]) + op((nh

d/2
n )−1).

Second, note ψ1n(Xt) = E(ψntij|Xt)+E(ψnitj|Xt)+E(ψnjit|Xt). With assumptions B1-B4, we have

1
n

n∑

t=1
I2
2 (Xt) = O(h2v

n ) + op((nh
d/2
n )−1) = op((nh

d/2
n )−1).

When t 6= i = j, we can show 1
n

n∑

t=1
I2
2 (Xt) = Op(n

−1h4−d
n ) = op((nh

d/2
n )−1) if d < 8.

(3) Repeated applications of Lemmas 1 and 3 together with assumptions B1-B4 give

1
n

n∑

t=1
I1(Xt)I2(Xt) = Op(n

−1/2hv
n) + op((nh

d/2
n )−1) = op((nh

d/2
n )−1).

(ii) We note from the proof of Theorem 3(2),

r̂(x1t) − r(x1t) = 1

nh
d1
1nf1(x1t)

n∑

i=1
K1(

x1i−x1t

h1n
)εi

+ 1

2nh
d1
1nf1(x1t)

n∑

i=1
K1(

x1i−x1t

h1n
)(x1i − x1t)r

(2)(x1it)(x1i − x1t)
′ +wn(x1t)

= r1(x1t) + r2(x1t) +wn(x1t)
where x1it lie between x1i and x1t, wn(x1t) is of smaller order than r1(x1t) and r2(x1t), so we only focus

on analyzing terms involving r1(x1t) and r2(x1t).

(1) 1
n

n∑

t=1
(r̂(x1t) − r(x1t))

2 ≤ C[ 1
n

n∑

t=1
r21(x1t) + 1

n

n∑

t=1
r22(x1t) + 1

n

n∑

t=1
w2

n(x1t)].

1
n

n∑

t=1
r21(x1t) = 1

n3

n∑

t=1

n∑

i=1

n∑

j=1

1

h
2d1
1n f2

1 (x1t)
K1(

x1i−x1t

h1n
)K1(

x1j−x1t

h1n
)εiεj . We apply Lemmas 1, 2 to obtain

1
n

n∑

t=1
r21(x1t) = Op(n

−1h
−d1/2
1n ) + Op((nh

d1

1n)−1) = op((nh
d/2
n )−1), using B3 that h

d/2
n /hd1

1n = o(1).

1
n

n∑

t=1
r22(x1t) = 1

4n3

n∑

t=1

n∑

i=1
i 6=t

n∑

j=1

j 6=t

1

h
2d1
1n f2

1 (x1t)
K1(

x1i−x1t

h1n
)K1(

x1j−x1t

h1n
)(x1i − x1t)r

2(x1it)(x1i − x1t)
′

×(x1j − x1t)r
2(x1jt)(x1j − x1t)

′.
Expressing above as an U-statistic, applying Lemmas 1 and 3, and using the assumptions B1 and B2

that f1(·) and r(·) are Cv1
1 , we obtain 1

n

n∑

t=1
r22(x1t) = Op(h

2v1
1n ) + op((nh

d1/2
1n )−1) + Op((nh

d1
1n)−1h4

1n).

So in all, we obtain 1
n

n∑

t=1
(r̂(x1t) − r(x1t))

2 = op(n−1h
−d/2
n ) using assumption B3.

17



(2) − 2
n

n∑

t=1
(r̂(x1t) − r(x1t))εt = −2[ 1

n

n∑

t=1
r1(x1t)εt + 1

n

n∑

t=1
r2(x1t)εt + 1

n

n∑

t=1
wn(x1t)εt].

Given the results in Theorem 1, we obtain

1
n

n∑

t=1
r1(x1t)εt = 1

n2

n∑

t=1

n∑

i=1
t 6=i

1

h
d1
1nf1(x1t)

K1(
x1i−x1t

h1n
)εiεt + 1

n2

n∑

t=1

1

h
d1
1nf1(x1t)

K1(0)ε2t

= Op(n
−1h

−d1/2
1n ) +Op((nh

d1

1n)−1) = op(n−1h
−d/2
n ) using assumption B3.

1
n

n∑

t=1
r2(x1t)εt = 1

2n2

n∑

t=1

n∑

i=1
t 6=i

1

h
d1
1nf1(x1t)

K1(
x1i−x1t

h1n
)(x1i − x1t)r

2(x1it)(x1i − x1t)
′εt

= Op(n
−1/2hv1

1n) + op((nh
d1/2
1n )−1) again with assumption B3.

So − 2
n

n∑

t=1
(r̂(x1t) − r(x1t))εt = op(n

−1h
−d/2
n )). (1) and (2) imply the claim in (ii).

(iii) Given that ε̃t − εt = r(x1t) − r̂(x1t) = Op((
lnn

nh
d1
1n

)1/2 + hv1
1n) = Op(L1nG) uniformly over x1t ∈ G1,

we have nh
d/2
n

L1nG

nhd
n

= op(1) with assumption B3 on the bandwidths. We follow the proof in Theorem

1(b) to have the claimed result.

(II) Under the Pitman local alternative H1G(ln), ln = n−1/2h
−d/4
n , m(Xt) = r(x1t) + lnD(Xt).

yil∗ = yi − r(x1t) − lnD(Xt) − (x1i − x1t)r
(1)(x1t)

= εi +
1

2
(x1i − x1t)r

(2)(x1it)(x1i − x1t)
′

︸ ︷︷ ︸

r∗
it

+ln(D(Xi) −D(Xt)), then

m̂(Xt)−(r(x1t)+lnD(Xt)) = 1
nhd

n

n∑

i=1
(1, 0′d)S

−1
n (Xt)(1, (

Xi−Xt

hn
))′K(Xi−Xt

hn
)yil∗ = I1(Xt)+I2(Xt)+I3(Xt).

I1(Xt) and I2(Xt) are defined in (I), and I3(Xt) = ln
nhd

nf(Xt)

n∑

i=1

K(Xi−Xt

hn
)(D(Xi) −D(Xt))(1 + op(1)).

Following the proof of part (I), the claim of (II) follows from the three results below.

(i) 1
n

n∑

t=1
(yt − m̂(Xt))

2 = 1
n

n∑

t=1
ε2t − 2

n

n∑

t=1
I1(Xt)εt + 1

n

n∑

t=1
I2
1 (Xt) + op((nh

d/2
n )−1).

(ii) 1
n

n∑

t=1
(yt − r̂(xit))

2 = 1
n

n∑

t=1
ε2t + l2nE[D(Xt) −E(D(x1t, x2j)|x1t)]

2 + op((nh
d/2
n )−1).

(iii) ÂnG − AnG = op((nh
d
2
n )−1), Â1nG −A1nG = op((nh

d
2
n )−1), and V̂TG − VTG = op(1).

(i) 1
n

n∑

t=1
(yt − m̂(Xt))

2

= 1
n

n∑

t=1
ε2t + 2

n

n∑

t=1
(r(x1t) + lnD(Xt) − m̂(Xt))εt + 1

n

n∑

t=1
(r(x1t) + lnD(Xt) − m̂(Xt))

2

= 1
n

n∑

t=1
ε2t − 2

n

n∑

t=1
I1(Xt)εt − 2

n

n∑

t=1
I2(Xt)εt − 2

n

n∑

t=1
I3(Xt)εt + 1

n

n∑

t=1
I2
1 (Xt) + 1

n

n∑

t=1
I2
2 (Xt)

+ 1
n

n∑

t=1
I2
3 (Xt) + 2

n

n∑

t=1
I1(Xt)I2(Xt) + 2

n

n∑

t=1
I1(Xt)I3(Xt) + 2

n

n∑

t=1
I2(Xt)I3(Xt).

From Part (I)(i) above, we have − 2
n

n∑

t=1
I2(Xt)εt = op((nh

d/2
n )−1), 1

n

n∑

t=1
I2
2 (Xt) = op((nh

d/2
n )−1), and

2
n

n∑

t=1
I1(Xt)I2(Xt) = op((nh

d/2
n )−1). We follow Theorem 2’s proof in part 1 to obtain 2

n

n∑

t=1
I3(Xt)εt =

op(n−1/2ln) = op((nh
d/2
n )−1), 1

n

n∑

t=1
I2
3 (Xt) = op((nh

d/2
n )−1) and 2

n

n∑

t=1
I1(Xt)I3(Xt) = op((nh

d/2
n )−1). So

we only need to show 2
n

n∑

t=1
I2(Xt)I3(Xt) = op((nh

d/2
n )−1).

1
n

n∑

t=1
I2(Xt)I3(Xt) = ln

2
1

n3

n∑

t=1

n∑

i=1
i 6=t

n∑

j=1

j 6=t

1
h2d

n f2(Xt)
K(Xi−Xt

hn
)K(

Xj−Xt

hn
)r∗it(D(Xj ) − D(Xt))(1 + op(1)). By
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Lemma 3 and assumptions B1 − B4,
1
n

n∑

t=1
I1(Xt)I3(Xt) = Op(ln(hv

n + n−1/2)) = op((nh
d/2
n )−1).

(ii) Using the local linear estimator, we define r3(Xt) = ln
nh

d1
1nf1(x1t)

n∑

i=1

K1(
x1i−x1t

h1n
)(D(Xi) − D(Xt)),

then r̂(x1t)− r(x1t)− lnD(Xt) = r1(x1t)+ r2(x1t) + r3(Xt) +wn(x1t), where wn(x1t) is of smaller order.

1
n

n∑

t=1
(yt − r̂(xit))

2 = 1
n

n∑

t=1
ε2t + 2

n

n∑

t=1
(r(x1t) + lnD(Xt) − r̂(x1t))εt + 1

n

n∑

t=1
(r(x1t) + lnD(Xt) − r̂(x1t))

2

= 1
n

n∑

t=1
ε2t − [ 2

n

n∑

t=1
r1(x1t)εt + 2

n

n∑

t=1
r2(x1t)εt + 2

n

n∑

t=1
r3(Xt)εt + 2

n

n∑

t=1
wn(x1t)εt]

+[ 1
n

n∑

t=1
r21(x1t) + 1

n

n∑

t=1
r22(x1t) + 1

n

n∑

t=1
r23(Xt) + 2

n

n∑

t=1
r1(x1t)r2(x1t)

+ 2
n

n∑

t=1
r1(x1t)r3(Xt) + 2

n

n∑

t=1
r2(x1t)r3(Xt)](1 + op(1)).

In (I), 2
n

n∑

t=1
r1(x1t)εt and 2

n

n∑

t=1
r2(x1t)εt are op((nh

d/2
n )−1). With assumption B3 and Lemma 1,

2
n

n∑

t=1
r3(Xt)εt = 2ln

n2

n∑

t=1

n∑

i=1
i 6=t

1

h
d1
1nf1(x1t)

K1(
x1i−x1t

h1n
)(D(Xi) −D(Xt))εt

= op(n
−1/2ln) + op((nh

d/2
n )−1) = op((nh

d/2
n )−1).

In (I), we have 1
n

n∑

t=1
r21(x1t) and 1

n

n∑

t=1
r22(x1t) are op((nh

d/2
n )−1), so 2

n

n∑

t=1
r1(x1t)r2(x1t) = op((nh

d/2
n )−1).

1
n

n∑

t=1
r23(x1t) =

l2n
n3

n∑

t=1

n∑

i=1
i 6=t

n∑

j=1

j 6=t

1

h
2d1
1n f2

1 (x1t)
K1(

x1i−x1t

h1n
)K1(

x1j−x1t

h1n
)(D(Xi) −D(Xt))(D(Xj ) −D(Xt))

= l2nE[D(Xt) −E(D(x1t, x2j)|x1t)]
2 + op((nh

d/2
n )−1), by Lemma 3.

1
n

n∑

t=1
r1(x1t)r3(x1t) = ln

n3

n∑

t=1

n∑

i=1

n∑

j=1

j 6=t

1

h
2d1
1n f2

1 (x1t)
K1(

x1i−x1t

h1n
)K1(

x1j−x1t

h1n
)εi(D(Xj ) −D(Xt))

= op(ln(n−1/2 + (nh
d1/2
1n )−1)) + op((nh

d1/2
1n )−1) = op((nh

d/2
n )−1) with assumption B3.

,

1
n

n∑

t=1
r2(x1t)r3(x1t) = ln

2n3

n∑

t=1

n∑

i=1
i 6=t

n∑

j=1

j 6=t

1

h
2d1
1n f2

1 (x1t)
K1(

x1i−x1t

h1n
)K1(

x1j−x1t

h1n
)r∗it(D(Xj ) −D(Xt))

= op((nh
d/2
n )−1)with similar arguments. Above results imply the claim in (ii).

(iii) Under H1G(ln), ε̃t−εt = −(r̂(x1t)−r(x1t)−lnD(Xt)) = −(r1(x1t)+r2(x1t)+r3(Xt)+wn(x1t)) =

Op(L1nG) + r3(Xt) uniformly over X1t ∈ G1, and r3(Xt) = Op(ln) uniformly over Xt ∈ G. Since

nh
d/2
n

ln
nhd

n
= (nh

3d/2
n )−1/2 = o(1), we follow (I), Theorems 1(b) and 2 to obtain the claimed result.

(III). We note under H1G, yt = m(Xt) + εt. Thus,

1
n

n∑

t=1
(yt − r̂(x1t))

2 = 1
n

n∑

t=1
ε2t − 2

n

n∑

t=1
(r̂(x1t) −m(Xt))εt + 1

n

n∑

t=1
(r̂(x1t) −m(Xt))

2.

− 2
n

n∑

t=1
(r̂(x1t) −m(Xt))εt = − 2

n

n∑

t=1
(r̂(x1t) − r(x1t))εt − 2

n

n∑

t=1
(r(x1t) −m(Xt))εt = op(1) by (I)(ii).

1
n

n∑

t=1
(r̂(x1t) −m(Xt))

2

= 1
n

n∑

t=1
(r̂(x1t) − r(x1t))

2 + 1
n

n∑

t=1
(r(x1t) −m(Xt))

2 + 2
n

n∑

t=1
(r̂(x1t) − r(x1t))(r(x1t) −m(Xt))

2

= E(r(x1t) −m(Xt))
2 + op(1) by (I)(ii) and E(r(x1t) −m(Xt))

2 <∞ by assumption B0.

So we have (1) 1
n

n∑

t=1
(yt − r̂(x1t))

2 = E(ε2t ) + E(r(x1t) −m(Xt))
2 = E(yt −E(yt|x1t))

2 + op(1).

(2) 1
n

n∑

t=1
(yt − m̂(Xt))

2 = 1
n

n∑

t=1
ε2t − 2

n

n∑

t=1
(m̂(Xt) −m(Xt))εt + 1

n

n∑

t=1
(m̂(Xt) −m(Xt))

2

= E(yt − E(yt|Xt))
2 + op(1),

following the arguments in Theorem 3, which is valid under assumptions B0-B6. (1) and (2) implies
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I( 1
n

n∑

t=1
(yt − r̂(x1t))

2 ≥ 1
n

n∑

t=1
(yt − m̂(Xt))

2) ≡ I(·) p→ 1.

Recall the definition of R̂2
G in T̂nG in (5) as R̂2

G = [1 −
1
n

n
P

t=1
(yt−m̂(Xt))

2

1
n

n
P

t=1
(yt−r̂(x1t))2

]I(·), so we obtain R̂2
G

p→ R2
G,

for 0 < R2
G <∞ under assumption B0. Since ÂnG = Op((nh

d
n)−1), Â1nG = Op((nh

d
n)−1) and 1

n

n∑

t=1
(yt −

r̂(x1t))
2 p→ E(yt − E(yt|x1t))

2 > 0, we have T̂nG =

nh
d
2
n {R̂2

G+I(·) Â1nG+ÂnG

1
n

n
P

t=1
(yt−r̂(x1t))2

}

√
V̂T G

=
nh

d
2
n {R2

G+op(1)}√
V̂TG

> cn =

op(nh
d/2
n )) if V̂TG

p→ c for 0 < c <∞.

Recall V̂TG =
σ̂2

φG

( 1
n

n
P

t=1

(yt−r̂(x1t))2)2
. Given result (1) above, we only need to show that

σ̂2
φG/[

∫
2(2K(ψ) − κ(ψ))2dψ] = 1

n2

n∑

t=1

n∑

i=1
t 6=i

1
hd

n f̂2(Xt)
K(Xi−Xt

hn
)ε̃2i ε̃

2
t

p→ c1 for 0 < c1 <∞.

ε̃t − εt = m(Xt) − r̂(x1t) = m(Xt) − r(x1t) − (r̂(x1t)− r(x1t)). r̂(x1t)− r(x1t) = Op(L1nG) uniformly

over x1t ∈ G1, and m(Xt) − r(x1t) 6= 0. These results imply

1
n2

n∑

t=1

n∑

i=1
t 6=i

1

hd
nf̂2(Xt)

K(Xi−Xt

hn
)ε̃2i ε̃

2
t

p→ E(
σ4(Xt)
f(Xt)

) + E(
(m(Xt)−r(x1t))

4

f(Xt)
) + 2E(

(m(Xt)−r(x1t))
2σ2(Xt)

f(Xt)
) = c1,

where 0 < c1 <∞ follows from our assumptions B0 and B1. So we obtain the claim in (III).

(IV). We point out that more complicated expressions show up in the test statistics T̂ ∗
nG. Since

y∗i = r̂(x1i) + ε∗i , and denote K1it = K1(
x1i−x1t

h1n
),

m̂∗(Xt) = (1, 0′d)
1

nhd
n

n∑

i=1
S−1

n (Xt)(1, (
Xi−Xt

hn
))′Kity

∗
i

= [ 1
nhd

nf(Xt)

n∑

t=1
Kitε

∗
i + 1

nhd
nf(Xt)

n∑

t=1
Kitr̂(x1i)](1 + op(1)) = [m∗

1(Xt) +m∗
2(Xt)](1 + op(1)).

r̂∗(x1t) = 1

nh
d1
1nf1(x1t)

n∑

i=1
K1itε

∗
i + 1

nh
d1
1nf1(x1t)

n∑

i=1
K1itr̂(x1i) +w∗

n(x1t)

= r∗1(x1t) + r∗2(x1t) + w∗
n(x1t) where w∗

n(x1t) is of smaller order.
We first obtain the following results.

(1) 1
n

n∑

t=1
(ε∗t,0)

2 = 1
n

n∑

t=1
(y∗t − r̂∗(x1t))

2 = 1
n

n∑

t=1
(ε∗t + r̂(x1t) − r̂∗(x1t))

2

= [ 1
n

n∑

t=1
(ε∗t )

2 + 1
n

n∑

t=1
(r̂(x1t) − r∗2(x1t))

2 + 1
n

n∑

t=1
(r∗1(x1t))

2 + 2
n

n∑

t=1
(r̂(x1t) − r∗2(x1t))ε

∗
t

− 2
n

n∑

t=1
r∗1(x1t)ε

∗
t − 2

n

n∑

t=1
(r̂(x1t) − r∗2(x1t))r

∗
1(x1t)](1 + op(1))

= [ 1
n

n∑

t=1
(ε∗t )

2 + op((nh
d/2
n )−1)](1 + op(1)).

(2) 1
n

n∑

t=1
(ε∗t,b)

2 = 1
n

n∑

t=1
(y∗t − m̂∗(Xt))

2 = 1
n

n∑

t=1
(ε∗t + r̂(x1t) − m̂∗(Xt))

2

= [ 1
n

n∑

t=1
(ε∗t )

2 + 1
n

n∑

t=1
(r̂(x1t) −m∗

2(Xt))
2 + 1

n

n∑

t=1
(m∗

1(Xt))
2 + 2

n

n∑

t=1
(r̂(x1t) −m∗

2(Xt))ε
∗
t

− 2
n

n∑

t=1
m∗

1(Xt)ε
∗
t − 2

n

n∑

t=1
(r̂(x1t) −m∗

2(Xt))m
∗
1(Xt)](1 + op(1))

= 1
n

n∑

t=1
(ε∗t )2 + (A∗

nG + A∗
1nG +A∗

2nG +A∗
3nG)(1 + op(1)) + op((nh

d/2
n )−1),

where A∗
nG = 1

n3h2d
n

n∑

t=1

n∑

i=1
t 6=i

K2
it

f2(Xt)
(ε∗i )

2, A∗
1nG = − 2

n2hd
n
K(0)

n∑

t=1

(ε∗t )2

f(Xt)
, A∗

2nG = − 2
n2hd

n

n∑

t=1

n∑

i=1
t 6=i

Kit

f(Xt)
ε∗t ε

∗
i , and

A∗
3nG = 1

n3h2d
n

n∑

t=1

n∑

i=1

n∑

j=1

t 6=i 6=j

KitKjt

f2(Xt)
ε∗i ε

∗
j = 1

n(n−1)

n∑

t=1

n∑

i=1
t<i

[
ε∗i ε∗t
h2d

n
E(

KijKtj

f2(Xj) |Xt, Xi)+
ε∗t ε∗i
h2d

n
E(

KtjKij

f2(Xj) |Xi, Xt)]+op((nh
d
2
n )−1).
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(3) We obtain (A∗
2nG+A∗

3nG)(S∗
n)−1 d→ N(0, 1) conditioning on W, where φn(Z∗

t , Z
∗
i ) = 1

nhd
n
[− 2

f(Xt)
Kitε

∗
i ε

∗
t−

2
f(Xi)

Ktiε
∗
t ε

∗
i +

ε∗i ε∗t
h2d

n
E(

KijKtj

f2(Xj) |Xt, Xi) +
ε∗t ε∗i
h2d

n
E(

KtjKij

f2(Xj)
|Xi, Xt)], and (S∗

n)2 = E((
n∑

t=1

n∑

i=1
t<i

φn(Z∗
t , Z

∗
i ))2|W ) =

n−2h−d
n σ2

φG + op(n−2h−d
n ), where σ2

φG is defined in (I).

Results (1)-(3) imply nh
d
2
n

nh
d
2
n S∗

n

[ 1
n

n∑

t=1
(ε∗t,0)

2 − 1
n

n∑

t=1
(ε∗t,b)

2 + (A∗
nG +A∗

1nG)(1 + op(1))]
d→ N(0, 1).

Given (1), E( 1
n

n∑

t=1
(ε∗t )

2|W ) = 1
n

n∑

t=1
ε̂2t

p→ Eε2t > 0, and I( 1
n

n∑

t=1
(ε∗t,0)

2 ≥ 1
n

n∑

t=1
(ε∗t,b)

2) ≡ I(·) p→ 1, we

have nh
d
2
n

nh
d
2
n

S∗
n

Eε2t

[R̂∗2
G +

(A∗
nG+A∗

1nG)

1
n

n
P

t=1

(ε∗t )2
I(·)(1 + op(1))]

d→ N(0, 1).

Given the definition of T̂ ∗
nG, we only need to show

(4) Â∗
nG − A∗

nG = op((nh
d
2
n )−1). Â∗

1nG −A∗
1nG = op((nh

d
2
n )−1) and V̂ ∗

TG − [nh
d
2
n

S∗
n

Eε2t
]2 = op(1).

The claim in (IV) follows from (1)-(4) above. (3) is obtained as in Theorem 5’s proof (4). So we only

sketch the key results in (1), (2) and (4) below.

(1) (i) 1
n

n∑

t=1
r∗1(x1t)ε

∗
t = 1

n2

n∑

t=1

n∑

i=1

K1itε∗i ε∗t
h

d1
1nf1(x1t)

= op((nh
d/2
n )−1). Since for t 6= i, V ( 1

n

n∑

t=1
r∗1(x1t)ε

∗
t |W ) =

1
n4

n∑

t=1

n∑

i=1

K2
1itε̂

2
i ε̂2t

h
2d1
1n f2

1 (x1t)
= Op((nh

d1/2
1n )−2), so 1

n

n∑

t=1
r∗1(x1t)ε

∗
t = Op((nh

d1/2
1n )−1). When t = i, 1

n

n∑

t=1
r∗1(x1t)ε

∗
t =

Op((nh
d1
1n)−1). In both cases, 1

n

n∑

t=1
r∗1(x1t)ε

∗
t = op((nh

d/2
n )−1) using assumption B3.

(ii) 1
n

n∑

t=1
(r∗1(x1t))

2 = 1
n3

n∑

t=1

n∑

i=1

n∑

j=1

K1itK1jt

h
2d1
1n f2

1 (x1t)
ε∗i ε

∗
j = op((nh

d/2
n )−1). When t, i, and j are different, we

show that V ( 1
n

n∑

t=1
(r∗1(x1t))

2|W ) = 1
n6

n∑

t=1

n∑

t′=1

n∑

i=1

n∑

j=1

K1itK1jtK1it′K1jt′

h
4d1
1n f2

1 (x1t)f2
1 (x1t′)

ε̂2i ε̂
2
j = Op(n

−2), so 1
n

n∑

t=1
(r∗1(x1t))

2 =

Op(n
−1). When some of the indices are the same, we can show 1

n

n∑

t=1
(r∗1(x1t))

2 = op((nh
d/2
n )−1).

(iii) 2
n

n∑

t=1
(r̂(x1t) − r∗2(x1t))ε

∗
t = op((nh

d/2
n )−1). V ( 2

n

n∑

t=1
(r̂(x1t) − r∗2(x1t))ε

∗
t |W ) = 4

n2

n∑

t=1
(r̂(x1t) −

r∗2(x1t))
2ε̂2t , whose order of magnitude in probability is the same as that of 4

n2

n∑

t=1
(r̂(x1t) − r∗2(x1t))

2ε2t ,

which is less than c
n2

n∑

t=1
(r̂(x1t)−r(x1t))

2ε2t + c
n2

n∑

t=1
(r(x1t)−r∗2(x1t))

2ε2t . The first term is Op(n
−2h

−d1/2
1n )+

Op(n
−1h2v1

1n ) following (I)(ii). r∗2(x1t) − r(x1t) = 1

nh
d1
1nf1(x1t)

n∑

t=1
K1it(r̂(x1i) − r(x1i) + r(x1t) − r(x1t)) =

Op(L1nG) uniformly over x1t ∈ G1, so the second term is Op(n
−1L2

1nG). V ( 2
n

n∑

t=1
(r̂(x1t)−r∗2(x1t))ε

∗
t |W ) =

Op(n
−1(nh

d1/2
1n )−1)+Op(n−1h2v1

1n )+Op(n−1L2
1nG), and by Markov’s inequality, 2

n

n∑

t=1
(r̂(x1t)−r∗2(x1t))ε

∗
t =

Op(n
−1h

−d1/4
1n ) + Op(n

−1/2hv1

1n) + Op(n
−1/2L1nG) = op(n−1h

−d/2
n ) by assumption B3.

(iv) 1
n

n∑

t=1

(r̂(x1t) − r∗2(x1t))
2 ≤ c[ 1

n

n∑

t=1

(r̂(x1t) − r(x1t))
2 + 1

n

n∑

t=1

(r(x1t) − r∗2(x1t))
2 = Op((nh

d1/2
1n )−1) +

Op(h
2v1
1n ) + Op(L

2
1nG) = op(n−1h

−d/2
n ) with similar arguments.

(v) Finally, 2
n

n∑

t=1
(r̂(x1t)−r∗2(x1t))r

∗
1(x1t) ≤ c[ 1

n

n∑

t=1
(r̂(x1t)−r∗2(x1t))

2+ 1
n

n∑

t=1
(r∗1(x1t))

2] = op(n
−1h

−d/2
n ).

Above five results imply the claim in (1).

(2) (i) We expand the sums to obtain that − 2
n

n∑

t=1
(m∗

1(Xt))ε
∗
t = − 2

n

n∑

t=1

n∑

i=1

Kit

f(Xt)
ε∗i ε

∗
t (1 + op(1)) =

(A∗
1nG +A∗

2nG)(1 + op(1)). Similarly we obtain

(ii) 1
n

n∑

t=1
(m∗

1(Xt))
2 = 1

n3h2d
n

n∑

t=1

n∑

i=1

n∑

j=1

KitKjt

f2(Xt)
ε∗i ε

∗
j (1+op(1)) = (A∗

nG +A∗
3nG)(1+op(1))+op((nh

d/2
n )−1).
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(iii) 2
n

n∑

t=1
(r̂(x1t)−m∗

2(Xt))ε
∗
t = op((nh

d/2
n )−1).We obtain V ( 2

n

n∑

t=1
(r̂(x1t)−m∗

2(Xt))ε
∗
t |W ) = 4

n2

n∑

t=1
(r̂(x1t)−

m∗
2(Xt))

2ε̂2t whose order of magnitude is the same as that of 1
n2

n∑

t=1
(r̂(x1t)−m∗

2(Xt))
2ε2t ≤ c[ 1

n2

n∑

t=1
(m∗

2(Xt)−

r(x1t))
2ε2t + 1

n2

n∑

t=1
(r̂(x1t)−r(x1t))

2ε2t ]. The second term is Op(n
−2h

−d1/2
1n )+Op(n−1h2v1

1n ) following (I)(ii).

1
n2

n∑

t=1
(m∗

2(Xt) − r(x1t))
2ε2t

= 1
n2

n∑

t=1
[Op(L1nG) + 1

nhd
nf(Xt)

n∑

i=1

Kit(r(x1i) − r(x1t) − (x1i − x1t)r
(1)(x1t))]

2ε2t (1 + op(1))

= Op(n
−1L2

1nG) + Op(
1

n2

n∑

t=1
I2
2 (Xt)ε

2
t ) = Op(n

−1L2
1nG) + op(n

−1(nh
d/2
n )−1).

.

So 2
n

n∑

t=1
(r̂(x1t)−m∗

2(Xt))ε
∗
t = op((nh

d1/4
1n )−1)+Op(n−1/2hv1

1n)+Op(n
−1/2L1nG)+op(n−1h

−d/4
n ), which

implies the claim in (ii) with assumption B3.

(iv) 1
n

n∑

t=1
(m∗

2(Xt) − r(x1t))
2 = Op(L

2
1nG) +Op(

1
n

n∑

t=1
I2
2 (Xt)) = op((nh

d/2
n )−1).

(v) − 2
n

n∑

t=1
(r̂(x1t) −m∗(Xt))m

∗
1(Xt)

= − 2
n

n∑

t=1
[r̂(x1t) − r(x1t) − 1

nhd
nf(Xt)

n∑

i=1
Kit(r̂(x1i) − r(x1i) + r(x1i) − r(x1t) − (x1i − x1t)r

(1)(x1t)]m
∗
1(Xt)

= {− 2
n

n∑

t=1
[r̂(x1t) − r(x1t)]

1
nhd

nf(Xt)

n∑

i=1

Kitε
∗
i + 2

n

n∑

t=1
[ 1
nhd

nf(Xt)

n∑

i=1

Kit(r̂(x1i) − r(x1i))]
1

nhd
nf(Xt)

n∑

i=1

Kitε
∗
i

+ 2
n

n∑

t=1
I2(Xt)

1
nhd

nf(Xt)

n∑

i=1

Kitε
∗
i }(1 + op(1))

= op((nh
d/2
n )−1) with similar arguments by bounding the conditional variance.

Results in (i)-(v) above give the claim in (2).

(4) We observe that ε∗t,0 = y∗t − r̂∗(x1t) = ε∗t − (r̂∗(x1t) − r̂(x1t)). Since r̂∗(x1t) − r̂(x1t) = r∗1(x1t) +

r∗2(x1t)− r(x1t)+ r(x1t)− r̂(x1t) = r∗1(x1t)+Op(L1nG) uniformly over x1t ∈ G1, and recall the definition

of r∗1(x1t), we write ε∗t,0 = ε∗t − 1

nh
d1
1nf1(x1t)

n∑

i=1
K1itε

∗
i (1 + op(1)). By following the proof in Theorem 5 (5),

we obtain the claimed results.
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Azzalini, A., Bowman, A. W., Härdle, W., 1989. On the use of nonparametric regression for model
checking. Biometrika 76, 1–11.

Dette, H., 1999. A consistent test for the functional form of a regression based on a difference of variance
estimators. Annals of Statistics 27, 1012–1040.

Doksum, K., Samarov, A., 1995. Nonparametric estimation of global functionals and a meaure of the
explanatory power of covariates in regression. Annals of Statistics 23, 1443–1473.

Fan, J., 1992. Design-adaptive nonparametric regression. Journal of the American Satistical Association
87, 998–1004.

Fan, J., Zhang, C., Zhang, J., 2001. Generalized Likelihood Ratio Statistics and Wilks Phenomenon. The
Annals of Statistics 29 (1), 153–193.

Fan, Y., Li, Q., 1996. Consistent model specification tests: omitted variables and semiparametric func-
tional forms. Econometrica 64, 865–890.

Fan, Y., Li, Q., 2000. Consistent model specification tests: kernel-based tests versus Bierens’ ICM test.
Econometric Theory 16, 1016–1041.

22



Fan, Y., Li, Q., 2002. A consistent model specification test based on the kernel sum of squares of residuals.
Econometric Reviews 21, 337–352.

Fan, Y., Li, Q., Min, I., 2006. A Nonparametric Bootstrap Test of Conditional Distributions. Econometric
Theory 22, 587–613.

Gozalo, P. L., 1993. A consistent model specification test for nonparametric estimation of regression
function models. Econometric Theory 9, 451–477.

Green, W. H., 2000. Econometric analysis, 4th Edition. Prentice Hall, New Jersey.

Gu, J., Li, D., Liu, D., 2007. Bootstrap non-parametric significance test. Journal of Nonparametric
Statistics 19, 215–230.

Hardle, W., Mammen, E., 1993. Comparing nonparametric versus parametric regression fits. Annals of
Statistics 21, 1926–1947.

Hart, J. D., 1997. Nonparametric smoothing and lack-of-fit test. Springer, New York.

Hidalgo, J., 1992. A general nonparametric misspecification test. Manuscript, London School of Eco-
nomics.

Hong, Y., Lee, Y.-J., 2009. A loss function approach to model specification testing and its relative
efficiency to the GLR test. Manuscript, Cornell University.

Hsiao, C., Li, Q., Racine, J., 2007. A consistent model specification test with mixed discrete and contin-
uous data. Journal of Econometrics 140, 802–826.

Huang, L.-S., Chen, J., 2008. Analysis of variance, coefficient of determination and F -test for local
polynomial regression. The Annals of Statistics 36, 2085–2109.

Lavergne, P., Vuong, Q., 2000. Nonparametric significance testing. Econometric Theory 16, 576–601.

Lavergne, P., Vuong, Q. H., 1996. Nonparametric selection of regressors. Econometrica 64, 207–219.

Lepski, O., Spokoiny, V. G., 1999. Minimax nonparametric hypothesis testing: the case of an inhomoge-
neous alternative. Bernoulli 5, 333–358.

Li, Q., 1999. Consistent model specification tests for time series econometric models. Journal of Econo-
metrics 92, 101–147.

Li, Q., Racine, J., 2007. Nonparametric econometrics: theory and practice. Princeton University Press,
Princeton, NJ.

Li, Q., Wang, S., Aug. 1998. A simple consistent bootstrap test for a parametric regression function.
Journal of Econometrics, 145–165.

Martins-Filho, C., Yao, F., 2006. A Note on the use of V and U statistics in nonparametric models of
regression. Annals of the Institute of Statistical Mathematics 58, 389–406.

Martins-Filho, C., Yao, F., 2007. Nonparametric frontier estimation via local linear regression. Journal
of Econometrics 141, 283–319.

Racine, J., 1997. Consistent significance testing for nonparametric regression. Journal of Business and
Economic Statistics 15, 369–378.

Rosenblatt, M., 1956. Remarks on some nonparametric estimates of a density function. Annals of Math-
ematical Statistics 27, 832–837.

Su, L., Ullah, A., 2012. A nonparametric goodness-of-fit-based test for conditional heteroskedasticity.
Forthcoming in Econometric Theory.

Ullah, A., 1985. Specification analysis of econometric models. Journal of Quantitative Economics 1, 187–
209.

Yao, F., Ullah, A., 2013. Appendix to a nonparametric R-square test for the presence of relevant variables.
Economics Department, West Virginia University.
URL http://community.wvu.edu/ fy006/hp/npr2app.pdf

Yatchew, A., 1992. Nonparametric regression tests based on least squares. Econometric Theory 8, 435–
451.

Zheng, J. X., 1996. A consistent test of functional form via nonparametric estimation techniques. Journal
of Econometrics 75, 263–289.

23


