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1 Introduction

The specification and estimation of production frontiers, and the measurement of the associated efficiency

level of production units has been the subject of a vast and expanding literature since the seminal work of

Farrell (1957). The main objective of this literature can be stated simply. Consider (X,Y ) ∈ _d+×_+ where

Y describes the output of a production unit and X describes the d inputs used in production. The output

set is given by Ψ = {(x, y) ∈ _d+×_+ : x can produce y} and the production function or frontier associated

with Ψ is g(x) = sup{y ∈ _+ : (x, y) ∈ Ψ} for all x ∈ _d+. Let (x0, y0) ∈ Ψ characterize the performance

of a production unit and define 0 ≤ R0 ≡ y0
g(x0)

≤ 1 to be this unit’s (inverse) Farrell output efficiency

measure. The main objective in production and efficiency analysis is, given a random sample of production

units χn ≡ {(Xi, Yi)}ni=1 that share the set Ψ, to obtain estimates of g(·) and by extension Ri = Yi
g(Xi)

for

i = 1, · · · , n.

Deterministic frontier models and estimators, largely represented by data envelopment analysis (DEA)

and full disposal hull (FDH), have gained popularity among applied researchers because their construction

relies on very mild assumptions on Ψ.1 These models are based on the assumption that χn lie in Ψ, i.e.,

P ((X,Y ) ∈ Ψ) = 1, where P is the probability measure associated with the random vector (X,Y ). The

most appealing characteristic of such models is that there is no need to assume any restrictive parametric

structure on g(·) or the probability measure P to perform estimation. In addition to accommodating a flexible

nonparametric structure, the appeal of DEA and FDH estimators has increased since Gijbels et al. (1999)

and Park et al. (2000) obtained their asymptotic distributions under some fairly reasonable assumptions.

DEA and FDH type estimators have two serious deficiencies. First, since they are based on the idea of

enveloping the observed data, these estimators are very sensitive to outliers or extreme observations and are

inherently biased. Second, even in cases where the production technology induces a smooth production fron-

tier, estimated frontiers based on FDH and DEA are discontinuous or piecewise linear function, respectively.

Efforts to remedy such deficiencies have appeared in different nonparametric frontier modeling contexts (Gi-

rard and Jacob, 2004; Hall et al. (1998); Knight, 2001; Martins-Filho and Yao, 2007). Prominent among

1See Simar and Wilson (2006) for a review of deterministic frontiers and illustrations of their widespread use.
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these recent developments is the contribution of Aragon et al. (2005). They propose an alternative definition

for the production function,

h(x) = sup {y ∈ _+ : F (y/x) < 1} ≡ inf {y ∈ _+ : F (y/x) = 1} (1)

where F (y/x) = F (x,y)
FX (x)

, F (x, y) = P ({(X,Y ) : X ≤ x, Y ≤ y}) and FX(x) is the associated marginal

distribution of X. Since FX(x) > 0, they restrict attention to Ψ
∗ = {(x, y) ∈ Ψ : FX(x) > 0}. If the frontier

g(x) is monotone nondecreasing, a typical assumption in economic theory, then h(x) = g(x) for all x such

that (x, y) ∈ Ψ∗. Note that the assumption that g(x) is monotone nondecreasing is equivalent to F (y/x)

being monotone nonincreasing on the set {x ∈ _d+ : FX(x) > 0}.2 Aragon et al. observed that g(x) is

the order one quantile for the conditional distribution of Y given that X ≤ x, where the inequality should

be understood componentwise, and therefore g(x) ≡ q1(x) = inf {y ∈ _+ : F (y/x) = 1}. As a natural

extension, they suggest the concept of a production function of continuous order α ∈ [0, 1] given by

qα(x) = inf {y ∈ _+ : F (y/x) ≥ α}. (2)

The usefulness of this concept rests in the fact that if F (·/x) is strictly increasing on the support [0, g(x)],

then qα(x) = F−1(α/x) where F−1(·/x) is the inverse of F (·/x). In this context, any production plan

(x, y) ∈ Ψ∗ belongs to some α-order conditional quantile curve, and is such that y represents an output level

that is greater than 100α percent of the output of all production plans using inputs X such that X ≤ x.

Thus, rather than relying on g(Xi) to define production efficiency of firm i, the conditional quantile function

qα(Xi) compares the production plan (Xi, Yi) of firm i to all other {(Xj , Yj)}j W=i such that Xj ≤ Xi.

Aragon et al. propose an estimator for qα(x) that is based on a conditional empirical quantile obtained

from inverting the empirical conditional distribution function Fn(y/x). Although their estimator has de-

sirable properties of consistency and
√
n asymptotic normality, it is well known from the unconditional

distribution and quantile estimation literature (Azzalini, 1981; Falk, 1985; Yang, 1985; Bowman, Hall and

Prvan, 1998) that smoothing beyond that given by the empirical distribution can produce significant gains

in finite samples. Li and Racine (2005) have proposed a kernel based nonparametric conditional distribution

2See proposition 2.5 in Aragon et al. (2005).

2



estimator and an associated conditional quantile estimator, however their conditioning set is X = x rather

than X ≤ x. In this paper, we propose a smooth nonparametric kernel estimator for the α-frontier (qα(x)).

Our estimator is an extension of the seminal idea of Nadaraya (1964) and is based on a smooth estimator

of the conditional distribution F (y/x). Besides having the properties of consistency and
√
n-asymptotic

normality, the variance of our estimator is smaller than that of the estimator proposed by Aragon et al., con-

firming that the gains first identified by Azzalini in unconditional quantile estimation extend to conditional

quantile estimation. Our simulations also confirm the superior performance of our proposed estimator.

Besides this introduction, this paper has five additional sections. Section 2 describes the stochastic model

in detail, contrasts its assumptions with those in the past literature and describes the estimation procedure.

Section 3 provides the main theorems establishing the asymptotic behavior of our estimator and discusses

bandwidth selection. Section 4 contains a Monte Carlo study that implements the estimator, sheds some

light on its finite sample properties and compares its performance with that of the estimator proposed by

Aragon et al. Section 5 provides an empirical illustration of our estimation procedure using data on electric

utilities from the United States. Lastly, section 6 provides a summary and some directions for future work.

2 Stochastic Model and Estimation

2.1 α Frontier Estimator

Consider χn = {(Xi, Yi)}ni=1 a sequence of independent random vectors taking values in Ψ∗ and having the

same distribution F as the vector (X,Y ). Throughout the paper, X will represent a d-vector of inputs used

in the production process and Y will represent a scalar measure of output. F is taken to be absolutely

continuous with associated density function given by f . The marginal distribution and density functions of

X are denoted by FX and fX respectively. Given that our interest is on the estimation of the α-frontier,

which coincides with conditional quantile qα(x) for α ∈ [0, 1], we define an estimator F̂ (y/x) for F (y/x) as

F̂ (y/x) =

l
0 if y = 0,

F̂ (x,y)

F̂ (x)
if y > 0.

(3)

where F̂ (x, y) = (nhn)
−1�n

i=1

$ y
0
K
p
Yi−γ
hn

Q
dγI(Xi ≤ x) and F̂ (x) = n−1

�n
i=1 I(Xi ≤ x), I(A) is the

indicator function for the set A, K(·) is a suitably defined kernel function and hn is a nonstochastic sequence
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of bandwidths such that 0 < hn → 0 as n → ∞. The estimator is different from that proposed by Aragon

et al. in that their estimator for F (x, y) is given by Fn(x, y) = n−1
�
i=1 I(Xi ≤ x, Yi ≤ y). In essence,

rather than estimating F (y/x) by the empirical distribution of the data such that Xi ≤ x for i = 1, · · · , n, we

estimate F (y/x) by integrating a smooth Rosenblatt density estimator constructed using the observations

{(Xi, Yi)}i∈{i:Xi≤x}. It is easy to demonstrate that F̂ (y/x) is asymptotically a distribution function, i.e.,

for suitably defined kernels: (a) F̂ (y/x) is nondecreasing in y; (b) F̂ (y/x) is right continuous in _+; (c)

limy→0F̂ (y/x) = 0; and (d) there exists N(x) such that for all n > N(x) we have limy→∞F̂ (y/x) = 1.

Assuming that qα(x) is the unique α order quantile for the conditional distribution F (y/x), we define

the estimator qα,n(x) as the root of

F̂ (qα,n(x)/x) = α for α ∈ (0, 1] and x ∈ _d+. (4)

Using the mean value theorem, absolute continuity of F and smoothness of the kernel function we can write

qα,n(x) − qα(x) = F (qα(x)/x)−F̂ (qα(x)/x)
f̂(q̄α,n(x)/x)

where f̂(y/x) = ∂F̂ (y/x)
∂y =

(nhn)
−1�n

i=1
K
D
Yi−y
hn

i
I(Xi≤x)

F̂ (x)
for y ≥ 0

(f̂(y/x) = 0 for y < 0) and q̄α,n(x) = λqα,n(x) + (1− λ)qα(x) for λ ∈ (0, 1).

2.2 Assumptions

The stochastic properties of the estimator defined in (4) are obtained under the following regularity condi-

tions:

Assumption A1. a. χn = {(Xi, Yi)}ni=1 is a sequence of independent random vectors taking values in

Ψ∗ and having the same distribution F as the vector (X,Y ), with support in Ψ∗; b. Ψ∗ is compact and

0 < f(x, y) < Bf for all (x, y) ∈ Ψ∗.

The assumption that χn is an independent and identically distributed sequence, and the existence of the

density f as a bounded function in Ψ is standard in the deterministic frontier literature (Aragon et al., 2005,

Cazals et al., 2002; Gijbels et al., 1999; Martins-Filho and Yao, 2007; Park et al., 2000).

Assumption A2. a. K(γ) : SK → _ is a symmetric bounded function with compact support SK =

[−BK , BK ] such that: b.
$ BK

−BK
K(γ)dγ = 1; c.

$ BK

−BK
γK(γ)dγ = 0,

$ BK

−BK
γ2K(γ)dγ = σ2K ; d. for all

γ, γI ∈ SK we have |K(γ) − K(γI)| ≤ mK |γ − γI| for some 0 < mK < ∞; e. for all γ, γI ∈ _ we have
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|κ(γ)− κ(γI)| ≤ mκ|γ − γI| for some 0 < mκ <∞, where κ(λ) =
$ λ
−BK

K(γ)dγ.

Assumption A2 is standard in nonparametric estimation and is satisfied by commonly used kernels such

as Biweight, Epanechnikov and others.

Assumption A3. a. f is continuous in Ψ∗; b. for all x such that FX(x) > 0 and for all α ∈ (0, 1],

f(qα(x)/x) > 0, where f(·/x) is the derivative of F (·/x); c. for all (x, y), (x, yI) ∈ Ψ∗, |f(x, yI)− f(x, y)| ≤

mf |y − yI| for some 0 < mf <∞; d. F is twice continuously differentiable in the interior of Ψ∗.

A3.b is assumed by Aragon et al. (2005), and the Lipschitz condition in A3.c. is also assumed by Park

et al. (2000).

Assumption A4. For all y, yI ∈ G, where G is a compact subset of (0,∞), we have
eee$g−1([y,yI]) dXeee ≤

mg−1 |y−yI| for some 0 < mg−1 <∞. Here, let x = (x1, · · · , xd)I, then for any two sets A ⊆ Cx = ×di=1[0, xi]

and B ⊆ [0, g(x)], g(A) = {g(x) : x ∈ A} and g−1(B) = {x : x ∈ Cx, g(x) ∈ B}.

Assumption A4 imposes a Lipschitz type condition on the inverse image g−1 of g. Note, for example, that if

g : _+ → _+ is bijective with inverse g−1, assumption A4 is equivalent to
eeg−1(y)− g−1(yI)ee ≤ mg−1 |y− yI|

for some 0 < mg−1 <∞.

3 Asymptotic Characterization of the Estimator

3.1 Asymptotic Properties

Theorems 1 and 2 below establish consistency and asymptotic normality of qα,n(x). The theorems depend

on two auxiliary lemmas provided in the appendix. Lemma 1 is an extension to the multivariate case of the

second order results of Azzalini (1981), where the nonparametric distribution function estimator for F (x, y) is

given by F̂ (x, y). Asymptotically, the difference between F̂ (x, y) and the multivariate empirical distribution

function estimator is the order at which the bias and variance converge to zero. Lemma 2 establishes

conditions under which F̂ (x, y) converges uniformly to F (x, y), a necessary condition for Theorem 1. In

Lemma 2 the assumption that min{i:Xi≤x}Yi ≥ hnBK implies that even as the number of observations that

satisfy {i : Xi ≤ x} grows to infinity, the associated output levels Yi are bounded away from zero. Although

reasonable in most contexts, it is certainly an assumption that could be violated by certain data generating
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processes. The lemmas, Theorems 1 and 2 and proofs can be found in Appendix 1.3 We now state,

Theorem 1 Let 0 < hn → 0 be a nonstochastic sequence of bandwidths with nhn → ∞ as n → ∞.

Assume A1, A2, A3, A4 and that for given x ∈ _d+ and some N(x) we have that for all n > N(x)

min{i:Xi≤x}Yi ≥ hnBK . Then,

qα,n(x)− qα(x) = op(1). (5)

Asymptotic normality of qα,n(x) under suitable normalization is obtained in the following Theorem 2.

Theorem 2 Let 0 < hn → 0 be a nonstochastic sequence of bandwidths with nh2n →∞ and nh4n = O(1) as

n→∞. Assume A1, A2, A3, A4 and that for given x ∈ _d+ and some N(x) we have that for all n > N(x)

min{i:Xi≤x}Yi ≥ hnBK . Then, for all α ∈ (0, 1) we have

vn(x)
−1√n(qα,n(x)− qα(x)−Bn(x)) d→ N(0, 1) (6)

where Bn(x) = −12h2nσ2K
$
g−1([qα(x),g(x)])

f(1)(γ,qα(x))dγ

FX(x)f(qα(x)/x)
+ o(h2n) and v

2
n(x) =

1
(FX(x)f(qα(x)/x))2

(F (x, qα(x))−
F 2(x,qα(x))
FX(x)

− 2hnσκ
$
g−1([qα(x),g(x)])

f(γ, qα(x))dγ
Q
+o(hn) with κ(x) =

$ x
−BK

K(γ)dγ, 0 < σκ =
$ BK

−BK
γκ(γ)

K(γ)dγ, and f (1)(X, y) denotes the first derivative of f with respect to Y .

The conditional quantile estimator proposed by Aragon at al. (2005) is also consistent and
√
n as-

ymptotically normal under similar assumptions, however there are some important differences between the

estimators. First, we observe that although our estimator depends on kernel smoothing, and therefore a

bandwidth hn is necessary in constructing the estimator, there is no asymptotic cost as the rate of conver-

gence to normality occurs at the parametric rate
√
n. Hence, the number of inputs d has no impact on the

convergence rate of the estimator. Most importantly, even though there is smoothing in F̂ (y/x), it produces

no slowing on the convergence in distribution, a result obtained by Falk (1985) and Hansen (2004a) in the

context of unconditional distribution functions. Second, although the extra smoothing we propose might

impose modest computational costs compared to the estimator proposed by Aragon et al., Theorem 2 reveals

that the extra smoothness produces a smaller variance due to the higher order terms. Note that the variance

3Additional proofs and technical details can be found in Martins-Filho and Yao (2007a).
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of the asymptotic distribution of their estimator is given by

α(1− α)
f2(qα(x)/x)FX(x)

≡ 1

(FX(x)f(qα(x)/x))2

w
F (x, qα(x))− F

2(x, qα(x))

FX(x)

W
,

and given that the extra term that appears in v2n is nonnegative, the variance of our estimator is smaller

for all n finite. Third, the extra smoothing we propose does introduce a bias term Bn(x) = O(h2n), but

provided that nh4n = o(1) the bias vanishes asymptotically. We note that this condition is consistent with

the conditions on hn necessary to obtain Theorem 2. Finally, we observe that given that Bn(x) = O(h
2
n) and

that the variance is of order O(n−1+hnn−1) the optimal bandwidth rate for minimization of the asymptotic

mean integrated squared error is hn ∝ n−1/3.

The next theorem provides the joint asymptotic distribution of qα,n(x
1), qα,n(x

2), · · · , qα,n(xr) which can

be used to construct joint asymptotic confidence sets for the α-frontier for various levels of input usage. The

result is similar to that in theorem 4.2. in Aragon et al. (2005).

Theorem 3 Let x1, x2, · · · , xr be r levels of input X and let all assumptions in Theorem 2 hold. Then, for

α ∈ (0, 1) we have

√
n
D
qα,n(x

1)− qα(x1)−B(x1), qα,n(x2)− qα(x2)−B(x2), · · · , qα,n(xr)− qα(xr)−B(xr)
iI d→ N(0, Q)

where B(xl) = − 1
f(qα(xl)/xl)FX(xl)

σ2K
h2n
2

$
g−1([qα(xl),g(xl)])

f (1)(X, qα(x
l))dX + o(h2n), l ∈ {1, 2, · · · , r} and Q

is an r × r matrix with (l,m)th element Ql,m given by

(1) Ql,l =
α(1−α)

f2(qα(xl)/xl)FX(xl)
if l = m,

(2) Ql,m = 1
f(qα(xl)/xl)FX(xl)f(qα(xm)/xm)FX(xm)

[F (xlm, qα(x
l))(1 − α) − αF (xlm, qα(x

m)) + α2FX(x
lm)] if

l W= m, and qα(xl) ≤ qα(xm),

(3) Ql,m = 1
f(qα(xl)/xl)FX(xl)f(qα(xm)/xm)FX(xm)

[F (xlm, qα(x
m))(1 − α) − αF (xlm, qα(x

l)) + α2FX(x
lm)] if

l W= m, and qα(xl) ≥ qα(xm), where xlm = {min(xl1, xm1 ),min(xl2, xm2 ) · · · ,min(xld, xmd )}I.

As is typical in applied work, for inference purposes, the unknown higher order components of the variance

terms in Theorems 2 and 3 must be estimated via consistent nonparametric estimators. f(qα(x)/x) can be

estimated by f̂(qα,n(x)/x) the conditional Rosenblatt density estimator, using the rule-of-thumb bandwidth

of Silverman (1986). Note the consistency of f̂(qα,n(x)/x) has been established in the proof of Theorem 2.
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Furthermore, FX(x) can be consistently estimated by F̂ (x) = n
−1�n

i=1 I(Xi ≤ x), and F (x, qα(x)) can be

consistently estimated by F̂ (x, qα,n(x)).

In the following theorem we turn our attention to the estimation of the true frontier q1(x).

Theorem 4 Assume that min{i:Xi≤x}Yi ≥ hnBK , and that A1, A2 hold with Ψ∗ compact. In addition,

assume that the density f is strictly positive on the frontier {(x, g(x)) : FX(x) > 0}, and that g(x) is

continuously differentiable. Then for any x in the interior of the support of X we have that

a) There exists N(x) > 0 such that for all n > N(x), q1,n(x) = max{i:Xi≤x}Yi + hnBK .

b) n1/(d+1)(q1(x)− q1,n(x) + hnBK) d→Weibull(μd+1x , d+ 1).

μx is a constant depending on the slope of g(·) and the value of f at the frontier. Park et al. (2000) provide

the exact expression for μx as well as a consistent estimator for μx. We note that by their Theorem 3.3, it

is a direct consequence of the assumptions in Theorem 4 that

E(q1(x)− q1,n(x)) = Γ
w
d+ 2

d+ 1

W
μ−1x n−1/(d+1) − hnBK + o(n−1/(d+1))

which suggests that the bias associated with the estimation of the true frontier q1(x) via q1,n(x) could be

smaller than that associated with the FDH estimator. We now turn our attention to bandwidth selection.

3.2 Bandwidth Selection

Implementation of our α-frontier estimator requires the selection of a bandwidth. Following standard

practice (Fan and Gijbels, 1995; Ruppert et al., 1995) we select the bandwidth by minimizing an as-

ymptotic approximation of the estimator’s mean integrated squared error (AMISE) over all α. Disre-

garding terms of order o(h4n) and o(hn/n) and defining I1(x,α) =
$
g−1([qα(x),g(x)])

f (1)(γ, qα(x))dγ, and

I2(x,α) =
$
g−1([qα(x),g(x)])

f(γ, qα(x))dγ we have

AMISE(qα,n(x);hn) =
h4n(σ

2
K)

2

4F 2
X
(x)

$ 1
0

I21 (x,α)
f2(qα(x)/x)

dα+ 1
nFX(x)

$ 1
0

α(1−α)
f2(qα(x)/x)

dα

− hn2σκ
nF 2

X
(x)

$ 1
0

I2(x,α)
f2(qα(x)/x)

dα

a function of hn. The bandwidth that minimizes AMISE(qα,n(x);hn) is given by

h∗n =

⎛⎝ 2σκ
$ 1
0

I2(x,α)
f2(qα(x)/x)

dα

(σ2K)
2
$ 1
0

I21 (x,α)

f2(qα(x)/x)
dα

⎞⎠ 1
3

n−
1
3 = Cn−1/3.
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Since our expression for AMISE accounts for all possible values of α, h∗n can be interpreted as a global

optimal bandwidth with respect to α for given input level x. Since our α-frontier estimator is constructed

as a quantile estimator which smooths only the output for the underlying conditional distribution, it is not

surprising that the optimal bandwidth is of order O(n−
1
3 ). This is the same order obtained in Azzalini (1981),

Bowman et al. (1998) and Hansen (2004a) where a kernel estimator is used to estimate an unconditional

distribution. However, our constant C is different from theirs. Compared with other conditional quantile

estimators, both the order and the constant C in the expression for h∗n are different from those in Hansen

(2004b) and Li and Racine (2005) since the conditioning set we consider {X ≤ x} is different.

The practical use of h∗n requires the estimation of the unknowns appearing in its expression, as in the

traditional plug-in bandwidth selection methods. In the next section, we provide an easily implementable

estimation procedure for these unknowns and shed light on the finite sample performance of our estimator

via a small Monte Carlo study.

4 Monte Carlo Study

In this section, we perform a Monte Carlo study which implements our smooth α-frontier estimator (S) and

provides evidence on its finite sample performance. For comparison purpose we also include in the study

two alternative estimators, the empirical α-frontier estimator of Aragon et al. (2005) (E) and a conditional

α-quantile estimator based on a linearly interpolated empirical conditional distribution (Kincaid and Cheney,

1996)(I). The interpolated estimator is interesting in that extra smoothness is obtained without the need for

bandwidth estimation.

The data are simulated according to the model Yi = g(Xi)Ri, i = 1, 2, · · · , n where Yi represents output,

the univariate inputXi are pseudorandom variables generated from a uniform distribution with support given

by [bl, bu]. Ri = exp(−Zi) and Zi are independently generated pseudorandom variables from an exponential

distribution with parameter β = 1
3 , therefore the efficiency Ri has support (0, 1] with global average level

of efficiency E(Ri) = 0.75. We consider two specifications for g(·), g1(x) = √x with [bl, bu] = [4, 25] and

g2(x) = x3 with [bl, bu] = [1, 2] which are associated with convex and nonconvex production technologies
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respectively. This data generating process (DGP) has been considered in Aragon et al. (2005), Gijbels et

al. (1999), Martins-Filho and Yao (2007), Park et al. (2000) and is regarded as reasonable with respect to

many applications found in the econometric literature (Gijbels et al., 1999, p. 224).

For each specification of g(x) we consider three sample sizes n = 100, 200 and 400 and perform 1000

repetitions at each experiment design. We estimate the α−frontiers for α − 0.25, 0.5, 0.75 and 0.99. Since

the estimators for qα(x) are constructed using data points with input levels which are less than or equal

to x, we avoid estimation with extremely small samples by evaluating the performance of the estimators

over the input interval starting from the 33rd percentile to the upper bound of the support. Using thirty

equally spaced points in the support interval, we obtain the averaged bias, standard deviation and root mean

squared error of each estimator. We also construct 95% asymptotic confidence intervals for the α−frontiers

at different α levels using the asymptotic distributions available for our estimator and the estimator proposed

by Aragon et al.

4.1 Estimator Implementation

The empirical α-frontier estimator is implemented as described in Aragon et al. We implement the interpo-

lated α-frontier estimator as

q̂α,nI(x) =

⎧⎨⎩
Y(i1) if 0 ≤ α < 1

Nx

Y(ik) + (α− k
Nx
)Nx(Y(ik+1) − Y(ik)) if k

Nx
≤ α < k+1

Nx
, 1 ≤ k ≤ Nx − 1

1 if y ≥ Y(iNx )
where Nx =

�n
i=1 I(Xi ≤ x) and Y(ij) is the jth order statistic for the observations Yi such that Xi ≤ x. We

note that q̂α,nI(x) produces estimates that are identical to those given by the empirical α-frontier estimator

when α coincides with the nodes k
Nx
. Our estimator is implemented using the Epanechnikov kernel and the

following plug-in bandwidth

ĥPI =

⎛⎜⎝ 2σκ
$ 1
0

Î2(x,α)

f̂2(qα(x)/x)
dα

(σ2K)
2
$ 1
0

Î21 (x,α)

f̂2(qα(x)/x)
dα

⎞⎟⎠
1
3

n−
1
3

where Î1(x,α), Î2(x,α), f̂(qα(x)/x) are estimators for I1(x,α), I2(x,α) and f(qα(x)/x) appearing in h
∗
n.

Specifically, f̂(qα,n(x)/x) =
1

ngn

�n

i=1
K(

Yi−qα,n(x)
gn

)I(Xi≤x)
F̂ (x)

where F̂ (x) is the empirical distribution function.

Since f̂(qα,n(x)/x) is a suitably defined Rosenblatt density estimator, we utilize the rule-of-thumb bandwidth

10



of Silverman (1986) for gn. In I1(x,α) and I2(x,α) the area of integration g
−1([qα,n(x), g(x)]) needs to be

estimated. In the case of an univariate input (d = 1) g−1([qα,n(x), g(x)]) = [g−1(qα,n(x)), x]. To estimate

I1(x,α) consider
$ b2
b1
f (1)(x, y)dx =

$ b2
0
f (1)(x, y)dx − $ b1

0
f (1)(x, y)dx for some positive bounds b1 and b2.

Given our estimator for the conditional distribution and an arbitrary b > 0, a natural estimator for θ(y) =$ b
0
f (1)(x, y)dx is given by θ̂(y) = 1

ngn1

�n
i=1K

(1)(y−Yign1
)I(Xi ≤ b), where K(1)(x) = dK(x)

dx for a bandwidth

gn1. The estimation of θ(y) requires a bandwidth selection procedure for gn1. Based on the bias and variance

expressions in Lemma 3 (Appendix 1) we obtain the optimal bandwidth that minimizes the AMISE of θ̂(y)

as

g∗n1 =

X
3CK1

$ $ b
0
f(x, y)dxdy

4
36C

2
K

$
(
$ b
0
f (3)(x, y)dx)2dy

~ 1
7

n−
1
7

where CK and CK1 are constants given in Lemma 3 which depend only on the kernel, and f
(3)(x, y) is the

3rd order partial derivative of f(x, y) with respect to y. It is straightforward to verify that the Epanechnikov

kernel satisfies all conditions in Lemma 3, and since E(θ̂(y) − θ(y)) = O(g2n1), V (θ̂(y)) = O((ng
3
n1)
−1) and

g∗n1 = O(n
− 1
7 ), we have that θ̂(y) − θ(y) = op(1). We note that g

∗
n1 ∝ n−

1
7 is similar to the order obtained

for optimal bandwidth for kernel density derivative estimation (Jones, 1994). The bandwidth g∗n1 depends

on additional unknowns, but at this stage we follow standard practice and utilize the standard joint normal

distribution as a reference. For I2(x,α) we consider an estimator for H(y) =
$ b
0
f(x, y)dx for some constant

b > 0. We define the estimator Ĥ(y) = 1
ngn2

�n
i=1K(

y−Yi
gn2

)I(Xi ≤ b) for a bandwidth gn2. Since Ĥ(y) is a

suitably defined Rosenblatt density estimator, we utilize the rule-of-thumb bandwidth of Silverman (1986)

for gn2. Finally, estimation of I1(x,α) and I2(x,α) requires estimators for g
−1(·) and qα,n(x). Here, we

utilize the FDH estimator for ĝ−1(·) and provide an initial estimator for qα,n(x) by using our α-quantile

frontier estimator implemented with the h∗n derived above based on a standard joint normal distribution for

(x, y) and constant returns to scale production function g(x) = 3x.

The asymptotic properties of the proposed bandwidth selection rule ĥPI are unknown. To shed some

light on its finite sample performance and also to illustrate the relative performance of smooth and empirical

frontier estimators without the noise introduced by bandwidth estimation, we implement the smooth frontier

estimator with both the estimated bandwidth ĥPI and the true optimal bandwidth h
∗
n, which is available

11



from the DGP. As will be discussed later, simulation results reveal that the performance of the smooth

estimator with both bandwidths are similar for large sample sizes, suggesting that ĥPI is “close” to h
∗
n in

probability.

Theorem 2 supports asymptotic confidence intervals for the smooth α−frontier estimator. Given that

the asymptotic bias is O(h2n) and h
∗
n ∝ n−1/3 we have that O(

√
nh2n) = O(n−

1
6 ) = o(1). Hence, the

normalized bias vanishes asymptotically and for 97.5% quantile Z0.975 of a standard normal distribution,

we obtain limn→∞ P (qα,n(x) − n− 1
2 (Ŝ22)

1
2Z0.975 ≤ qα(x) ≤ qα,n(x) + n− 1

2 (Ŝ22)
1
2Z0.975) = 0.95 where Ŝ22 =

α(1−α)
F̂ (x)(f̂(qα,n(x)/x))2

. F̂ (x) and f̂(qα,n(x)/x) are estimated as described in the bandwidth selection procedure.

The asymptotic confidence interval for the empirical α-frontier estimator is constructed in a similar manner.

4.2 Results and Analysis

Figure 1 depicts the true α−frontier with estimated smooth and empirical frontiers for α ranging over

0.02, 0.04, · · · , 1 for a simulated dataset of size n = 50 with g1(x) = g1(25). As expected, our α−frontier

estimate is a smooth function of α and the empirical α−frontier is not. Table 1 provides the average root

mean squared error of α-frontier estimators for α = 0.25, 0.5, 0.75, 0.99. Also included are results for the

smooth α-frontier estimator implemented with the true optimal bandwidth h∗n.
4

First, we compare the performance of the empirical estimator with that of the smooth estimator using

h∗n. In terms of root mean squared error, when g1(x) is considered, the smooth estimator outperforms the

empirical estimator when α assumes values of 0.25, 0.5, 0.75, with empirical estimator performing better when

α is close to 1. When g2(x) is considered, the smooth estimator is superior for most experiments, where the

only exception occurs in small samples when α is close to 1. When the smooth estimator is implemented

with ĥPI , as we expect, the performance of the smooth estimator is slightly worse than that with h
∗
n in terms

of root mean squared error. However, the conclusions regarding the relative performance of the empirical

and smooth estimators is largely maintained, suggesting that ĥPI is estimating h
∗
n quite well. These results

are driven by the significantly smaller standard deviation of the smooth estimator, which compensates for

4Results for other values of α, averaged bias and standard deviation of the estimators are provided in Martins-Filho and
Yao (2007a).
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slightly larger bias, confirming the asymptotic result in Theorem 2.

A comparison between our smooth estimator and the interpolated estimator resembles that between our

estimator and the empirical estimator. We also observe that interpolated estimator has larger bias, slightly

smaller standard deviation, but slightly larger root mean squared error than the empirical estimator.

We find that as n increases the root mean squared error of all estimators decreases confirming the

asymptotic results in the previous section.5 This indicates that q̂α,nI(x) may be a consistent estimator of

the α-frontier and that ĥPI is likely a consistent estimator for h
∗
n. We observe that for both g1(x) and g2(x)

the root mean squared error for all estimators is generally larger when evaluating α-frontier with α closer

to 1 than when evaluating frontiers with α = 0.25, 0.5, 0.75. The fact that it is more difficult to estimate

α-frontiers in this case is intuitively understood as there are relatively less representative data available when

α is closer to 1.

The empirical coverage probability (the frequency that the estimated confidence interval contains the true

α−frontier in 1000 repetitions) is given in Table 2 for the 33rd(x10), 66th(x20), and 100th(x30) percentile

of the input evaluation interval for empirical and smooth α-frontier estimators based on ĥPI . For most

experiments we observe that the smooth estimator is superior to empirical estimator, i.e., the empirical

coverage probability with the smooth estimator is closer to the target value 95% than that with the empirical

estimator, where exceptions occur mostly for α = 0.25. As n increases the empirical coverage probabilities

from both estimators tend to get closer to 95% with some exceptions. There is also weak evidence that for

the empirical estimator the coverage gets closer to 95% as α decreases. Figure 2 provides 95% empirical

coverage probability for the estimators for the α = 0.99 frontier and a sample size n = 100 for 30 points across

the input support. As indicated in the graph, for both g1(x) and g2(x), the smooth α-frontier estimator’s

empirical coverage probability slightly overestimates the 95% target. Coverage for empirical estimator is

largely below the 95% target with large deviations close to the boundary of the input support.

To provide further evidence on the finite sample distribution of the two estimators, we provide kernel

density estimates for the smooth and empirical α-frontier estimators centered around the true value (for

5This is also true for bias (with exceptions) and variance.
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α = 0.98) q0.98(x0) based on 1000 simulations of sample sizes n = 100 and 400 for g1(x) with x0 = 25 in

Figure 3 and for g2(x) with x0 = 2 in Figure 4.

Figure 3 shows that the kernel density for the smooth estimator is shifted to the right and more tightly

centered, implying smaller variance, but larger bias compared to the empirical estimator. Figure 4 shows a

similar pattern, but here the smooth estimator exhibits significantly smaller bias, suggesting an improved

performance when estimating nonconvex technologies. We note that the estimated densities have taller and

more pronounced peaks as the sample size increases, confirming the asymptotic results.

Overall our simulations seem to indicate that the proposed smooth α-frontier estimator can outperform

the empirical α-frontier estimator in terms of root mean squared error when n is large. This is particularly

when estimating production frontiers associated with nonconvex technologies. The simulations also reveal

that although computationally demanding, bandwidth estimation does not significantly impact estimator

performance if compared to implementation with a true bandwidth, indicating that bandwidth selection is

not a significant burden in terms of estimator properties and relative performance.

5 Empirical Illustration

To illustrate our methodology, we employ data on 123 utility companies from the United States reported

in Greene (1990). These data consist of variables on production cost, output, input prices, and has been

analyzed by Christensen and Greene (1976), Greene (1990) and Gijbels et al. (1999). Following Gijbels et

al. (1999), we utilize only the measurements on the output variable with Y = Ln(Q) and input or cost

variable defined as X = Ln(C), where Q is the production output for a firm, and C is the total cost involved

in the production. For detailed description of the data set and analysis, see Christensen and Greene (1976)

and Greene (1990).

In Figure 5, we provide a scatterplot of the data and construct 95% confidence intervals for the α = 0.90

frontiers using the smooth estimator following the steps outlined in the simulation section. For illustration

purpose, we restrict the estimation region to be x ∈ [0, 6], where 109 out of the 123 observations are located.

The bandwidth for our smooth estimator is selected according to the plug-in rule ĥPI as described in the
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simulation section. We note that the confidence bands are wider in regions of the input space where there are

a smaller number of observations. This follows from our definition for asymptotic confidence intervals and

Theorem 4.1 of Aragon et al. Indeed the width of the confidence interval depends on the density f(qα(x)/x)

and marginal probability FX(x). In regions of the input space where there are more data, both the density

and marginal probability will be larger, and hence it is natural to observe narrower confidence intervals.

Given the comments in Aragon et al. (2005) regarding the robustness of the empirical frontier to extreme

observations, we conjecture that for α ∈ (0, 1) our smooth estimator should also be reasonably robust to

extreme values and outliers.

6 Summary

In this paper we proposed a nonparametric α-frontier estimator based on a smooth kernel estimator of

a conditional quantile of order α. Our estimator is an alternative to the conditional quantile estimator

proposed by Aragon et al. (2005), which is based on empirical distribution functions. The estimator is

easily implementable and we show that it is consistent and
√
n asymptotically normal. In addition, the

extra smoothness pays off in that our estimator’s variance is smaller due to higher order terms than that

of the estimator proposed by Aragon et al. (2005). Our simulation study confirms the asymptotic theory

predictions and contrasts our estimator with that of Aragon et al. In most of the experiment designs in the

simulations, our smooth estimator outperforms the empirical distribution based estimator of Aragon et al.

(2005). Future work is needed in the context of α-frontiers, specifically estimators that can produce smooth

boundaries over the input set are desirable in the applied economics literature.

Appendix 1- Proofs

Lemma 1 For all x ∈ _d+ and y ∈ _+ and under assumptions A1, A2.a, A2.b, A2.c, and A3, we have:

(a)

E(F̂ (x, y)) =

⎧⎨⎩
F (x, y) + 1

2h
2
nσ

2
K

$
g−1([y,g(x)]) f

(1)(X, y)dX + o(h2n) if 0 < y < g(x),

F (x, y) + o(h2n) if y > g(x),
F (x, y) + o(hn) if y = g(x).
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(b)

V (F̂ (x, y)) =

F
n−1F (x, y)(1− F (x, y))− 2n−1hnσκ

$
g−1([y,g(x)]) f(X, y)dX + o (hn/n) if 0 < y < g(x),

n−1F (x, y)(1− F (x, y)) + o (hn/n) if y ≥ g(x).

where κ(x) =
$ x
−BK

K(γ)dγ, σκ =
$ BK

−BK
γκ(γ)K(γ)dγ, f (1)(X, y) denotes the first derivative of f with

respect to Y , and 0 < hn → 0 is a nonstochastic sequence of bandwidths.

Proof (a): Let Cx = ×di=1[0, xi] where xi is the ith component of x. Since hn → 0 as n → ∞, there

exists N(x) ∈ _+ such that for all n > N(x), E(F̂ (x, y)) =
$
Cx

$
[0,g(X)]

κ
p
y−Y
hn

Q
∂Ff (X,Y )

∂Y dY dX where

Ff (x, y) =
$
[0,y]

f(x, γ)dγ. Using integration by parts

8
[0,g(X)]

κ

w
y − Y
hn

W
dFf (X,Y ) = κ

w
y − g(X)
hn

W
Ff (X, g(X)) +

8 y/hn

y−g(X)
hn

Ff (X, y − hnγ)K(γ)dγ.

By A3.d and Taylor’s theorem Ff (X, y − hnγ) = Ff (X, y)− hnγf(X, y) + 1
2h

2
nγ

2f (1)(X, y) + o(h2n). Hence,

E(F̂ (x, y)) = E1n + E2n − E3n + E4n + o(h2n), where E1n =
$
Cx

κ
p
y−g(X)
hn

Q
Ff (X, g(X))dX, E2n =$

Cx
Ff (X, y)

$ y/hn
(y−g(X))/hn K(γ)dγdX, E3n = hn

$
Cx
f(X, y)

$ y/hn
(y−g(X))/hn γK(γ)dγdX, E4n =

h2n
2

$
Cx
f (1)(X, y)$ y/hn

(y−g(X))/hn γ
2K(γ)dγdX. For (x, y) ∈ Ψ∗, if y ≤ 0 then F̂ (x, y) = 0. We now consider the limiting behavior

of each term when: (1) 0 < y < g(x); (2) y > g(x); (3) y = g(x).

(1): For any A ⊆ Cx and B ⊆ [0, g(x)], let g(A) = {g(x) : x ∈ A} and g−1(B) = {x : x ∈ Cx, g(x) ∈

B}. Then, E1n =
$
g−1([0,y]) κ

p
y−g(X)
hn

Q
Ff (X, g(X))dX+

$
g−1([y,g(x)]) κ

p
y−g(X)
hn

Q
Ff (X, g(X))dX = E11,n+

E12,n. By A1,
eeeκpy−g(X)hn

Qeee |Ff (X, g(X)| < ∞ and by Lebesgue’s dominated convergence (LDC) theorem

E11,n →
$
g−1([0,y])

$
[0,g(X)]

f(X,Y )dXdY since X ∈ g−1([0, y]) and κ
p
y−g(X)
hn

Q
→ 1. Similarly, E12,n → 0

since X ∈ g−1([y, g(x)]) and κ
p
y−g(X)
hn

Q
→ 0. E2n →

$
g−1([y,g(x)])

$
[0,y]

f(X,Y )dY dX since for X ∈

g−1([0, y]), we have
$ y/hn
(y−g(X))/hn K(γ)dγ → 0, and for X ∈ g−1([y, g(x)]) we have $ y/hn

(y−g(X))/hn K(γ)dγ → 1.

h−1n E3n → 0 since for X ∈ g−1([0, y]) we have $ y/hn
(y−g(X))/hn γK(γ)dγ → 0 and by A2.c, for X ∈ g−1([y, g(x)])

we have
$ y/hn
(y−g(X))/hn γK(γ)dγ → 0. Now, h−2n E4n → 1

2σ
2
K

$
g−1([y,g(X)]) f

(1)(X, y)dX since forX ∈ g−1([0, y])

we have
$ y/hn
(y−g(X))/hn γ

2K(γ)dγ → 0 and by A2.c, for X ∈ g−1([y, g(x)]) we have $ y/hn
(y−g(X))/hn γ

2K(γ)dγ →

σ2K . Hence, for 0 < y < g(x) we have E(F̂ (x, y)) = F (x, y) +
h2n
2 σ

2
K

$
g−1([y,g(x)]) f

(1)(X, y)dX + o(h2n). For

cases (2) and (3) results are obtained in a similar manner. (b) Note that V (F̂ (x, y)) = 1
n (V1n − V2n) where
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V1n = E

wp
1
hn

$ y
0
K
p
γ−Y
hn

Q
dγ
Q2
I(Xi ≤ x)

W
and V2n =

p
E
p
1
hn

$ y
0
K
p
γ−Y
hn

Q
dγI(Xi ≤ x)

QQ2
. The results

are obtained following arguments similar to those in (a).

Lemma 2 Let 0 < hn → 0 be a nonstochastic sequence of bandwidths with nhn →∞ as n→∞. Assume that

for a given x ∈ _d+ and some N(x) we have that for all n > N(x)min{i:Xi≤x}Yi ≥ hnBK and A1, A2, A3 and

A4. Then, (a) supy∈[0,g(x)]|F̂ (x, y)−E(F̂ (x, y))| = op(1) and (b) supy∈[0,g(x)]|E(F̂ (x, y))−F (x, y))| = o(1).

Proof (a) Given min{i:Xi≤x}Yi ≥ hnBK , F̂ (x, y) = 1
n

�n
i=1 κ

p
y−Y
hn

Q
I(Xi ≤ x). Since G(x) = [0, g(x)] is

compact, there exists y0 ∈ G(x) such that G(x) ⊆ B(y0, rx) where B(y0, rx) = {y ∈ _ : |y − y0| < rx}

where rx ∈ _+. By the Heine-Borel theorem there exists {B(yk, (n/han)−1/2)}lnk=1, a > 0 such that G(x) ⊂

∪lnk=1B(yk, (n/han)−1/2) for yk ∈ G(x) with ln < rx(n/han)1/2. For y ∈ B(yk, (n/han)−1/2) we have

|F̂ (x, y)− F̂ (x, yk)| ≤ 1

n

n3
i=1

eeeeκwy − Yhn
W
− κ
w
yk − Y
hn

Weeee I(Xi ≤ x)
≤ mκh

−1
n |y − yk| ≤ mκ(nh

2−a
n )−1/2 by A2.e and the fact that I(Xi ≤ x) ≤ 1.

Also, |E(F̂ (x, y))−E(F̂ (x, yk))| ≤
$
Cx

$
[0,g(X)]

eeeκpy−Yhn Q− κpyk−Yhn

Qeee f(X,Y )dY dX ≤ mκFX(x)(nh
2−a
n )−1/2

by A2.e. Hence, |F̂ (x, y) − E(F̂ (x, y))| ≤ |F̂ (x, yk) − E(F̂ (x, yk))| + mκ(nh
2−a
n )−1/2(1 + FX(x)) and

supy∈G(x)|F̂ (x, y) − E(F̂ (x, y))| ≤ max1≤k≤ln |F̂ (x, yk) − E(F̂ (x, yk))| +mκ(nh
2−a
n )−1/2(1 + FX(x)). Tak-

ing a = 1 and given that nhn → ∞, we have mκ(nh
2−a
n )−1/2 → 0. Hence, we need only show that

for all εn > 0, limn→∞P
p
max1≤k≤ln |F̂ (x, yk)−E(F̂ (x, yk))| ≥ εn

Q
= 0. It suffices to establish that

limn→∞
�ln
l=1 P

p
|F̂ (x, yk)−E(F̂ (x, yk))| ≥ εn

Q
= 0. Note that, |F̂ (x, yk)−E(F̂ (x, yk))| =

een−1�n
i=1Win

ee
where Win = κ

p
yk−Yi
hn

Q
I(Xi ≤ x) − E

p
κ
p
yk−Yi
hn

Q
I(Xi ≤ x)

Q
, with E(Win) = 0 and |Win| ≤ 2 given

that I(·),κ(·) ≤ 1. Given A1, by Bernstein’s inequality we have P
p
|F̂ (x, yk)−E(F̂ (x, yk))| ≥ ε

Q
<

2exp
p −nε2n
2σ̄2+ 4

3 εn

Q
, with σ̄2 = n−1

�n
i=1 V (Win) = V1n(x, yk) − V2n(x, yk) → F (x, yk)(1 − F (x, yk)) for yk ∈

G(x). Let cn = 2σ̄
2+ 4

3εn and εn =
p
ln(n)
n

Q1/2
∆ for some ∆ > 0. Then, P

p
|F̂ (x, yk)−E(F̂ (x, yk))| ≥ ε

Q
≤

2rx

p
n
hn

Q1/2
n−∆/cn ≤ rx(nhn)−1/2 for ∆ sufficiently large. Hence, limn→∞P

wp
n

ln(n)

Q1/2
supy∈G(x)|F̂ (x, y)

−E(F̂ (x, y))| ≥ ∆
Q
= 0 and consequently supy∈G(x)|F̂ (x, y)−E(F̂ (x, y))| = op(1). (b) Note that

supy∈[0,g(x)]|E(F̂ (x, y))− F (x, y))| ≤ supy∈[0,g(x)]
eeeeeE1n(y)−

8
g−1([0,y])

8
[0,g(X)]

f(X,Y )dY dX

eeeee
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+supy∈[0,g(x)]

eeeeeE2n(x, y)−
8
g−1([y,g(x)])

8
[0,y]

f(X,Y )dY dX

eeeee+ supy∈[0,g(x)]|E3n(x, y)|
whereE1n(y) =

$
g−1([0,y])

$
[0,g(X)]

κ
p
y−Y
hn

Q
f(X,Y )dY dX, E2n(x, y) =

$
g−1([y,g(x)])

$
[0,y]

κ
p
y−Y
hn

Q
f(X,Y )dY

dX and E3n(x, y) =
$
g−1([y,g(x)])

$
[y,g(X)]

κ
p
y−Y
hn

Q
f(X,Y )dY dX. To complete the proof we show that each

supremum on the r.h.s. is o(1). For the first term we have: a)X ∈ g−1([0, y]) which implies that g(X) ≤ y and

as n→∞, y−Yhn > BK and κ
p
y−Y
hn

Q
→ 1, hence by LDC theorem E1n(y)→

$
g−1([0,y])

$
[0,g(X)]

f(X,Y )dY dX

for every y ∈ [0, g(x)]; b) For all y ∈ [0, g(x)] E1n(y) ≤ E1,n+1(y), hence given A1.b, κ satisfies a Lipschitz

condition, which together with A4 shows that E1n(y) is continuous. Since
$
g−1([0,y])

$
[0,g(X)]

f(X,Y )dY dX

is continuous in y, supy∈[0,g(x)]
eeeE1n(y)− $g−1([0,y]) $[0,g(X)] f(X,Y )dY dXeee = o(1). Following a similar argu-

ment supy∈[0,g(x)]
eeeE2n(x, y)− $g−1([y,g(x)]) $[0,y] f(X,Y )dY dXeee = o(1).

Theorem 1. Proof From Nadaraya (1964), for all 6 > 0, we have F (qα(x) + 6/x) > F (qα(x)/x) >

F (qα(x)− 6/x). If ω ∈ A ≡ {ω : |qα,n(x)− qα(x)| > 6} we have that either F (qα,n(x)/x) ≥ F (qα(x) + 6/x)

or F (qα,n(x)/x) ≤ F (qα(x) − 6/x). Hence, there exists 0 < δ(6, x) where δ(6, x) = min {F (qα(x) + 6/x) −

F (qα(x)/x), F (qα(x)/x)− F (qα(x)− 6/x)} such that ω ∈ B = {ω|F (qα,n(x)/x)− F (qα(x)/x)| > δ(6, x)} so

A ⊆ B and P (|qα,n(x)− qα(x)| > 6) ≤ P (|F (qα,n(x)/x)− F (qα(x)/x)| > δ(6, x)) . Since, |F (qα,n(x)/x) −

F (qα(x)/x)| = |F (qα,n(x)/x)−F̂ (qα,n(x)/x)| ≤ sup y∈_+ |F̂ (y/x)−F (y/x)| and we write supy∈_+ |F̂ (y/x)−

F (y/x)| ≤ 1
F̂ (x)

supy∈_+ |F̂ (x, y) − F (x, y)| +
eee 1
FX(x)

− 1
F̂ (x)

eeeFX(x) since F (x, y) ≤ FX(x). Now, we have

supy∈_+ |F̂ (x, y) − F (x, y)| ≤ supy∈[0,g(x)]|F̂ (x, y) − F (x, y)|+ sup(g(x),∞)|F̂ (x, y) − F (x, y)|. From Lemma

2, supy∈[0,g(x)]|F̂ (x, y) − F (x, y))| = op(1). For all y ∈ (g(x),∞) we have that F (x, y) = F (x, g(x)) =$
Cx

$
[0,g(X)]

f(X,Y )dY dX = FX(x). In addition, given min{i:Xi≤x}Yi ≥ hnBK and 0 < Y ≤ g(x),

we have that for all y ∈ (g(x),∞), y − Y > 0. Hence, there exists N(x) such that for all n > N(x)

we have that F̂ (x, y) = n−1
�n

i=1

$ BK

−BK
K(γ)dγI(Xi ≤ x) = n−1

�n
i=1 I(Xi ≤ x) = F̂ (x). There-

fore, sup(g(x),∞)|F̂ (x, y) − F (x, y)| = sup(g(x),∞)|F̂ (x) − FX(x)| = op(1) given Chebyshev’s inequality and

F̂ (x) − FX(x) = op(1). To complete the proof, note that F̂ (x) = Op(1), and FX(x) > 0, hence by Slutsky

theorem F̂ (x)−1 − FX(x)−1 = op(1).

Theorem 2 . Proof qα,n(x)−qα(x) = (An+Cn)
p

1
f(qα(x)/x)

+ βn

Q
, where An = F (qα(x)/x)− E(F̂ (x,qα(x)))

E(F̂ (x))
,

18



βn = f̂−1(q̄α,n(x)/x) − f−1(qα(x)/x) and Cn = E(F̂ (x,qα(x)))

E(F̂ (x))
− F̂ (qα(x)/x). The theorem follows if: a)

βn = op(1); b) An = −12h2nσ2K
$
g−1([qα(x),g(x)])

f(1)(γ,qα(x))dγ

FX(x)
+ o(h2n); c)

p
sn(x)

F̂ (x)

Q−1√
nCn

d→ N(0, 1) where

s2n(x) = F (x, qα(x))− F (x,qα(x))
2

FX(x)
− 2hnσκ

$
g−1([qα(x),g(x)])

f(X, qα(x))dX + o(hn). a) It suffices to show that

f̂(q̄α,n(x)/x) − f(qα(x)/x) = op(1) for all α ∈ (0, 1). Since qα,n(x) − qα(x) = op(1) it suffices to show that

supy∈G|f̂(y/x)− f(y/x)| = op(1), where G ⊂ (0, g(x)), G compact. Note that

supy∈G|f̂(y/x)− f(y/x)| ≤ 1

F̂ (x)
supy∈G

eeeee 1nhn
n3
i=1

K

w
Yi − y
hn

W
I(Xi ≤ x)−

8
g−1([y,g(x)])

f(X, y)dX

eeeee
+

eeeee 1

FX(x)
− 1

F̂ (x)

eeeee supy∈G
8
g−1([y,g(x)])

f(X, y)dX.

By A1, supy∈G
$
g−1([y,g(x)]) f(X, y)dX ≤ Bf

$
g−1([y,g(x)]) dX = O(1) for all finite x, and since F̂ (x)−1 −

FX(x)
−1 = op(1) the second term on the r.h.s. is op(1). We now establish that the first term on the r.h.s.

is op(1). From Lemma 1 in Martins-Filho and Yao (2007), if nh2n → ∞, supy∈G |s0,x(y)−E(s0,x(y))| =

Op

wp
ln(n)
nhn

Q1/2W
where s0,x(y) =

1
nhn

�n
i=1K

p
Yi−y
hn

Q
I(Xi ≤ x). Now, E(s0,x(y)) =

$
Cx

$
[−y/hn,(g(X)−y)/hn]

K (γ) f(X, y + hnγ)dγdX and by A3.c
eeeE(s0,x(y))− $Cx $[−y/hn,(g(X)−y)/hn]K (γ) f(X, y)dγdXeee ≤ mfhn$

Cx

$
[−BK ,BK ]

|γ|K (γ) dγdX = O(hn). Given that y ∈ G ⊂ (0, g(x)), there exists N(x) such that for all

n > N(x) we have
$
Cx

$
[−y/hn,(g(X)−y)/hn]K (γ) f(X, y)dγdX = H1n(x, y) + H2n(x, y) where H1n(x, y) =$

g−1([0,y]) κ
p
g(X)−y
hn

Q
f(X, y)dX and H2n(x, y) =

$
g−1([y,g(x)]) κ

p
g(X)−y
hn

Q
f(X, y)dX. Following the proof

for Lemma 2, we obtain supy∈G|H1n(x, y)| = o(1) and supy∈G
eeeH2n(x, y)− $g−1([y,g(x)]) f(X, y)dXeee = o(1).

Consequently, we have supy∈G
eee$Cx κpg(X)−yhn

Q
f(X, y)dX − $

g−1([y,g(x)) f(X, y)dX
eee = o(1) and also

supy∈G
eee 1
nhn

�n
i=1K

p
Yi−y
hn

Q
I(Xi ≤ x)−

$
g−1([y,g(x)]) f(X, y)dX

eee = op(1). b) An = (E(F̂ (x)))−1(A1n(x) +
A2n(x)) where A1n(x) = F (qα(x)/x)E(F̂ (x)) − F (x, qα(x)) and A2n(x) = F (x, qα(x)) − E(F̂ (x, qα(x))).

Since E(F̂ (x)) = FX(x), A1n(x) = 0. Given that 0 < α < 1, we have 0 < qα(x) < g(x) and from Lemma 1,

A2n(x) = −12h2nσ2K
$
g−1([qα(x),g(x)])

f (1)(X, qα(x))dX + o(h
2
n). Thus, An = − 1

FX(x)
h2n
2 σ

2
K

$
g−1([qα(x),g(x)])

f (1)(X, qα(x))dX+o(h
2
n). c)

√
nCn = − 1

F̂ (x)

�n
i=1 Zin where Zin =

1√
n

p
1
hn

$
[0,qα(x)]

K
p
Yi−γ
hn

Q
I(Xi ≤ x)dγ

−I(Xi ≤ x)E(F̂ (x,qα(x)))FX (x)

Q
with E(Zin) = 0, s2n =

�n
i=1E(Z

2
in). By A1, s2n = s1n + s2n + s3n where

s1n = E
p
1
hn

$
[0,qα(x)]

K
p
Yi−γ
hn

Q
I(Xi ≤ x)dγ

Q2
, s2n = E(I(Xi ≤ x)) (E(F̂ (x,qα(x)))

2

FX(x)2
and s3n = −2E(F̂ (x,qα(x))FX(x)

E
p
1
hn

$
[0,qα(x)]

K
p
Yi−γ
hn

Q
I(Xi ≤ x)dγ

Q
. From Lemma 1, s1n = F (x, qα(x))− 2hnσκ

$
g−1([qα(x),q(x)])
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f(X, qα(x))dX+o(hn), and s2n = FX(x)
−1
p
F (x, qα(x)) + σ2K

h2n
2

$
g−1([qα(x),q(x)])

f (1)(X, qα(x))dX + o(h
2
n)
Q2
.

Hence, s2n = FX(x)
−1F (x, qα(x))2 + o(hn) and s3n = −2s2n = −2 (F (x,qα(x)))

2

FX(x)
+ o(hn) which gives s

2
n(x) =

F (x, qα(x))− F (x,qα(x))
2

FX(x)
−2hnσκ

$
g−1([qα(x),g(x)])

f(X, qα(x))dX+o(hn). By Liapounov’s CLT
�n

i=1
Zin
sn(x)

d→

N(0, 1) provided that limn→∞
�n
i=1E

weee Zinsn(x)

eee2+δW = 0 for some δ > 0. By the cr inequality and given the
order of s2n(x), it suffices to show that an = n

−δ/2E
weee 1hn $[0,qα(x)]K pYi−γhn

Q
I(Xi ≤ x)dγ

eee2+δW = o(1) and
bn = n

−δ/2E
weeeI(Xi ≤ x)E(F̂ (x,qα(x)))FX(x))

eee2+δW = o(1). First, note that an = n−δ/2 $Cx $[0,g(X)] f(X,Y )p$ (qα(x)−Y )/hn
−Y/hn K (γ) dγ

Q2+δ
dY dX ≤ n−δ/2 $

Cx

$
[0,g(X)]

f(X,Y )dY dX → 0 as n → ∞. Second, note that

bn = n−δ/2E(I(Xi ≤ x)) (E(F̂ (x,qα(x)))
2+δ)

FX(x)2+δ
→ 0 since E(I(Xi ≤ x)) = FX(x) > 0, and by Lemma 1

E(F̂ (x, qα(x)))→ F (x, qα(x)). Hence,
p
sn(x)

F̂X(x)

Q−1√
nCn

d→ N(0, 1) since F̂ (x)
p→ FX(x).

Theorem 3.Proof The proof is similar to that of Theorem 2 by using the Cramer-Wold device.

Theorem 4.Proof a) q1,n(x) ≡ inf{y ∈ _+ : (nhn)−1
�n
i=1

$ y
0
K
p
Yi−γ
hn

Q
dγI(Xi ≤ x) = n−1

�n
i=1 I(Xi ≤

x)}. Given min{i:Xi≤x}Yi ≥ hnBK , there exists N(x) ∈ R+ such that for all n > N(x), we have that the

equality (in the set) holds for all y ≥ max{i:Xi≤x}Yi+hnBK , and it is false for all y < max{i:Xi≤x}Yi+hnBK .

Hence, q1,n(x) = max{i:Xi≤x}Yi + hnBK for all n > N(x). b) The FDH estimator is defined as θFDH(x) =

max{i:Xi≤x}Yi and from Park et al. (2000) n1/(d+1)(q1(x) − θFDH(x))
d→ Weibull(μd+1x , d + 1). Hence, if

nhd+1n = O(1), n1/(d+1)(q1(x)− q1,n(x) + hnBKθFDH(x)) d→Weibull(μd+1x , d+ 1).

Lemma 3 Let θ(y) =
$ b
0
f (1)(x, y)dx and θ̂(y) = 1

ngn1

�n
i=1K

(1)(y−Yign1
)I(Xi ≤ b). Suppose third order

partial derivatives of f(x, y) with respect to y-f (3)(x, y) exists around (x, y) and the first order derivative of

K(·) −K(1)(·) satisfies the following conditions: K1. $ BK

−BK
K(1)(ψ)dψ = 0; K2.

$ BK

−BK
ψK(1)(ψ)dψ = −1;

K3.
$ BK

−BK
ψ2K(1)(ψ)dψ = 0; K4.

$ BK

−BK
ψ3K(1)(ψ)dψ = CK ; K5.

$ BK

−BK
K2(1)(ψ)dψ = CK1. Then, (a)

E(θ̂(y)− θ(y)) = −CK g2n
6

$ b
0
f (3)(x, y)dx+ o(g2n), (b) V (θ̂(y)) = CK1

1
ng3n1

$ b
0
f(x, y)dx+ o((ng3n)

−1), and (c)

AMISE(θ̂(y), gn) = C
2
K
g4n
36

$
(
$ b
0
f (3)(x, y)dx)2dy + CK1

1
ng3n

$ $ b
0
f(x, y)dxdy.

Proof By considering a 3rd order Taylor expansion of f(x, y) around y in the expression for E(θ̂(y)), we

obtain (a) in a straightforward manner given K1-K4. (b) results from applying the LDC theorem to V (θ̂(y))

together with K5. (c) follows directly from (a) and (b).
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Appendix 2 - Tables and Figures

Table 1 Root Mean Squared Error
for α-frontier estimators
g(x) =

√
x g(x) = x3

n=100 S E I S E I

α h∗n ĥPI h∗n ĥPI
0.25 .126 .128 .136 .137 .102 .103 .110 .109
0.5 .118 .120 .137 .137 .159 .162 .174 .173
0.75 .121 .124 .142 .143 .211 .215 .229 .228
0.99 .248 .303 .133 .161 .266 1.037 .257 .307

n=200 S E I S E I

α h∗n ĥPI h∗n ĥPI
0.25 .095 .096 .101 .101 .074 .075 .079 .078
0.5 .089 .089 .099 .099 .111 .113 .120 .119
0.75 .091 .093 .103 .104 .150 .151 .161 .161
0.99 .159 .177 .096 .107 .165 .295 .187 .205

n=400 S E I S E I

α h∗n ĥPI h∗n ĥPI
0.25 .065 .066 .069 .069 .051 .051 .054 .054
0.5 .065 .064 .071 .071 .079 .079 .084 .084
0.75 .066 .066 .073 .073 .106 .106 .132 .113
0.99 .105 .123 .069 .073 .116 .131 .132 .139

Table 2 Empirical Coverage Probability for α-frontier estimators
Smooth (S) and Empirical (E)

g(x) =
√
x g(x) = x3

n = 100 x10 x20 x30 x10 x20 x30
α S E S E S E S E S E S E
0.25 .961 .929 .970 .946 .964 .944 .973 .963 .985 .960 .978 .957
0.5 .957 .916 .960 .932 .968 .940 .954 .899 .950 .919 .942 .914
0.75 .963 .921 .958 .927 .976 .938 .940 .903 .943 .913 .926 .910
0.99 .995 .879 .992 .903 .988 .772 .981 .832 .958 .892 .979 .754

n = 200 x10 x20 x30 x10 x20 x30
α S E S E S E S E S E S E
0.25 .954 .927 .956 .944 .958 .942 .964 .956 .973 .955 .975 .964
0.5 .967 .927 .954 .933 .964 .925 .964 .916 .961 .936 .952 .936
0.75 .956 .928 .966 .933 .962 .941 .959 .927 .947 .928 .949 .924
0.99 .998 .817 .994 .905 .993 .826 .975 .810 .972 .879 .984 .826

n = 400 x10 x20 x30 x10 x20 x30
α S E S E S E S E S E S E
0.25 .961 .941 .960 .945 .961 .950 .969 .959 .969 .952 .972 .954
0.5 .960 .933 .956 .930 .954 .932 .954 .937 .966 .958 .952 .931
0.75 .964 .940 .958 .928 .955 .938 .956 .937 .952 .937 .952 .934
0.99 .997 .879 .986 .891 .963 .891 .972 .876 .973 .884 .968 .890
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Figure 1: Plot of true α−frontiers with estimated smooth and empirical α-frontiers, for n = 50,
g1(x) = g1(25) and α ranging over 0.02, 0.04, · · · , 1

Figure 2: Empirical 95% coverage probability for α−frontier smooth(S) and empirical(E) estimators for
and 30 grid points of X when α = 0.99, n = 100
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Figure 3: Kernel density estimates for the smooth(S) and empirical(E) α-frontier estimators evaluated at
x0 = 25 centered around the true value q0.98(25), the α = 0.98 frontier function. The kernel density

estimates are based on 1000 simulations from g1(x) of sample sizes n = 100 and 400

Figure 4: Kernel density estimates for the smooth(S) and empirical(E) α-frontier estimators evaluated at
x0 = 2 centered around the true value q0.98(2), the α = 0.98 frontier function. The kernel density estimates

are based on 1000 simulations from g2(x) of sample sizes n = 100 and 400
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Figure 5: 95% confidence intervals for α = 0.90 frontiers with smooth estimate using American Electric
Utility data
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