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Abstract

In this paper we propose a nonparametric regression frontier model that assumes no specific
parametric family of densities for the unobserved stochastic component that represents efficiency in
the model. Nonparametric estimation of the regression frontier is obtained using a local linear
estimator that is shown to be consistent and +/nh, asymptotically normal under standard
assumptions. The estimator we propose envelops the data but is not inherently biased as free
disposal hull—FDH or data envelopment analysis—DEA estimators. It is also more robust to
extreme values than the aforementioned estimators. A Monte Carlo study is performed to provide
preliminary evidence on the estimator’s finite sample properties and to compare its performance to a
bias corrected FDH estimator.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The specification and estimation of production frontiers and the measurement of the
associated efficiency level of production units has been the subject of a vast and growing
literature since the seminal work of Farrell (1957). The main objective of this literature can
be stated simply. Consider (y, x) € R, x SRE where y describes the output of a production
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unit and x describes the D inputs used in production. The production technology is given
by the set T = {(y,x) € Ry x ‘.R’z : x can produce y} and the production function or
frontier associated with 7' is p(x) = sup{y € Ry : (y,x) € T} for all x € ‘Rf. Let (yy, x0) €
T characterize the performance of a production unit and define 0< Ry = % <1 to be this
unit’s (inverse) Farrell output efficiency measure. The main objective in production and
efficiency analysis is, given a random sample of production units N, = {(Y,, X,)}}_, that

share a technology 7, to obtain estimates of p(-) and by extension thﬁ for
t=1,...,n. Secondary objectives, such as efficiency rankings and relative performance of
production units, can be subsequently obtained.

There exists in the current literature two main approaches for the estimation of p(-). The
deterministic approach, represented largely in econometrics by Charnes et al. (1978) data
envelopment analysis (DEA) and Deprins et al. (1984) free disposal hull (FDH), is based
on the assumption that all observed data lie in the technology set 7, i.e., P((Y,, X,) €
T) =1 for all ¢. The stochastic approach, pioneered by Aigner et al. (1977) and Meeusen
and van den Broeck (1977), allows for random shocks in the production process and
consequently P((Y,, X;)¢ T)>0. Although more appealing from an econometric perspec-
tive, it is unfortunate that identification of stochastic frontier models requires strong
parametric assumptions on the joint distribution of (Y, X;) and/or p(-). These parametric
assumptions may lead to misspecification of p(-) and invalidate any optimal derived
properties of the proposed estimators (generally maximum likelihood), and consequently
lead to erroneous inference. In addition, as recently pointed out by Baccouche and Kouki
(2003), estimated inefficiency levels and firm efficiency rankings are sensitive to the
specification of the joint density of (Y, X;). Hence, different density specifications can lead
to different conclusions regarding technology and efficiency from the same random
sample. Such deficiencies of stochastic frontier models have contributed to the popularity
of deterministic frontiers."

Deterministic frontier estimators have gained popularity among applied researchers
because their construction relies on very mild assumptions on the technology 7.
Specifically, there is no need to assume any restrictive parametric structure on p(-) or
the joint density of (Y, X;). In addition to a flexible nonparametric structure, the
appeal of DEA and FDH estimators has increased since Gijbels et al. (1999) and Park et al.
(2000) have obtained their asymptotic distributions under some fairly reasonable
assumptions.’

Although much progress has been made in both estimation and inference in the
deterministic frontier literature, we believe that alternatives to DEA and FDH estimators
may be desirable. Recently, Knight (2001) has proposed a local polynomial frontier
estimator that envelops the data as a smooth function of input usage, not a discontinuous
or piecewise linear function as in the case of FDH and DEA estimators, respectively.
Unfortunately, Knight’s estimator has no explicit asymptotic distribution making it
difficult to conduct inference and to correct its inherent bias. Similarly, the piecewise
polynomial estimator of Hall et al. (1998) does not have an explicit asymptotic distribution
rendering difficult its practical use. Cazals et al. (2002) have proposed an estimator based
on the joint survivor function that is more robust to extreme values and outliers than

ISee Seifford (1996) for an extensive literature review that illustrates the widespread use of deterministic
frontiers.
%See the earlier work of Banker (1993) and Korostelev et al. (1995) for some preliminary asymptotic results.
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DEA, FDH and Knight’s estimators, and does not suffer from their inherent biasedness.’
Girard and Jacob (2004) proposed a smooth kernel estimator of the frontier based on a
convolution representation that extends the estimator of Geffroy (1964). The asymptotic
properties of their estimator, however, are obtained for the case where the data N, is a
Poisson process, rather than under the more conventional setting where N, is a random
sample.

In this paper we propose a new deterministic production frontier regression model and
estimator that can be viewed as an alternative to the methodologies currently available.
Our frontier model shares the flexible nonparametric structure that characterizes the data
generating processes (DGP) underlying the results in Gijbels et al. (1999) and Park et al.
(2000), but in addition our estimation procedure has some general properties that can
prove desirable vis-a-vis the estimators currently available in the literature. First, as in
Cazals et al. (2002) and Girard and Jacob (2004), the estimator we propose is more robust
to extreme values and outliers than those proposed by Hall et al. (1998) and Knight (2001)
as well as DEA and FDH. Second, our frontier estimator is a smooth function of input
usage. Third, the construction of our estimator is fairly simple as it is in essence a local
linear kernel estimator, avoiding the constrained optimization problems in Knight (2001)
and Hall et al. (1998). Fourth, although our estimator envelops the data, it is not
intrinsically biased as DEA/FDH, Knight’s estimator or the piecewise polynomial
estimator of Hall et al. (1998), therefore no bias correction is necessary. In addition to
these general properties, we are able to establish the asymptotic normality and consistency
of our production frontier and efficiency estimators under assumptions that are fairly
standard in the nonparametric statistics literature. Contrary to Girard and Jacob (2004)
our asymptotic normality result is obtained for the case where N, is a random sample
rather than a Poisson process. We view our proposed estimator not necessarily as a
substitute to estimators that are currently available but rather as an alternative that can
prove more adequate in some contexts.

In addition to this introduction, this paper has five more sections. Section 2 describes
the model in detail, contrasts its assumptions with those in the past literature and
describes the estimation procedure. Section 3 provides supporting lemmas and the
main theorems establishing the asymptotic behavior of our estimators. Section 4
contains a Monte Carlo study that implements the estimator, sheds some light on its
finite sample properties and compares its performance to the popular bias corrected FDH
estimator of Park et al. (2000). Section 5 provides a conclusion and some directions for
future work.

2. A nonparametric frontier model

The construction of our frontier regression model is inspired by DGP for multiplicative
regression. Hence, rather than placing primitive assumptions directly on (Y, X,) as it is
common in the deterministic frontier literature, we place primitive assumptions on (X, R,)
and obtain the properties of Y, by assuming a suitable regression function. We assume that
Z;=(X:,R;) is a D + 1-dimensional random vector with common density g for all 7 €
{1,2,...} and that {Z,} forms an independently distributed sequence. We assume there are

3Bias corrected FDH and DEA estimators are available but their asymptotic distributions are not known.
Again, see Gijbels et al. (1999) and Park et al. (2000).
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observations on a random variable Y, described by
R
Y, =o(X) —. (M
OR

R, is an unobserved random variable, X, is an observed random vector taking values
in ‘.Rf, a(-): ‘.Rf — (0,00) is a measurable function and og is an unknown parameter.
In the case of production frontiers we interpret Y, as output, p(:) = ‘;LR) as the produc-
tion frontier with inputs X,, and R, as efficiency with values in [0,1]. R, has the
effect of contracting output from optimal levels that lie on the production frontier.
The larger R, the more efficient the production unit because the closer the realized output
is to that on the production frontier. In Section 3 we provide a detailed list of assumptions
that is used in obtaining the asymptotic properties of our estimator, however, in defining
the elements of the model and the estimator, two important conditional moment
restrictions on R, must be assumed: E(R;|X;=x)=uz where O<up<l and
V(R,|X, = x) = o%. It should be noted that by construction 0 <o% < iz < 1. The parameter
Ug 1s interpreted as a mean efficiency given input usage and the common technology 7 and
or 1s a scale parameter for the conditional distribution of R, that also locates the
production frontier. These conditional moment restrictions together with Eq. (1) imply
that E(Y,| X, =x) =’;—§o(x) and V(Y,|X, = x) = c*(x). The model can therefore be
rewritten as

(R, — pg)

R
Y, =a(X,) (7; = bo(X)) + (X)) = -

=m(X,) + o(X))e, (2

where b =18, g = 2288 (X ) = bo(X,), E(e,|X, = x) = 0 and V(e,|X, = x) = 1.*

The frontier model described in (2) has a number of desirable properties. First, the
frontier p(-) = %) is not restricted to belong to a known parametric family of functions
and therefore there is no a priori undue restriction on the technology 7. Second, although
the existence of conditional moments are assumed for R,, no specific parametric family
of densities is assumed, therefore bypassing a number of potential problems arising
from misspecification. Third, the model allows for conditional heteroscedasticity of Y,
as has been argued for in previous work (Caudill et al., 1995; Hadri, 1999) on
production frontiers. Fourth, the structure of the proposed frontier allows for
the convenient separation of its shape, represented by o(-), and location represented
by or in the estimation process. Finally, the structure of (2) is similar to regression
models studied by Fan and Yao (1998), therefore lending itself to similar estimation via
kernel procedures. This similarity motivates the estimation procedure that is described
below.

The nonparametric local linear frontier estimation we propose can be obtained in three
easily implementable stages. For any x € YRQ we first obtain m(x; h,) = & where

(a, ﬁ) = argmin i(Y, — - B(X, — x))zK (th— x>.
wp =1 n

K(): RP? - N is a density function and 0</, — 0 as n — oo is a bandwidth. This is
the local linear kernel estimator of Stone (1977) and Fan (1992) with regressand

Y, and regressors X,. In the second stage, we follow Hall and Carroll (1989) and

“For simplicity in notation, we will henceforth write E(-| X, = x) or V(-|X, = x) simply as E(-|X,) or V(-|X,).
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Fan and Yao (1998) by defining ¢, = (Y, — m(X; h,,))2 to obtain 6'2(x; h,) = &;, where

A R Xi—x
(i1, o) = argmin 3 (e, =1 — (X, = 0P K (h_)
2P =1 n

which provides an estimator &(x;h,) = (6%(x; hn))l/ 2. In the third stage, an estimator
for op,

% —1
— 7t
SR(hn) = (Eg,agn &(Xz;hn)>

is obtained. We emphasize that the estimator sz depends on the bandwidth 7,
through 6(X; h,). Furthermore, in what follows it is desirable to distinguish the bandwidth
used in the first two stages of estimation, which we will denote by #,, from that used in
defining sg, which we will denote by g,, where 0<g, — 0 as n — oo. Therefore, we
represent the production frontier estimator at x € R” by p(x; by, g,) = i(;(:”)) Note that by
construction, provided that the chosen kernel K is smooth, p(x; h,,g,) is a smooth estimator
that envelops the data (no observed pair (Y,, X,) lies above (p(X; hy, g,,), X)) but may lie
above or below the true frontier p(X,). As such, our estimator does not suffer from the
inherent downward bias of DEA/FDH, the estimator proposed by Knight (2001) or Hall
et al. (1998).

As pointed out above, in model (2) the parameter og provides the location
of the production frontier, whereas its shape is given by o(-). Since besides the condi-
tional moment restrictions on R, there are no restrictions other than R, € [0,1], the
observed data {(Y,, X,)}_, may or may not be dispersed close to the frontier, creating a
difficulty in locating the frontier, i.c., estimating og. The estimation of oz by sg implies
that there exists one observed production unit whose production plan lies on the estimated
frontier, and by consequence the forecasted value for R, associated with this unit is
identically one.

The problem of locating the production frontier is also inherent in obtaining the
estimator proposed by Knight (2001), as well as DEA and FDH estimators. By
construction, these estimators require that multiple production units be efficient, i.e., lic on
the frontier. This results from the fact that these estimators are defined to be minimal
functions (with some stated properties, e.g., convexity and monotonicity in the case of
DEA and FDH) that envelop the data. Hence, if the stochastic process that generates the
data is such that (Y, X,) lie away from the true frontier, e.g., ugz and og are small, these
estimators will provide a downwardly biased location for the frontier. It is this dependency
on boundary data points that makes these estimators highly susceptible to extreme values,
not only as determinants of the location but also the shape of the frontier. This is in
contrast with the estimator we propose which by construction is not a minimal enveloping
function of the data. Furthermore, we note that although the location of the frontier in our

model depends on the estimator sg, if estimated efficiency levels are defined as R, = Se(g) Y

(X 13hn)°
the efficiency ranking of firms, as well as their estimated relative efficiency % for t,7 =
1,2,...,n are entirely independent of the estimator sz. In the next section we investigate

the asymptotic properties of our estimators.
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3. Asymptotic characterization of the estimators
3.1. Asymptotic normality

In this section we establish the asymptotic properties of the frontier estimator described
above. We first provide a sufficient set of assumptions for the results we prove below and
provide some contrast with the assumptions made in Gijbels et al. (1999) and Park et al.
(2000) to obtain the asymptotic distribution of DEA and FDH estimators. We focus on
DEA and FDH because these are by far the most used deterministic frontier estimators in
applied econometrics and productivity analysis.

Assumption Al. (1) Z,=(X,,R) for t=1,2,...,n is an independent and identically
distributed sequence of random vectors with density g. We denote by gy (x) and gg(r) the
common marginal densities of X, and R,, respectively, and by ggx(r; X) the common
conditional dens1ty of R, given X. (2) 0<B, <gy(¥)< <B,, <oo forall x € G, G a compact
subset of ©® = x2,(0,00), which denotes the Cartesian product of the intervals (0, 00).

Assumption A2. (1) ¥, = o(X)E. (2) R €[0,1], X, € 6. (3) B(RIX,)) = g, V(RIX,) =
0% (4) 0<B,<a(x)<B, <00 for all x € . (5) ¢°(): ® - R is a measurable twice
continuously dlfferentlable function in @ with second derivative denoted by ¢°?(x). (6)
|6>®(x)| < By, for all x € O.

Assumptions Al(1) and A2 imply that {(Y,, X,)}_, forms an iid sequence of random
variables with some joint density ¢(y,x). That {(Y,, X,)},_, forms an iid sequence
corresponds to assumption Al in Park et al. (2000) and is also assumed in Gijbels et al.
(1999). Given that 0<og<1, A2(4) and A2(5) are implied by assumption AIIIl in Park
et al. (2000). A2(6) is implied by Al in Gijbels et al. (1999) and AIII in Park et al. (2000).
The following Assumption A3 is standard in nonparametric estimation and involves only
the kernel K(-). We observe that A3 is satisfied by commonly used kernels such as
Epanechnikov, Biweight and others.

Assumption A3. K(x): Sp — R is a symmetric density function with bounded support
Sp Cc WP satisfying: (1) fo(x) dx=0. (2) [¥*K(x)dx = aK (3) for all xe R,
|K(x)|<Bg<oo. (4) for all x,x" € RP, |K(x) — K(X')|<ml|x — x| for some 0<m<oo,
where || - || is the Euclidean norm.

Assumption A4. For all x,x € 0, |gy(x) — gx(x")| <myl|x — x'|| for some 0<my<oo.

A Lipschitz condition such as A4 is also assumed in Park et al. (2000). We note that
obtaining consistency as well as the asymptotic distribution of DEA and FDH estimators
for the production frontier and associated firm efficiency depends crucially on the
assumption (AII in Park et al., 2000) that the joint density ¢(y, x) of (Y, X) is positive at
the frontier.” In reality, there might be situations in which this assumption is too strong.
In contrast, we assume that R, takes values in the entire interval [0, 1], but there is no need
for the joint density of the data to be positive at the frontier to obtain consistency or
asymptotic normality of the frontier estimator. However, asymptotic normality of the
frontier, as is made explicit in Theorem 2 requires a particular assumption on the speed of

By consequence this assumption is also crucial in obtaining the asymptotic distribution of the estimator
proposed by Cazals et al. (2002), as verified in their Theorem 3.2.
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convergence of max;<,<, R, to 1 as n — oo, which clearly implies some restriction on the
shape of gp.

Lastly, we make some general comments on our assumptions. As alluded to before the
assumption that Z, are iid does not prevent the model from allowing for conditional
heteroscedasticity of Y,. Also, we do not assume that X, and R, are contemporaneously
independent as it is usually done in stochastic frontier models. All that is assumed here is
that conditional first and second centered moments are independent of input usage.

The main difficulties in obtaining the asymptotic properties of &(x;h,) and by
consequence those of % derive from the fact that 6(x;#h,) is based on regressands
that are themselves residuals from a first stage nonparametric regression. This problem
is in great part handled by the use of our Lemma 3 on U statistics, which generalizes
Lemma 3.1 in Powell et al. (1989) for the case where the U-statistic’s kernel is of dimension
greater than two. This lemma is of general interest and can be used whenever there is a
need to analyze some specific linear combinations of nonparametric kernel estimators. For
simplicity, but without loss of generality, all of our proofs are for D = 1. For D>1 all of
the results hold with appropriate adjustments on the relative speed of n, hf and ¢? S

Lemma 1 establishes the order in probability of certain linear combinations of kernel
functions that appear repeatedly in component expressions of our estimators. The proofs
of the lemmas and theorems that follow rely on repeated use of Lebesgue’s dominated
convergence theorem, which we will refer to often. All proofs are collected in Appendix.

Lemma 1. Assume Al1—A3 and suppose that f(x,r):(0,00) x [0,1] = R is a continuous
Sunction in G a compact subset of (0,00) x [0, 1] with |f(x,r)|<Br<oo. Let

n . o J
() = () > K(X - x) (X - x) F(X,R) withj=0,1,2.
—1 n n

(a) If nly — oo then sup,g |s;(x) — E(s5(x))| = Op((2)1/2),

nhy,

(b) g l”h — 00 then supycq - 18;(x) — E(s;(x))] = op(1).

Part (b) of Lemma 1 is a direct consequence of part (a), and in combination with
Assumption A4 can be used to easily show that so(x) — gy (x) = Op(%,), s1(x) = Op(h,) and
$23(x) — gy(x)o% = Oy (h,) uniformly in G by taking f(x,r) = 1. These uniform bounded-
ness results are used to prove the following lemma.

Lemma 2. Assume A1-A4. If h, — 0 and -
described in Lemma 1, we have

ln( 25— 00, then for every x € G the compact set

52(x: _ g2 — g2 o2 —
(x; ) — 0*(x) = ngx(x)z < )(r, (x) = *D()(X, - x))
+ Op(R,,1(x))

SIf different bandwidths h,...,hp,g,...,9p are used, a more extensive adjustment of the relative speed
assumptions of n, ;, g; are necessary, but with no qualitative consequence to the results obtained.
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uniformly in G, where ¥, = a*(X,)e? + (m(X,) — m(X ; hy)? + 2(m(X ) — (X i h))o(X er,
a®V(x) is the first derivative of az(x) Ryi(x)=n"1(3 1K(X’ O+ 1>, X’ —)
(X =) and ¥f = F — a2(x) — D (x)(X, — x).

Arguments similar to those used in the proof of Lemma 2 can be used to establish that

) =m0 = oS KT ) = O, - )
n =1 n

+ Op(Rn,2(x))a

where R,a(x) = n™ (10, K& Y71+ 150, KEEHE YD) and Y = Y, — m(x)—
mD(x)(X,; - x).

Lemmas 2 and 3 (which appears in Appendix) are used to prove Theorem 1 which is the
basis for establishing uniform consistency and asymptotic normality of the frontier
estimator. Theorem 1 contains two results. The first, part (a), establishes the order in
probability of the difference between 6%(x;h,) — o2(x) and T qX(Y)El‘l (X’ )y
uniformly in G. This result permlts under suitable normalization, the 1nvest1gat10n

of the asymptotic properties of 6%(x;h,) — 6*(x) by restricting attention to WZl:l
(X 1= x)r The second, part (b), establishes the v/nh,-asymptotic normality of ——— yx(x —

K(X;l—"*)r,, and uses this result to obtain the asymptotic normality of /nh,(6(x; h,) — 6(x)).
The proof of Theorem 1 is similar to that provided by Fan and Yao (1998), but there are
two main differences. First, our results are for iid variables; second, and most importantly,
their proof as stated is incorrect. Specifically, the inequality involving the term they label
I3 following their Eq. (A2.6) is incorrect.”

Some of the assumptions in the following theorems are made for convenience on ¢,
rather than R;. Since ¢ = R’U Lk these assumptions have a direct counterpart for R,.
Specifically we have E(ef|X, ) = u(X,) = E(R4|X ;) exists as a function of X, and
E(lel|X 1) = py(X ) is uniformly bounded in G, which implies that E(|R, — pz|| X ;) exists as
a uniformly bounded function of X,;. We note that although Assumption A2(3) implies
that E(e,|X;) = 0 is not dependent on X,, it does not, in general, imply that E(|&]||X,) is
independent of X,.

Theorem 1. Suppose that Assumptions A1-A4 are holding. In addition assume that
E(|8,||X,) = w(X,) is a uniformly bounded function of X, € G a compact subset of (0,00). If
h, — 0 — 00, then for every x € G

’ ln(n)

(@) sup, 16”063 ) = 0%(0) = i o1y KEET| = Oplh) + Op()! )
(b) If, in addition, we assume that B(¢}| X, = x) = py(x) is continuous in (0, 00), hi In(n) —
0 and nl = O(1) then

a(x)
"4gy(x)

for all x € G where By, = 4;‘(7\’,3 7D (x) + o, (2).

Vil (6(x: ) = 0(x) = Bia) > N( (kg (x) — 1)/K2(y) dy)

’See Fan and Yao (1998, p. 658).
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The results in Theorem 1 refer to the estimator 6(x; /,), but since our main interest lies
on p(x;h,,g,) = ‘7\5:‘(7 )), a complete characterization of the asymptotic behavior of the
frontier estimator requires a characterization of the asymptotic behavior of sz(g,), and
how it combines with the results obtained in Theorem 1 for 6(x; /,). We first establish in
part (a) of Theorem 2 a general result regarding the order in probability of sg(g,) — og. It
states that if the estimator 6(x;g,) used to obtain sg is Op(L,), where L, is an arbitrary
nonstochastic sequence such that 0<L, — 0 asn — oo, and if | — max;<,<s R, = Op(Ly),
then sr(g,) —or = Op(Ly). The result is useful in that from part (a) of Theorem 1, if
1;’1?;;) — oo, then 6(x;g,) — a(x) = Op(g2). Hence, together with the assumption that 1 —
max;<,;<» R, = Op(g2) we obtain sgr(g,) — or = Op(g2). It should be noted that the
required boundedness in probability of 1 — max;<,<, R; is not necessary to establish the
consistency of sg(g,), which results directly from part (a) of Theorem 1. Its use is confined
to part (b) of Theorem 2, where we use the result on the order of sg(g,) to obtain the

asymptotic normality of p(x;h,,g,) under a suitable normalization.

Theorem 2. Let L, be a nonstochastic sequence such that 0< L, — 0 as n — oo and suppose
that (1) 6(x; g,) — o(x) = Op(L,) uniformly in G, and (2) 1 — maxi<,;<n R = Op(Ly). Then,

(2) s&(9,) — o5 = Op(Ly). 5
(b) Under the assumptions in Theorem 1 part (b), ifﬁfg) — 00, nhz = o(1), and nh,g* = O(1)
then

S . 2
M("(X’h")—@—z?zn) 4 N(o T - 1) / K0 dy)

sr(9,)  OR 4029 x(x)
where Ba, = Op(g?).

Assumption (2) in Theorem 2 places an additional constraint on the DGP that goes beyond
those in Al, A2 and A4. Informally, the assumption can be interpreted as a shape restriction
on the marginal distribution—F g(r) of R, that guarantees that for all e>0 as n — oo, Fip(1 —
¢) — 0 sufficiently fast. Mathematically, the importance of assumption (2) lies in controlling
the order in probability of the term 6(x; h,)(sz'(9,) — 0%'), and by consequence controlling
the bias introduced by the estimation of 6 in the estimated frontier.

The conditions on the order of the bandwidths %, and g, are also crucial for asymptotic
normality of the estimated frontier. In particular, they imply that the bandwidth /4, used in
the first and second stages of the estimation, must satisfy nhz = o(1), which represents an
undersmoothing in the estimation 6(x; /1,). In addition, the bandwidth g, used to obtain sg
in the third stage must converge to zero slower than /4, i.e., Z—” — 0 as n — oo at suitable
speed. The requirement ng> — oo in the estimation of sg is necessary only in that it
provides a convenient order for By,.

A sharper result on the bias term B,, can be obtained by assuming that
1 — max;<,;<, R, = 0,(g?2). In this case part (b) of Theorem 2 can be extended to give

o (‘m ) o) _ an> d N(o,ﬁﬂ (a0 — 1) / ) dy>, 3)

sr(9,)  OR oRrYx(X)
26(x)a2 ( . ..
where Bz, = g”‘;u;g" SUPyeG,Re0, (= “a;((\f))R) + op(gi) We note that this increased precision

in the expression of the bias is unnecessary for inference purposes, since it is normally
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conducted under the assumption that nhng2 — 0, in which case «/nh, B3, — 0asn — oo. It
— —) +-- (o(x h,) — o(x)) and 6(x; hy,) =

(7( X3 hn) (7( X) _
SR(9n) OR

is also clear that since i()ijh")) 29 = 506 7)o

Op(1) an immediate consequence of Theorem 2 is that

= 0p(1), establishing

consistency of the frontier estimator.

The asymptotic properties of the frontier estimator can be used directly to obtain the
properties of the implied inverse Farrell efficiency. If (3, o) is a production plan with
xo € G, then Ry — Ry = o,(1) and

Vnhy(Ry — Ro + B4n)—> N( ( . (pa(x0) — 1)/K2 ) dy) 4)
gx(x
120'2
where By, = & fRO SUD e, ref0.1)(— 5 . )(x)R) + 0p(g2).

3.2. Bandwidth selection

The asymptotic normality result in Eq. (3) can be used to provide guidance on
bandwidth selection. We follow standard bandwidth selection methods (see Fan and
Gijbels, 1995; Ruppert et al., 1995) by considering the minimization of an asymptotic
approximation of the estimator’s weighted mean integrated squared error (AMISE). The
minimization of the AMISE in our case is not standard, since the bias and variance of the
frontier estimator depend on different bandwidths. To make the minimization of AMISE
amenable to standard solutions, we consider g, = n’h,, where 0<y<% which guarantees
that all conditions required in Theorem 2 on the relative speed of /4, and ¢,, are met. Hence,
we write

2
AMISEG(h) = / O (40— 1) dx / K2($) do

hﬁn“"’(aK)z (_o 2>(x>R> )
I <xe§,5§£}o,u = / 7 (P)gx(9) do.

which is a function only of /4,. Using standard calculus we find that bandwidth /%, that
minimizes AMISE is given by

1/5
* fK2(¢) d(f)fo-z(x)(/M(x) — 1) dx I’l_(l+47)/5
B CPOWR\Y
(o%) SUPxeG,Ref0,1] 72(x) f o2 (x)gx(x) dx
— O (+/s, 5)

The practical use of /; requires the estimation of the unknowns appearing in C, as in
traditional plug-in bandwidth selection methods. In the next section, we provide an easily
implementable estimation procedure for these unknowns. We perform a simulation study
that sheds some light on our estimator’s finite sample performance and compares it to the
bias corrected FDH estimator of Park et al. (2000).
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4. Monte Carlo study

In this section we investigate some of the finite sample properties of our estimator,
henceforth referred to as NP via a Monte Carlo study. For comparison purposes, we also
include in the study the bias corrected FDH estimator described in Park et al. (2000). Our
simulations are based on model (1), i.e.,
a(Xy)

OR

Y, = R, with D=1.

We generate data with the following characteristics. The X, are pseudorandom variables
from a uniform distribution with support given by [a;,b,]. R; = exp(—Z,) where Z, are
pseudorandom variables from an exponential distribution with parameter >0, therefore
R; has support in (0, 1]. We consider two specifications for a(-):

o1(x) = +/x with x € [a;,b,] =[10,100] and o2(x) = 3(x — 1.5)3
+0.25x + 1.125 with x € [a;,b,] =[1,2]

which are associated with convex and nonconvex production technologies, respectively.
0;(x) is also considered in the simulations conducted by Park et al. (2000). Five parameters
for the exponential distribution were considered: f; =3, , = 1.5, f3=1, 4, = 3, fs =
These choices of parameters produce, respectively, the following values for the parameters
of gpix: (Ugs o%) = (0.25,0.08), (0.4,0.09), (0.5,0.08), (0.6,0.07) and (0.75,0.04). Three
sample sizes n = 200, 300,400 are considered and 1000 repetitions are performed for each
alternative experimental design. We evaluate the frontiers and construct confidence
intervals for efficiency at (y,, xo) = (10, 32.5), (10, 55), (10, 77.5) for ¢;(x) and at (y,, x0) =
(3,1.25),(3,1.5),(3, 1.75) for o,(x). The values of X correspond to the 25th, 50th and 75th
percentile of its support and the values of Y are arbitrarily chosen output levels below the
frontier. An important aspect in the implementation of our frontier estimator is bandwidth
selection. We consider the following rule-of-thumb bandwidth:

1/5
[ — JK*(p) dp(fig(hn) — .l)fffj(x) dx e (+8)/5.
(0_2 )2 <maX <O-2(2)(xl‘)Rt)) lzn GZ(X )
K I<t<n (5'2(X) n =1 t

where y is set to be 0.11 in all experiments, which satisfies the requrrements in Theorem 2,
K(-) is an Epanechnikov kernel and gror = n/hROT The sequence {6*(X )}y, is estimated
with an ordinary least square quartic regression of {82}” on {X,7_,, with
& =Y, —m(X,), where m(X,) is estimated via local linear regression with a rule-of-thumb
bandwidth as in Ruppert et al. (1995). {¢*(X )Yi_, is then used to construct [ &%(x) dx,

2(2) .
max; e (C2%) and IS 620, fula) =150 Gy — B where b=

Z[ I‘T(Xt ) Y1

S is an estimator for b = up/og. Consistency of b is established in Lemma 4
t

that appears in Appendix.® {62(X; Jn)Ye_; In iy is estimated via local linear regression of

¥Note that together, the consistency of sr(g,) from Theorem 2 and Lemma 4 can be used to define a consistent
estimator for ug, figx = bsr(g,)-
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{82}, on {X,}"_,, with a rule-of-thumb bandwidth 2, as in Ruppert et al. (1995) and Fan
and Yao (1998).
Given the convergence in (4) asymptotic confidence intervals for the efficiency R can be

constructed. To construct a 1 — o confidence interval for Ry, we obtain a bandwidth

/2,, = };ROTW‘S for o(x; /;u) for some positive J such that the term nﬁuB4n — 0asn— oo,

and here 9 is picked to be 0.02. Similarly g, = h,n’. Hence, for quantiles Zz and Z_z of a
standard normal distribution we have

-1 -1
lim P(jé() — <\/ n/;u) 6’0(X0,R0)Z];§<R0<1%0 — (\/ I’l};u> 60(x0,R0)Z%> =1- o,
n—00

A2 ~ A s ~ ~ .
where  63(x0, Ro) = g5t (y(h) — 1) [ K2(v) dy,  Ro =22 sr(3,), dx(xo) is the

6(x03h)
Rosenblatt kernel density estimator. Confidence intervals for Ry using the bias corrected
FDH estimator are given in Park et al. (2000). We follow their suggestion and choose their
constant C to be 1 and select their bandwidth (&) to be proportional to n~'/3.
The evaluation of the overall performance of the efficiency estimator was based on three
different measures. First, we consider the correlation between the efficiency rankings
produced by the estimator and the true efficiency rankings:

cov(rank(R,), rank(R;))
\/ var(rank(R,)) var(rank(R,))

Rrank =

_ S (rank(R;) — rank(R,))(rank(R;) — rank(R,))
\/ SV (rank(R,) — rank(R;))* Y1, (rank(R;) — rank(R;))* ’

where rank(R;) gives the ranking index according to the magnitude of R, and rank(R;) is
the mean of rank(R;). The closer R, for R,isto 1, the higher the correlation between the
true R, and R,, thus the better the estimator R,. The second measure we consider is
Riag = %Z?:l (R, — R,)* which is simply the squared Euclidean distance between the
estimated vector of efficiencies and the true vector of efficiencies. The third measure we use

: _ I~ |R, R
is R = I3 & 2

corresponding element in {R,};’Zl, which may or may not be the maximum of R,. Hence
Rrank, Rmag summarize the performance of the estimator IAZ, in ranking and calculating the
magnitude of efficiency. R captures the relative efficiency. In our simulations we consider
estimates R, based on both our estimator and the bias corrected FDH estimator.

The results of our simulations are summarized in Tables 1-4 and illustrated with
Figs. 1-5. Table 1 provides the bias and mean squared error—MSE of s and 6(x) at three
different values of x. Table 2 gives the bias and MSE of our estimator (NP) as well as those
of the bias corrected FDH frontier estimator. To help interpret the results, we illustrate the
relative performance of the two frontier estimators in terms of MSE in Fig. 1. Fig. 2 shows
kernel density estimates for the two frontier estimators around the true value evaluated at
x = 55 based on 1000 simulations, up = 0.25 and o1(x), for n = 200 and 400. Table 3 gives
the empirical coverage probability (the frequency that the estimated confidence interval
contains the true efficiency in 1000 repetitions) for efficiency for both estimators and

, where i is the position index for R; = max|<,<, R;, and ﬁi is the ith
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Table 4 gives the overall performance of the efficiency estimators according to the
measures described above. For comparison purposes, we provide in Figs. 4 and 5 a plot of
the NP and bias corrected FDH frontier estimates. The jagged appearance of the graph for
FDH (B-C FDH in Figs. 4 and 5) is due to the bias correction. We also include in the plots
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a graph for the uncorrected FDH frontier estimates. The graphs are for o1(x) and o,(x)
with up = 0.5 and n=400. We first identify some general regularities on estimation
performance.
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Fig. 5. Frontier estimates for NP and FDH estimators: n = 400, uz = 0.5 and o(x).

General regularities: As expected from the asymptotic results of Section 3, as the sample
size n increases, the bias and the MSE for sg, 6(x), and the frontier estimator based on NP
generally decrease, with some exceptions when it comes to the bias. The frontier estimator
based on the bias corrected FDH also exhibits decreasing MSE and bias, with a number
of exceptions in the latter case. We observe that the empirical coverage probability for
NP is close to the true 95%, while that for FDH is usually below 95%. For both estima-
tors there is no clear evidence that their empirical coverage probabilities get closer to
95% as n increases. Regarding the measures of overall performance for efficiency
estimators mentioned above, both estimators perform better as n increases. The
asymptotics of both estimators seem to be confirmed in general terms as their
performances improve with large n.

We now turn to the impact of different values of pp on the performance of NP and
FDH. As ug increases, the bias of s increases but MSE oscillates, with the bias being
negative. The bias of 6(x; /,), which is negative for most experiments considered, does not
seem to be impacted by 1. Note that the sign of these biases is in accordance to what the
asymptotic results predict due to the presence of ¢’®(x) in the bias term. Also, in
accordance to the asymptotic results derived in Section 3, the MSE for 6(x; &) oscillates
with up, which reflects the fact that the variance of 6(x; /,) depends on uy in a nonlinear
fashion, as indicated by Theorem 1. Following the prediction in Theorem 2, the bias of the
NP frontier estimator is generally positive, except for small uz and » = 100, and the bias
has a pattern of increasing with up and MSE tend to oscillates with ug. In general, the
FDH frontier estimator has a positive bias, which together with MSE decreases with uy in
most experiments, exceptions occurring when o(x) = 0,(x). No clear pattern is discerned
from the impact of larger up on the empirical coverage probability for NP, but there is
weak evidence that FDH is improved. Regarding the measures of overall performance for
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Table 1
Bias and MSE for Sk and 6(x)
a1(x) n Sk o(x)):x; =325 6(x3) 1 xp =55 o(x3):x3 =775
Bias (x107') MSE (x1073) Bias MSE Bias MSE  Bias MSE
ug =025 200 —0.025 0.289 —0.057 0.253 —0.154  0.489 —0.085 0.573
300 —0.052 0.225 —0.020 0.176 —0.139  0.353 —0.054 0.406
400 —0.049 0.188 —0.026 0.123 —0.100  0.252  —0.017 0.286
ug =04 200 —-0.067 0.196 —0.081 0.128 —0.148  0.264 —0.102 0.279
300 —0.062 0.156 —0.039 0.090 —0.077  0.152  —0.053 0.224
400 —0.060 0.118 —0.020 0.062 —0.059  0.113  —0.046 0.157
ug =05 200 —0.087 0.223 —0.055 0.105 —0.118 0.226 —0.104 0.254
300 —0.075 0.156 —0.030 0.078 —0.074  0.140 —0.061 0.173
400 —0.073 0.134 —0.023 0.059 —0.066 0.113  —0.053 0.152
urg=0.6 200 —0.118 0.318 —0.061 0.128 —0.108  0.240  —0.080 0.333
300 —0.099 0.210 —0.048 0.103 —0.100  0.175  —0.045 0.225
400 —0.092 0.173 —0.039 0.071 —0.082  0.145 —0.060 0.184
ur =0.75 200 —0.144 0.375 —0.061 0.216 —0.144  0.447 —0.057 0.596
300 —0.124 0.275 —0.012 0.172 —0.118  0.296  —0.067 0.418
400 —0.099 0.188 —0.027 0.129 —0.088  0.220  —0.020 0.356
02(x) n Sr a(xy) 1 x; =1.25 o(xy):xo=1.5 6(x3):x3=1.75
Bias (x107') MSE (x107%) Bias MSE Bias MSE Bias MSE
ugr =025 200 —0.028 0.277 —0.022 0.019 —0.029  0.027 —0.017 0.028
300 —0.057 0.251 —0.026 0.013 —0.031 0.017  —0.011 0.019
400 —0.070 0.199 —0.022 0.011 —0.024  0.015  —0.007 0.014
ug =04 200 —0.084 0.234 —0.035 0.012 —0.026  0.013  —0.020 0.015
300 —0.083 0.173 —0.026 0.007 —0.023  0.009  —0.009 0.010
400 —0.079 0.150 —0.016 0.005 —0.020  0.007  —0.005 0.007
ug =05 200 —0.106 0.272 —0.034 0.010 —-0.025 0.012 —-0.017 0.012
300 —0.103 0.218 —0.023 0.007 —0.025  0.009  —0.008 0.008
400 —0.096 0.173 —0.017 0.005 —0.019  0.007 —0.013 0.007
ug =0.6 200 —0.151 0.410 —0.033 0.010 —0.036  0.016 —0.018 0.016
300 —0.124 0.276 —0.026 0.008 —0.023  0.010 —0.011 0.010
400 —0.116 0.223 —0.023 0.007 —0.020  0.008 —0.010 0.008
ur =0.75 200 —0.168 0.447 —0.027 0.018 —0.040  0.023  —0.006 0.024
300 —0.140 0.304 —0.023 0.013 —0.030 0.016  —0.000 0.019
400 —0.122 0.237 —0.023 0.012 —0.009  0.013 0.001 0.015

the efficient estimator described above, the NP estimator seems to perform worse when up
is larger for Ryank, Rmag and Ry. The FDH estimator performs worse when pp is larger and
the performance measure considered is Ryank, While in the case of Rpyae and Ry, FDH
performs better as pp increases.

Lastly, as one would expect from the NP estimation procedure, the experimental results
indicate that as measured by bias and MSE, the estimation of the NP frontier is less
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Table 2
Bias and MSE of nonparametric and FDH frontier estimators
a1(x) n x; =325 Xy =55 x3 =775
NP FDH NP FDH NP FDH
ug =0.25 200 Bias 0.004 3.294 —0.290 3.347 0.029 3.203
MSE 2.886 51.535 5.017 52.270 7.208 50.809
300 Bias 0.327 2.642 0.010 2.723 0.415 3.010
MSE 2.511 37.088 3.972 37.962 5.166 39.146
400 Bias 0.279 2.418 0.122 2.527 0.517 2.521
MSE 1.710 29.942 2.989 29.616 4.162 30.097
ugr =04 200 Bias 0.174 2.700 0.074 2.766 0.350 2.575
MSE 1.394 38.684 2.344 38.978 3.098 37.866
300 Bias 0.280 2.049 0.274 1.947 0.458 2.034
MSE 1.153 25.241 1.770 24.740 2.902 25.122
400 Bias 0.326 1.535 0.309 1.765 0.451 1.863
MSE 0.822 18.432 1.270 19.500 1.958 20.480
ugr =0.5 200 Bias 0.440 2.226 0.399 2.002 0.613 2.123
MSE 1.629 30.063 2.770 28.396 3.760 30.273
300 Bias 0.431 1.738 0.429 1.868 0.613 1.772
MSE 1.183 20.460 1.705 22.225 2.602 21.745
400 Bias 0.443 1.573 0.444 1.427 0.624 1.382
MSE 1.012 16.985 1.488 15.082 2.518 15.118
ug = 0.6 200 Bias 0.825 1.839 0.957 1.939 1.322 1.727
MSE 2.936 26.026 4.992 26.047 7.189 23.261
300 Bias 0.686 1.559 0.740 1.607 1.179 1.385
MSE 2.073 18.826 3.051 18.698 5.235 15.789
400 Bias 0.655 1.021 0.726 1.191 1.020 1.213
MSE 1.534 10.479 2.493 12.354 4.373 12.247
ug =0.75 200 Bias 2.107 1.766 2.362 1.660 3.459 1.740
MSE 11.584 23.577 19.298 22.047 32.202 23.588
300 Bias 2.010 1.474 2.055 1.446 2.834 1.328
MSE 9.792 16.881 14.699 16.291 22.364 15.168
400 Bias 1.481 1.028 1.643 1.201 2.402 1.053
MSE 5.975 9.805 9.374 12.431 16.541 11.207
2(x) n x; =1.25 x,=1.5 x3 =175
NP FDH NP FDH NP FDH
ug =0.25 200 Bias —0.020 0.836 —0.043 0.458 0.008 0.204
MSE 0.243 3.303 0.308 1.458 0.389 0.897
300 Bias 0.013 0.506 0.002 0.391 0.089 0.174
MSE 0.163 1.855 0.178 1.041 0.282 0.645
400 Bias 0.048 0.540 0.047 0.317 0.127 0.131
MSE 0.116 1.710 0.161 0.759 0.248 0.525
ugr =04 200 Bias 0.020 0.466 0.059 0.176 0.093 0.012
MSE 0.123 1.640 0.137 0.277 0.196 0.198
300 Bias 0.045 0.297 0.067 0.130 0.128 0.012
MSE 0.067 0.911 0.102 0.165 0.154 0.160
400 Bias 0.075 0.177 0.070 0.084 0.134 —0.009
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Table 2 (continued)

2(x) n x; =1.25 X, =1.5 x3 =175
NP FDH NP FDH NP FDH
MSE 0.064 0.463 0.077 0.071 0.116 0.080
ugr =0.5 200 Bias 0.066 0.238 0.114 0.123 0.161 —0.033
MSE 0.109 0.751 0.142 0.145 0.212 0.085
300 Bias 0.099 0.161 0.104 0.079 0.185 —0.025
MSE 0.082 0.330 0.102 0.039 0.169 0.068
400 Bias 0.107 0.150 0.113 0.064 0.150 —0.036
MSE 0.064 0.318 0.080 0.029 0.122 0.036
ug = 0.6 200 Bias 0.203 0.179 0.210 0.113 0.317 —0.024
MSE 0.219 0.448 0.252 0.101 0.404 0.054
300 Bias 0.164 0.154 0.197 0.060 0.272 —0.040
MSE 0.140 0.323 0.170 0.029 0.287 0.041
400 Bias 0.158 0.108 0.186 0.049 0.252 —0.030
MSE 0.123 0.205 0.133 0.023 0.224 0.022
ug =0.75 200 Bias 0.552 0.174 0.527 0.076 0.792 —0.028
MSE 0.895 0.426 0.927 0.042 1.595 0.059
300 Bias 0.445 0.100 0.450 0.047 0.669 —0.031
MSE 0.610 0.169 0.645 0.014 1.158 0.029
400 Bias 0.365 0.090 0.479 0.034 0.580 —0.003
MSE 0.472 0.143 0.606 0.009 0.907 0.045

accurate and precise than that of o(x), since the NP frontier estimator involves the
estimation of both ¢(x) and og.

Relative performance of estimators: On estimating the production frontier (Table 2) there
seems to be evidence that NP dominates FDH in terms of bias and MSE when pz = 0.25,
0.4, 0.5 and 0.6, with exceptions in cases where a(x) = g2(x), while FDH is better with
ugr = 0.75 (see Figs. 1 and 2). Specifically, when DGP uses ;(x), NP outperforms FDH in
almost all experiment designs, with a few exceptions when px = 0.75. When o,(x) is used in
the DGP with uz = 0.6, FDH is better with exceptions where the frontier is estimated at
the 25th percentile of X, in which case the NP outperforms FDH. The dominance of FDH
over NP when up = 0.75 is most likely explained in this DGP by the fact that in this case
0% = 0.04—roughly half of its values in other DGPs—contributing to a higher variance of
the NP estimator as suggested by Theorem 2. The relative performance of both frontier
estimators in terms of MSE is illustrated in Figs. 1 and 2, where for different points and
n = 400, the ratio of NP’s MSE over FDH’s MSE is plotted against up for ¢;(x), and the
ratio of FDH’s MSE over NP’s MSE is plotted against up for g2(x) (similar graphs result
when we examine the cases where n = 200 and 300).

Regarding the empirical coverage probabilities (Table 3), the NP estimator is superior in
most experiments, i.e., NP estimates are much closer to the intended probability
1 —a=95%. When the different measures of overall performance we considered are
analyzed (Table 4), we observe that the NP estimator outperforms FDH in terms of Ry
and Ry, except when pip = 0.75. In terms of Ryag, NP generally outperforms FDH when
ugr = 0.25,0.4,0.5, while FDH is better when pp = 0.6,0.75, with exceptions in pyx = 0.6
and ¢(x). Based on these results, it seems reasonable to conclude that when we are dealing
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Table 3
Empirical coverage probability for R by nonparametric and FDH for 1 —a = 95%

a1(x) n x; =325, y, =10 X, =155 y,=10 x3 =775, y3 =10
NP FDH NP FDH NP FDH
ug =0.25 200 0.937 0.760 0.944 0.758 0.939 0.764
300 0.929 0.751 0.925 0.755 0.940 0.786
400 0.934 0.757 0.937 0.800 0.943 0.791
up =04 200 0.942 0.808 0.947 0.814 0.955 0.804
300 0.929 0.809 0.939 0.793 0.931 0.810
400 0.922 0.784 0.915 0.802 0.934 0.816
ug =05 200 0.943 0.829 0.938 0.822 0.947 0.801
300 0.934 0.829 0.941 0.825 0.948 0.810
400 0.913 0.838 0.915 0.839 0.921 0.817
ug =0.6 200 0.943 0.824 0.925 0.825 0.946 0.833
300 0.926 0.809 0.929 0.830 0.923 0.854
400 0.935 0.826 0.902 0.828 0.909 0.853
ug =0.75 200 0.947 0.832 0.922 0.836 0.945 0.832
300 0.914 0.847 0.890 0.847 0.919 0.831
400 0.936 0.854 0.908 0.832 0.911 0.824
a2(x) n x; =125y, =3 x=15 y,=3 x3 =175 y;=3
NP FDH NP FDH NP FDH
ug =0.25 200 0.931 0.857 0.912 0.904 0.904 0.831
300 0.931 0.816 0.943 0.917 0.905 0.819
400 0.949 0.831 0.928 0.911 0.906 0.779
ug =04 200 0.938 0.871 0.940 0.939 0.935 0.792
300 0.957 0.870 0.928 0.935 0.900 0.769
400 0.944 0.849 0.927 0.945 0.904 0.763
ug =05 200 0.968 0.872 0.949 0.941 0.926 0.786
300 0.950 0.896 0.945 0.953 0.918 0.737
400 0.960 0.888 0.930 0.961 0.905 0.719
ug = 0.6 200 0.966 0.878 0.935 0.961 0.916 0.761
300 0.973 0.900 0.929 0.949 0.904 0.730
400 0.962 0.901 0.929 0.949 0.915 0.747
ug =0.75 200 0.978 0.893 0.948 0.960 0.948 0.757
300 0.973 0.902 0.942 0.955 0.915 0.740
400 0.965 0.902 0.909 0.948 0.920 0.784

with DGPs that produce inefficient and mediocre firms with large probability, then the fact
that the NP estimator is impacted to a lesser degree by extreme values results in better
performance vis-a-vis the FDH estimator, whose construction depends heavily on
boundary points. This improved performance is easily perceived in Fig. 3. The figure
shows kernel density estimates for the frontier around the true value evaluated at x = 55

for NP (% — %:)) and FDH (pppy(x) — ‘;(—?) based on 1000 simulations, xx = 0.25 and
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Table 4
Overall efficiency estimators by nonparametric and FDH
c1(x) n Rrank Ringg (x1072) R (x1071)
NP FDH NP FDH NP FDH
ug = 0.25 200 0.997 0.981 0.253 0.844 0.247 1.440
300 0.998 0.987 0.171 0.621 0.208 1.233
400 0.999 0.989 0.108 0.503 0.184 0.994
ur =04 200 0.994 0.970 0.235 0.776 0.293 1.492
300 0.996 0.978 0.139 0.563 0.236 1.126
400 0.997 0.983 0.083 0.439 0.197 0.915
ugr =0.5 200 0.990 0.962 0.313 0.680 0.345 1.174
300 0.993 0.973 0.161 0.477 0.289 0.950
400 0.995 0.979 0.161 0.368 0.247 0.837
ugr = 0.6 200 0.976 0.955 0.696 0.554 0.478 1.024
300 0.984 0.969 0.278 0.384 0.371 0.890
400 0.988 0.977 0.193 0.283 0.327 0.687
ug = 0.75 200 0.909 0.943 1.595 0.373 0.772 0.846
300 0.927 0.962 0.780 0.236 0.639 0.583
400 0.943 0.972 0.541 0.171 0.533 0.466
02(x) n Riank Ringg (x107%) R (x1071)
NP FDH NP FDH NP FDH
ug = 0.25 200 0.996 0.985 0.251 0.594 0.294 0.946
300 0.998 0.989 0.155 0.432 0.244 0.854
400 0.998 0.991 0.124 0.362 0.213 0.661
ur =04 200 0.993 0.979 0.260 0.521 0.340 0.920
300 0.996 0.985 0.164 0.374 0.276 0.843
400 0.997 0.988 0.107 0.285 0.249 0.608
ugr =0.5 200 0.987 0.974 0.956 0.458 0.409 0.933
300 0.991 0.982 0.210 0.309 0.339 0.700
400 0.993 0.986 0.151 0.239 0.299 0.563
ugr = 0.6 200 0.970 0.970 0.796 0.371 0.545 0.708
300 0.979 0.979 1.120 0.255 0.451 0.556
400 0.984 0.984 0.293 0.192 0.403 0.474
ug = 0.75 200 0.889 0.959 1.304 0.274 0.880 0.596
300 0.913 0.973 0914 0.177 0.732 0.434
400 0.926 0.979 0.831 0.129 0.654 0.407

a(x) = /x, for n =200 and 400. The kernel density estimates were calculated using an
Epanechnikov kernel and bandwidths were selected using the rule-of-thumb of Silverman
(1986). We observe that the NP estimator is more tightly centered around the true frontier
and shows the familiar symmetric bell shape, while that of FDH is generally bimodal with
greater variability. Fig. 3 also shows that the estimated densities become tighter with more



C. Martins-Filho, F. Yao | Journal of Econometrics 141 (2007) 283-319 303

acute spikes as the sample size increases, as expected from the available asymptotic
9
results.

5. Conclusion

In this paper we proposed a new nonparametric frontier model together with estimators
for the frontier and associated efficiency levels of production units or plans. Our estimator
can be viewed as an alternative to DEA, FDH as well as other estimators that are popular
and have been widely used in the empirical literature. The estimator is easily
implementable, as it is in essence a local linear kernel estimator, and we show that it is
consistent and asymptotically normal when suitably normalized. Efficiency rankings and
relative efficiency of firms are estimated based only on some rather parsimonious
restrictions on conditional moments. The assumptions required to obtain the asymptotic
properties of the estimator are standard in nonparametric statistics and are flexible enough
to preserve the desirable generality that has characterized nonparametric deterministic
frontier estimators. In contrast to DEA and FDH estimators, our estimator is not
intrinsically biased but it does envelop the data, in the sense that no observation can lie
above the estimated frontier. The small Monte Carlo study we perform seems to confirm
the asymptotic results we have obtained and also seems to indicate that for a number of
DGPs our proposed estimator can outperform bias corrected FDH according to various
performance measures.

Our estimator together with DEA, FDH and the recently proposed estimators of Cazals
et al. (2002), Girard and Jacob (2004) and Knight (2001) forms a set of procedures that can
be used for estimating nonparametric deterministic frontiers and for which asymptotic
distributional results are available. Future research on the relative performance of all of
these alternatives under various DGPs would certainly be desirable from a theoretical and
practical viewpoints. Furthermore, extensions of all such models and estimators to
accommodate stochastic frontiers with minimal additional assumptions that result in
identification is also desirable. Lastly, with regards to our estimator, an extension to the
case of multiple outputs should be accomplished. Also, it seems desirable to derive
minimax convergence rates for our model.
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Appendix

Proof of Lemma 1. (a) We prove the case where j = 0. Similar arguments can be used for
j=1,2. Let B(xp,r) = {x € R: |x — xo| <r} for r € R". G compact implies that there exists
xo € G such that G C B(xg,r). Therefore for all x,x' € G |x — x'|<2r. Let h,>0 be a
sequence such that 4, — 0 as n— oo where ne{l,2,3, ...}. For any n, by the

Similar graphs but with less dramatic differences between the NP and FDH estimators are obtained when
ug =0.5.
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Heine—Borel theorem there exists a finite collection of sets {B(xy, (h% )_1/ 2)}5;1 such that

G C Uy BGer, (5)7'?) for xi € G with 1,<(%)"/r. For x € B(xi, (2)™'/?),

150(x) = su((0)| < (o)™ i mih, " (xic — x)| By < Bym(nh,)”'?  and
=1
|E(so(xx)) — Eso(x))| < Bym(nhy) ™',

Hence,
Is0(x) — E(s0(x))| < [so(xx) — E(so(xx))| + 2Bym(nh,)~'/* and
sup [so(x) — Blso()I < max [so(xi) — E(so(xe))| + 2Bym(nhy) ™.

xeG SKk<y

Since, (Iﬁlgg))l/ 2ZB/«-m(nh,q)_l/ 2 5 0, then to prove (a) it suffices to show that there exists a

constant A4>0 such that for all ¢>0 there exists N such that for all n>N,
((lnhn ) 2max; <<y, 150(x) — E(so(x)] >A) <e. Let &, = ()" 4. Then, for every n,

n(n)

\'\H

In
P(lmkaxz [s0(xx) — E(so(x))] >8n) < kz:; P(lso(xx) — E(so(xx))| = &,).

But [so(xs) — EGso(xi)l = 1370, Wil where W, = - KEZ9)/ (X, R,) — - B(K (o)

f(X:, R;) with E(W,)=0 and |W,|< 23'(3/ BZV. Since {W,}_, is an independent
sequence, by Bernstein’s inequality
—nh, &2
Pllso(x0) — E(so(x0))| 2 ,) <2 exp | —— 55—
2h,62 + i

where 62 =n" L, V(W) = I BRGS0 (X 0, R) — (B B(KEE9S (X0, R)).
Under Assumptions Al and A3 and the fact that f(x,r) and g(x,r) are contmuous in G
we have that h,6> — B, by Lebesgue’s dominated convergence theorem, for some

B.. Let ¢, = 21,62 + 2Byye,. Th iy —4 In) gy f 0
constant Bx. Let ¢, = 2n,6° + 5Bwey. en, o B = - . Hence, for any ¢>
/IO-- —3 n

there exists N such that for all n> N,

I<k<ly

12
P( max  [so(xe) — E(so(x))| >8n) <2 <2 (}%) e <2(nhy " Pr<e

since ¢, — 2B, and therefore there exists 4% >2B.,.

(b) The result follows directly from part (a) and the assumption that Ty oco. [

In(n)

Proof of Lemma 2. Let # = (#,...,7,) with # = ¢*(X,)e? + (m(X;) — (X ;; hy))*+
2m(X ) = (X 1 hn))a (X )y,

n X, —x X X,—x
Zt:l K(#) El 1 < thn ) t/’ln

n X, —x\X;,—x n X, —x\ (X, —x\*
() () ()

Su(x) = (nhy) ™!
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4 s gx(x) 0
an X) =

0 gx(x)og
Then, 6°(x;hy) — 0%(x) = 7= 1y W=, x)rf where W,(z,x) = (1,0)S,' (x)(1,2)K(2)
and  rf = —0%(x) = D)X, —x).  Let  Ay(x) = 6°(0xshy) — 07(x) — s I
K (X‘ 2=)r%, then

1 | <& X, —x 1 X, —x
e (T ) - —— k(2 )
Al /;(W( T ") 73 () ( ))

t
hn
Z}::l K (Xth_ x) r;k
_ “1/ ol "
= oy (OSSO
Zr 1 hn hn r

> (55 )

< (L0, ' = 5 @R (

L Xf — X X; — X
K HER
where the inequality follows from the Cauchy—Schwarz Inequality and the fact that for a

set a;, i=1,...,n of positive numbers 37 a?<(>.1_, @;)*. By part (b) of Lemma 1,
B,(x) = - ((1,0)(S, ' (x) — S7' (0))(1, 0))‘/2 p(1) umformly in G. Hence, if we put

Ry (x) = n7 (120 KA+ 120, K =

Proof of Theorem 1. (a) Given the upperbound Bq and Lemma 2

Ao, 2 X; — X «
670 ) = () - an(X)Z ( )

1 X, —x\ ,
(]x Bn(x)hn <nhng)(—(X) ( - K( hn )r[
L X, —x\[X:—x\ ,
ZK( W) )))

=1
= By, Bu()hy(le1(x)] + |ea(x))).
Since B,(x) = Op(1) uniformly in G, from part (b) of Lemma 1, it suffices to investigate the
order in probability of |¢;(x)| and |c2(x)|. Here, we establish the order of ¢;(x) noting that
the proof for ¢,(x) follows a similar argument given Assumption A3. We write ¢j(x) =
]1,, + ]2,, — ]3,, + ]4n where

Tial) = ngx(x)z (

— A P 2
IZn(x)-nhngX(x); k(XS )rora - .

+

> (@*(X1) = 0*(x) = V(X = X)),
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2 1 X, —x o
I3,(x) = m; K( I >0(Xt)81(m(Xtahn) - m(X;)),

1 1 X
L) = 9 2 K

[ﬁwmw%nmﬁ

and examine each term separately. I,(x): by Taylors theorem there exists X, =
JX,+ (1 —A)x for some A€[0,1] such that I, = Mmz, | KEEHEY O (X ).

Given A1(2) and A2(6) we have
IZ”:iK X, —x\ /X, —x\?
ntlhn hn h}’l
1 (X —x\ /X, —x\°
‘EG;K( hn )( h ))
1 (X, —x\ /X, —x\*
2sup E| — K = d
M A VR s I

B%B; 3 2
= T(hnop(l) + ,0(1)) = (h ) by part (b) of Lemma 1.
I,,(x): note that by Assumption A1(2)

11 X, —x\ , 5 B nhy \ 2
Z;EK<—hn )G(X,)(S,—l) —Op<<ln(n)> ,

where the last equality follows from part (a) in Lemma 1 with f(X,, R) = ¢*(X)(e? — 1),
which is bounded in G by Assumptions A2(2) and A2(4).

I5,(x): from the comment following Lemma 2 and by Taylor’s theorem there exists X, =
AX ) 4+ (1 — D)X, for some /4 € [0, 1] such that I53,(x) = I31,,(x) + I32,(x) + I33,(x), where

2 & 1 X;—x X — X,
L) = ”gX(x) Z ; gx(X)) K< hy, >K( hy >G(Xt)6(Xk)8t8k’

s D () () ()
Ton(x) = ——1—— K K
2 ( ) zhng(X) Zl ; gX(XI) hn hn hn

X a(X,)z,m( )(th),

BB, [,
SUp [11,(x)] < —=0x Iy, sup
xeG 2 xeG

-1
sup |12n(x)| <ng sup
xeG xeG

th: x) G(Xf)sl

2 k(X
]33,1()6) = m; K<

1 (XX,
x <rh(X,) —m(X,) — w0 ; K<4k i ) Y2>,
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where Y} = Yi —m(X,) — mD(X)(X; — X,). We now examine each of these terms
separately. Note that,

1 & 1 X,—x
131, <2B! K X
310(x)| <2B, nhy = gy (X,) ( I >0( z)|8z|i1€113 e

Xn: K(?) G(Xk)sk .

k=1

Since |o(X)er| < C for a generic constant C. If nhz — oo we have by part (a) of Lemma 1,

1 |<& X —x nh, \ ~'/?
;K(7>0(Xk)sk =op<<m> )

sup — ;
n
Therefore, sup,..q [731,(x)| <2B; Op((22) ™ A)sup, el b Sy s KT Ho(X led.

xeG nh,
X)lal e
: ol &
Since | (’X) |<C,

1 <& 1 X, —x
i 2= gX(Xt)K( T )”(X’)'g"

=1
] < 1 X, —x
iy 2 (gX(Xz) K( T )"(X’)'g"
| -1 X[—X
_E(gx(Xt) b K < T )W'S"))\
1 1 X, —x
sup Bt i (S5 ot

nhy, 172 1 1 X, —x
~ou( ()" ) s gty < (5o

by part (a) of Lemma 1. Now, - E( s KEo(X)le) = [ K()a(x + h)p (x +
h,¢) d¢ and by Lebesgue’s dominated convergence theorem,

sup
xeG

< sup
xeG

1 1 X —
s E(m - K( . )o(x,nez ) K@) dbsup o) sup (<€

given Assumption A2(4) and the fact that u,(X,) is uniformly bounded in G. Therefore,

1 1 X, —x _
i P E(gX(X,) K< T >"(X’)'8") =00

and consequently sup,..g |131,(x)| = p((l”h” )_1/ 2). Now, by Assumptions A2(1) and A2(6)

n(n)

1< 1 X, —x
I3n(x)|<B, bB(, K X
[ F320()] 2 angX(Xt) ( i )a( el

)
ni= hy hy

From the analysis of Iy, squ€G| S 1K( i ")(X‘ Xi=xy2) = Op(/,) and by using part (b)
of Lemma 1 sup,.. EZ,ZI mK( i —)a (X )|e;| = Op(hy,), which gives sup,.q 1324 =

X sup
xeG
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O, (/). From Lemma 2

IDu(X )| = SBu(X )R (X))

A 1 n Xk_Xf
Xishy) =m(X)) —————= ) K(—— Y}
m( Iah) m( t) nhngX(Xt); < hn ) '

Hence |33,(x)| <Op(1) 7205 e K(
Ry (X )< IR (X )+ [Rip(X )|+ R (X )| + R (X)),

X,g;x) (X )& Ry2(X ). Now, we can write

where Ry (X)) =1370 | KA o(X)er, Rin(X,) = %S0 KA (X — X )PmP(X ),
Ry (X ) =150 KA X 6(X e and Rop(X ) =52 30 KA X=X m@ ().

hy

By part (b) of Lemma 1 supy . [R11(X /)| = op(h ) and by the analysis of 73, we have
that supy g [Ri2(X )| = p(hfl). Again by Lemma 1 and the fact that E(¢,|X;) = 0 we have
that supy g [R21(X )| = op(hi). Finally, given that K is defined on a bounded support, by
Lemma 1 and A2(6) we obtain supy s |Ran(X,)| = Op(h;:). Hence, supy g Ri2(X,) =
op(h ) and

| 330()| < 2By ! Op (1o () —— iK(X“

X _
>G(Xt)|'9r| = 2Bg 1Op(hﬁ)133ln-
iy =1 hy, *

By Lemma 1, sup,c¢ £331. = 0p(h,) + O(1) and therefore sup g 1133, = op(hﬁ). Combining

all results we have sup, g [13,] = Op(/2) + OP((lz?Z))_l/z)-

L4n(x): we write L4, = 141,(X) + L420(X) + L432(X) + Laan(x) + L450(x) + La6n(x) Where

n

1 1 X,—X 1 1 Xk—X[
. N
4 nhng)((x) 12:1: hn thngX(X[) kz; 121: hn

xK(X =X ) (X )o(X)exer,

hﬂ

R« X, —x 1 Xi— X, .
142”(x)_nhngx(x);K< D >4n2hzg§((X,);; < m )(Xk X,

X — X
xK ( ! 7 I) (X; = X’ mP(X e )mP (X ),

n

Ty = gx(x)z (5

)Dz(X,)

n

1 n X, —x 1 . Xk—X,) (X;—X,)
144, = — K K K
)= ( T ) ) A ( T I

x(X; = X )’mP(X )o(X1)ex,
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& (X=X 2D,(X) & (Xi— X,
Lasn(0) = 5 2 K (5 ) gt 2o K\ ) o Xoe
X =1 X k=1

1 4 X, —x\ DuX) X=X\ o
L) = 5 2 K( W )nhngx(xo,; K( i ) (Xi)(Xic = X )7,

We now examine each term separately. First,

2
1 g X, —x 1 & X — X,
I G| Cre I G L)
nh,,gx(x)z ( >(1411(Xr))

where L411(X)) = =t S K*90(X )z But,

_ 1 X —-X,;
sup |141(X,)|<B:'h,— su K( )a(X,)s,
X,epG 4“( r) gx hn X,epG nhn 121: hn

=B hnop(l) by part (b) of Lemma 1.

gy

Hence, supy g [1411(X ;)| = op(h,) and supy (1411)2 = op(hi) and

1 & X, —x
nhntzl:K< Iy )

sup [La1,(x)| <op(h )sup = op(hy).

X, eG

N0W7
I o B Ok
[La20(x)| = nh,,gx(x); K( i )

2
IR B o U . S AW e
. (2nhngX( X)) ; K ( i )m (X)X — X))

! - X, —x ,
a "hngx(X); K( I >(1421(X,)) ,

where 1421(Xf)=m2?=1K(Xk,;’“)mkaz)(xk—Xt)z. But [Iui(X)I<B, 'k,
|R12(X )| and since supy g |Ria(X,)| =0 (h) from above, we have that supy g
(I1(X ) = Op(hy). Since 7= K& = Op(1) we have sup,g [12,| = Op(hy).

For the [I43,(x) we first observe that from our analysis of I33, we have that
Supy,cg 1Dn(X )| = op(hz) hence |I43n(x)|<_q Op(h4)|nh S lK( Y)| and consequently
Sup.cq [143(x)| = op(h}) since W,,Zz:l K(X;ln %) = Op(1) uniformly in G.
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Now,

[L44,(x)| <

sup [Z441(X /)| sup [1442(X,)| where
€G X.eG

nhyg x (X)Z ( > Xe
L (X)) =i S KA 0 (X er, Tan(X ) = ks S0 KEE (X — X )*m®

(Xi:). But given that supy, . 1441(Xt)<Bg’;h;lsupx,EG |R11(X ;)| = op(h,) and

sup Lax(X)<2B, 7" sup [Ria(X))| = Op(hy),
X, eG X, eG

we have sup,..g L44,(x) = op(hz). Finally,

X, eG

2 L X, —x
145, S —— K({——— D,(X; T4 (X
i< 5 2 ( P ) sup |D;(X )| Sup L1 (X
which implies from above that sup,.¢ [{45,(x)| = op(hZ) and

2 & X, —x
JEHES]ES m}j K(h—) sup | Dy(X )| sup [1a1(X))|
nYx _ n

X.eG X:eG

which from above gives sup,.q [L46n(x)| = op(h ), hence sup, . |14,] = op(h ). Combining

all terms we have that sup,.glci(x)| = p((lﬁ’(';;)) 1/ 2)~|—Op(h ) and also sup,.q
ler(x)] = Op((lﬁ?;)) )+ 0 o(h2). Consequently,
R I, In(n)\ '/
2 2 * 3 n
- (x;hy) — o°(x) — < )r <Op(h)+ O (7> .
( ngxoc)z | SO T

(b) From part (a), provided that hi In(n) - 0 we can concentrate on

1
A/ nhy gy (x)
K(X’*x)r;k to obtain the asymptotic distribution of /nf,(62(x;h,) — a2(x)).

o) = Lo S KEE=) 0*D(X ), and given Al

Iln(x) 2(2)
E( E ) 5 | PR b)) - and,

V< hizl ) B 4gX(x)2 (’lh,zzE<K ( hn >( hy > (@ &a))
P 2
A () o))

for |0]<1. Given Assumptions Al, A2(5) and A3 and by Lebesgue’s dominated
convergence theorem,

E(h;gﬂ) ; @ (x)o% and V(Il;l(x)> -0

n

hence by Chebyshev’s inequality L) 1520(x)0% = op(1).
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We now establish that +/nh,I,, 5 N(O, ;:((?) (14(x) — 1) [ K*(y)dy). To this end, note

that
X _ x n
, )a%x,)(sf =Y 2.
=1

1 1
N nhd, = K
? ; g (x) ( h

} forms an independent triangular array with E(Z,,) =

where {Z,, :t=1,...,m;n=1,2,...

0 and
5= Z BZ)= oy E<K2 (M>04(X e — 1)2)
nhug3 (x) pa hy, s

=1
1 X, —x
= —— E( K[ =) o* (X ) (ua(X ) — 1

e B (P e - ).

where 1y(X;) = E(¢*|X,). By Lebesgue’s dominated convergence theorem and the

continuity of uu(X,), 52— ;’:((i)) () =1 [ K?*(¢) d¢. By Liapounov’s central limit

d . .
theorem Y7, £2— N(0, 1) provided that lim,, oY, E|22*** = 0 for some §>0. Now

n
= (sp)~'7 Z E|ZW**

270 X, —
= ()" gf(;))o/z hE‘K( W ) (X — 1)

iEﬁ2+6

=1 Sn

246

But,
240

) (X )& — 1)
E(K”‘S <th >(O_2(XI))2+6E(|£? _ 1|2+6|X1))

1
~ hy
e (5) - o

where the inequality follows from Al, A2(2), A2(4) and A3.
We now examine I5,(x). As in part (a) we write I3,(x) = I31,(x) + I32,(x) + I33,(x) and

look at each term separately. Using the notation of Lemma 3 in Appendix

-1
2K(0) &2 n—1(n
I3ln(x) = Z ( )0 t gX(X;) + n <2> Z; lpn(Zts Zk)

2h2gX(x)

=1311+ I3,

where Y, (Z0, Zi) = hic + i, e = s S KEEHKEE0(X o (X erer,  Zi =
(X;,&). Letting X = (X4,...,X,) and given our assumptions,
2K(0) 1 z—x\ 6%(2)
E(\/nh,I31)) = K( ) gy(2) dz,
M g (x) ) ax(@%*
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E,, (V(\/nh,I311|X)) =

4K(0) 1 % (z - X

4
T ) %2 4 - Do) 8=
nX X

n

and

L AKX0) (11 5 a*(z)
Vgx(E(\/EEImPC))— ’W(”hn E/K < I )QX() gy(z)dz

1/1 z—x\ d2(2) :
——(— /K d .
G /K5 G e )
Since, V(v/nh,I311) = B, (V(V/nh,I311|X)) + V4, (E(v/nh,1311|X)), provided that nh, — oo
a direct application of Lebesgue’s dominated convergence theorem gives,
E(v/nh,I511), V(v/nh,I311) — 0 and consequently by Chebyshev’s inequality we have
I3 = op((nh,,)*l/ %). Given our assumptions it is easily verified that E(W,(Z;,Z;)) =0 and

V1,(Z;) = 0. Hence, by direct use of Lemma 3, we have /nl31, = op(1) provided that
E(lpﬁ(z,,zj)) = o(n). We now turn to verifying that E(l//,%(Z,, Z;)) = o(n). Note that,

LEWZ.2)
_ 1 2 (Xi =X\ o (X — X\ 5 2pa2e
_w%mf%K(hn>K<hn>“L”“%%ia)
1 ) X,—X,) 2<Xj ) > ) 1 )
+—ng§,(x)h2 E(K ( I K I (X))o (X )6[ ’gX(X)

2 X, —X; X, —x X — x
— —~ _E 2 t J t Jj ) 5 2.2
+ng§((x)hi (K ( Iy >K( I, >K< I )0 (X o™ (X))ere;

1
Xi
gx(Xj)gx(Xz))
=U 4+ U+ Us.

We focus on the first term—U,. Since, ¢ we have that

1 X, —X; X, —x 1
E(U,|®) = K2 =L f) 2(X 2X~K2(’—>— and
(U11%) pENY ( . o* (X))o (X)) ) 20X

X, — 5 ) (X —x
B WNW//< B eaaroore (1)

9x(X)gyx(X;) dX, dX;.

gx(Xr)

Given our assumptions, if nhi — 00, by Lebesgue’s dominated convergence theorem we
have E(U;) — 0. We omit the analysis of U, and Uj; which can be treated similarly.
Hence, combining the results on /51, and 131, we have that «/nh,I51, = 0,(1). Now we turn
to the analy51s of I3,(x). Using the notation of Lemma 3 we have I3,(x)=

2n ‘l){ (x) \2 (”) Zt<k l,bn(Z[, Zk) where l// (Z,,Zk) = hy + hy, and

X[_x X[_Xk X[—Xk O-(Xt)f‘:[
=K K O
i (hn) ( T )( T )m )y oy
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and Z, = (X, ¢). Given our assumptions E(,(Z;, Z;)) = 0 and

_ X, —x\o(X e X — X\ (X — Xk : @
bzo =& (4 )gX(X,)E<K( ) (5 )m>(th)|Z,>.

Hence, using the notation in Lemma 3, /nii, = \/%Z’,’:l V1,(Z), with E({/ni1,,) = 0 and

2
V(/nit,) = 4E <K2 (X’ - X>K<X’ ; X") (X’ ; Xk) 622 X0 o)

h gy(X)
2
XK(Xth_ Xz) (Xth_ X/) m(z)(Xﬂ))

Using Lebesgue’s dominated convergence theorem we have V(\/nii,) — 0 and conse-
quently by Lemma 3, /nl3, = 0,(1) provided that E(tpi(Z,,Zj)) = o(n). Now,

LEWZ2)

ol [R5

(X )e2m®2(X )
g%(X1)

4h4// <Xt 3 )Kz(Xh >(X’ X’

o (X))ermP*(X ;)
gy (X))

2 > Xf—Xf Xj—x X,—X _ N4
+4nhj://K< T >K( P R G L
a(X o (X ))eem@ (X j)mP (X ;)

gX(Xt)gX(Xj)
=U;+U,+ Us.

gX(X,)gX(X,) dXx, dX,/'

gX(Xt)gX(Xj) dX; de

X gX(X,)gX(X,-) dXx, dX,/'

Given our assumptions, a direct application of Lebesgue’s dominated convergence
theorem gives Uy, Uy, U3 — 0. Since from part (a) I3z, = op(h ) we have that by
combining all terms /3,(x) = op(n~ 172y op(hz) Finally, since we have already established
in part (a) that I4,(x) = op(h ) combining all convergence results for 7,(x), 12,(x), I3,(x)

and I4,(x) we have that if ni) = O(1), then

(06 ) — () — Bo,l)eN( (())(u4(X)—1) / K0) dy) ©)
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2 2
for all x € G where By, = ]7”%02(2)()6) + op(h2). Tt is a direct consequence of part (a) that
6(x; hy) 1s uniformly consistent. Hence, noting that

p— 1 1 1
nhn <O'(X, hn) O'(X) 2 (X) B + <20_(x) — zo_b(x)) BOI1>
= _ 1y (62(x; hy) — 67(x) — Boy)

24/03(x)

for a2(x) = Oo*(x) + (1 — 0)6(x; hy,) for some 0<O< 1 we have that by (3) and the uniform
consistency of 6(x;hy,) in G

(x)

VMAﬂth—d@—Bm%iN< SN

mm>n/ﬂw®)

where By, = Za‘(if) O(x) +op(h2). O

Proof of Theorem 2. (a) We start by noting that |sz(g,) — or| = sR(gn)oR|sR(gn)_] — ozl
By Theorem 1 supy .;6(X:;g,) = Op(1), hence by definition sg(g,) <supy,cqo(X1;9,)

(max;<,<, Y,) ' = Op(1). Hence, to obtain the desired result it suffices to show that

sr(g,)"" = 0%! = Op(L,). Since, Isr(g,)”" — 0%'| = o%'Imax; <<, Z&(’ JR’ — 1| we need only
show that max; <<, ;((?(/’)f’) — 1 = Oy(L,). Note that for some 4’,4>0,
X
P( L, sup A"(—’)— 1‘<A >P( L," sup |o(X,) — 6(X,;;g,)| <4 ).
X,eG 6(X g,,) X,eG

Therefore, given supposition (1) in the statement of the theorem, for all >0 there exists
A>0 such that for all n> Ny,

(X
P( L' sup A(—[)—l‘<A >1—0. @)
x,e6|0(X 15 9,)
Now suppose that max; <<, % — 1>=0. Then, |max; <,<, ;’(());:)gR’) — l|<supy,cq 6(”)((—)[(;)) —
1 and L, ' |max;<,<, :((;:)QR;I) — <L, "|supy,cq (;(”)((—lx’g)n) — 1]. By inequality (7)

P! m

Now  suppose that max1<,<n ()'((X,,)gRI) —1<0. Then, |max;<,;<y :((f[’);’) - 1<l -

X)R
w SR NSy s
12120 5(X 1 9,)

max) <;<p R infy,eq = and

G(X g)
X)R o(X
P max ZU9OR 1) op( max R inf 2K o1 a).
1<’<” O-(Xtagn) I<i<n X.eG O'( Iagn)
By inequality (7) and assumption (2) in the statement of the theorem, for all 6 >0 there is
some A;,4>0 such that whenever n>N;, P(infy.ec &(‘Tg;)) >1—L,4A)>1—0 and
P(max;<,<, R;>1—L,41)>1—9. Hence, for all >0 there is some 4,>0 such that

whenever n> Ns P(max|<;<x g(())(( )qR’) >1—L,4,)>1-6.
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G (> ;l’l B n ln 1 B n
(b) Note that /nf,(*3— 52— 0) = /nhy (508 = 50 — 6(x: ha)(sw(g,)™" — o) = 7).

From part (b) of Theorem 1 we have that «/nhn(“(';’: n) _ @ - ﬁ) —NO, 555 q(*zx) (ug(x) — 1)

[K*(p)dy), and from part (a), provided that 1:1?;;)_’ oo we have that

6(x; hy)(sr(g,) " — 0x") = Op(g?). Hence, given that nk) — 0 and nh,g* = O(1)
i 2
h” O-(x’ hn) @_ n> d N(O ( ) _ 1 2 d >
(i e B o 040 = [ K00
where By, = Op(g?). O

Lemma 3. Let {Z;}]_, be a sequence of iid mndom variables and V. (Z1,....Zk) be a
symmetric funclion with k<n. Let u, = (k)_ Sy WnZis .. Zyy) and ftn =55
W, (Z) — 0,) + 0, where Z(n k) denotes a sum over all subsets 1<11 <ih<- <1k<n of
0, om0 = B P ZONZ), Oy = B Zre. s 20)). I EQEZn....
Zy)) = o(n) then \/ﬁ(“n — i) = Op(1)~

Proof. Using Hoeffding’s (1961) decomposition for U-statistics we write, u, =0, +
k j j ny— j c
Zj=1 (IIC)H;I) where Hg) - (/) 1Xz(n,i) hg)(ZU], T ’ZU/)’ h;l)(zvl) =V1,(Zy,) = On, hi’l)(Z“’

o Ze) = Ve Zos o Zo) — S Y J) "Zi,, ..., Z) — 0, where Yo (Zy,..., Z,) =
EW,(Z1.....Z1)Z1,....Z0) and ¢=2,....k. Then, u,—i, =Y ,()HP and it is
straightforward to show that E(u, — un) = 0. Also,

k [k 2 ko k
V(n'*(u, — i) = nE <Z<,>Hg)> =nE ZZ( )( )H(”H(/)
= \/ J=2J
ko (kN /n\""
=nz<.> () EW(Z,,....Z)").
= \/J J

where the last equality follows from Theorem 3 in Lee (1990, p. 30). By Chebyshev’s
inequality, for all >0, P(|n'/2(u, — it,)| =€) <nE((u, — i1,)*)/¢>. Therefore, it suffices to
show that

N\
nf; <J> <J> E(i(Z1.....Z))") = o(D).

Ifforallj=2,...,k
E(WN(Z:, ..., Z)") = OBWA(Z1, ..., Zx))) 8)

then for some 4>0,

& 2 n -1
nE((un—u,,))<nZ< ) () AEWAZ1,- - Zk))

J=2

k
n22< ) (=)t ”’ n\AEWA(Z1, . . .. Z0).

J=2
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Since E(wﬁ(Z 1,...,Zr)) = o(n) by assumption, for fixed k, there are a finite number of
terms in Z;‘zz, the magnitude determined by j = 2. For some A'>0, nE((u, — 0i,)°)<
A’nz(lzC )2("_,12,)!2! E(%(Z; """ Z) < O(1)o(1). We now use induction to prove that E(W(Zy,...,
Z))*) = OW2(Z,,. .., Zy)). Note that

hg)(zla-"ﬂZi)lejn(Zln~' Z)+Z( 1) Z W(] d),,(Z,l,...,Z,»Hl)—f—(—l)jg,,

=1 (j—d)
forj=2,...,k.

We first establish the result for j = 2.

(HK(Z\, Z2))? = Y3 (Z1, Z2) + 3 (Z) + V2 (Z2) + 67
- 21#211(21, ZZ)‘//ln(Zl) - 2'7027:(217 ZZ)lnbln(ZZ)
+ 200(Z 1 Z2)0n + 201, (Z W 1(Z2) — 2011,(Z1)0n — 2001,(Z2)0,.

By Cauchy—Schwarz’s inequality, the expected value of each term on the right-hand side
can be shown to be less than E(x//i(Zl,Zz)). Since there are a finite number of terms
E((hff)(Z 1,Z2))?) = O(E(wi(Z 1,-+-,2Zr))). Now suppose that the statement is true for all
2<j<k—1.Forj=k

k—1 ’
EWO(Z,,..., Z0)) = E(wn<21,---’2k)2)+E(<ZZ hg)(zi"""zif)> ) o

J=1 (k)

k—1
=23 > EW)Zis . Zi)(Z1, - Z0))

J=1 (k)

k—1
—2B()(Z1,. .. Z0)0n) + 20, > > EhNZs,,.... Zy))

J=1 (k)

and by Theorem 3 in Lee (1990)

k-1 2
E ( <Z > W)(Zis .. ,z,,)) )
J=1 (k)
—1 k—
> Z S EW)Zis .. ZDW(Z,, .. Z)
(k) j'=1 (k")

> EH(Z, ... Z)).
(k)

=~

I
Ry

k‘

—1

1

~.
Il

Given that this sum has a finite number of terms and the induction hypothesis we have that
the left-hand side of the last equality is O(E(lpi(Z 1,---,2Zk))). Second, again by Theorem 3
in Lee (1990)

EW(Zi, ... ZiWo (2, ..., Z0)) = E(W)(Zs,, ..., Zi)),
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therefore by the induction hypothesis Z;:]lZ(k,,') E((h,({)(Z,-l,...,Z,}.))Z)zO(E(xpi(Zl,
-, Z1)). Finally, EG,(Z1,. .., Zi)0,) = 02<EW(Z1,...,Zy)) and the last term is zero.
Hence, EWM(Zy,...,Z)%) = O(E(lpﬁ(zl,...,zk))) forallj=2,...,k. O

Lemma 4. Assume A1-A4. If h, — 0
h—b= = op(1).

Proof. We write b — b = 0; — 05 + 05 + 04 — 05, where

1 n
o= (— > o(X )G i hy) a(X»)),
S Ky T

, ln(n) — 00, and X, € G a compact subset of ‘R, then

92=1—< Z«»—Z(Xt, ) — 2()@))),

;Z'; 1 (Xh n)

1
EZ’;:I az(Xt)et

1 b
ZZ?:I Uz(Xt)

1
_ZI:=1 o(X)(6(X 15 hy) — 0(X))e,
0, ="1 and,

I, .
ZZ;=1 az(XtQ )

Il . |

ZZI:I (Uz(Xt; hy) — Uz(Xt)) ;thl Uz(Xz)gt
SV [ '
S X sh) 3L 0%(X)

Under Assumptions A1-A4 a routine application of Kolmogorov’s law of large numbers
gives 03 = op(1). Now,

05 =

1 n .
01+ 0y = —————n ' > (6(Xi3h) — a(X )Y,
Zz 1‘72(Xt, hy) =1
_ 1 ! Zn: 1 1
T 1w 0. -
SRk \2 /e, 2V
1
X (02X ) = P(X )Y+ !

;Z?zl &Z(Xﬁ hn)

- ! 52(Y .- 2
* 23501y X = DY,

1
=T (Dln + Dzl‘l)ﬂ

| D
ZZ;:] az(Xt; hn)
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where U%(Xf; hy) = 06*(X,) + (1 — 0)6*(X 13 hy,) for some 0<0< 1 and for all X, € G. Since
1Z Z(X, = = Op(1) from Theorem 1, it suffices to consider Dy, and D,,. We first

cons1der Dy,. It is easy to see that if 1

L
202X k) 24/02(X0)
n S 18R (X s hy) — A(X )N Y| = op(hy), then Dy, =op(h). Now, |————

2\ /2 (X i)
\/—2(—)7| B \/Tlo'()(r) op(Xihy)| and  since  o*(X,) — op(X 1 hy) = (1 —0)
(6*(X,) — 6*(X,; hy)) we have by Theorem 1 that 6*(X,) — 63(X;; hy) = 0p(h,) uniformly
for X, € G. Since o(X,) — op(X;; h,) = op(h,) and ﬁ—op(l) uniformly in G.

op(h,) uniformly in G and

Hence,

1 1
sup -
X,€G 2\/6%@/[’;1”) 2¢/c%(X))

= op(h,) and

|Dia| <n™ |Y,| sup — sup 6%(X s hy) — a*(X)l
! Z Xi€6(2, [62(X 1; hy) 24/cX(X))| x.eG !

<op(hyn™! Z 1Yl = op(h),

where the last equality follows from the fact that n='Y")_, |Y,| = Op(1) by Chebyshev’s
inequality. Now D,,<n '>7_ 2(‘7{)(‘)supX,€G|a (X3 hy) — a2(X )| = op(hy)n 'Y 12"7{)’('0
= op(h)n™' Y71 $1b+ &l = op(hy), where the last equality follows from n='Y") | 11+

& =0p(1) by Chebyshev’s inequality. Hence, 0+ 04=o0p(h,). Now, [0»|<

W‘ In= 'S0 (63X 13 ) — *(X )| = Op(1)op (/)= 0p(h,) by Theorem 1. Finally,
=1 t:ln

|0s| = op(h,) by the results from the analysis of 8, and ;. Combining all the convergence
results b — b = op(l). O
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