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Abstract. An interesting puzzle in estimating the effect of education on labor market earnings
(Card (2001)) is that the 2SLS estimate for the return to schooling typically exceeds the OLS es-
timate, but the 2SLS estimate is fairly imprecise. We provide a new explanation that it could be
due to the restrictive linear functional form specification on the control variables and the reduced
form. For the parameters of endogenous regressors, we propose three kernel-based semiparametric
IV estimators that relax the tight functional form assumption on the control variables and the re-
duced form. They have explicit algebraic structures and are easily implemented without numerical
optimizations. We show that these estimators are consistent, asymptotically normally distributed,
and reach the semiparametric efficiency bound. A Monte Carlo study demonstrates that our esti-
mators perform well in finite samples. We apply the proposed estimators to estimate the return to
schooling in Card (1995). We find that the semiparametric estimates of the return to schooling are
much smaller and more precise than the 2SLS estimate, and the difference largely comes from the
misspecification in the linear reduced form.
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1 Introduction

Many studies have been devoted to uncover the causal effect of education on labor market earnings,

where endogeneity in education calls for the use of instrumental variables (IV) to estimate the return

to schooling (see Card (2001) for an excellent summary). Let’s consider the framework studied by

Card (1995), Yt = Z1tα + Xtβ + εt, where Yt is the log of wages, Xt is the years of schooling,

Z1t includes a set of exogenous control variables and εt is the error term. One can conveniently

interpret β as the return to schooling, but the ordinary least squares (OLS) estimate is not reliable

since schooling is not randomly assigned. Various interesting studies summarized by Card (2001)

utilize the supply-side variables, such as minimum school-leaving age, tuition costs, or the geographic

proximity of schools, as instrumental variables to perform an IV type estimation, typically a two-

stage least squares (2SLS) estimation.

An interesting finding from the studies (Card (2001), p1155) is that the IV estimate of β typically

exceeds the corresponding OLS estimate, often by 20 percent or more, though the IV estimate is

relatively imprecise. Assuming negative correlation between the omitted ability variables and the

marginal cost of schooling, OLS methods should lead to upward-biased estimates of the true casual

effect of schooling, and thus the even larger IV estimate presents a puzzle. One typical interpretation

(Griliches (1977) and Angrist and Krueger (1991)) is that the OLS ability biases are relatively small,

and the gaps between OLS and IV estimates are explained by the OLS estimate’s downward bias

largely due to measurement error1. Because the IV estimates are fairly imprecise, it is difficult to

accept or reject this explanation in general. However, Card points out that measurement error bias

can explain only 10 percent of the gap between OLS and IV. Thus, it is unlikely that many studies

(see Table II in Card) find large positive gaps simply because of measurement error. Furthermore,

neither Card nor other related studies analyze the cause of the imprecision of the IV estimates.

We provide an alternative explanation. The result that 2SLS provides a larger estimate of the

1We cite one for illustration. Card (2001) gives further explanations, which does not include our proposed expla-
nation.
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return to schooling than OLS could be due to restrictive linear functional forms placed on the

control variables Z1t and on the reduced form of Xt. Misspecification could lead to different and

misleading estimates on return to schooling. We propose three kernel-based efficient semiparametric

IV estimators that relax the restrictive functional form assumptions on the control variables and

on the reduced form. We demonstrate in our empirical illustration section that the semiparametric

IV estimates are much smaller than the 2SLS estimates, and they improve greatly on the precision.

We thus conclude that one alternative explanation for the gap between 2SLS and OLS estimates on

return to schooling is due to the restrictive functional form specification.

In this paper, we consider the following semiparametric additive regression model2

Yt = g(Z1t, Xt, εt) = m(Z1t) +Xtβ + εt, t = 1, · · · , n. (1)

We denote the endogenous explanatory variables explicitly by X′
t = (Xt,1, · · · , Xt,K)′ ∈ <K , the

included exogenous variable by Z′
1t = (Z1t,1, · · · , Z1t,l1)

′ ∈ <l1 , and the excluded exogenous variable

by Z′
2t ∈ <l2 , with l1 + l2 = l. We assume the exogenous variables enter this equation of the model

via a nonparametric function m(·), and the endogenous variables Xt influence Yt in a linear fashion.

We explicitly consider continuous and discrete variables in Xt = (Xc
t , X

d
t ), where Xc

t
′ ∈ <Kc are the

continuous variables, Xd
t
′ ∈ <Kd discrete variables, and Kc +Kd = K. Similarly, Z1t = (Zc

1t, Z
d
1t),

Z2t = (Zc
2t, Z

d
2t), where Zc

1t
′ ∈ <l1c , Zc

2t
′ ∈ <l2c are the continuous variables and Zd

1t
′ ∈ <l1d and

Zd
2t

′ ∈ <l2d discrete variables.

The partially linear model in (1) differs from the earlier semiparametric literature (Robinson

(1988), Speckman (1988), Delgado and Mora (1995), and Härdle, Liang and Gao (2000)) in that

it contains endogenous variables. It provides much needed flexibility through the nonparametric

2The 2SLS addresses the right hand side endogenous variables parametrically. Many recent papers consider non-
parametric generalizations of 2SLS estimation to account for the endogeneity (see Matzkin (1994, 2008), Blundell and
Powell (2003), Imbens and Newey (2009), and Dorolles et al. (2011)). The generalizations relax the tight parametric
assumptions on the functional forms of structural equations, and thus estimation and inference are robust to potential
model misspecifications. Though the flexibility is desirable in many applications, further assumptions on the structural
equation or the nature of the endogeneity are needed to identify the parameters of interest. Furthermore, the pure
nonparametric approach is generally associated with the “curse of dimensionality” to a large degree. On the other
hand, our equation (1) offers a convenient alternative by modeling both nonparametric and parametric components,
where the former provides robustness against misspecification, and the latter reduces the severeness of the “curse of
dimensionality.”
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control function m(Z1t), while the endogenous variables Xt enter the model parametrically, allowing

for easy interpretation, implementation, and faster convergence. Consider again the estimation of

the return to schooling in Card (1995). He estimates the structural form of an earnings model, where

Yt is the log of wages, Xt is the endogenous years of schooling, and Z1t includes experience (potential

experience, treated as exogenous) and indicators for race and residence. β can be interpreted as the

return to schooling. Assuming m(·) to be a parametric function and using the proximity to a four-

year college as IV for education3, Card concludes with 2SLS estimation that OLS estimate for β might

underestimate the return to schooling. However, we argue that the return to schooling parameter β

might still be estimated inconsistently with 2SLS if m(Z1t) is misspecified. Furthermore, assuming

the linear reduced form in 2SLS creates another potential source of misspecification and can result

in loss of efficiency (see equation (3) and the discussion). This calls for an efficient semiparametric

instrumental variable estimation of model (1).

It is well known that the efficiency of the estimators for β becomes a concern when we relax

the restrictive functional form assumptions on m(Z1t) and on the reduced form E(Xt|Zt), for Zt =

(Z1t, Z2t). Newey (1990, 1993) considers efficient estimation of a parametrically specified structural

model (m(·) is not present) with conditional moment restrictions using nearest neighbor and series

estimators. Recently, many interesting papers consider efficient estimation of a semiparametric

model more general than (1) using non-kernel based methods. Ai and Chen (2003) propose a

semiparametric efficient estimator by the methods of minimum distance and sieves, which can be

particularly convenient whenm(·) enters the conditional moment expression in a nonlinear fashion, or

when certain restrictions, such as additivity, are imposed on m(·). An empirical likelihood estimator

has been considered by Otsu (2011), a penalized sieve minimum distance estimator has been proposed

by Chen and Pouzo (2012), and a function space Tikhonov regularized minimum distance method

has been studied by Florens et al. (2011) (see Chen and Pouzo (2012) for an excellent summary).

However, implementing these efficient estimation methods usually entails a demanding numerical

3When instrumental variables are not available, one could use heteroskedasticity covariance restriction to identify
and estimate the model as in Lewbel (2012).
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optimization procedure4 . Computationally intensive implementation may not lead to desirable finite

sample performance.

The most commonly used kind of nonparametric regression estimation in econometrics is the

kernel-based estimator, such as the Nadaraya-Watson, or the local polynomial one (Li and Racine

(2007)). Kernel-based estimators provide attractive features of easy implementation with explicit

algebraic structure and convenience in an asymptotic analysis. Li and Stengos (1996) and Baltagi

and Li (2002) consider the efficient instrumental variable estimation of a semiparametric dynamic

panel data model, but their estimators may not achieve the semiparametric efficiency bound. As

far as we know, a kernel-based estimator of β with endogenous Xt in model (1) which reaches the

semiparametric efficiency bound has not been formally considered.

In this paper we make two contributions to the literatures. First, we propose three new kernel-

based and easy-to-implement estimators for β in model (1). We depart from the existing kernel-

based estimation literature by modeling the reduced form nonparametrically. The estimators are

consistent, asymptotically normal and reach the semiparametric efficiency bound. Exhibiting good

finite sample performances, they provide a viable alternative that complements other estimators in

the literature. Second, on the empirical side, we apply the proposed methods to estimate the return

to schooling using data in Card (1995). The results help to resolve the puzzle on the estimates of

the return to schooling.

Utilizing the partially linear nature in model (1), we construct efficient estimators directly with

kernel-based methods5. We explicitly allow the endogenous and exogenous variables in equation (1)

to be discrete or continuous, which facilitate its application to empirical research. The structural

functions characterized by β and m(·) are easily identified (see assumption A1 and the discussion).

The estimators are easily implemented without entailing numerical optimizations and have explicit

algebraic structures.

4The general estimator in Ai and Chen involves numerical optimizations. One could use the profile sieve minimum
distance procedure outlined in Blundell et al. (2007) as a computationally simpler alternative.

5One could construct an efficient minimum distance estimator using kernel-based method to approximate the
unknown items locally, which could still involve numerical optimization procedures.
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The explicit algebraic structure of our efficient estimators reveals that allowing nonlinearity in

the reduced form E(Xt|Zt) could be an important step in semiparametric efficient estimation of β.

First, the identification of β is achieved with the existence of a positive definite matrix E(W ′
tWt)

in assumption A1, where Wt = E(Xt|Zt) − E(Xt|Z1t) depends on the reduced form (see also our

assumption A6, and assumption 4.1 in Ai and Chen). Second, the semiparametric efficiency bound

of β (see Chamberlain (1992), or the definition of J0 in section 3) depends on E(Xt|Zt). Third,

E(Xt|Zt) in the reduced form is generally of unknown form, since the structural form of Yt and

Xt could contain nonlinearity in the endogenous and/or exogenous variables of unknown form, or

even if the form of nonlinearity is known but information on Xt’s conditional distribution given Zt is

insufficient to parameterize E(Xt|Zt). Our simulation and empirical results also indicate that failing

to allow the reduced form to be nonparametric can lead to misleading parameter and standard error

estimates.

When exogenous Xt enters model (1), Li and Racine (2007, p237) note that the challenge for

an efficient semiparametric estimator of β is the “curse of dimensionality.” It requires estimation

of a nonparametric model with dimension K and l1 (the dimension of (Xt, Z1t)), while a consistent

but not necessarily efficient estimation of β and m(·) involves only nonparametric estimation with

dimension l1. Therefore, the “curse of dimensionality” may prevent researchers from applying effi-

cient estimation procedures to a partially linear model. When endogenous variablesXt enters model

(1), we contend that the challenge of efficient estimation of β resides in estimating a nonparametric

model whose dimension is determined by l1 + l2, the number of exogenous variables Zt, where l2 is

the number of excluded exogenous variables which can be used as additional IV’s for Xt. Specifi-

cally, we address the challenge of estimating m(·), the heteroskedasticity function, and the reduced

form nonparametrically by placing proper smoothness conditions on them (see assumptions A2 and

A6). Utilizing the smoothing parameter (bandwidth) to converge to zero at proper speeds with

increasing sample sizes, together with higher order kernel functions (see assumptions A3 and A5),

we manage to control the errors generated from estimating the nonparametric functions, such that

5



the estimators are
√
n consistent and asymptotically normal. The degree of “curse of dimensional-

ity” in our kernel-based estimation is determined only by the number of continuous variables in Zt,

since discrete variables in Zt do not slow down the convergence, which can be useful in empirical

applications with many dummy variables in the exogenous variables. The first two estimators are

efficient relative to those considered previously under conditional homoskedasticity and the last es-

timator is efficient under heteroskedasticity. They are asymptotically equivalent to semiparametric

IV estimators that optimally select instrument variables, and are thus efficient in a class of semi-

parametric IV estimators with conditional moment restrictions. We further show that they reach

the semiparametric efficiency bound. A Monte Carlo study illustrates that our estimators perform

well relative to other estimators in finite samples. Thus, we conclude that our efficient kernel-based

semiparametric IV estimators, with the ease of implementation, provide a viable alternative that

complements the estimators available in the literature.

On the empirical side, we apply our estimators to estimate the return to schooling (β) using

the data in Card (1995). The semiparametric IV estimates for β are much smaller than the 2SLS

estimate, and are much more precise. The empirical evidence further suggests that the difference

between our estimates and the 2SLS estimate largely arises from the misspecification in the para-

metric reduced form. These results provide a good explanation for the puzzle on the larger 2SLS

estimate than the OLS counterparts on the return to schooling in the literature.

In what follows, we provide a detailed description of our semiparametric model and propose three

estimators in Section 2, provide the asymptotic properties in Section 3, perform a Monte Carlo study

to investigate the finite sample performance of the estimators and to compare with other alternatives

in Section 4, estimate the return to schooling in Section 5, and conclude in Section 6. All tables and

graphs are relegated to an appendix, and proofs are referred to in another appendix (for the review

purpose only) and are also available in our working paper (Yao and Zhang (2012)).
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2 Semiparametric Model

Consider the model in Equation (1) and assume the existence of instrumental variables Zt =

(Z1t, Z2t) with E(εt|Zt) = 0, for all t. To motivate the estimation, suppose we know the true

conditional expectation E(Yt|Z1t) = m(Z1t) + E(Xt|Z1t)β. Hence, we could subtract E(Yt|Z1t)

from (1) to obtain

Yt −E(Yt|Z1t) = (Xt −E(Xt|Z1t))β + εt. (2)

The conditional expectations are generally unknown, but we could replace them with nonpara-

metric conditional mean estimators Ê(Yt|Z1t) and Ê(Xt|Z1t). However, due to the correlation

between εt and Xt, we can not apply Robinson (1988)’s estimator by regressing Yt − Ê(Yt|Z1t) on

Xt − Ê(Xt|Z1t).

Following Davidson and MacKinnon (2004) and adapting to the current notation, we could

estimate β by

β̌[1] = (Q′X̌)−1Q′Y̌ .

using the instrument variables Q = {Q′
1, Q

′
2, · · · , Q′

n}′ if Q′
t ∈ <K and Qt contain Z1t, Z2t. Here

X̌ =






X1 − Ê(X1 |Z11)
...

Xn − Ê(Xn |Z1n)




 , Y̌ =






Y1 − Ê(Y1|Z11)
...

Yn − Ê(Yn|Z1n)




 .

Li and Stengos’ (1996) estimator sets Qt = Z2t − Ê(Z2t|Z1t) in handling the endogeneity in the

partially linear panel data models. In the case that Q′
t ∈ <K+q for some positive integer q, inspired

by (8.29) in Davidson and MacKinnon, we consider the estimator of the form

β̌[2] = (X̌′Q(Q′Q)−1Q′X̌)−1X̌′Q(Q′Q)−1Q′Y̌ .

Estimators considered in Baltagi and Li (2002) are technically similar to β̌ using Qt = Z2t −

Ê(Z2t|Z1t), Qt = Z2t or some other variables in the subspace s(~Z) spanned by the columns of

~Z = (Z1
′,Z2

′, · · · ,Zn
′)′. As noted in Baltagi and Li (2002), setting Qt = Z2t − Ê(Z2t|Z1t) is

equivalent to using Qt = Z2t because E(Z2t|Z1t) is orthogonal to Xt − E(Xt|Z1t). The above
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cited papers investigate the partially linear panel data or dynamic panel data model and they

essentially consider variables in s(~Z) as instrumental variables in Q. More generally, we could

utilize Zt = (Z1t, Z2t) as instrumental variables because they are by definition exogenous. Hence,

we consider

β̌ = (X̌′ ~Z(~Z′ ~Z)−1 ~Z′X̌)−1X̌′ ~Z(~Z′ ~Z)−1 ~Z′Y̌ . (3)

In (3), X̌ is projected onto the subspace s(~Z) through the projection operator ~Z(~Z′ ~Z)−1 ~Z′, and

Zt(~Z
′ ~Z)−1 ~Z′X̌ estimates the conditional expectation E(Xt − E(Xt|Z1t)|Zt) (in Li and Stengos’

estimator, one could interpret X̌ being projected parametrically onto the subspace spanned by

{Z2t − E(Z2t|Z1t)}n
t=1.). If the conditional expectation of X̌ given ~Z or the reduced form is not

linear in ~Z , and since the conditional mean is the optimal predictor of X̌ given ~Z in the mean square

sense, we expect gains in efficiency by replacing the projection ~Z(~Z′ ~Z)−1 ~Z′X̌ with a nonparametric

estimate.

As indicated in Robinson (1988, p. 945), a valid instrument for Xt − E(Xt|Z1t) is a vector of

functions of Zt that includes Z1t and is independent of εt, such that the covariance matrix in the

limiting distribution of the n
1
2 consistent estimator of β exists. One candidate for the instrument is

Ê(Xt|Zt)− Ê(Xt|Z1t), where Ê(Xt|Zt) is a nonparametric estimator of E(Xt|Zt). We note that it

can estimate E(Xt − E(Xt|Z1t)|Zt) consistently even if E(Xt − E(Xt|Z1t)|Zt) is not linear in Zt.

When m(Z1t) is absent but Xt has a nonparametric reduced form, this estimator is similar to those

in Newey (1990, 1993) for nonlinear equations with known structural form but unknown reduced

form. This approach has not been pursued formally in the literature.

The conditional expectation is generally of unknown form if the structural form of Yt and Xt

contains nonlinearities in the endogenous and/or exogenous variables of unknown form, or even if the

form of nonlinearity is known but information on Xt’s conditional distribution given Zt is insufficient

to parameterize E(Xt|Zt). Motivated by this observation, we propose the first estimator of β as

β̂ = (Ŵ ′Ŵ )−1Ŵ ′(Y − Ê(Y | ~Z1)). (4)
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Define the density of Z1t at z10 as f1(z10), and the density of Zt at z0 as f(z0). We estimate

them with the Rosenblatt density estimators with both continuous and discrete variables, and use

the Nadaraya-Watson estimators for E(A0|z10), and E(A0|z0). Specifically, they are

f̂1(z10) = 1

nh
l1c
1

∑n
t=1K1(

Zc
1t−zc

10

h1
)I(Zd

1t = zd
10),

Ê(A0|z10) =

1

nh
l1c
1

P

n
t=1 K1(

Zc
1t−zc

10
h1

)I(Zd
1t=zd

10)At

f̂1(z10)
,

f̂(z0) = 1

nh
l1c+l2c
2

∑n
t=1K2(

Zc
1t−zc

10

h2
,

Zc
2t−zc

20

h2
)I(Zd

1t = zd
10, Z

d
2t = zd

20),

Ê(A0|z0) =

1

nh
l1c+l2c
2

P

n
t=1 K2(

Zc
1t−zc

10
h2

,
Zc

2t−zc
20

h2
)I(Zd

1t=zd
10,Zd

2t=zd
20)At

f̂(z0)
,

where h1 and h2 are bandwidths which go to zero as n → ∞. K1(·), K2(·), and I(·) are the kernel

and indicator functions. Let

Ŵ =








Ŵ1

Ŵ2

...

Ŵn








=









Ŵ1,1 Ŵ1,2

... Ŵ1,K

Ŵ2,1 Ŵ2,2 · · · Ŵ2,K

· · ·
...

...
...

Ŵn,1 Ŵn,2 · · · Ŵn,K









, Ŵt,k = Ê(Xt,k|Zt) − Ê(Xt,k|Z1t),

where Xt,k is the kth element of random vector Xt. Define Y = (Y1, · · · , Yn)′, ~Z1 = (Z′
11, · · · , Z′

1n)′

and Ê(Y | ~Z1) = (Ê(Y1|Z11), Ê(Y2|Z12), · · · , Ê(Yn|Z1n))′.

In constructing β̂, we first replace the unknown in Xt − E(Xt|Z1t) by the Nadaraya-Watson

estimator Ê(Xt|Z1t). Then we further estimate the conditional expectation E(Xt − Ê(Xt|Z1t)|Zt).

Geometrically, we project Xt − Ê(Xt|Z1t) onto M(Zt), the closed linear subspace of L2 consisting

of measurable function of Zt with finite second moments. We only replace Xt with its conditional

expectation estimator Ê(Xt|Zt) because E(Xt|Z1t) is already in M(Zt). Thus, this is similar to

Theil’s (1953) version of two stage least square estimator for simultaneous equations.

The second estimator we consider is

β̃ = (Ŵ ′Ŵ )−1Ŵ ′(Ê(Y | ~Z) − Ê(Y | ~Z1)), (5)

where Ê(Y | ~Z) = (Ê(Y1|Z1), Ê(Y2|Z2), · · · , Ê(Yn|Zn))′. In essence, relative to the first estimator,

we further project Yt onto M(Zt) nonparametrically. Hence, it is in the spirit of the traditional two

stage least square estimator by Basmann (1957).

The first two estimators are shown in the next section to be consistent and asymptotically

normally distributed (see Theorem 1 and the discussion). They are efficient relative to the estimator
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previously considered as demonstrated in Theorem 2 under conditional homoskedasticity. However,

they do not exploit the structure of heteroskedasticity if it is present. To properly account for

the information provided by heteroskedasticity, it is important to estimate the conditional variance

correctly. We provide our third estimator β̃H in two steps, whose asymptotic properties are provided

in Theorem 3. To simplify the analysis, we focus on the case that heteroskedasticity depends only

on the included exogenous variables, that is, E(ε2t |Zt) = σ2(Z1t) as in assumption A6(1) below.

First, the estimated residual based on β̃ is ε̃t = Yt− Ê(Yt|Z1t)−(Xt− Ê(Xt|Z1t))β̃. The conditional

variance is nonparametrically estimated as σ̂2(Z1t) = Ê(ε̃2|Z1t). The conditional covariance matrix

Ω(~Z1) is estimated with Ω̂(~Z1), which is a diagonal matrix with the t−th element as σ̂2(Z1t). Second,

inspired by the generalized least squares estimator, we construct the feasible efficient estimator as

β̃H = (Ŵ ′Ω̂−1(~Z1)Ŵ )−1Ŵ ′Ω̂−1(~Z1)(Ê(Y | ~Z) − Ê(Y | ~Z1)). (6)

Using an indicator function to account for the discrete variables has been considered in other

contexts by Delgado and Mora (1995), Fan et al. (1998), and Camlong-Viot et al. (2006). One could

also follow Racine and Li (2004) to introduce a more delicate estimator for the discrete variables for

improved finite sample performance, but in this case, one needs to consider the selection of additional

smoothing parameters.

3 Asymptotic properties

Similar to the parametric instrumental variable estimation, our semiparametric instrumental vari-

able estimators are likely to be biased. We investigate their asymptotic properties with the following

assumptions.

A1: (1){Yt, Xt,Zt}n
t=1 is an independent and identically distributed (iid) sequence of random vectors

related as in Equation (1). (2) E(εt|Zt) = 0 for all t.

(3) Let Wt = E(Xt|Zt) − E(Xt|Z1t), E(W ′
tWt) is a symmetric and positive definite matrix.

In A1(2), we require the conditional expectation of the error term εt given Zt to be zero, but we

allow εt’s and Xt’s to be possibly correlated, and thus Zt plays the role of instrumental variables.
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A1(3) is the identification assumption for β, similar to the identification assumption in Robinson

(1988). From Equation (1) and assumption A1(2),

E(Yt|Zt) −E(Yt|Z1t) = [E(Xt|Zt) − E(Xt|Z1t)]β = Wtβ.

We pre-multiply both sides by W ′
t , take expectation, and obtain with assumption A1(3) that

β = (E(W ′
tWt))

−1E(W ′
t(E(Yt|Zt) − E(Yt|Z1t))). Since conditional expectations are identified, β

is identified with A1(3). We provide some intuitive implications. First, Xt cannot contain a con-

stant. Second, it implies that E(Xt|Zt) 6= E(Xt|Z1t). Since Zt = (Z1t, Z2t), any element of Xt

cannot be perfectly a.s. predictable by Z1t, i.e., Xt cannot be some function of Z1t only. Obviously,

Z2t cannot simply be a linear combination of Z1t, so Z2t needs to contain variables that are linearly

independent of Z1t. A1(3) forbids more general forms of dependence. Third, because Wt cannot be

a.s. zero, no elements of E(Xt|Zt) −E(Xt|Z1t) are multicollinear. This fails if Xt is collinear.

We let C denote a generic constant below, which can vary from one place to another. Let

G = Gc
1 × Gd

1 × Gc
2 × Gd

2 ⊂ <l, G1 = Gc
1 × Gd

1 ⊂ <l1 and G2 = Gc
2 × Gd

2 ⊂ <l2 . Gc
1 and Gc

2 are

compact, and Gd
1 and Gd

2 have finite support, i.e., they contain finite number of discrete elements.

Let’s denote a generic function g(Z1t) ∈ Cs
1 if g(Z1t) is s times continuously differentiable

w.r.t. Zc
1t, with its sth order derivative uniformly continuous on Gc

1, and for |j| = 1, 2, · · · , s,

supZ1t∈G1
| ∂j

∂(Zc
1t)

j g(Z1t)| <∞. Here, the |j|th order derivative is

∂j

∂(Zc
1t

)j g(Z1t) ≡ ∂|j|g(Zc
1t,Z

d
1t)

∂(Zc
1t,1)

j1∂(Zc
1t,2)

j2 ···∂(Zc
1t,l1c

)
jl1c

.

We adopt the notation that j = (j1, j2, · · · , jl1c
)′, |j| =

∑l1c

i=1 ji. In what follows, we denote

∑

0≤|j|≤s =
∑

|j|=0 +
∑

|j|=1 + · · ·+∑|j|=s, j! = j1!× j2!×· · ·× jl1c
!, (Zc

1t)
j = (Zc

1t,1)
j1 × (Zc

1t,2)
j2 ×

· · · × (Zc
1t,l1c

)jl1c , where Zc
1t,i refers to the i− th element in Zc

1t.

Denote a generic function g(Z1t) ∈ Cs1

1 if g(Z1t) is s1 times continuously differentiable w.r.t.

Zc
1t, with its sth and s1th order derivative uniformly continuous on Gc

1, and for |j| = 1, 2, · · · , s1,

supZ1t∈G1
| ∂j

∂(Zc
1t)

j g(Z1t)| < ∞. Denote a generic function g(Zt) ∈ Cs1

1,2 if g(Zt) is s1 times con-

tinuously differentiable w.r.t. Zc
t = (Zc

1t, Z
c
2t), with its sth and s1th order derivative uniformly

11



continuous on Gc = Gc
1 ×Gc

2, and for |j| = 1, 2, · · · , s1, supZt∈G | ∂j

∂(Zc

t
)j g(Zt)| <∞. Here, we denote

the |j|th order derivative as

∂j

∂(Zc

t
)j g(Zt) ≡ ∂|j|g(Zc

1t,Zd
1t,Z

c
2t,Zd

2t)

∂(Zc
1t,1)

j1∂(Zc
1t,2)

j2 ···∂(Zc
1t,l1c

)
jl1c ∂(Zc

2t,1)
jl1c+1∂(Zc

2t,2)
jl1c+2 ···∂(Zc

2t,l2c
)
jl1c+l2c

.

A2: (1) Denote the density of Z1t at z10 by f1(z
c
10, z

d
10). (f1(z

c
10, z

d
10) is the “mixed joint density”,

defined with respect to the product measure on the respective support of zc
10 and zd

10. One can

construct it as the product of conditional density of zc
10 given zd

10 and the marginal probability

function of zd
10.) Assume f1(z

c
10, z

d
10) ∈ Cs

1 ∀zd
10 ∈ Gd

1. (2) 0 < C < f1(z
c
1, z

d
1) <∞, for all z1 ∈ G1.

(3) Xt,k = E(Xt,k|Z1t) +Xt,k − E(Xt,k|Z1t) = g1,k(Z1t) + e1,kt. ∀zd
10 ∈ Gd

1, g1,k(z10) ∈ Cs1

1 . The

conditional density of Z1t given e1,kt is bounded, and the conditional density of Xt,k given Z1t is

continuous around Zc
1t.

(4) Denote the density of Zt at z0 by fz(z0). ∀zd
10 ∈ Gd

1, z
d
20 ∈ Gd

2, fz(z0) ∈ Cs1

1,2.

(5) 0 < C < fz(z0) <∞, for all z0 ∈ G.

(6) Xt,k = E(Xt,k|Zt) + Xt,k − E(Xt,k|Zt) = gk(Zt) + ekt. ∀zd
10 ∈ Gd

1, z
d
20 ∈ Gd

2, gk(z0) ∈ Cs1

1,2.

The conditional density of Zt given ekt is bounded, and the conditional density of Xt,k given Zt is

continuous around Zc
t . (7) m(z10) ∈ Cs1

1 .

A3: (1) For x ∈ <d, d = l1c or l2c, the kernel function K(x)(K1(x) or K2(x)) is bounded with

bounded support, and it is of order 3s1. (2) |uiK(u) − viK(v)| ≤ CK ||u− v||, |i| = 0, 1, 2, · · · , s1.

A4: (1) For some δ > 0, E(|Xt,k|2+δ|Zt), E(|Xt,k|2+δ|Z1t) < ∞, |gk(Zt)|, |g1,k(Z1t)| < ∞ almost

everywhere. (2) E(|εt|2+δ|Zt), E(|εt|2+δ|Z1t) <∞. (3) E(ε2t |Zt) = σ2(Zt).

(4) The conditional density of Z1t given εt is bounded, and the conditional density of εt given Z1t is

continuous at Zc
1t. The conditional density of Zt given εt is bounded, and the conditional density

of εt given Zt is continuous at Zc

t
.

A5: as n→ ∞, (1) nh2l1c

1 → ∞. (2) nh
2(l1c+l2c)
2 → ∞. (3) nh

2(s+1)
1 , nh

2(s1+1)
2 → 0.

We require that the densities f1(z10) and f(z0) to be bounded away from zero on a bounded

support set in assumption A2 to handle the technical difficulty due to the random denominators

f̂(z10) and f̂(z0). Alternatively, we could follow Robinson (1988), Bickel (1982), and Manski (1984)

to “trim” out small f̂(z10) and f̂(z0), or replace them with a small but positive constant. We

expect that this will not change the asymptotic results so we will not introduce it in the definition.

As another strategy, we could follow Li and Stengos (1996) or Powell et al. (1989) to estimate a

12



density-weighted relationship. We expect that the asymptotic results will be different.

Assumptions A2(1), (2), (4), (5), and (7) require the densities f1(z10), fz(z0), and m(z10) to be

bounded and continuously differentiable w.r.t. its continuous components. These assumptions are

commonly used in nonparametric kernel regression, enabling the use of Taylor expansion. They are

similar in spirit to the smoothness and boundedness condition in Definition 2 of Robinson (1988),

or the assumption A1 of Li and Stengos (1996). A2(3) and (6) explicitly assume the relationship

between Xt and Z1t and between Xt and Zt. Similar assumptions have been maintained in Speck-

man (1988) in the fixed design case. Assumption A3 requires the kernel function to be smooth

and bounded (Martins-Filho and Yao (2007)). Asymptotic distributions are established using Li-

apunov’s central limit theorem, with conditional moments assumption of εt and Xt given Zt or

Z1t in A4. The bandwidth assumptions A5(1) and (2) are in line with those used in the literature

(Martins-Filho and Yao (2007)). A3, together with A5(3), specifies the kernel properties and the

rate of decay for the bandwidths. They are used to control the bias introduced in the nonparametric

regression, which is similar to assumptions in, for example, Robinson (1988) and Li and Stengos

(1996). However, A5(3) is stronger than that maintained in Li and Stengos, or Robinson. As our

estimators involve estimation of Wt, the bias arises not only from estimation of E(Xt|Z1t), but also

from estimation of E(Xt|Zt). A5 requires choosing a higher order kernel to eliminate the bias asymp-

totically. A5 illustrates the extra technical assumption needed to perform efficient semiparametric

endogenous variables estimation, relative to consistent semiparametric estimation indicated in the

introduction. Results in Theorems 1-2 are obtained for general heteroskedasticity structure in A4(3).

A6: (1) E(ε2t |Zt) = E(ε2t |Z1t) = σ2(Z1t). 0 < C < σ2(Z1t) <∞, σ2(z10) ∈ Cs1

1 ∀zd
10 ∈ Gd

1.

(2) E( 1
σ2(Z1t)

W ′
tWt) is a symmetric and positive definite matrix.

(3) E(|Xt,k|4+δ|Z1t) < ∞, and E(|εt|4+δ|Z1t) < ∞. The conditional density of Z1t given |Xt,kεt|
is bounded, and the conditional density of |Xt,kεt| given Z1t is continuous at Zc

1t. The conditional

density of Z1t given e1,kte1,k′t is bounded, and the conditional density of |Xt,kXt,k′ | given Z1t is

continuous at Zc
1t for all k, k′ ∈ {1, · · · , K}.

13



A7: (1) E(X4
t,k|Zt) <∞. (2) E(ε4t |Zt) <∞.

For efficient estimation, we restrict the structure of E(ε2t |Zt) to be σ2(Z1t) in A6(1) for simplicity,

so the heteroskedasticity depends only on the included exogenous variables. Assumption A6 provides

higher moments and additional smoothness conditions, enabling us to obtain the asymptotic results

for β̃H , which involves estimation of the conditional covariance matrix of εt. The asymptotic results

for β̂ are obtained with additional moments conditions in A7. Lemma 1 in the Appendix of our

working paper (Yao and Zhang (2012)) establishes the order in probability of certain linear combi-

nations of kernel functions that appear repeatedly in the component expressions of our estimators.

We use it in the proofs of the Theorems.

Theorem 1 Let Φ0 be a K×K positive definite matrix with the (i, j)th element E[σ2(Zt)(gi(Zt)−

EZ2τ |Z1t
(gi(Z1t, Z2τ)))(gj(Zt) − EZ2τ |Z1t

(gj(Z1t, Z2τ)))], where EZ2τ |Z1t
(.) denotes the conditional

expectation of Z2τ given Z1t. Given assumptions A1-A5, we have

√
n(β̃ − β)

d→ N(0, (E(W ′
tWt))

−1Φ0(E(W ′
tWt))

−1).

β̂ is relatively easier to construct because it does not involve further projecting Yt onto M(Zt)

and is in spirit similar to Theil’s two stage least square estimator. However, we notice that Ŵt

estimates Wt nonparametrically, so the simplicity in Theil’s original estimator disappears. In finite

samples, β̂ and β̃ are not unbiased. Furthermore, compared to β̃, we find that the asymptotic

expansion of β̂ − β involves more stochastic terms, whose magnitudes need to be further controlled

with the additional assumption A7 to obtain the asymptotic distribution. However, we do find the

asymptotic distribution of β̂ to be the same as that of β̃. The finite sample performance of the

two proposed estimators is investigated in the simulation section and it indicates that β̃ always

outperforms β̂. For this reason, we do not provide asymptotic result for β̂ formally to save space.

From Theorem 1 and discussion above, we note β̃ and β̂ are consistent and asymptotically

normal with the general conditional variance structure specified in A4(3). When εt is conditionally

homoskedastic, i.e., V (εt|Zt) = σ2
0 , it is straightforward to compare the asymptotic properties of the
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proposed estimators with β̌ because they are all consistent and converge to a normal distribution at

rate
√
n. We find the asymptotic variance of β̌ is always greater or equal to that of the two proposed

estimators, i.e., the difference is a positive semidefinite matrix. Thus, β̃ and β̂ are asymptotically

efficient relative to β̌.

Theorem 2 If V (εt|Zt) = σ2
0, then the asymptotic variance of β̌ is greater than or equal to that of

β̂ or β̃.

To illustrate the point, we first observe that in Φ0,

EZ2τ |Z1t
(gj(Z1t, Z2τ)) = EZ2τ |Z1t

(E(Xt,j |(Z1t, Z2τ))) = E(Xt,j |Z1t).

Therefore, (E(W ′
tWt))

−1Φ0(E(W ′
tWt))

−1 = σ2
0(E(W ′

tWt))
−1. For the estimator β̌ defined in Equa-

tion (3), suppose the estimated items are replaced by the true values, we obtain with Equation

(2),

β̌Tr = ((X̌Tr)′ ~Z(~Z′ ~Z)−1 ~Z′X̌Tr)−1(X̌Tr)′ ~Z(~Z′ ~Z)−1 ~Z′Y̌ Tr

= β + ((X̌Tr)′ ~Z(~Z′ ~Z)−1 ~Z′X̌Tr)−1(X̌Tr)′ ~Z(~Z′ ~Z)−1 ~Z′~ε

where X̌Tr = ((X1 − E(X1|Z11))
′, (X2 − E(X2|Z12))

′, · · · , (Xn − E(Xn|Z1n))′)′, Y̌ Tr = ((Y1 −

E(Y1|Z11))
′, · · · , (Yn − E(Yn|Z1n))′)′, and ~ε = (ε1, · · · , εn)′. We expect the asymptotic distribution

of β̌ to be the same as that of β̌Tr , if the unknown conditional expectations are estimated with

nonparametric kernel estimates. Suppose that 1
n
~Z′~ε

p→ 0, which follows from the assumption of Zt

being instrumental variables. Assume further that 1
n((X̌Tr)′Z)

p→ E[(Xt−E(Xt|Z1t))
′Zt] = A, and

1
nZ

′Z
p→ E(Zt

′
Zt) = B, A has rank K and B is positive definite. We have 1

nV (~Z′~ε) = σ2
0B, because

εt is conditionally homoskedastic. Thus, we expect

√
n(β̌Tr − β)

d→ N(0, σ2
0(AB

−1A′)−1).

The theorem is proved if σ2
0(AB

−1A′)−1 − σ2
0(E(W ′

tWt))
−1 is positive semidefinite.

The above claim is equivalent to E(W ′
tWt) − AB−1A′ being positive semidefinite. We note A =

E[(Xt −E(Xt|Z1t))
′Zt] = E[(E(X′

t|Zt) − E(X′
t|Z1t))Zt] = E(W ′

tZt). Hence,

E(W ′
tWt) − AB−1A′ = E(W ′

tWt) − E(W ′
tZt)(EZt

′Zt)
−1E(Zt

′Wt)
= E[W ′

t (Wt −Zt(EZt
′Zt)

−1E(Zt
′Wt))]

= E[(Wt − Zt(EZt
′Zt)

−1E(Zt
′Wt))

′(Wt −Zt(EZt
′Zt)

−1E(Zt
′Wt))]
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which is positive semidefinite. The last equality is true as

E[(Zt(E(Zt
′Zt))

−1E(Zt
′Wt))

′(Wt − Zt(E(Zt
′Zt))

−1E(Zt
′Wt))]

= E(W ′
tZt)(E(Zt

′Zt))
−1E(Zt

′Wt) −E(W ′
tZt)(E(Zt

′Zt))
−1E(Zt

′Zt)(E(Zt
′Zt))

−1E(Zt
′Wt)

= 0.

When εt is conditionally heteroskedastic as in A6(1), we consider the feasible estimator β̃H , which

is based on the first stage estimation with β̃. We did not consider β̂ because it is outperformed by

β̃ in the simulation study in Section 4. The asymptotic property of β̃H is provided in Theorem 3.

Theorem 3 If we assume A1-A6, then

√
n(β̃H − β)

d→ N(0, (E(
1

σ2(Z1t)
W ′

tWt))
−1).

It is straightforward to show that under heteroskedasticity in A6(1), (E(W ′
tWt))

−1Φ0(E(W ′
tWt))

−1

−(E( 1
σ2(Z1t)

W ′
tWt))

−1 is a positive semidefinite matrix. Thus, asymptotically, β̃H is efficient relative

to β̃ and β̂.

To shed light on the theoretical results above, let us consider a class of semiparametric IV

estimators based on the model in Equation (1) that satisfies the conditional moment restriction

E(εt|Zt) = 0, where εt = εt(β) = Yt−E(Yt|Z1t)−(Xt−E(Xt|Z1t))β as in Equation (2). Then, β̃ and

β̂ are asymptotically equivalent to the semiparametric IV estimator that optimally selects instrument

variables. Thus, β̃ and β̂ are efficient among this class of semiparametric IV estimators in the sense

that their asymptotic variance is smallest. To establish this, suppose E(Yt|Z1t) and E(Xt|Z1t) are

known, or can be consistently estimated at a certain rate, then let H(Zt) denote an h × 1 vector

of functions of Zt, h ≥ K. By law of iterated expectation we have E(H(Zt)εt(β)) = 0. Following

Newey (1993), we could construct the IV estimators using the method of moments estimator. It is

defined as

βMIV = argminβ ĝn(β)′P̂ ĝn(β), ĝn(β) =
1

n

n∑

t=1

H(Zt)εt(β),

for h×h positive semidefinite matrix P̂ , which may be random. Since εt(β) is linear in β, by solving

the minimization problem we easily obtain,
√
n(βMIV − β) = [ 1

n

∑

t(Xt −E(Xt|Z1t))
′H(Zt)

′P̂ 1
n

∑

tH(Zt)(Xt −E(Xt|Z1t))]
−1

× 1
n

∑

t(Xt − E(Xt|Z1t))
′H(Zt)

′P̂
√
n 1

n

∑

tH(Zt)εt,
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Assume P̂
p→ P , where P is a positive semi-definite matrix, 1

n

∑

tH(Zt)(Xt − E(Xt|Z1t))
p→

−E(H(Zt)
∂εt(β)

∂β ) = −G, and define V = EH(Zt)εtε
′
tH(Zt)

′ = Eσ2(Zt)H(Zt)H(Zt)
′, then

√
n(βMIV − β)

d→ N(0, (G′PG)−1G′PV P ′G(G′PG)−1).

Under conditional homoskedasticity, σ2(Zt) = σ2
0 , so the asymptotic variance of β̃ is σ2

0(E(W ′
tWt))

−1.

Let A = G′PH(Zt)εt(β), B = −[E(Xt −E(Xt|Z1t)|Zt)]
′ εt(β)

σ2
0

, then

(G′PG)−1G′PVP ′G(G′PG)−1) − σ2
0(E(W ′

tWt))
−1

= E{(EAB′)−1[A− (EAB′)(EBB′)−1B][A′ −B′(EBB′)−1(EBA′)](EBA′)−1.}

which is a quadratic form, so the difference is positive semidefinite. We note the asymptotic vari-

ances will be the same if we let the optimal instrumental variable to be H(Zt) = −W ′
t

σ2
0

. Thus,

asymptotically, β̃ and β̂ behave like an optimal semiparametric IV estimator. Under conditional

heteroskedasticity specified in A6(1), we could follow a similar argument above to show the differ-

ence between (G′PG)−1G′PV P ′G(G′PG)−1 and (E( 1
σ2(Z1t)

W ′
tWt))

−1 is positive semidefinite. Here,

the two asymptotic variances will be the same if we let H(Zt) = − W ′
t

σ2(Z1t)
. Thus, asymptotically,

β̃H behaves similar to an optimal semiparametric IV estimator under heteroskedasticity.

We further compare the theoretical results in Theorems 1-3 with the semiparametric efficiency

bound derived in Chamberlain (1992). Our model in Equation (1) and assumption A1(2) consider

the estimation of β in the model of εt = Yt −m(Z1t)−Xtβ with the conditional moment restriction

E(εt|Zt) = 0. Since ∂εt

∂β′ = −Xt, define D0(Zt) ≡ E( ∂εt

∂β′ |Zt) = −E(Xt|Zt), Σ0(Zt) ≡ E(εtε
′
t|Zt) =

σ2(Zt) with the general heteroskedasticity structure in A4(3), H0(Zt) ≡ E(∂εt

∂r |Zt) = −1 for r =

m(Z1t). The Fisher information bound for β is

J0 = E{E(D0(Zt)
′Σ0(Zt)

−1D0(Zt)|Z1t) − E(D0(Zt)
′Σ0(Zt)

−1H0(Zt)|Z1t)
×[E(H0(Zt)

′Σ0(Zt)
−1H0(Zt)|Z1t)]

−1E(H0(Zt)
′Σ0(Zt)

−1D0(Zt)|Z1t)}.

It is easy to show that under homoskedasticity Σ0(Zt) = σ2
0 ,

J0 =
1

σ2
0

E(W ′
tWt) = [(E(W ′

tWt))
−1Φ0(E(W ′

tWt))
−1]−1.

as in Theorems 1. Under the heteroskedasticity structure imposed in A6(1), Σ0(Zt) = σ2(Z1t), we

have J0 = E( 1
σ2(Z1t)

W ′
tWt), as in Theorem 3. We therefore conclude that the estimators β̃, β̂, and
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β̃H reach the semiparametric efficiency bound. Efficient estimation actually calls for nonparametric

estimation of E(Xt|Zt) since it shows up in J0.

4 Monte Carlo Study

In this section, we perform a Monte Carlo study to implement our efficient semiparametric instru-

mental variable estimators and illustrate their finite sample performance. For ease of comparison,

we consider the data-generating process in Baltagi and Li (2002) adapted to the iid set-up as

Yt = βXt + α1Z1t + α2Z
2
1t + εt, and Xt = gi(Z1t, Z2t) + Ut.

Here, the nonlinear function m(Z1t) is α1Z1t + α2Z
2
1t and we fix β = α1 = α2 = 1. We generate

Z1t and Z2t independently from a standard normal distribution, truncated to [−1, 1]. Conditional

on Zt, εt and Ut are generated from a bivariate normal distribution with zero mean, variance

σ2
i (Zt), and correlation θ. We truncate εt and Ut to [−1, 1]× [−1, 1]. We consider σ2

1(Zt) = 1 for the

homoskedasticity case, and σ2
2(Zt) = Z2

1t for the heteroskedasticity case. We choose θ = 0.2, 0.5, and

0.8. As θ increases, the correlation between Xt and εt increases, and thus endogeneity is magnified.

We select two functions for gi, with g1(Z1t, Z2t) = γ1Z1t + γ2Z2t and g2(Z1t, Z2t) = γ1Z
2
1t + γ2Z

2
2t,

with γ1 = γ2 = 1. Hence, with g1, Xt depends on Zt linearly, while in g2, Xt relates to Zt in a

nonlinear fashion. It is easy to verify that assumptions maintained in A1, A2, and A4 are satisfied.

We consider two sample sizes, n = 100 and 200, and perform 1000 repetitions for each experimental

design.

To implement our estimators β̂, β̃, and β̃H , we need to select the bandwidth sequences h1 and

h2. We select the bandwidth ĥ1 using the rule-of-thumb data driven plug-in method of Ruppert,

Sheather, and Wand (1995). We select ĥ2 using 1.25SD(Zt)n
−1/6, where SD(Zt) is the standard

deviation of Zt. We choose a second order Epanechnikov kernel, which satisfies our assumption A3(2)

and part of A3(1). Though our assumption calls for a higher order kernel, it is known that in finite

sample applications, nonnegative second order kernels have often yielded more stable estimation

results as higher order kernel could generate negative weights to data. Thus, we investigate the
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robustness of our estimators with a popular second kernel function. From our asymptotic analysis

in Theorem 1 and the comments before Theorem 1, β̂ and β̃ might have high finite sample bias.

Aside from our proposed estimators, we also include the semiparametric estimator β̌(1) without

considering the endogenous variable as in Robinson, estimator β̌(2) as in Li and Stengos with instru-

mental variable Qt = Z2t − Ê(Z2t|Z1t) using the density weighted estimation, and β̌ in Equation

(3). β̌(1) serves as the benchmark because it ignores the endogeneity problem. We evaluate the

performance of each estimator using bias (B), standard deviation (S), and root mean squared error

(R) as criteria. The results of the experiments with σ2
1(Zt) = 1 are summarized in Table 1 in the

Appendix for g1 and Table 2 for g2. The results with σ2
2(Zt) = Z2

1t are provided in Tables 3 and 4.

We observe that β̌ and β̌(2) generally have negative bias under g1, while other estimators produce

positive bias. As the sample size n increases, the estimators’ performance generally improves in terms

of smaller bias, standard deviation, and root mean squared error. This observation is consistent with

our asymptotic results in Theorems 1 and 3 that β̂, β̃, and β̃H are consistent. Exceptions occur with

β̌(1) whose bias does not seem to drop with a large sample. Exceptions also exist with β̌(2) and β̌

in the data-generating process g2. This observation is consistent with the fact that in g2, E(Xt|Zt)

is not linear in Zt, while β̌(2) and β̌ implicitly assume E(Xt|Zt) is linear in Zt.

As θ increases, the endogeneity problem is magnified. The bias of β̌(1) increases. Although its

standard deviation drops slightly, the drop in standard deviation is dominated by the increase in bias

and the root mean squared error increases. This is expected because β̌(1) does not take endogeneity

into consideration. We notice that the bias of all estimators generally increases with θ. For β̃ and

β̃H in the homoskedasticity experiments, their standard deviation drops with θ, though their root

mean squared error increases.

When g1 is in the data-generating process and homoskedasticity is present, we note E(Xt|Zt) is

linear in Zt. In terms of relative performance, β̌(1) carries the largest bias, but smallest standard

deviation. As expected, its root mean squared error is largest with θ = 0.5 or 0.8. Among the other

estimators that take endogeneity into account, β̌(2)’s or β̌’s bias is smallest, followed by β̃, by β̃H ,
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and β̂. The relatively large bias of β̃, β̃H , and β̂ is expected as we use a second order nonnegative

kernel function, which is often found to yield more stable estimation results than their higher order

counterparts. However, β̃ is the best using standard deviation as the criterion, followed by β̃H and β̂,

which is better for a large θ, or followed by β̌, while β̌(2) carries the largest standard deviation. This

result is consistent with Theorems 1-3, which indicate the asymptotic variance of β̃, β̃H , and β̂ is

smaller than or equal to β̌. Although having the same asymptotic distribution, β̂’s standard deviation

is larger than that of β̃. This is consistent with our observation after Theorem 1. The asymptotic

expansion of β̂ − β involves additional stochastic terms. Although their magnitudes are controlled

asymptotically, their presence does influence the finite sample performance. β̌’s performance is

generally best in terms of root mean squared error, followed by β̃ and β̃H , β̌(2), and β̂, with exceptions

at θ = 0.2 where β̃ performs best. β̌’s good performance is expected because with g1, β̌ correctly

assumes E(Xt|Zt) to be linear in Zt. When the heteroskedasticity assumption is in place, we

notice the best estimator is β̃H in terms of bias, standard deviation, and root mean squared error.

The reduction of standard deviation relative to β̃ is well over 10%. The observation confirms our

theoretical result in Section 3 that β̃H properly takes into account the heteroskedasticity structure

and reaches the semiparametric efficiency bound. The conclusion we draw for the performance of

the rest of the estimators is similar to that in the homoskedasticity case, except that we notice β̌(2)

performs much better, outperformed only by β̃H in terms of root mean squared error.

When g2 and homoskedasticity are in the data-generating process, we note E(Xt|Zt) is not linear

in Zt. β̌
(1) carries the smallest standard deviation with a relatively large bias, while its root mean

squared error is generally larger than β̃, β̃H , and β̂. Among the other estimators, β̃, β̃H , and β̂ are

the best in terms of small bias and standard deviation, especially when the endogeneity problem

is more severe. It is quite obvious that β̃ has the smallest root mean squared error. β̃H performs

similarly well, followed by β̂. β̌(2) and β̌ are outperformed by the others, due to the fact that

E(Xt|Zt) is not linear in the data-generating process. This again confirms our results in Theorem

2. When the heteroskedasticity situation is considered, we notice that β̃H once again performs
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best among all estimators. The comments about the other estimators in the homoskedasticity case

continue to be valid.

To summarize, under homoskedasticity, we conclude that when E(Xt|Zt) is linear in Zt, all es-

timators taking endogeneity into account perform better than β̌(1). β̌ is the best in this case with

β̃, β̃H , and β̌(2) being competitive alternatives. When E(Xt|Zt) is not linear in Zt, estimators β̃,

β̃H , and β̂ perform best because they estimate E(Xt|Zt) nonparametrically, thus avoiding potential

misspecification. We generally recommend the use of β̃ over β̂ due to better finite sample perfor-

mance. Under heteroskedasticity, however, the best estimator is β̃H , which properly accounts for

the information in the variance structure. β̃ continues to be a competitive alternative, though less

efficient.

We further compare our estimators β̃ and β̃H with the efficient estimator β̃S proposed in Ai and

Chen (2003) by a simple simulation analysis. The semiparametric efficient estimator β̃S is based on

the method of minimum distance and sieves and can be applied to a more general semiparametric

model. However, the efficient estimation calls for a numerical optimization. Since the estimators are

constructed with different nonparametric methods, we follow their simulation closely for a meaningful

comparison. The data generating process is the same as in their section 7, where the only change

here is that we let the endogenous variable Xt shows up only in the parametric component, but not

in the nonparametric control function. We investigate the performances with sample sizes 200, 400

and perform 200 repetitions. We denote the degree of endogeneity by ρ (they use “R” for ρ. Here we

use R to denote root mean squared error.) and consider ρ = 0.1 and 0.9, where a larger ρ indicates

a more serious endogeneity.

The estimators’ performances in terms of the bias, standard deviation and root mean squared

error in the simulation are summarized in Table 5 in the Appendix. The results indicate β̃ and

β̃H carry positive bias, while β̃S are negatively biased. All estimators’ performance improve as the

sample size increases. When endogeneity is more serious, it is more difficult for all to estimate β

well, as judged by their larger R. Our estimators outperform β̃S in terms of standard deviation and
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root mean square error, and the advantage is more obvious in small samples. The limited simulation

results suggest that with explicit algebraic structure and an easily implemented procedure without

numerical optimization, our kernel-based estimators provide a viable alternative that complements

the estimators available in the literature.

5 Empirical Illustration

We estimate the return to schooling with our proposed estimators using the data from Card (1995)

in equation (1).6 Using 3010 observations from the National Longitudinal Survey of Young Men in

1976, Card considers the regression model

logwage = β0 +β1educ +β2exper +β3exper
2/100

OLS 0.074 0.084 −0.224
2SLS 0.132 0.107 −0.228

+β4black +β5south +β6smsa + ε
−0.190 −0.125 0.161
−0.131 −0.105 0.131

where logwage is the log of the 1976 hourly wage, educ is years of schooling, exper is the potential

experience constructed as age−educ−6. black, south, and smsa (Standard Metropolitan Statistical

Area) are dummy variables (see Card for detailed data description and analysis). The OLS estimate

for β1 is 0.074 with a standard error of 0.004. However, due to the fact that educ is not randomly

assigned or endogenous, it is difficult to argue it to be the return to schooling. Card uses the

proximity to a four-year college (nearc4) as an instrumental variable for educ. Since being located

close to a college might reduce the cost of investing in education, one might get more education. The

2SLS estimate for β1 is 0.132 with a standard error of 0.049. Thus, the return to schooling might

be underestimated in OLS7, even though the OLS estimate carries a much smaller standard error.

We notice the specification might be restrictive, i.e., experience enters the control function as a

quadratic function, the dummy variables carry fixed coefficients and the reduced form is linear. The

6As in most of the work in the literature, we assume that the slope of the earning function does not vary across
individuals, so that β in equation (1) can be interpreted as the return to schooling. An alternative framework would
be to allow heterogeneous returns to schooling using a varying coefficient approach (see Su et al. (2011)). Deschenes
(2007) estimates an interesting model of schooling and earnings with heterogeneous return to education. How our
proposed estimators can be extended to such alternatives would be a topic for future research.

72SLS estimate could be biased in the same direction as OLS estimate in finite samples if the excluded instrumental
variables explain a small share of the variation of the endogenous variables (Angrist and Krueger (1995).
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larger value of β1 in 2SLS might be due to the restrictive function form assumptions. We therefore

consider the semiparametric estimation of β in the model

logwage = βeduc +m(exper, black, south, smsa) + residuals,

using the two estimators proposed in the paper, β̃ and β̂, where we allow m(·) and the reduced

form to be nonparametric. Since the 2SLS results reported in Card are quite stable for treating

experience as either exogenous or endogenous, we simply treat experience as an exogenous variable

for illustration purposes. Using the proximity to a four-year college as the IV for educ as in Card

(1995),8 we choose the kernel function and bandwidths as in the Monte Carlo study. When β̃ is

used, one can construct an estimate for m(·) as

m̃(Z1t) = Ê(Y |Z1t) − Ê(X|Z1t)β̃.

The estimated residual is ε̃t = Yt − Xtβ̃ − m̃(Z1t). Based on our Theorem 1, we can easily es-

timate the variance for β̃ as (Ŵ ′Ŵ )−1 1
n

∑n
t=1 ε̃

2
t , if ε is conditionally homoskedastic. If not, the

heteroskedasticity consistent variance estimate is constructed as (Ŵ ′Ŵ )−1Ŵ Ω̃Ŵ ′(Ŵ ′Ŵ )−1 follow-

ing White (1980, 1982), where Ω̃ is a diagonal matrix with ε̃2t as its diagonal term. A similar estimate

could be obtained for the variance of β̂.

We obtain β̃ = 0.048 with a standard error of 0.019, and β̂ = 0.091 with a standard error of

0.019. The heteroskedasticity robust standard error is 0.016 for both estimates. It suggests that

the return to schooling obtained in 2SLS might be too big due to its restrictive function form on

the control variables and the reduced form. Our semiparametric efficient estimates are much more

precise than the 2SLS estimates. To further illustrate the difference, we provide the estimated

control function m(exper, black, south, smsa) using β̃ and 2SLS in Figure 1 in the Appendix, for all

combinations of the race and location status except for (black, south, smsa) = (1, 0, 0) which has

only five occurrences in the sample. Figure 1 shows that all m(·) estimated with 2SLS are quadratic

8Kling (2001) discussed some important and subtle issues in the choice of the instrumental variables for estimating
the return to schooling.
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in experience with different intercepts, with the difference between each of the two m(·)′s being

fixed. On the other hand, our semiparametric estimates with β̃ give quite different results. For

example, the quadratic control function assumption might be reasonable for a non-black person in

the northern metropolitan area ((black, south, smsa) = (0, 0, 1)), but it is unlikely to be the case for

a black person located in the southern non-metropolitan area ((black, south, smsa) = (1, 1, 0)). The

gap between their expected wage is indeed largest in semiparametric estimates, but the gap changes

across different experiences. Furthermore, the intercepts of m(·) estimated with β̃ are higher than

those estimated with 2SLS, which follows because the β̃ estimate is smaller. To get an overall picture

of the difference of two estimation procedures (semiparametric IV with β̃ and 2SLS) in capturing

logwage, we plot the predicted logwage against the realized logwage in Figure 2. A solid line is

superimposed to indicate perfect prediction. Both estimates seem to overestimate logwage when it

is small, but underestimate logwage when it is large. The semiparametic IV estimates’ variability

seems to be smaller.

Another potential source of misspecification is in the reduced form. For illustration purposes, we

plot in Figure 3 the estimated nonparametric reduced formE(educ|exper, black, south, smsa, nearc4)

with β̃ and the estimated linear reduced form ˆeduc = Ztα̂ used in 2SLS (note β̌ uses the same lin-

ear reduced form as 2SLS), where Zt = (constant, exper, exper2/100, black, south, smsa, nearc4),

and α̂ is the linear regression parameter estimates. The 2SLS reduced forms of educ plotted

against exper resemble straight lines with a fixed slope coefficient of −0.41, since the coefficient

of the quadratic term exper2/100, 0.073, is fairly small. As expected, the difference across different

(black, south, smsa, nearc4) groups are fixed. Residing close to a four-year college results in 0.337

more years in expected education, indicated by the larger intercept for reduced forms using 2SLS

and nearc4 = 1 relative to nearc4 = 0. On the other hand, the nonparametric estimated reduced

form delivers a quite different picture. Though one gets less educ as exper increases, the pattern is

far from a linear one. The reduced form turns out to be approximately convex for education less

than ten years, but roughly concave for education larger than ten years. Though one can say that
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a white person in a big city in the north gets more educ across almost all experience than other

groups, the gaps of educ across different groups are far from a constant. For example, a black person

from a small town in the south may not always get the least educ, and the ranking of the magnitude

of educ across groups changes with experience.

Since 2SLS estimation is potentiallly misspecified in both the control function and the reduced

form, we attempt to disentangle empirically the impact of misspecifications from the two sources,

and assess which part contributes more to the difference in the return to schooling estimates obtained

with β̃ and 2SLS. The estimator β̌ considered in equation (3) allows the control function m(·) to be a

nonlinear function, but assumes the reduced form to be linear. We have demonstrated the potential

efficiency gain of our estimator β̃ over β̌ in Theorem 2 and in the Monte Carlo study in situations

where the reduced form is nonlinear. β̌ using Ztα̂ as the reduced form estimate turns out to be

0.135, with 0.052 as its standard error and the heteroskedasticity robust standard error estimate.

Both the parameter and standard error estimates resemble those of 2SLS. It indicates that assuming

the control function to be quadratic may not be far from the truth, but the parametric assumption

on the reduced form is too restrictive. Thus, we conclude that further allowing nonparametric

reduced form in β̃ not only allows us to construct efficient estimates relative to both β̌ and 2SLS,

but also helps us to gain some empirical evidence that the difference between the return to schooling

estimates obtained with β̃ and 2SLS largely comes from the misspecification of the reduced form.

Since the potential experience is closely related to education, exper might be endogenous for the

same reason that education is endogenous. To check the robustness of the above findings, we consider

the alternative model as logwage = βeduc+m(age, black, south, smsa) + residuals, which replaces

exper in the control function by age. We repeat the semiparametric IV estimation procedures with

proximity to a four-year college as IV for educ. We obtain β̃ = 0.024 with a standard error of 0.019

and β̂ = 0.039 with a standard error of 0.019. The heteroskedasticity robust standard error is 0.017

for both estimates. Again, the semiparametric efficient estimates are much more precise than the

2SLS estimate. Although the estimates change, we still conclude that the 2SLS estimate for the
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return to schooling might be too large, due to its restrictive functional form assumptions on the

control variables and on the reduced form.

6 Conclusion

We provide an explanation for the puzzle observed in Card (2001) that 2SLS estimates for the re-

turn to schooling are typically larger than OLS estimates, though the former are fairly imprecisely

estimated. The difference could be due to the restrictive linear functional form specification in 2SLS

on the control variables and the reduced form. For the parameters of endogenous regressors, we

propose three kernel-based semiparametric IV estimators that relax the tight functional form as-

sumptions on the control variables and the reduced form. They have explicit algebraic structures

and are easily implemented without numerical optimizations. We show that they are consistent

and asymptotically normal. The first two estimators are efficient relative to previously considered

estimators under homoskedasticity. The third estimator incorporates heteroskedasticity information

and is efficient under heteroskedasticity. They reach the semiparametric efficiency bounds in Cham-

berlain (1992), and are asymptotically equivalent to semiparametric IV estimators that optimally

select the instrument under conditional moment restrictions. A Monte Carlo study shows that they

perform well in finite samples. We estimate the return to schooling with the proposed estimators

using data in Card (1995). We find that the estimate for the return to schooling is much smaller

and more precise than the 2SLS estimate and the difference largely comes from the misspecification

in the linear reduced form.
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Appendix

Table 1 Bias(×0.1)(B), Standard deviation(S) and Root Mean
Squared Error(R) for estimators with g1 and σ2

1

θ = 0.2 θ = 0.5 θ = 0.8
n = 100 B S R B S R B S R

β̌(1) .963 .073 .121 2.469 .066 .256 3.947 .052 .398

β̌(2) .050 .119 .119 .062 .124 .124 -.104 .127 .128

β̌ -.022 .107 .107 -.011 .110 .110 -.109 .113 .113

β̂ .879 .107 .139 1.360 .108 .174 1.789 .104 .207

β̃ .262 .095 .099 .663 .094 .115 .991 .088 .133

β̃H .266 .101 .105 .685 .100 .121 1.030 .093 .139

n = 200 B S R B S R B S R

β̌(1) .988 .050 .111 2.461 .047 .251 3.959 .035 .397

β̌(2) .051 .079 .079 -.007 .082 .082 -.021 .079 .079

β̌ -.031 .073 .073 -.060 .074 .074 -.076 .071 .072

β̂ .768 .073 .106 1.117 .075 .134 1.448 .069 .161

β̃ .159 .068 .070 .404 .067 .079 .627 .062 .088

β̃H .160 .070 .072 .413 .069 .081 .644 .064 .091

Table 2 Bias(B), Standard deviation(S) and Root Mean
Squared Error(R) for estimators with g2 and σ2

1

θ = 0.2 θ = 0.5 θ = 0.8
n = 100 B S R B S R B S R

β̌(1) .152 .091 .177 .384 .079 .392 .630 .058 .632

β̌(2) .525 10.177 10.185 .294 9.011 9.011 .285 24.627 24.617

β̌ .182 3.589 3.592 .178 12.492 12.487 .532 1.906 1.978

β̂ .215 .209 .300 .353 .205 .409 .504 .215 .548

β̃ .093 .152 .178 .204 .141 .248 .333 .118 .353

β̃H .099 .160 .188 .214 .150 .261 .342 .126 .364

n = 200 B S R B S R B S R

β̌(1) .155 .066 .168 .390 .051 .393 .627 .039 .628

β̌(2) .629 20.838 20.838 3.628 57.572 57.657 4.768 157.262 157.255

β̌ .183 3.215 3.218 .393 3.078 3.101 .599 2.416 2.488

β̂ .221 .151 .268 .325 .146 .356 .436 .150 .461

β̃ .073 .118 .138 .156 .108 .189 .237 .092 .255

β̃H .076 .121 .143 .160 .111 .194 .241 .093 .259
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Table 3 Bias(×0.1)(B), Standard deviation(S) and Root Mean
Squared Error(R) for estimators with g1 and σ2

2

θ = 0.2 θ = 0.5 θ = 0.8

n = 100 B S R B S R B S R

β̌(1) .345 .058 .067 1.028 .054 .116 1.674 .052 .175

β̌(2) .033 .054 .054 .049 .054 .054 -.005 .057 .057

β̌ -.124 .060 .062 -.096 .059 .060 -.120 .062 .063

β̂ .376 .062 .073 .594 .062 .086 .741 .064 .098

β̃ .038 .058 .058 .221 .056 .060 .346 .056 .066

β̃H .012 .038 .038 .076 .037 .038 .106 .038 .040

n = 200 B S R B S R B S R

β̌(1) .385 .039 .055 1.051 .037 .111 1.719 .035 .175

β̌(2) .045 .035 .035 .022 .037 .037 .030 .036 .036

β̌ -.071 .039 .039 -.095 .042 .043 -.086 .041 .042

β̂ .406 .041 .058 .509 .044 .067 .655 .043 .078

β̃ .033 .039 .039 .105 .041 .042 .209 .039 .044

β̃H .003 .024 .024 .017 .024 .024 .033 .024 .024

Table 4 Bias(B), Standard deviation(S) and Root Mean
Squared Error(R) for estimators with g2 and σ2

2

θ = 0.2 θ = 0.5 θ = 0.8

n = 100 B S R B S R B S R

β̌(1) .097 .093 .134 .242 .084 .256 .397 .069 .403

β̌(2) .208 10.796 10.792 .353 8.366 8.370 .844 13.184 13.204

β̌ .076 2.955 2.954 .227 2.620 2.629 .197 2.703 2.709

β̂ .115 .143 .183 .177 .141 .226 .242 .141 .280

β̃ .063 .107 .125 .112 .100 .151 .170 .092 .194

β̃H .016 .075 .076 .037 .079 .087 .063 .082 .104

n = 200 B S R B S R B S R

β̌(1) .093 .065 .113 .251 .055 .257 .407 .043 .409

β̌(2) -.036 24.853 24.840 .199 16.715 16.708 .302 6.619 6.623

β̌ .131 2.197 2.200 .155 2.211 2.215 .341 1.546 1.582

β̂ .118 .095 .151 .172 .094 .196 .219 .093 .238

β̃ .042 .071 .083 .085 .071 .111 .123 .066 .140

β̃H .075 .044 .045 .015 .045 .047 .030 .044 .053

Table 5 Bias(B), Standard deviation(S) and Root Mean Squared Error(R)

for estimators β̃, β̃H and β̃S

ρ = 0.1 ρ = 0.9
n = 200 n = 400 n = 200 n = 400

B S R B S R B S R B S R

β̃ .015 .113 .114 .026 .110 .113 .239 .097 .257 .197 .078 .212

β̃H .011 .106 .106 .019 .099 .101 .212 .098 .233 .172 .079 .189

β̃S -.057 .563 .565 .017 .222 .222 -.126 1.181 1.185 -.025 .247 .247
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Figure 1: Plot of estimated control function m(exper, black, south, smsa) with β̃ (left) and 2SLS
(right). (black, south, smsa) indicated in graph.

Figure 2: Plot of estimated log(wage) using β̃ and 2SLS against realized log(wage).
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Figure 3: Plot of estimated reduced form E(educ|exper, black, south, smsa, nearc4) with β̃ (left)
and 2SLS (right). (black, south, smsa, nearc4) indicated in graph. neac4 = 0 for the top panels.

Appendix of proof

Lemma 1 Define

Sn,j(z) =
1

n

n∑

i=1

Kh(Zc
i − zc)

(
Zc

i − zc

h

)j

I(Zd
i = zd)g(Ui)w(Zc

i − zc; z), |j| = 0, 1, 2, · · · , J,

where Zi, Ui are iid, Zc
i ∈ Rlc , Zd

i ∈ Rld , Kh(zc) = 1
hlc
K( zc

h ), and K(.) is a kernel function defined

on Rlc . If we have

L1. K(.) is bounded with compact support and for Euclidean norm ||.||,

|ujK(u) − vjK(v)| ≤ cK ||u− v||, for 0 ≤ |j| ≤ J.

L2. g(u) is a measurable function of ui and E|g(u)|s <∞ for s > 2.
L3. supz∈G

∫
|g(u)|sfz,u(z, u)du <∞, fz|u(z) <∞, and fz,u(z, u) is continuous around zc.

L4. |w(Zc
i −zc; z)| <∞, ∀zd ∈ Gd, a compact subset of Rld , |w(Zc

i −zc; zc, zd)−w(Zc
i −zc

k; zc
k, z

d)| ≤
c||zc − zc

k||.
L5. nh

lc → ∞.
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Then for z = (zc, zd) ∈ G = Gc ×Gd, zc ∈ Gc, a compact subset of Rlc ,

sup
z∈G

|Sn,j(z) − E(Sn,j(z))| = Op

((
nhlc

ln(n)

)− 1
2

)

.

Proof. Let’s define

SB
n,j(x) =

1

n

n∑

i=1

Kh(Zc
i − zc)

(
Zc

i − zc

h

)j

I(Zd
i = zd)g(Ui)w(Zc

i − zc; z)I(|g(Ui)| ≤ Bn),

where B1 ≤ B2 ≤ · · · such that
∑∞

i=1 B
−s
i < ∞ for some s > 0. Since Gc × Gd is compact, we

could cover G by a finite number ln of lc dimensional cubes Ik with center zk, k = 1, 2, · · · , ln and
length rn. We could choose ln sufficiently large such that rn is sufficiently small and each cube Ik
corresponds to one fixed possible value of zd, i.e., zd = zd

k if z ∈ Ik. Since G is compact, lnr
lc
n = c,

c a constant. Suppose we let ln =
(

n
ln(n)hlc+2

) lc
2

, then rn = c/l
1
lc
n . Since

supz∈G |SB
n,j(z) −E(SB

n,j(z))|
= max1≤k≤ln supz∈Ik∩G |SB

n,j(z) −E(SB
n,j(z))

= max1≤k≤ln supzc∈Ik∩G |SB
n,j(z

c, zd
k) − SB

n,j(zk)

+SB
n,j(zk) −ESB

n,j(zk) +ESB
n,j(zk) −ESB

n,j(z
c, zd

k)|
≤ max1≤k≤ln supzc∈Ik∩G |SB

n,j(z
c, zd

k) − SB
n,j(zk)|

+max1≤k≤ln |SB
n,j(zk) −ESB

n,j(zk)|
+max1≤k≤ln supzc∈Ik∩G |ESB

n,j(zk) − ESB
n,j(z

c, zd
k)|

= I1 + I2 + I3

The lemma is proved if we can show

(1) I0 = supz∈G |Sn,j(z)−E(Sn,j (z))−[SB
n,j(z)−E(SB

n,j (z))]| = Oa.s.(B
1−s
n ) forB1−s

n = O(
(

ln(n)
nhlc

) 1
2

),
∑∞

i=1 B
−s
i <∞.

(2) I1 = Oa.s.(
(

ln(n)
nhlc

) 1
2

). (3) I2 = Op(
(

ln(n)
nhlc

) 1
2

). (4) I3 = Oa.s.(
(

ln(n)
nhlc

) 1
2

).

(1) I0 ≤ supz∈G |Sn,j(z) − SB
n,j(z)| + supz∈G |E(Sn,j(z) − SB

n,j(z))| = I01 + I02. We note

I01 =
∑

z∈G

| 1
n

n∑

i=1

Kh(Zc
i − zc)

(
Zc

i − zc

h

)j

I(Zd
i = zd)g(Ui)w(Zi)I(|g(Ui)| > Bn).

BY Chebychev’s inequality,
∑∞

i=1 P (|g(Ui)| > Bi) ≤
∑∞

i=1
E|(g(Ui)|s

Bs
i

< c
∑∞

i=1B
−s
i ≤ ∞, by

construction of Bi and L2. By Borel-Cantellis Lemma, P (|g(Ui)| > Bi i.o.) = 0. To see this,
P (|g(Ui)| > Bi i.o.) = limi→∞ P (∪∞

m=i{ω : |g(Um)| > Bm}) ≤ limi→∞
∑∞

m=i P ({ω : |g(Um)| >
Bm}) = 0 since

∑∞
i=1 P ({ω : |g(Ui)| > Bi}) <∞. So ∀ε > 0, there exists i′ > 0 such that ∀i > i′,

P (∪∞
m=i{ω : |g(Um)| > Bm}) < ε, or P (∩∞

m=i{ω : |g(Um)| ≤ Bm}) > 1 − ε.

So ∀m > i′, P (|g(Um)| ≤ Bm) > 1 − ε or |g(Um)| ≤ Bm for sufficiently large m. Since Bi is an
increasing sequence, w.p.1, |g(Um)| ≤ Bn for m ≥ i′ and n ≥ m.

When i = {1, 2, · · · , i′}, P (|g(Ui)| ≤ Bn) > 1 − ε. To see this, ∀ε > 0, and sufficiently large n,

P (|g(Ui)| > Bn) < E|g(Ui)|s
Bs

n
< c

Bs
n
< ε, since E|g(Ui)|s <∞ and Bi is an increasing sequence. So in

all, ∀ε > 0, and for n sufficiently large, we have I(|g(Ui)| > Bn) = 0 w.p.1.. So I01 = 0 a.s..

I02 = supz∈G |EKh(Zc
i − zc)

(
Zc

i −zc

h

)j

I(Zd
i = zd)g(Ui)w(Zc

i − zc; z)I(|g(Ui)| > Bn). Let
Zc

i −zc

h =

(
Zc

i1−zc
1

h , · · · , Zc
ilc

−zc
lc

h ) = Ψi = (Ψi1, · · · ,Ψilc), so zc
i = zc

1 + hΨi1, · · · , zc
lc

+ hΨilc = zc + hΨi,
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| ∂zc
i

∂Ψi
| = hlc . By change of variable,

I02 = supz∈G |
∑

Zd
i
=zd

∫
K(Ψi)Ψ

j
∫
w(hΨi; z)g(Ui)I(|g(Ui)| > Bn)

×fz,u(zc + hΨi, z
d, Ui)dUidΨi|

≤ c
∫
|K(Ψi)Ψ

j
i |dΨi supz∈G

∫
|g(Ui)|fz,Ui

(z, Ui)I(|g(Ui)| > Bn)dUi

≤ c supz∈G[
∫
|g(Ui)|sfz,Ui

(z, Ui)dUi]
1
s [
∫
I(|g(Ui)| > Bn)fz,Ui

(z, Ui)dUi]
1−1

s

≤ c[EUi
(I(|g(Ui)| > Bn)fz|Ui

(z))]1−
1
s

≤ c[EUi
(I(|g(Ui)| > Bn)]1−

1
s = c[P (|g(Ui)| > Bn)]1−

1
s

≤ c[E|g(Ui)|s
Bs

n
]1−

1
s ≤ cB

1− 1
s

n .

where to obtain the first inequality we use L4, the second we use L1 and Hölder’s inequality, the
third and fourth we use L3. The last tine above we use Chebychev’s inequality again and L2.

(2) |SB
n,j(z

c, zd
k) − SB

n,j(zk)|
= | 1

nhlc

∑

i[Kh(Zc
i − zc)

(
Zc

i −zc

h

)j

w(Zc
i − zc; zc, zd

k)

−Kh(Zc
i − Zc

k)
(

Zc
i −Zc

k

h

)j

w(Zc
i − zc

k; zk)]I(Zd
i = Zd

k)g(Ui)I(|g(Ui)| ≤ Bn)|

≤ 1
nhlc

∑

i[|[K(Zc
i − zc)

(
Zc

i −zc

h

)j

−K(Zc
i − zc

k)
(

Zc
i −zc

k

h

)j

]w(Zc
i − zc; zc, zd

k)|

+|K(Zc
i − Zc

k)
(

Zc
i −Zc

k

h

)j

[w(Zc
i − zc; zc, zd

k) −w(Zc
i − zc

k; zk)]|]
×I(Zd

i = Zd
k )g(Ui)I(|g(Ui)| ≤ Bn)|

≤ 1
nhlc

∑

i[c
||Zc

k−zc||
h + c||Zc

k − zc||]|g(Ui)| by L1 and L4,

since z ∈ Ik for some k, ||Zc
k − zc|| ≤ crn and with L4,

I1 ≤ c rn

hlc+1
1
n

∑

i |g(Ui)|, by L2 and Kolmogorov’s Theorem,

1

n

∑

i

|g(Ui)| a.s.→ E|g(Ui)| <∞.

So I1 ≤ c rn

hlc+1 = c
hlc+1 ( n

ln(n)hlc+2 )−
1
2 = c( ln(n)

nhlc
)

1
2 a.s..

We could show (4) I3 = Oa.s.

(
ln(n)
nhlc

)1
2

similarly.

(3) It is sufficient to show ∃ a constant ∆ > 0 and N > 0 such that ∀ε > 0 and n > N ,

P (
(

ln(n)
nhlc

) 1
2

I2 ≥ ∆) < ε.

Let εn =
(

ln(n)
nhlc

) 1
2

∆, then P (I2 ≥ εn) ≤∑ln
k=1 P (|SB

n,j(zk) −ESB
n,j(zk)| ≥ εn). We note |SB

n,j(zk) −
ESB

n,j(zk)|
= | 1

n

∑n
i=1[

1
hlc
K(Zc

i − zc
k)
(

Zc
i −zc

k

h

)j

I(Zd
i = zd

k)g(Ui)w(Zc
i − zc

k; zk)I(|g(Ui)| ≤ Bn) − 1
hlc
EK(Zc

i −

zc
k)
(

Zc
i −zc

k

h

)j

I(Zd
i = zd

k)g(Ui)w(Zc
i − zc

k; zk)I(|g(Ui)| ≤ Bn)]| = | 1n
∑n

i=1Win|.
Since EWin = 0, |Win| ≤ 2cBn

hlc
by L1 and L4, and {Win}n

i=1 is an independent sequence, by
Bernstein’s inequality,

P (|SB
n,j(zk) −ESB

n,j(zk)| ≥ εn) < 2exp
(

−nhlcε2n
2hlc σ̄2+ 2

3Bnεn

)

,

where σ̄2 = 1
n

∑

i V (Win) = EW 2
in = I21 − I2

22

=
1

h2lc
EK2(Zc

i − zc)(

(
Zc

i − zc
k

h

)j

)2I(Zd
i = zd

k)g2(Ui)w(Zc
i − zc

k; zk)2I(|g(Ui)| ≤ Bn)]|
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−
[

1
hlc
EK(Zc

i − zc
k)
(

Zc
i −zc

k

h

)j

I(Zd
i = zd

k)g(Ui)w(Zc
i − zc

k; zk)I(|g(Ui)| ≤ Bn)]

]2

.

I22 =
∑

Zd
i =zd

k

∫
K(Ψ)Ψj

i g(Ui)w(hΨi; zk)I(|g(Ui)| ≤ Bn)fz,u(zc
k + hΨi, Z

d
i , Ui)dψidUi

≤ c
∫
|K(Ψ)Ψj

i ||g(Ui)|fz,u(Zc
k + hΨi, Z

d
k , Ui)dψidUi

→ c
∫
|K(Ψ)Ψj

i |dΨi

∫
|g(Ui)|fz,u(zk, Ui)dUi <∞, with L1, L3 and L4.

Similarly hLcI21 = O(1). So 2hlc σ̄2 < ∞. If Bnεn < ∞, then Cn = 2hlc σ̄2 + 2
3Bnεn < ∞, then

P (I2 ≥ εn) ≤ ln2exp
(

−nhlcε2n
2hlc σ̄2+ 2

3Bnεn

)

=
(

n
ln(n)hlc+2

) lc
2

2exp




−nhlc

„

( ln(n)

nhlc
)

1
2 ∆

«2

Cn



 =
2n

lc
2 −∆2

Cn

(ln(n))
lc
2 hlc+

l2c
2

→ 0.

Above is true since Cn <∞, if we let ∆2 ≥ Cn(1+ lc), then
2n

lc
2 −∆2

Cn

(ln(n))
lc
2 hlc+

l2c
2

≤ 2

(ln(n))
lc
2 (nhlc )1+

lc
2

→ 0

by L5.
If we let Bn = n

1
s
+δ for s > 2 and δ > 0, then Bnεn < ∞ for sufficiently large s. To see

this, Bnεn = n
1
s
+δ∆( ln(n)

nhlc
)

1
2 . By L5, we could let (nhlc)−

1
2 = n− 1

2+δ1 for 1
2
> δ1 > 0, then

Bnεn = n
1
s
− 1

2+δ+δ1∆(ln(n))
1
2 . If we let s > [ 12 − δ − δ1]

−1, then Bnεn → 0.

It is easy to see that for Bn = n
1
s
+δ , we easily have

∑∞
i=1 B

−s
i <∞. Furthermore B1−s

n < n
1
2−δ, so

B1−s
n = O

(
ln(n)
nhlc

) 1
2

.

Theorem 1: Proof. Note Ê(Y |Zt)− Ê(Y |Z1t) = Ŵtβ + Ê(m(z1)|Zt)− Ê(m(z1)|Z1t)+ Ê(ε|Zt)−
Ê(ε|Z1t), so we could write

β̃ − β = [( 1
nŴ

′Ŵ )−1 − (EW ′
tWt)

−1 + (EW ′
tWt)

−1]

× 1

n
Ŵ ′(Ê(m(z1)| ~Z) − Ê(m(z1)| ~Z1) + Ê(ε| ~Z) − Ê(ε| ~Z1))

︸ ︷︷ ︸

C

.

Let’s denote Ê(Xk|Zt) = ĝk(Zt) and Ê(Xk|Z1t) = ĝ1,k(Z1t), then Ŵt,k = ĝk(Zt)−gk(Zt)+g1,k(Z1t)−
ĝ1,k(Z1t) + gk(Zt) − g1,k(Z1t), then (i, j)th element of 1

nŴ
′Ŵ is

1
n

∑n
t=1 Ŵt,iŴt,j

= 1
n

∑

t[ĝi(Zt) − gi(Zt)][ĝj(Zt) − gj(Zt)]
+ 1

n

∑

t[ĝi(Zt) − gi(Zt)][g1,j(Z1t) − ĝ1,j(Z1t)]
+ 1

n

∑

t[ĝi(Zt) − gi(Zt)][gj(Zt) − g1,j(Z1t)]
+ 1

n

∑

t[g1,i(Z1t) − ĝ1,i(Z1t)][ĝj(Zt) − gj(Zt)]
+ 1

n

∑

t[g1,i(Z1t) − ĝ1,i(Z1t)][g1,j(Z1t) − ĝ1,j(Z1t)]
+ 1

n

∑

t[g1,i(Z1t) − ĝ1,i(Z1t)][gj(Zt) − g1,j(Z1t)]
+ 1

n

∑

t[gi(Zt) − g1,i(Z1t)][ĝj(Zt) − gj(Zt)]
+ 1

n

∑

t[gi(Zt) − g1,i(Z1t)][g1,j(Z1t) − ĝ1,j(Z1t)]
+ 1

n

∑

t[gi(Zt) − g1,i(Z1t)][gj(Zt) − g1,j(Z1t)]
= A1 +A2 + · · ·+ A9

Similarly, for k = 1, 2, · · · , K, the kth element of C is

Ck = 1
n

∑n
t=1 Ŵt,k(Ê(m(z1)|Zt) − Ê(m(z1)|Z1t) + Ê(ε|Zt) − Ê(ε|Z1t))

= 1
n

∑

t[ĝk(Zt) − gk(Zt)][Ê(m(z1)|Zt) − Ê(m(z1)|Z1t)]

+ 1
n

∑

t[g1,k(Z1t) − ĝ1,k(Z1t)][Ê(m(z1)|Zt) − Ê(m(z1)|Z1t)]

+ 1
n

∑

t[gk(Zt) − g1,k(Z1t)][Ê(m(z1)|Zt) − Ê(m(z1)|Z1t)]

+ 1
n

∑

t[ĝk(Zt) − gk(Zt)][Ê(ε|Zt) − Ê(ε|Z1t)]

+ 1
n

∑

t[g1,k(Z1t) − ĝ1,k(Z1t)][Ê(ε|Zt) − Ê(ε|Z1t)]

+ 1
n

∑

t[gk(Zt) − g1,k(Z1t)][Ê(ε|Zt) − Ê(ε|Z1t)]
= C1k + C2k + · · ·+C6k
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We show below (1) Ai = op(1), i = 1, · · · , 8,

A9 − E[gi(Zt) − g1,i(Z1t)][gj(Zt) − g1,j(Z1t)] = op(1),

so together we have 1
nŴ

′Ŵ − EW ′
tWt = op(1). By A1(3) and Slutsky’ Theorem, ( 1

nŴ
′Ŵ )−1 −

(EW ′
tWt)

−1 = op(1).

(2)C1k = [Op((
nh

l1c+l2c
2

ln(n)
)−

1
2 )+O(hs1+1

2 )][Op((
nh

l1c−2
1

ln(n)
)−

1
2 )+Op((

nh
l1c+l2c−2
2

ln(n)
)−

1
2 )+O(hs+1

1 )+O(hs2+1
2 )].

C2k = [Op((
nh

l1c
1

ln(n)
)−

1
2 ) +O(hs+1

1 )][Op((
nh

l1c−2

1

ln(n)
)−

1
2 ) + Op((

nh
l1c+l2c−2

2

ln(n)
)−

1
2 ) +O(hs+1

1 ) + O(hs2+1
2 )].

C3k = Op(h2(
nh

l1c+l2c
2

ln(n) )−1) + Op(h
s1+1
2 (

nh
l1c+l2c
2

ln(n) )−
1
2 ) + Op(h1(

nh
l1c
1

ln(n) )
−1)

+Op(h
s+1
1 (

nh
l1c
1

ln(n) )
− 1

2 ) + O((n2hl1c−2
1 )−

1
2 ) +O(hs+1

1 ) + O((n2hl1c+l2c−2
2 )−

1
2 ) + O(hs1+1

2 ).

C4k = [Op((
nh

l1c+l2c
2

ln(n)
)−

1
2 ) +O(hs1+1

2 )][Op((
nh

l1c+l2c
2

ln(n)
)−

1
2 ) +Op((

nh
l1c
1

ln(n)
)−

1
2 )].

C5k = [Op((
nh

l1c
1

ln(n) )
− 1

2 ) +O(hs+1
1 )][[Op((

nh
l1c+l2c
2

ln(n) )−
1
2 ) + Op((

nh
l1c
1

ln(n) )
− 1

2 )].

For C6 = [C61, C62, · · · , C6K]′,
√
nC6

d→ N(0,Φ0), where Φ0 is defined in Theorem 1.

Since
√
nC1k = [Op((

(nh
2(l1c+l2c)
2 )

1
2

ln(n) )−
1
2 ) +O(n

1
4hs1+1

2 )]

×[Op(h1(
(nh

2l1c
1 )

1
2

ln(n)
)−

1
2 ) + Op(h2(

(nh
2(l1c+l2c)
2 )

1
2

ln(n)
)−

1
2 ) + O(n

1
4hs+1

1 ) + O(n
1
4hs1+1

2 )] = op(1) with A5.

Similar arguments could be used with A5 to show
√
nCik = op(1) for i = 2, 3, 4, 5. Note the relatively

strong assumption A5(3) are used specifically in C3k to make the bias disappear asymptotically.
Combining results in (1) and (2) and using A1(3), we conclude

√
n(β̃ − β)

d→ N(0, (EW ′
tWt)

−1Φ0(EW
′
tWt)

−1).

(1) (a) We first show supz10∈G1
|f̂1(z10) − f1(z10)| = Op((

nh
l1c
1

ln(n) )
− 1

2 ) +O(hs
1).

We apply Lemma 1 with Sn,0(z10) = 1

nh
l1c
1

∑n
i=1K1(

Zc
1i−zc

10

h1
)I(Zd

1i = zd
10), so

sup
z10∈G1

|f̂1(z10) − Ef̂1(z10)| = Op((
nhl1c

1

ln(n)
)−

1
2 ).

Condition L1 is satisfied with A3, L2 is satisfied since g(u) = 1, L3 is true with A2(1) and (2), L4

is satisfied since w(z) = 1. Since the data are iid in A1(1),

Ef̂(z10) =
∫

1

h
l1c
1

K1(
Zc

1i−zc
10

h1
)f1(Z

c
1i, z

d
10)dZ

c
1i, with Ψi =

Zc
1i−zc

10

h1
,

=
∫
K1(Ψi)f1(z

c
10 + h1Ψi, z

d
10)dΨi, with A2(1)

=
∫
K1(Ψi)[f1(z

c
10, z

d
10) +

∑s−1
|j|=1

h
|j|
1

j!
∂jf1(zc

10,zd
10)

∂(zc
10)

j Ψj
i +

∑

|j|=s
hs
1

j!
∂jf1(zc

10∗,zd
10)

∂(zc
10)

j Ψj
i ]dΨi

= f1(z10) +O(hs
1) uniformly ∀z10 ∈ G1 by A3, A2(1) and Dominated Convergence Theorem, where

zc
10∗ is between zc

10 and zc
1i∗. So supz10∈G1

|Ef̂1(z10) − f1(z10)| = O(hs
1).

(b) Similarly, we obtain supz0∈G |f̂(z0) − fz(z0)| = Op((
nh

l1c+l2c
2

ln(n)
)−

1
2 ) + O(hs1

2 ) with A2(4), (5)

and A3.

(c) We show supz10∈G1
| 1

nh
l1c
1

∑n
i=1K1(

Zc
1i−zc

10

h1
)I(Zd

1i = zd
10)[Xi,k − g1,k(z10)]| = Op((

nh
l1c
1

ln(n) )
− 1

2 )+

O(hs+1
1 ).

Since Xi,k = g1,k(Z1i) + e1,ki, we have
1

nh
l1c
1

∑n
i=1K1(

Zc
1i−zc

10

h1
)I(Zd

1i = zd
10)e1,ki

+ 1

nh
l1c
1

∑n
i=1K1(

Zc
1i−zc

10

h1
)I(Zd

1i = zd
10)[g1,k(Z1i) − g1,k(z10)] = I1 + I2.
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We apply Lemma 1 again with Sn,0(z10) = I1, g(Ui) = e1,ki, and w(z) = 1. L2 is implied by
A4(1) and L3 is implied by A2(3). Since E(e1,ki|Z1i) = E(Xi − E(Xi|Z1i)|Z1i) = 0, EI1 = 0 and

supz0∈G |I1| = Op((
nh

l1c
1

ln(n) )
− 1

2 ).

I2 = 1

nh
l1c
1

∑n
i=1K1(

Zc
1i−zc

10

h1
)I(Zd

1i = zd
10)
∑s

|j|=1
∂j

∂(zc
10)

j g1,k(z10)
(Zc

1i−Zc
10)

j

j!

+ 1

nh
l1c
1

∑n
i=1K1(

Zc
1i−zc

10

h1
)I(Zd

1i = zd
10)
∑

|j|=s[
∂j

∂(zc
10)

j g1,k(z
c
10∗, z

d
10) − ∂j

∂(zc
10)

j g1,k(z10)]

× (Zc
1i−Zc

10)
j

j!
= I21 + I22.

Consider for 1 ≤ |k| ≤ s,

I211 = 1

nh
l1c
1

∑n
i=1K1(

Zc
1i−zc

10

h1
)I(Zd

1i = zd
10)
∑

|j|=|k|
∂j

∂(zc
10)

j g1,k(z10)
(Zc

1i−Zc
10)

j

j! ,

with A2(3) and by Lemma 1, supz10∈G1
|I211 −EI211| = Op(h

|k|
1 (

nh
l1c
1

ln(n) )
− 1

2 ).

EI211 =
∑

|j|=|k|
∂j

∂(zc
10)

j g1,k(z10)
∫
K1(Ψi)

(h1Ψi)
j

j!
[f1(z10)

+
∑s−1

|m|=1
∂m

∂(zc
10)

m f1(z10)
(h1Ψ)m

m! +
∑

|m|=s
∂m

∂(zc
10)

m f1(z
c
10∗, z

d
10)

(h1Ψ)m

m! ]dΨi,

where zc
10∗ is between zc

10 and zc
1i. Since by A3, the kernel function is of order 3s1, and by A2(3),

∫
K1(Ψi)Ψ

j+m
i

∂m

∂(zc
10)

m f1(z
c
10∗, z

d
10)dΨi

→ ∂m

∂(zc
10)

m f1(z10)
∫
K1(Ψi)Ψ

j+m
i dΨi < ∞, so EI211 = O(hs+k

1 ), and supz10∈G1
|I21| = O(hs+1

1 ) +

Op(h1(
nh

l1c
1

ln(n) )
− 1

2 ).

EI22 = hs
1

∑

|j|=s
1
j!

∫
K1(Ψi)Ψ

j
i [

∂j

∂(zc
10)

j g1,k(zc
10+λh1Ψi, z

d
10)− ∂j

∂(zc
10)

j g1,k(z10)]f1(z
c
10+h1Ψi, z

d
10)dΨi,

by A2(3), ∂j

∂(zc
10)

j g1,k(z10) is uniformly continuous around zc
10 ∈ Gc

1,

≤ hs+1
1

∑

|j|=s
1
j!

∫
|K1(Ψi)Ψ

j
i |cλ||Ψi||f1(zc

10 + h1Ψi, z
d
10)dΨi = Op(h

s+1
1 ) by A2(2) and A3(1).

By applying Lemma 1 with w(Zc
1i − zc

10; z0) = ∂j

∂(zc
10)

j g1,k(zc
10∗, z

d
10) − ∂j

∂(zc
10)

j g1,k(z10), by A2(3)

|w(Zc
1i − zc

10; z0)| <∞, and
|w(Zc

1i − zc
10; z0) − w(Zc

1i − zc
1k; zc

k, z
d
0)|

≤ | ∂j

∂(zc
10)

j g1,k(zc
10 + λ(Zc

1i − zc
10), z

d
10) − ∂j

∂(zc
10)

j g1,k(z
c
1k + λ(Z1i − Zc

1k), zd
10)|

+| ∂j

∂(zc
10)

j g1,k(zc
1k, z

d
10) − ∂j

∂(zc
10)

j g1,k(zc
10, z

d
10)|

≤ ||(1− λ)(zc
10 − zc

1k)|| + ||zc
10 − zc

1k|| ≤ (2 − λ)||z10 − z1k||,
so supz10∈G1

|I22 − EI22| = Op(h
s
1(

nh
l1c
1

ln(n)
)−

1
2 ) and supz10∈G1

|I22| = O(hs+1
1 ) + Op(h

s
2(

nh
l1c
1

ln(n)
)−

1
2 ). So

in all, supz10∈G1
|I2| = O(hs+1

1 ) + Op(h1(
nh

l1c
1

ln(n) )
− 1

2 ).

(d) We show supz10∈G1
|ĝ1,j(z10) − g1,j(z10)| = Op((

nh
l1c
1

ln(n) )
− 1

2 ) + O(hs+1
1 ).

supz10∈G1
|ĝ1,j(z10) − g1,j(z10)| = supz10∈G1

| 1

nh
l1c
1

∑n
i=1K1(

Zc
1i−zc

10

h1
)

×I(Zd
1i = zd

10)[Xi,j − g1,j(z10)][
f1(z10)−f̂1(z10)

f̂1(z10)f1(z10)
+ 1

f1(z10)
]|

By A2(2), f1(z10) > 0. infz10∈G1 f̂1(z10) ≥ infz10∈G1 [f̂1(z10) − f1(z10)] + infz10∈G1f1(z10) > 0,

since in (a), supz10
|f̂1(z10) − f1(z10)| = Op((

nh
l1c
1

ln(n) )
− 1

2 ) + Op(h
s
1), infz10∈G1 [f̂1(z10) − f1(z10)] ≤

infz10∈G1 |f̂1(z10) − f1(z10)| ≤ supz10∈G1
|f̂1(z10) − f1(z10)| = op(1).

So supz10∈G1
|ĝ1,j(z10)− g1,j(z10)| = [Op((

nh
l1c
1

ln(n) )
− 1

2 )+O(hs+1
1 )][Op((

nh
l1c
1

ln(n) )
− 1

2 )+Op(h
s
1)+ 1

f1(z10)
] =

Op((
nh

l1c
1

ln(n)
)−

1
2 ) + O(hs+1

1 ).

Furthermore, supz10∈G1
|ĝ1,j(z10)−g1,j(z10)− 1

nh
l1c
1 f1(z10)

∑n
i=1K1(

Zc
1i−zc

10

h1
)I(Zd

1i = zd
10)[Xi,j−g1,j(z10)]| =

Op((
nh

l1c
1

ln(n) )
−1) +O(h2s+1

1 ) +Op(h
s
1(

nh
l1c
1

ln(n) )
− 1

2 ).
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(e) We can show similarly supz0∈G | 1

nh
l1c+l2c
2

∑n
i=1K2(

Zc
1i−zc

10

h2
,

Zc
2i−zc

20

h2
)I(Zd

i = zd
0)[Xi,k−gk(z0)]| =

Op((
nh

l1c+l2c
2

ln(n) )−
1
2 ) + O(hs1+1

2 ) with A2(4)-(6), A3, A4(1) and Lemma 1.

(f) We show supz0∈G |ĝj(z0) − gj(z0)| = Op((
nh

l1c+l2c
2

ln(n)
)−

1
2 ) +O(hs1+1

2 ).

supz0∈G |ĝj(z0) − gj(z0)| = supz0∈G |[ 1

nh
l1c+l2c
2

∑n
i=1K2(

Zc
1i−zc

10

h2
,

Zc
2i−zc

20

h2
)

×I(Zd
i = zd

0)[Xi,j − gj(z0)][
f(z0)−f̂(z0)

f̂(z0)f(z0)
+ 1

f(z0) ]|

= [Op((
nh

l1c+l2c
2

ln(n) )−
1
2 ) +O(hs1+1

2 )][Op((
nh

l1c+l2c
2

ln(n) )−
1
2 ) +Op(h

s1

2 ) + 1
f(z0)

]

= Op((
nh

l1c+l2c
2

ln(n) )−
1
2 ) + O(hs1+1

2 ).

Furthermore, supz0∈G |ĝj(z0) − gj(z0) − 1

nh
l1c+l2c
2 fz(Z0)

∑n
i=1K2(

Zc
1i−zc

10

h2
,

Zc
2i−zc

20

h2
)I(Zd

i = zd
0 )[Xi,j −

gj(z0)]| = Op((
nh

l1c+l2c
1

ln(n) )−1) +O(h2s1+1
2 ) + Op(h

s1

2 (
nh

l1c+l2c
1

ln(n) )−
1
2 ).

A1 = 1
n

∑

t[ĝi(Zt) − gi(Zt)][ĝj(Zt) − gj(Zt)]

= Op((
nh

l1c+l2c
2

ln(n)
)−1) +O(h

2(s1+1)
2 ) +Op(h

s1+1
2 (

nh
l1c+l2c
2

ln(n)
)−

1
2 ) = op(1) with result in (f) and A5.

Similarly, we use results in (d) and (f) to show A2, A4 and A5 are op(1).
A3 ≤ supz0∈G |ĝi(z0) − gi(z0)| 1n

∑

t |gj(Zt) − g1,j(Z1t)| = op(1) 1
n

∑

t |gj(Zt) − g1,j(Z1t)|, since Zt is

iid, by Khinchin’s theorem, 1
n

∑

t |gj(Zt) − g1,j(Z1t)|
p→ E|gj(Zt) − g1,j(Z1t)|, provided E|gj(Zt) −

g1,j(Z1t)| < ∞. Since E|gj(Zt) − g1,j(Z1t)| = E|E(Xt,j|Zt) −E(Xt,j |Z1t)| < 2E(|Xt|) < ∞ by A4,
A3 = op(1). Similar arguments show that A6, A7 and A8 are op(1).

By Khinchin’s theorem, A9
p→ E[gi(Zt) − g1,i(Z1t)][gj(Zt) − g1,j(Z1t)], which is the (i, j)th element

of EW ′
tWt, provided E[gi(Zt) − g1,i(Z1t)][gj(Zt) − g1,j(Z1t)] <∞.

E[gi(Zt)− g1,i(Z1t)][gj(Zt)− g1,j(Z1t)] ≤ E|gi(Zt)gi(Zt)|+E|gi(Zt)g1,j(Z1t)|+E|g1,i(Z1t)gj(Zt)|+
E|g1,i(Z1t)g1,j(Z1t)| ≤ ∞ by Cauchy-Schwartz inequality and A4(1).

(2) (a) We first show

supZ1t∈G1
| 1

nh
l1c
1

∑n
i=1K1(

Zc
1i−Zc

1t

h1
)I(Zd

1i = Zd
1t)[m(Z1i −m(Z1t)]

Op(h1(
nh

l1c
1

ln(n) )
− 1

2 )+O(hs+1
1 ), following similar arguments as in (1)(c) I2, using A2(7), A3 and Lemma

1.

(b) We can show similarly supZ1t∈G1
|Ê(m(z1)|Z1t) −m(Z1t)|

= supZ1t∈G1
| 1

nh
l1c
1

∑n
i=1K1(

Zc
1i−Zc

1t

h1
)I(Zd

1i = Zd
1t)[m(Z1i −m(Z1t)]

×[ f1(Z1t)−f̂1(Z1t)

f̂1(Z1t)f1(Z1t)
+ 1

f1(Z1t)
]|

= [Op(h1(
nh

l1c
1

ln(n)
)−

1
2 )+O(hs+1

1 )][Op((
nh

l1c
1

ln(n)
)−

1
2 )+Op(h

s
1)+ 1

f1(Z1t)
] with A2(1)-(2), A3, Lemma 1 and

(2)(a),

= Op(h1(
nh

l1c
1

ln(n)
)−

1
2 ) +O(hs+1

1 ).

Similarly, we obtain supZ1t∈G1
|Ê(m(z1)|Z1t) −m(Z1t)

− 1

f1(Z1t)nh
l1c
1

∑n
i=1K1(

Zc
1i−Zc

1t

h1
)I(Zd

1i = Zd
1t)[m(Z1i −m(Z1t)]|

= [Op(h1(
nh

l1c
1

ln(n) )
− 1

2 ) + O(hs+1
1 )][Op((

nh
l1c
1

ln(n) )
− 1

2 ) + Op(h
s
1)]

= Op(h1(
nh

l1c
1

ln(n) )
−1) + O(h2s+1

1 ) + Op(h
s+1
1 (

nh
l1c
1

ln(n) )
− 1

2 ).

(c) We show

supZt∈G | 1

nh
l1c+l2c
2

∑n
i=1K2(

Zc
1i−Zc

1t

h2
,

Zc
2i−zc

2t

h2
)I(Zd

i = Zd
t )[m(Z1i −m(Z1t)]
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Op(h2(
nh

l1c+l2c
2

ln(n) )−
1
2 ) + O(hs1+1

2 ), following similar arguments as in (1)(c) I2, using A2(7), A3 and

Lemma 1.

(d) We can show similarly supZt∈G |Ê(m(z1)|Zt) −m(Z1t)|
= supZt∈G | 1

nh
l1c+l2c
2

∑n
i=1K2(

Zc
1i−Zc

1t

h2
,

Zc
2i−zc

2t

h2
)I(Zd

i = Zd
t )[m(Z1i −m(Z1t)]

×[ f(Zt)−f̂(Zt)

f̂(Zt)f(Zt)
+ 1

f(Zt)
]|

= [Op(h2(
nh

l1c+l2c
2

ln(n) )−
1
2 )+O(hs1+1

2 )][Op((
nh

l1c+l2c
2

ln(n) )−
1
2 )+Op(h

s1
2 )+ 1

f(Zt)
] with A2(4)-(5), A3, Lemma

1 and (2)(a),

= Op(h2(
nh

l1c+l2c
2

ln(n) )−
1
2 ) +O(hs1+1

2 ).

Similarly, we obtain supZt∈G |Ê(m(z1)|Zt) −m(Z1t)

− 1

f(Zt)nh
l1c+l2c
2

∑n
i=1K2(

Zc
1i−Zc

1t

h2
,

Zc
2i−zc

2t

h2
)I(Zd

i = Zd
t )[m(Z1i −m(Z1t)]|

= [Op(h2(
nh

l1c+l2c
2

ln(n) )−
1
2 ) + O(hs1+1

2 )][Op((
nh

l1c+l2c
2

ln(n) )−
1
2 ) + Op(h

s1

2 )]

= Op(h2(
nh

l1c+l2c
2

ln(n) )−1) + O(h2s1+1
2 ) + Op(h

s1+1
2 (

nh
l1c+l2c
2

ln(n) )−
1
2 ).

(e) With (2)(b) and (d), supZt∈G |Ê(m(z1)|Zt) − Ê(m(z1)|Z1t)|
≤ supZt∈G |Ê(m(z1)|Zt) −m(Z1t)| + supZt∈G |m(Z1t) − Ê(m(z1)|Z1t)|
= Op(h2(

nh
l1c+l2c
2

ln(n)
)−

1
2 ) +O(hs1+1

2 ) + Op(h1(
nh

l1c
1

ln(n)
)−

1
2 ) +O(hs+1

1 ).

Also denote I3 = 1

f1(Z1t)nh
l1c
1

∑n
i=1K1(

Zc
1i−Zc

1t

h1
)I(Zd

1i = Zd
1t)[m(Z1i) −m(Z1t)],

I4 = 1

f(Zt)nh
l1c+l2c
2

∑n
i=1K2(

Zc
1i−Zc

1t

h2
,

Zc
2i−zc

2t

h2
)I(Zd

i = Zd
t )[m(Z1i −m(Z1t)],

supZt∈G |Ê(m(z1)|Zt) − Ê(m(z1)|Z1t) + I3 − I4|
≤ supZt∈G |Ê(m(z1)|Zt) −m(Z1t) − I4| + supZ1t∈G1

|Ê(m(z1)|Z1t) −m(Z1t) − I3|
= Op(h2(

nh
l1c+l2c
2

ln(n)
)−1) + O(h2s1+1

2 ) + Op(h
s1+1
2 (

nh
l1c+l2c
2

ln(n)
)−

1
2 ) + Op(h1(

nh
l1c
1

ln(n)
)−1)

+O(h2s+1
1 ) + Op(h

s+1
1 (

nh
l1c
1

ln(n)
)−

1
2 ).

(f) supZt∈G |Ê(ε|Zt)|
= supZt∈G | 1

nh
l1c+l2c
2

∑n
i=1K2(

Zc
1i−Zc

1t

h2
,

Zc
2i−zc

2t

h2
)I(Zd

i = Zd
t )εi[

f(Zt)−f̂(Zt)

f̂(Zt)f(Zt)
+ 1

f(Zt)
]|

= Op((
nh

l1c+l2c
2

ln(n) )−
1
2 ) with Lemma 1, A1(2), A2(4),(5), A3 and A4(2).

Similarly, we have supZ1t∈G1
|Ê(ε|Z1t)| = Op((

nh
l1c
1

ln(n)
)−

1
2 ).

C1k ≤ supZt∈G |ĝk(Zt) − gk(Zt)|[Ê(m(z1)|Zt) − Ê(m(z1)|Z1t)]

= [Op((
nh

l1c+l2c
2

ln(n) )−
1
2 ) +O(hs1+1

2 )][Op(h2(
nh

l1c+l2c
2

ln(n) )−
1
2 ) + O(hs1+1

2 )

+Op(h1(
nh

l1c
1

ln(n) )
− 1

2 ) +O(hs+1
1 )] by (1)(f) and (2)(e).

C2k ≤ supZ1t∈G1
|ĝ1,k(Z1t) − g1,k(Z1t)|[Ê(m(z1)|Zt) − Ê(m(z1)|Z1t)]

= [Op((
nh

l1c
1

ln(n) )
− 1

2 ) +O(hs+1
1 )][Op(h2(

nh
l1c+l2c
2

ln(n) )−
1
2 ) + O(hs1+1

2 )

+Op(h1(
nh

l1c
1

ln(n) )
− 1

2 ) +O(hs+1
1 )] by (1)(d) and (2)(e).

C3k = 1
n

∑

t[gk(Zt) − g1,K(Zt)][Ê(m(z1)|Zt) − Ê(m(z1)|Z1t) + I3 − I4]
− 1

n

∑

t[gk(Zt) − g1,K(Zt)]I3 + 1
n

∑

t[gk(Zt) − g1,K(Zt)]I4
= C31k − C32k + C33k
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= Op(h2(
nh

l1c+l2c
2

ln(n) )−1) + O(h2s1+1
2 ) + Op(h

s1+1
2 (

nh
l1c+l2c
2

ln(n) )−
1
2 ) + Op(h1(

nh
l1c
1

ln(n) )
−1)

+O(h2s+1
1 ) + Op(h

s+1
1 (

nh
l1c
1

ln(n) )
− 1

2 ) +O((n2hl1c−2
1 )−

1
2 ) + O(hs+1

1 )

+O((n2hl1c+l2c−2
2 )−

1
2 ) + O(hs1+1

2 ).
As in (1) item A3, 1

n

∑

t |gk(Zt) − g1,K(Zt)| = Op(1), so we use (2)(e) to obtain

C31k ≤ 1
n

∑

t gk(Zt) − g1,K(Zt)| supZt∈G |Ê(m(z1)|Zt) − Ê(m(z1)|Z1t) + I3 − I4|
= Op(h2(

nh
l1c+l2c
2

ln(n) )−1) + O(h2s1+1
2 ) + Op(h

s1+1
2 (

nh
l1c+l2c
2

ln(n) )−
1
2 ) + Op(h1(

nh
l1c
1

ln(n) )
−1)

+O(h2s+1
1 ) + Op(h

s+1
1 (

nh
l1c
1

ln(n) )
− 1

2 ).

C32k = 1

n2h
l1c
1

∑

t 6=i

∑

i

gk(Zt) − g1,K(Z1t)

f1(Z1t)
K1(

Zc
1i − Zc

1t

h1
)I(Zd

1i = Zd
1t)[m(Z1i) −m(Z1t)]

︸ ︷︷ ︸

Ψ(Zi,Zt)

= 1

2n2h
l1c
1

∑

t 6=i

∑

i[Ψ(Zi, Zt) + Ψ(Zt, Zi)] = 1

2n2h
l1c
1

∑

t 6=i

∑

i φ(Zi, Zt).

Let’s define Êφ(Zi, Zt) =
∫
φ(Zi, Zt)f(Zi)dZi +

∫
φ(Zi, Zt)f(Zt)dZt − Eφ(Zi, Zt), and Φ(Zi, Zt) =

φ(Zi, Zt)− Êφ(Zi, Zt). Note Φ(Zi, Zt) is symmetric and has conditional mean zero by construction.
Êφ(Zi, Zt) is the U-statistics projection.
C32k = 1

n2h
l1c
1

∑

t<i

∑

i(Φ(Zi, Zt) + Êφ(Zi, Zt)). By cr inequality

EC2
32k ≤ c

n4h2lc
1

[E(
∑

t<i

∑

i Φ(Zi, Zt))
2 +E(

∑

t<i

∑

i Êφ(Zi, Zt))
2]

= c

n4h
2l1c
1

(C32ak +C32bk).

If t, i, t′, i′ are different, C32ak =
∑

t

∑

i

∑

t′
∑

i′,t<i,t′<i′ EΦ(Zi, Zt)Φ(Zi′ , Zt′) = 0, since the condi-
tional mean of Φ(Zi, Zt) is zero.
If only three of the four indices in the sum are different, for example, t, i, t′ are different, C32ak =
∑

t

∑

i

∑

t′,t<i,t′<t EΦ(Zi, Zt)Φ(Zt, Zt′) = 0.
If only two of the four indices in the sum are different,

C32ak =
∑

t

∑

i,t<iEΦ2(Zi, Zt) = n(n−1)
2 EΦ2(Zi, Zt).

EΦ2(Zi, Zt) = E[φ(Zi, Zt) −
∫
φ(Zi, Zt)f(Zi)dZi −

∫
φ(Zi, Zt)f(Zt)dZt + Eφ(Zi, Zt)]

2

≤ cr[Eφ
2(Zi, Zt) + 3

∫ ∫
φ2(Zi, Zt)f(Zi)f(Zt)dZidZt], by cr inequality and Cauchy-Schwartz in-

equality,
Eφ2(Zi, Zt) ≤ 2[EΨ2(Zi, Zt) +EΨ2(Zt, Zi)] by cr inequality again,

EΨ2(Zi, Zt) = E
(gk(Zt)−g1,K(Zt))

2

f2
1 (Z1t)

K2
1 (

Zc
1i−Zc

1t

h1
)I(Zd

1i = Zd
1t)[m(Z1i) −m(Z1t)]

2

≤ hl1c

1

∑

Zd
t

∫ (gk(Zt)−g1,K(Zt))
2

f2
1 (Z1t)

K2
1 (Ψi)[

∂m(Zc
1t∗,Zd

1t)
∂Zc

1t
h1Ψi]

2

×f1(Zc
1t + hΨi, Z

d
1t)f(Zt)dΨidZ

c
1tdZ

c
2t = O(hl1c+2

1 ), by A2(1), (2),(7), A3 and A4(1), for Zc
1t∗

between Zc
1t and Zc

1i. So Eφ2(Zi, Zt) = O(hl1c+2
1 ).

Since Z′
is are IID by A1(1),

∫ ∫
φ2(Zi, Zt)f(Zi)f(Zt)dZidZt = Eφ2(Zi, Zt) = O(hl1c+2

1 ).

In all, we have C32ak = O(n2hl1c+2
1 ).

C32bk = 4E[
∑

t

∑

i,t<i Êφ(Zi, Zt)]
2 = 4[

∑

t

∑

i,t<iE(Êφ(Zi, Zt))
2

+
∑

t

∑

i,t<i

∑

t′
∑

i′,t′<i′,(t,i) 6=(t′,i′)E(Êφ(Zi, Zt))(Êφ(Zi′ , Zt′))]

= 4[C32b1k +C32b2k]

C32b1k =
∑

t

∑

i,t<iE[
∫
φ(Zi, Zt)f(Zi)dZi +

∫
φ(Zi, Zt)f(Zt)dZt − Eφ(Zi, Zt)]

2

≤ cn2[E(
∫
φ(Zi, Zt)f(Zi)dZi)

2 + E(
∫
φ(Zi, Zt)f(Zt)dZt)

2 +E2φ(Zi, Zt)]
= cn2[2E(

∫
φ(Zi, Zt)f(Zi)dZi)

2 + E2φ(Zi, Zt)]
.

∫
φ(Zi, Zt)f(Zi)dZi =

∫
Ψ(Zi, Zt)f(Zi)dZi +

∫
Ψ(Zt, Zi)f(Zi)dZi

=
gk(Zt)−g1,K(Zt)

f1(Z1t)
O(hl1c+s+1

1 ) +O(hl1c+s+1
1 ). it follows from results below.

∫
Ψ(Zi, Zt)f(Zi)dZi = hl1c

1
gk(Zt)−g1,K(Zt)

f1(Z1t)
[
∫
K1(Ψi)(

∑s
|j|=1

∂j

∂(Zc
1t)

j m(Z1t)
(h1Ψi)

j

j! )
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×(f1(Z1t) +
∑s−1

|m|=1
∂m

∂(Zc
1t)

m f1(Z1t)
(h1Ψi)

m

m! +
∑

|m|=s
∂m

∂(Zc
1t)

m f1(Z
c
1t∗, Z

d
1t)

(h1Ψi)
m

m! )dΨ

+
∫
K1(Ψi)

∑

|j|=s(
∂j

∂(Zc
1t)

jm(Zc
1t∗, Z

d
1t) − ∂j

∂(Zc
1t)

jm(Z1t))
(h1Ψi)

j

j! f1(Z
c
1t + hΨi, Z

d
1t)dΨi]

=
gk(Zt)−g1,K(Zt)

f1(Z1t)
O(hl1c+s+1

1 ) by A2(1), (7) and A3 using similar arguments as in (1)(c).
∫

Ψ(Zt, Zi)f(Zi)dZi

= hl1c

1

∑

Zd
2i

∫
[
gk(Z1t,Z2i)−g1,K(Z1t)

f1(Z1t)
+
∑s

|j|=1
∂j

∂(Zc
1t)

j

gk(Z1t,Z2i)−g1,K(Z1t)
f1(Z1t)

(−h1Ψi)
j

j!

+
∑

|j|=s(
∂j

∂(Zc
1t)

j

gk(Zc
1t∗,Zd

1t,Z2i)−g1,K(Zc
1t∗,Zd

1t)

f1(Zc
1t∗,Zd

1t)
− ∂j

∂(Zc
1t)

j

gk(Z1t,Z2i)−g1,K(Z1t)
f1(Z1t)

) (−h1Ψi)
j

j!
]

×[
∑s

|m|=1
∂m

∂(Zc
1t)

mm(Z1t)
(−h1Ψi)

m

m! +
∑

|m|=s(
∂m

∂(Zc
1t)

mm(Zc
1t∗, Z

d
1t) − ∂m

∂(Zc
1t)

mm(Z1t)
(−h1Ψi)

m

m! ]

×K1(Ψi)[f(Z1t, Z2i) +
∑s−1

|l|=1
∂l

∂(Zc
1t)

l f(Z
c
1t, Z

d
1t, Z2i)

(−h1Ψi)
l

l!

+
∑

|l|=s
∂l

∂(Zc
1t)

l f(Z
c
1t∗, Z

d
1t, Z2i)

(−h1Ψi)
l

l! ]dΨidZ
c
2i = O(hl1c+s+1

1 ).

Above results are obtained using

(i)
∑

Zd
2i

∫ gk(Z1t,Z2i)−g1,K(Z1t)
f1(Z1t)

[
∑s

|m|=1
∂m

∂(Zc
1t)

mm(Z1t)
(−h1Ψi)

m

m!
]

×K1(Ψi)[f(Z1t, Z2i) +
∑s−1

|l|=1
∂l

∂(Zc
1t)

l f(Z
c
1t, Z

d
1t, Z2i)

(−h1Ψi)
l

l!

+
∑

|l|=s
∂l

∂(Zc
1t)

l f(Z
c
1t∗, Z

d
1t, Z2i)

(−h1Ψi)
l

l! ]dΨidZ
c
2i = O(hs+1

1 ) using A2(2),(4),(5),(7), A3 and A4(1).

(ii)
∑

Zd
2i

∫ gk(Z1t,Z2i)−g1,K(Z1t)
f1(Z1t)

[
∑

|m|=s(
∂m

∂(Zc
1t)

mm(Zc
1t∗, Z

d
1t) − ∂m

∂(Zc
1t)

mm(Z1t))
(−h1Ψi)

m

m! )]

×K1(Ψi)f(Z
c
1t − h1Ψi, Z

d
1t, Z2i)dΨidZ

c
2i = O(hs+1

1 ) by A2(2), (4), (5),(7),A3, and A4(1).

(iii)
∑

Zd
2i

∫ ∑s
|j|=1

∂j

∂(Zc
1t)

j

gk(Z1t,Z2i)−g1,K(Z1t)
f1(Z1t)

(−h1Ψi)
j

j! [
∑s

|m|=1
∂m

∂(Zc
1t)

mm(Z1t)
(−h1Ψi)

m

m! ]

×K1(Ψi)[f(Z1t, Z2i) +
∑s−1

|l|=1
∂l

∂(Zc
1t)

l f(Z
c
1t, Z

d
1t, Z2i)

(−h1Ψi)
l

l!

+
∑

|l|=s
∂l

∂(Zc
1t)

l f(Z
c
1t∗, Z

d
1t, Z2i)

(−h1Ψi)
l

l!
]dΨidZ

c
2i = O(hs+2

1 ) using A2, A3 and A4(1).

(iv)
∑

Zd
2i

∫ ∑s
|j|=1

∂j

∂(Zc
1t)

j

gk(Z1t,Z2i)−g1,K(Z1t)
f1(Z1t)

(−h1Ψi)
j

j!

×[
∑

|m|=s(
∂m

∂(Zc
1t)

mm(Zc
1t∗, Z

d
1t)− ∂m

∂(Zc
1t)

mm(Z1t))
(−h1Ψi)

m

m! )]×K1(Ψi)f(Z
c
1t−h1Ψi, Z

d
1t, Z2i)dΨidZ

c
2i

= O(hs+2
1 ).

(v)
∑

Zd
2i

∫ ∑

|j|=s(
∂j

∂(Zc
1t)

j

gk(Zc
1t∗,Zd

1t,Z2i)−g1,K(Zc
1t∗,Zd

1t)

f1(Zc
1t∗,Zd

1t)
− ∂j

∂(Zc
1t)

j

gk(Z1t,Z2i)−g1,K(Z1t)
f1(Z1t)

) (−h1Ψi)
j

j!
]

×(m(Z1t) −m(Zc
1t − h1Ψi, Z

d
qt))K1(Ψi)f(Z

c
1t − h1Ψi, Z

d
1t, Z2i)dΨidZ

c
2i = O(hs+1

1 ).

E(
∫
φ(Zi, Zt)f(Zi)dZi)

2 ≤ 2[E(
∫

Ψ(Zi, Zt)f(Zi)dZi)
2 + E(

∫
Ψ(Zt, Zi)f(Zi)dZi)

2]

= 2E(
gk(Zt)−g1,K(Zt)

f1(Z1t)
)2O(h

2(l1c+s+1)
1 ) + O(h

2(l1c+s+1)
1 ) = O(h

2(l1c+s+1)
1 ) by A4(1).

E2φ(Zi, Zt) = [
∫ ∫

φ(Zi, Zt)f(Zi)dZif(Zt)dZt]
2 = O(h

2(l1c+s+1)
1 ).

So C32b1k = O(n2h
2(l1c+s+1)
1 ).

If t, i, t′, i′ are all different,
C32b2k ≤ n4E[

∫
φ(Zi, Zt)f(Zi)dZi +

∫
φ(Zt, Zi)f(Zi)dZi − E(φ(Zi, Zt))]

×[
∫
φ(Zi′ , Zt′)f(Zi′ )dZi′ +

∫
φ(Zt′ , Zi′)f(Zi′ )dZi′ − E(φ(Zi′ , Zt′))]

= n4[E(
∫
φ(Zi, Zt)f(Zi)dZi)(

∫
φ(Zi′ , Zt′)f(Zi′ )dZi′)

+2E(
∫
φ(Zi, Zt)f(Zi)dZi)(

∫
φ(Zi′ , Zt′)f(Zi′ )dZi′)

+E(
∫
φ(Zt, Zi)f(Zi)dZi)(

∫
φ(Zt′ , Zi′)f(Zi′ )dZi′) − 3E2(φ(Zi′ , Zt′))]

≤ n4{[E(
∫
φ(Zi, Zt)f(Zi)dZi)

2E(
∫
φ(Zi′ , Zt′)f(Zi′ )dZi′)

2]
1
2

+2[E(
∫
φ(Zi, Zt)f(Zi)dZi)

2E(
∫
φ(Zi′ , Zt′)f(Zi′ )dZi′)

2]
1
2

+[E(
∫
φ(Zt, Zi)f(Zi)dZi)

2E(
∫
φ(Zt′ , Zi′)f(Zi′ )dZi′)

2]
1
2 − 3E2(φ(Zi′ , Zt′))}

= O(n4h
2(l1c+s+1)
1 ) by Cauchy-Schwartz inequality.

If only three indices, say, t, i, t′ are different, C32b2k = O(n3h
2(l1c+s+1)
1 ). If there are only two distinct

indices, t < i, then C32b2k = O(n2h
2(l1c+s+1)
1 ). So in all we have C32b2k = O(n4h

2(l1c+s+1)
1 ) and
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C32bk = O(n4h
2(l1c+s+1)
1 ).

Since E2C32k ≤ c

4n4h
2lc
1

(C32ak +C32bk) = O((n2hl1c−2
1 )−1) +O(h

2(s+1)
1 ), so

√
nC32k = Op((nh

l1c−2
1 )−

1
2 ) + Op((nh

2(s+1)
1 )

1
2 ) = op(1).

C33k = 1

n2h
l1c+l2c
2

∑

t 6=i

∑

i
gk(Zt)−g1,K(Z1t)

f(Zt)
K2(

Zc
1i−Zc

1t

h2
,

Zc
2i−Zc

2t

h2
)I(Zd

i = Zd
t )[m(Z1i) −m(Z1t)]. With

assumption A2 that g1,k(Z1t), f(Zt), gk(Zt) andm(Z1t) are s1 times continuously differentiable with
the s1th order derivative uniformly continuous, with uniformly bounded derivatives, we similarly
obtain
E2C33k = O((n2hl1c+l2c−2

2 )−1) + O(h
2(s1+1)
2 ), so√

nC33k = Op((nh
l1c+l2c−2
2 )−

1
2 ) + Op((nh

2(s1+1)
2 )

1
2 ) = op(1).

C4k ≤ supZt∈G |ĝk(Zt) − gk(Zt)||Ê(ε|Zt) − Ê(ε|Z1t)|
= [Op((

nh
l1c+l2c
2

ln(n)
)−

1
2 ) +O(hs1+1

2 )][Op((
nh

l1c+l2c
2

ln(n)
)−

1
2 ) +Op((

nh
l1c
1

ln(n)
)−

1
2 )] with (1)(f) and (2)(f).

C5k ≤ supZt∈G |ĝ1,k(Z1t) − g1,k(Z1t)||Ê(ε|Zt) − Ê(ε|Z1t)|
= [Op((

nh
l1c
1

ln(n) )
− 1

2 ) +O(hs+1
1 )][Op((

nh
l1c+l2c
2

ln(n) )−
1
2 ) + Op((

nh
l1c
1

ln(n) )
− 1

2 )] with (1)(d) and (2)(f).

C6k = 1
n

∑

t[gk(Zt) − g1,k(Z1t)][Ê(ε|Zt) − Ê(ε|Z1t)]

= 1
n

∑

t[gk(Zt) − g1,k(Z1t)]{[ f(Zt)−f̂(Zt)

f̂(Zt)f(Zt)
+ 1

f(Zt)
]

×[ 1

nh
l1c+l2c
2

∑n
i=1K2(

Zc
1i−Zc

1t

h2
,

Zc
2i−zc

2t

h2
)I(Zd

i = Zd
t )εi]

−[ f1(Z1t)−f̂1(Z1t)

f̂1(Z1t)f1(Z1t)
+ 1

f1(Z1t)
][ 1

nh
l1c
1

∑n
i=1K1(

Zc
1i−Zc

1t

h2
)I(Zd

1i = Zd
1t)εi]}

= 1
n2

∑

t

∑

i[gk(Zt) − g1,k(Z1t)]{ 1
f(Zt)

1

h
l1c+l2c
2

K2(
Zc

1i−Zc
1t

h2
,

Zc
2i−zc

2t

h2
)I(Zd

i = Zd
t )εi

− 1
f1(Z1t)

1

h
l1c
1

K1(
Zc

1i−Zc
1t

h2
)I(Zd

1i = Zd
1t)εi}{1 + op(1)} where Si = (Zi, εi), with (1)(a), (b), and A2(2)

and (5),
= 1

n2

∑

t

∑

i Ψ(Si, St){1 + op(1)} = 1
2n2

∑

t

∑

i(Ψ(Si, St) + Ψ(St, Si)){1 + op(1)}
= 1

2n2

∑

t

∑

i φ(Si, St){1 + op(1)}, where φ(Si, St) is symmetric,
= [ 1

2n2

∑

t φ(St, St) + 1
n2

∑

t

∑

i,t<i φ(Si, St)]{1 + op(1)}
= [C61k +C62k]{1 + op(1)}.

Eφ2(St, St) = E([gk(Zt) − g1,k(Z1t)]
2( cεt

h
l1c+l2c
2 f(Zt)

− cεt

h
l1c
1 f1(Z1t)

)2

= O(h
−2(l1c+l2c)
2 ) + O(h−2l1c

1 ), by A4(1) and (3).

So C61k = Op((nh
l1c+l2c

2 )−1) + Op((nh
l1c

1 )−1).

C62k = 1
n2

∑

t

∑

i,t<i [φ(Si, St) − Êφ(Si, St)]
︸ ︷︷ ︸

Φ(Si,St)

+ 1
n2

∑

t

∑

i,t<i Êφ(Si, St)

= C621k +C622k

where Êφ(Si, St) = E(φ(Si, St)|St)+E(φ(Si , St)|Si)−Eφ(Si, St) = E(φ(Si, St)|St)+E(φ(Si, St)|Si)
since Eφ(Si, St) = 0.
EC2

621k = 1
n4E(

∑

t

∑

i,t<i Φ(Si, St))
2 = 1

n4

∑

t

∑

i,t<i

∑

t′
∑

i′,t′<i′ EΦ(Si, St)Φ(Si′ , St′).

If t, i, t′, i′ are all different, EC2
621k = 0.

If only three of the four indices in the sum are different, EC2
621k = 0.

If only two of the four indices in the sum are different,

EC2
621k = 1

n4

∑

t

∑

i,t<iEΦ2(Si, St) = 1
n4

n(n−1)
2

EΦ2(Si, St).

40



Since EΦ2(Si, St) = E(φ(Si, St) −E(φ(Si, St)|St) − E(φ(Si, St)|Si))
2 ≤ cEφ2(Si, St),

Eφ2(Si, St) ≤ c[EΨ2(Si, St) +EΨ2(St, Si)] = 2cEΨ2(Si, St).

EΨ2(Si, St) ≤ c[E
(gk(Zt)−g1,k(Z1t))

2

h
2(l1c+l2c)
2 f2(Zt)

K2
2 (

Zc
1i−Zc

1t

h2
,

Zc
2i−zc

2t

h2
)I(Zd

i = Zd
t )ε2i

+E
(gk(Zt)−g1,k(Z1t))

2

h
2l1c
1 f2

1 (Z1t)
K2

1 (
Zc

1i−Zc
1t

h1
)I(Zd

1i = Zd
t )ε2i ]

by A4(3), E(ε2i |Zt, Zi) <∞, and also by A4(1), A3, A2(2) and (5),

Eφ2(Si, St) = O(h
−(l1c+l2c)
2 ) + O(h−l1c

1 ), so EC2
621k = O(n−2(h

−(l1c+l2c)
2 + h−l1c

1 )) and C621k =

O(n−1(h
− (l1c+l2c)

2
2 + h

− l1c
2

1 )).

√
nC622k =

√
n 1

n2

∑

t

∑

i,t<i[E(φ(Si, St)|St) + E(φ(Si, St)|Si)]

=
√
n 1

n2

∑

t

∑

i,t 6=iE(φ(Si, St)|St) = n−1
n

∑n
t=1

1√
n
Stn = n−1

n

∑n
t=1 S̃tn, where

Stn = εt[
∫ gk(Zi)−g1,k(Z1i)

h
l1c+l2c
2 fz(Zi)

K2(
Zc

1t−Zc
1i

h2
,

Zc
2t−zc

2i

h2
)I(Zd

t = Zd
i )fz(Zi)dZi

−
∫ (gk(Zi)−g1,k(Z1i)

h
l1c
1 f1(Z1i)

K1(
Zc

1t−Zc
1i

h1
)I(Zd

1t = Zd
1i)fz(Zi)dZi].

Note that S̃tn forms am independent triangular array, ES̃tn = 0, and
∑n

t=1ES̃
2
tn = V (Stn) = Eσ2(Zt)[gk(Zt) − EZ2i|Z1t

(gk(Z1t, Z2i))]
2 + o(1).

By Liapounov’s Central Limit Theorem, provided limn→∞
∑n

t=1 E| S̃tn

(
P

t
ES̃2

tn)
1
2
|2+δ = 0 for some

δ > 0, we have
∑

t S̃tn
d→ N(0, Eσ2(Zt)[gk(Zt) − EZ2i|Z1t

(gk(Z1t, Z2i))]
2).

∑n
t=1E| S̃tn

(
P

t
ES̃2

tn)
1
2
|2+δ = (

∑

tES̃
2
tn)−1− δ

2n− δ
2E|Stn|2+δ,

E|Stn|2+δ

≤ c{E[E(|εt|2+δ|Zt)|
∫ gk(Zi)−g1,k(Z1i)

h
l1c+l2c
2 fz(Zi)

K2(
Zc

1t−Zc
1i

h2
,

Zc
2t−zc

2i

h2
)I(Zd

t = Zd
i )fz(Zi)dZi|2+δ]

+E[E(|εt|2+δ|Zt)|
∫ gk(Zi)−g1,k(Z1i)

h
l1c
1 f1(Z1i)

K1(
Zc

1t−Zc
1i

h1
)I(Zd

1t = Zd
1i)fz(Zi)dZi|2+δ]}

Since E(|εt|2+δ|Zt) <∞ by A4(3), and

E|
∫ (gk(Zi)−g1,k(Z1i)

h
l1c+l2c
2 fz(Zi)

K2(
Zc

1t−Zc
1i

h2
,

Zc
2t−zc

2i

h2
)I(Zd

t = Zd
i )fz(Zi)dZi|2+δ

→ E|gk(Zt) − g1,k(Z1t)|2+δ ≤ 2EX2+δ
t,k , and similarly,

E|
∫ (gk(Zi)−g1,k(Z1i)

h
l1c
1 f1(Z1i)

K1(
Zc

1t−Zc
1i

h1
)I(Zd

1t = Zd
1i)fz(Zi)dZi|2+δ

→ E|EZ2i|Z1t
(gk(Z1t, Z2i) − g1,k(Z1t)|2+δ = 0,

So in all we have E|Stn|2+δ <∞ and limn→∞
∑n

t=1 E| S̃tn

(
P

t
ES̃2

tn)
1
2
|2+δ = 0.

Finally with Cramer-Rao device, we obtain

√
nC6

d→ N(0,Φ0).

Theorem 3: Proof.

Let’s define the infeasible estimator
β̃I = (Ŵ ′Ω−1(~Z1)Ŵ )−1Ŵ ′Ω−1(~Z1)(Ê(Y | ~Z)−Ê(Y | ~Z1)), where the true σ2(Z1t) is known in Ω−1(~Z1).
In the following we show

(1)
√
n(β̃I − β)

d→ N(0, (E 1
σ2(Z1t)

W ′
tWt)

−1).

(2) supZ1t∈G1
|σ̂2(Z1t) − σ2(Z1t)| = Op((

nh
l1c
1

ln(n) )
− 1

2 ) + Op(h
s+1
1 ) + op(n

− 1
2 ).

Result (2) might be of use by itself. Here repeated use of (2) enables us to obtain
(3)

√
n(β̃I − β̃H) = op(1).

The conclusion of Theorem 3 follows from (1) and (3).
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(1) β̃I − β = [( 1
nŴ

′Ω−1(~Z1)Ŵ )−1 − (E 1
σ2(Z1t)

W ′
tWt)

−1 + (E 1
σ2(Z1t)

W ′
tWt)

−1]

× 1

n
Ŵ ′Ω−1(~Z1)(Ê(Y | ~Z) − Ê(Y | ~Z1))

︸ ︷︷ ︸

C

(a) The (i, j)th element of 1
nŴ

′Ω−1(~Z1)Ŵ )−1 is

1
n

∑n
t=1

1
σ2(Z1t)

Ŵt,iŴt,j

= 1
n

∑

t
1

σ2(Z1t)
[ĝi(Zt) − gi(Zt)][ĝj(Zt) − gj(Zt)]

+ 1
n

∑

t
1

σ2(Z1t)
[ĝi(Zt) − gi(Zt)][g1,j(Z1t) − ĝ1,j(Z1t)]

+ 1
n

∑

t
1

σ2(Z1t)
[ĝi(Zt) − gi(Zt)][gj(Zt) − g1,j(Z1t)]

+ 1
n

∑

t
1

σ2(Z1t)
[g1,i(Z1t) − ĝ1,i(Z1t)][ĝj(Zt) − gj(Zt)]

+ 1
n

∑

t
1

σ2(Z1t)
[g1,i(Z1t) − ĝ1,i(Z1t)][g1,j(Z1t) − ĝ1,j(Z1t)]

+ 1
n

∑

t
1

σ2(Z1t)
[g1,i(Z1t) − ĝ1,i(Z1t)][gj(Zt) − g1,j(Z1t)]

+ 1
n

∑

t
1

σ2(Z1t)
[gi(Zt) − g1,i(Z1t)][ĝj(Zt) − gj(Zt)]

+ 1
n

∑

t
1

σ2(Z1t)
[gi(Zt) − g1,i(Z1t)][g1,j(Z1t) − ĝ1,j(Z1t)]

+ 1
n

∑

t
1

σ2(Z1t)
[gi(Zt) − g1,i(Z1t)][gj(Zt) − g1,j(Z1t)]

= A1 +A2 + · · ·+ A9

Since Z1t is iid, 1
n

∑

t
1

σ2(Z1t)

p→ E 1
σ2(Z1t)

<∞ by A6(1), we follow the proof of Theorem 1 to obtain

Ai = op(1), i = 1, · · · , 8,

A9 −E
1

σ2(Z1t)
[gi(Zt) − g1,i(Z1t)][gj(Zt) − g1,j(Z1t)] = op(1),

provided E 1
σ2(Z1t)

[gi(Zt) − g1,i(Z1t)][gj(Zt) − g1,j(Z1t)] <∞, which is true given A6(1) and A4(1).

So together we have 1
n
Ŵ ′Ω−1(~Z1)Ŵ − E 1

σ2(Z1t)
W ′

tWt = op(1). By A6(2) and Slutsky’ Theorem,

( 1
n
Ŵ ′Ω−1(~Z1)Ŵ )−1 − (E 1

σ2(Z1t)
W ′

tWt)
−1 = op(1).

(b) Similarly, for k = 1, 2, · · · , K, the kth element of C is

Ck = 1
n

∑n
t=1

1
σ2(Z1t)

Ŵt,k(Ê(m(z1)|Zt) − Ê(m(z1)|Z1t) + Ê(ε|Zt) − Ê(ε|Z1t))

= 1
n

∑

t
1

σ2(Z1t)
[ĝk(Zt) − gk(Zt)][Ê(m(z1)|Zt) − Ê(m(z1)|Z1t)]

+ 1
n

∑

t
1

σ2(Z1t)
[g1,k(Z1t) − ĝ1,k(Z1t)][Ê(m(z1)|Zt) − Ê(m(z1)|Z1t)]

+ 1
n

∑

t
1

σ2(Z1t)
[gk(Zt) − g1,k(Z1t)][Ê(m(z1)|Zt) − Ê(m(z1)|Z1t)]

+ 1
n

∑

t
1

σ2(Z1t)
[ĝk(Zt) − gk(Zt)][Ê(ε|Zt) − Ê(ε|Z1t)]

+ 1
n

∑

t
1

σ2(Z1t)
[g1,k(Z1t) − ĝ1,k(Z1t)][Ê(ε|Zt) − Ê(ε|Z1t)]

+ 1
n

∑

t
1

σ2(Z1t)
[gk(Zt) − g1,k(Z1t)][Ê(ε|Zt) − Ê(ε|Z1t)]

= C1k + C2k + · · ·+C6k

Since 1
n

∑

t
1

σ2(Z1t)

p→ E 1
σ2(Z1t)

< ∞, we follow proof of Theorem 1 to obtain Cik = op(n
− 1

2 ) for

i = 1, 2, 3, 4, 5 with the additional assumption A6(1).

C6k = 1
n2

∑

t

∑

i
[gk(Zt)−g1,k(Z1t)]

σ2(Z1t)
{ 1

f(Zt)
1

h
l1c+l2c
2

K2(
Zc

1i−Zc
1t

h2
,

Zc
2i−zc

2t

h2
)I(Zd

i = Zd
t )εi

− 1
f1(Z1t)

1

h
l1c
1

K1(
Zc

1i−Zc
1t

h2
)I(Zd

1i = Zd
1t)εi}{1 + op(1)}

where Si = (Zi, εi), with (1)(a), (b), and A2(2) and (5),
= 1

n2

∑

t

∑

i Ψ(Si, St){1 + op(1)} = 1
2n2

∑

t

∑

i φ(Si, St){1 + op(1)},
where φ(Si, St) = Ψ(Si, St) + Ψ(St, Si) is symmetric,
= [ 1

2n2

∑

t φ(St, St) + 1
n2

∑

t

∑

i,t<i φ(Si, St)]{1 + op(1)}
= [C61k +C62k]{1 + op(1)}.
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C61k = Op((nh
l1c+l2c

2 )−1) + Op((nh
l1c

1 )−1) as in Theorem 1 by A4(1) and (3) and A6(1).

C62k = 1
n2

∑

t

∑

i,t<i [φ(Si, St) − Êφ(Si, St)]
︸ ︷︷ ︸

Φ(Si,St)

+ 1
n2

∑

t

∑

i,t<i Êφ(Si, St)

= C621k +C622k

where Êφ(Si, St) = E(φ(Si, St)|St) + E(φ(Si, St)|Si) since Eφ(Si, St) = 0.

C621k = O(n−1(h
− (l1c+l2c)

2
2 + h

− l1c
2

1 )) as in Theorem 1 with A6(1).

√
nC622k =

√
n 1

n2

∑

t

∑

i,t<i[E(φ(Si, St)|St) + E(φ(Si, St)|Si)]

=
√
n 1

n2

∑

t

∑

i,t 6=iE(φ(Si, St)|St) = n−1
n

∑n
t=1

1√
n
Stn = n−1

n

∑n
t=1 S̃tn, where

Stn = εt[
∫ gk(Zi)−g1,k(Z1i)

h
l1c+l2c
2 σ2(Z1i)fz(Zi)

K2(
Zc

1t−Zc
1i

h2
,

Zc
2t−zc

2i

h2
)I(Zd

t = Zd
i )fz(Zi)dZi

−
∫ gk(Zi)−g1,k(Z1i)

h
l1c
1 σ2(Z1i)f1(Z1i)

K1(
Zc

1t−Zc
1i

h1
)I(Zd

1t = Zd
1i)fz(Zi)dZi].

Note that S̃tn forms am independent triangular array, ES̃tn = 0, and

∫ gk(Zi)−g1,k(Z1i)

h
l1c+l2c
2 σ2(Z1i)fz(Zi)

K2(
Zc

1t−Zc
1i

h2
,

Zc
2t−zc

2i

h2
)I(Zd

t = Zd
i )fz(Zi)dZi

→ gk(Zt)−g1,k(Z1t)
σ2(Z1t)

uniformly ∀Zt ∈ G with A2(3) and (6) and A6(1),

∫ gk(Zi)−g1,k(Z1i)

h
l1c
1 σ2(Z1i)f1(Z1i)

K1(
Zc

1t−Zc
1i

h1
)I(Zd

1t = Zd
1i)fz(Zi)dZi

→ E
gk(Z1t,Z2i)−g1,k(Z1t)

σ2(Z1t)
= 0 uniformly ∀Z1t ∈ G1 with A2(3) and (6) and A6(1),

∑n
t=1ES̃

2
tn = V (Stn) = E

[gk(Zt)−g1,k(Z1t)]
2

σ2(Z1t)
+ o(1).

By Liapounov’s Central Limit Theorem, provided limn→∞
∑n

t=1 E| S̃tn

(
P

t
ES̃2

tn)
1
2
|2+δ = 0 for some

δ > 0, we have
∑

t S̃tn
d→ N(0, E

[gk(Zt)−g1,k(Z1t)]
2

σ2(Z1t)
).

∑n
t=1E| S̃tn

(
P

t
ES̃2

tn)
1
2
|2+δ = (

∑

tES̃
2
tn)−1− δ

2n− δ
2E|Stn|2+δ,

E|Stn|2+δ

≤ c{E[E(|εt|2+δ|Zt)|
∫ gk(Zi)−g1,k(Z1i)

h
l1c+l2c
2 σ2(Z1i)fz(Zi)

K2(
Zc

1t−Zc
1i

h2
,

Zc
2t−zc

2i

h2
)I(Zd

t = Zd
i )fz(Zi)dZi|2+δ]

+E[E(|εt|2+δ|Zt)|
∫ gk(Zi)−g1,k(Z1i)

h
l1c
1 σ2(Z1i)f1(Z1i)

K1(
Zc

1t−Zc
1i

h1
)I(Zd

1t = Zd
1i)fz(Zi)dZi|2+δ]}

Since E(|εt|2+δ|Zt) <∞ by A4(3), and

E|
∫ gk(Zi)−g1,k(Z1i)

h
l1c+l2c
2 σ2(Z1i)fz(Zi)

K2(
Zc

1t−Zc
1i

h2
,

Zc
2t−zc

2i

h2
)I(Zd

t = Zd
i )fz(Zi)dZi|2+δ

→ E| gk(Zt)−g1,k(Z1t)
σ2(Z1t)

|2+δ ≤ 2EX2+δ
t,k , and similarly,

E|
∫ gk(Zi)−g1,k(Z1i)

h
l1c
1 σ2(Z1i)f1(Z1i)

K1(
Zc

1t−Zc
1i

h1
)I(Zd

1t = Zd
1i)fz(Zi)dZi|2+δ

→ E|EZ2i|Z1t
(

gk(Z1t,Z2i)−g1,k(Z1t)
σ2(Z1t)

)|2+δ = 0,

So in all we have E|Stn|2+δ <∞ and limn→∞
∑n

t=1 E| S̃tn

(
P

t ES̃2
tn)

1
2
|2+δ = 0.

Finally with Cramer-Rao device, for C6 = [C61, C62, · · · , C6K]′, we obtain

√
nC6

d→ N(0, E
1

σ2(Z1t)
W ′

tWt).

So combine results in (a) and (b), we obtain the claim in (1).
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(2) (a) We first note since β̃ − β = Op(n
− 1

2 ),

ε̃t = m(Z1t) − Ê(m(z1)|Z1t) + εt − Ê(ε|Z1t) + (Xt − Ê(X|Z1t))(β − β̃)

= m(Z1t) − Ê(m(z1)|Z1t) + εt − Ê(ε|Z1t) + (Xt − Ê(X|Z1t))Op(n− 1
2 )

Since Xt − Ê(X|Z1t) = Xt −E(X|Z1t) +E(X|Z1t)− Ê(X|Z1t) = Xt −E(X|Z1t)+ op(1) uniformly
in Z1t ∈ G1, so consider the kth element in X −E(X|Z1t), which is Xk − E(Xk|Z1t),

Ê(Xk − E(Xk|Z1)|Z1t)

= [ f1(Z1t)−f̂1(Z1t)

f̂1(Z1t)f1(Z1t)
+ 1

f1(Z1t)
] 1

nh
l1c
1

∑n
i=1K1(

Zc
1i−Zc

1t

h1
)I(Zd

1i = Zd
1t)(Xi,k − g1,k(Z1i))

= Op((
nh

l1c
1

ln(n)
)−

1
2 ) + O(hs+1

1 ) as in Theorem 1, (1)(a) and (c).

Similarly Ê((Xk −E(Xk|Z1))
2|Z1t)

= [op(1) + 1
f1(Z1t)

] 1

nh
l1c
1

∑n
i=1K1(

Zc
1i−Zc

1t

h1
)I(Zd

1i = Zd
1t)(X

2
i,k − 2xi,kg1,k(Z1i) + g2

1,k(Z1i)),

with assumption A6(3) we apply Lemma 1 and notice

E 1

nh
l1c
1

∑n
i=1K1(

Zc
1i−Zc

10

h1
)I(Zd

1i = Zd
10)(X

2
i,k − 2xi,kg1,k(Z1i) + g2

1,k(Z1i))

→ f1(Z10)[E(X2
k |Z10) − g2

1,k(Z10)] <∞ uniformly ∀Z10 ∈ G1.

So we have Ê(Xk −E(Xk|Z1)
2|Z1t) = Op(1) uniformly in Z1t. We obtain

(b) ε̃2t = (m(Z1t) − Ê(m(z1)|Z1t))
2 + (εt − Ê(ε|Z1t))

2 + op(n
− 1

2 )

+2(m(Z1t) − Ê(m(z1)|Z1t))(εt − Ê(ε|Z1t)) + 2(m(Z1t) − Ê(m(z1)|Z1t))Op(n
− 1

2 )

+2(εt − Ê(ε|Z1t))Op(n
− 1

2 )

From result 2(b) and (f) in Theorem 1 proof, we have 2(m(Z1t)−Ê(m(z1)|Z1t))Op(n
− 1

2 ) = op(n
− 1

2 ),

(m(Z1t) − Ê(m(z1)|Z1t))
2 = op(n

− 1
2 ), 2(εt − Ê(ε|Z1t))Op(n

− 1
2 ) = op(n

− 1
2 ), and [{Ê(ε|Z1i)]

2 =

Op((
nh

l1c
1

ln(n) )
−1) = op(n

− 1
2 ) uniformly in Z1t. So

(c) σ̂2(Z1t) = Ê(ε̃2|Z1t)

= [op(1) + 1
f1(Z1t)

] 1

nh
l1c
1

∑n
i=1K1(

Zc
1i−Zc

1t

h1
)I(Zd

1i = Zd
1t){ε2i − 2εiÊ(ε|Z1i) + [{Ê(ε|Z1i)]

2

+ 2(m(Z1i) − Ê(m(z1)|Z1i))(εi − Ê(ε|Z1i))} + op(n
− 1

2 )

= [op(1) + 1
f1(Z1t)

]
1

nhl1c

1

n∑

i=1

K1(
Zc

1i − Zc
1t

h1
)I(Zd

1i = Zd
1t)ε

2
i

︸ ︷︷ ︸

I

+ op(n
− 1

2 ) +Op((
nh

l1c
1

ln(n)
)−

1
2 ) + Op(h

s+1
1 )

since 1

nh
l1c
1

∑n
i=1K(

Zc
1i−Zc

1t

h1
)I(Zd

1i = Zd
1t)|εi| = Op(1) with A6(1) and (2).

(d) With A6(3) and A4(4), we apply Lemma 1 to obtain supZ1t∈G1
|I −EI| = Op((

nh
l1c
1

ln(n) )
− 1

2 ). With

a change of variable and using A6(1) and A2(1),
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EI =
∫
K1(Ψ)σ2(Zc

1t + h1ψ, Z
d
1t)f1(Z

c
1t + h1ψ, Z

d
1t)dψ

=
∫
K1(Ψ)[σ2(Z1t) +

∑s
|j|=1

∂j

∂(Zc
1t)

j σ
2(Z1t)

h
|j|
1 Ψj

j!

+
∑

|j|=s(
∂j

∂(Zc
1t)

j σ
2(Zc

1t∗, Zd
1t) − ∂j

∂(Zc
1t)

j σ
2(Z1t))

h
|j|
1 Ψj

j! ][f1(Z1t) +
∑s

|l|=1
∂l

∂(Zc
1t)

l f1(Z1t)
h
|l|
1 Ψl

l!

+
∑

|l|=s(
∂l

∂(Zc
1t)

l f1(Z
c
1t∗, Zd

1t) − ∂l

∂(Zc
1t)

l f1(Z1t))
h
|l|
1 Ψl

l!
]dΨ

= σ2(Z1t)f1(Z1t) + σ2(Z1t)
∑s

|j|=1
∂j

∂(Zc
1t)

j σ
2(Z1t)

h
|j|
1

j!

∫
K(1Ψ)ΨjdΨ

+ σ2(Z1t)
∑

|j|=s

∫
K1(Ψ)( ∂l

∂(Zc
1t)

l f1(Z
c
1t∗, Zd

1t) − ∂l

∂(Zc
1t)

l f1(Z1t))
h
|l|
1 Ψl

l! dΨ

+
∑s

|j|=1
∂j

∂(Zc
1t)

j σ
2(Z1t)

h
|j|
1

j!
f1(Z1t)

∫
K1(Ψ)ΨjdΨ

+
∑s

|j|=1
∂j

∂(Zc
1t)

j σ
2(Z1t)

h
|j|
1

j!
(
∑s

|l|=1
∂l

∂(Zc
1t)

l f1(Z1t)
h
|l|
1

l!

∫
K1(Ψ)Ψj+ldΨ)

+
∑s

|j|=1
∂j

∂(Zc
1t)

j σ
2(Z1t)

h
|j|
1

j! (
∑

|l|=s
h
|l|
1

l!

∫
K1(Ψ)( ∂l

∂(Zc
1t)

l f1(Z
c
1t∗, Zd

1t) − ∂l

∂(Zc
1t)

l f1(Z1t))Ψ
j+ldΨ)

+ f1(Z1t)
∑

|j|=s
h
|j|
1

j!

∫
K1(Ψ)( ∂j

∂(Zc
1t)

j σ
2(Zc

1t∗, Zd
1t) − ∂j

∂(Zc
1t)

j σ
2(Z1t))Ψ

jdΨ

+
∑

|j|=s

∑s
|l|=1

∂l

∂(Zc
1t)

l f1(Z1t)
h
|l|
1

l!

h
|j|
1

j!

∫
K1(Ψ)( ∂j

∂(Zc
1t)

j σ
2(Zc

1t∗, Zd
1t) − ∂j

∂(Zc
1t)

j σ
2(Z1t))Ψ

j+ldΨ

+
∑

|j|=s

∑

|l|=s
h
|l|
1

l!
h
|j|
1

j!

∫
K1(Ψ)( ∂l

∂(Zc
1t)

l f1(Z
c
1t∗, Zd

1t) − ∂l

∂(Zc
1t)

l f1(Z1t))

× ( ∂j

∂(Zc
1t)

j σ
2(Zc

1t∗, Zd
1t) − ∂j

∂(Zc
1t)

j σ
2(Z1t))Ψ

j+ldΨ

= σ2(Z1t)f1(Z1t) +O(hs+1
1 ), with the additional assumption A6(1).

The claim in (2) follows from (a)-(d).

(3)
√
n(β̃I − β̃H)

=
√
n{[(Ŵ ′Ω−1(~Z1)Ŵ )−1 − (Ŵ ′Ω̂−1(~Z1)Ŵ )−1]Ŵ ′Ω−1(~Z1)(Ê(Y | ~Z) − Ê(Y | ~Z1))

+ (Ŵ ′Ω̂−1(~Z1)Ŵ )−1Ŵ ′[Ω−1(~Z1) − Ω̂−1(~Z1)](Ê(Y | ~Z) − Ê(Y | ~Z1))}

So we show
(a) ( 1

nŴ
′Ω−1(~Z1)Ŵ )−1 − ( 1

nŴ
′Ω̂−1(~Z1)Ŵ )−1 = op(1).

(b)
√
n 1

nŴ
′[Ω−1(~Z1) − Ω̂−1(~Z1)](Ê(Y | ~Z) − Ê(Y | ~Z1)) = op(1).

Since in (1) we have
√
n 1

nŴ
′Ω−1(~Z1)(Ê(Y | ~Z)−Ê(Y | ~Z1)) = Op(1), and with (a) ( 1

nŴ
′Ω̂−1(~Z1)Ŵ )−1 p→

(E 1
σ2(Z1t)

W ′
tWt)

−1, E 1
σ2(Z1t)

W ′
tWt is positive definite, the claim of (3) follows from (a) and (b).

We first note supZ1t∈G1
| 1
σ2(Z1t)

− 1
σ̂2(Z1t)

|
≤ [infZ1t∈G1 σ

2(Z1t) infZ1t∈G1 σ̂
2(Z1t)]

−1 supZ1t∈G1
|σ̂2(Z1t) − σ2(Z1t)|.

With result (1) and A6(1), for large n, infZ1t∈G1 σ̂
2(Z1t) > 0, so

sup
Z1t∈G1

| 1

σ2(Z1t)
− 1

σ̂2(Z1t)
| = Op((

nhl1c

1

ln(n)
)−

1
2 ) + Op(h

s+1
1 ) + op(n

− 1
2 ).

(a) Since 1
nŴ

′Ω−1(~Z1)Ŵ
p→ E 1

σ2(Z1t)
W ′

tWt, which is positive definite, so by Slutsky’s Theorem,

( 1
nŴ

′Ω−1(~Z1)Ŵ )−1 p→ (E 1
σ2(Z1t)

W ′
tWt)

−1.

If (a′) 1
nŴ

′(Ω−1(~Z1) − Ω̂−1(~Z1))Ŵ = op(1), then 1
nŴ

′Ω̂−1(~Z1)Ŵ
p→ E 1

σ2(Z1t)
W ′

tWt as well, and

( 1
n
Ŵ ′Ω̂−1(~Z1)Ŵ )−1 p→ (E 1

σ2(Z1t)
W ′

tWt)
−1 so we have the claim in (a). So we only need to show

(a′).

The (i, j)th element in 1
nŴ

′(Ω−1(~Z1) − Ω̂−1(~Z1))Ŵ is
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1
n

∑n
t=1 Ŵt,i(

1
σ2(Z1t)

− 1
σ̂2(Z1t)

)Ŵt,j

= 1
n

∑

t[
1

σ2(Z1t)
− 1

σ̂2(Z1t)
][ĝi(Zt) − gi(Zt)][ĝj(Zt) − gj(Zt)]

= 1
n

∑

t[
1

σ2(Z1t)
− 1

σ̂2(Z1t)
][ĝi(Zt) − gi(Zt)][ĝ1,j(Z1t) − g1,j(Z1t)]

= 1
n

∑

t[
1

σ2(Z1t)
− 1

σ̂2(Z1t)
][ĝi(Zt) − gi(Zt)][ĝj(Zt) − g1,j(Z1t)]

= 1
n

∑

t[
1

σ2(Z1t)
− 1

σ̂2(Z1t)
][g1,i(Z1t) − ĝ1,i(Z1t)][ĝj(Zt) − gj(Zt)]

= 1
n

∑

t[
1

σ2(Z1t)
− 1

σ̂2(Z1t)
][g1,i(Z1t) − ĝ1,i(Z1t)][ĝ1,j(Z1t) − g1,j(Z1t)]

= 1
n

∑

t[
1

σ2(Z1t)
− 1

σ̂2(Z1t)
][g1,i(Z1t) − ĝ1,i(Z1t)][ĝj(Zt) − g1,j(Z1t)]

= 1
n

∑

t[
1

σ2(Z1t)
− 1

σ̂2(Z1t)
][gi(Zt) − g1,i(Z1t)][ĝj(Zt) − gj(Zt)]

= 1
n

∑

t[
1

σ2(Z1t)
− 1

σ̂2(Z1t)
][gi(Zt) − g1,i(Z1t)][ĝ1,j(Z1t) − g1,j(Z1t)]

= 1
n

∑

t[
1

σ2(Z1t)
− 1

σ̂2(Z1t)
][gi(Zt) − g1,i(Z1t)][ĝj(Zt) − g1,j(Z1t)]

= A1 + · · ·+ A9

Since supZ1t∈G1
| 1
σ2(Z1t)

− 1
σ̂2(Z1t)

| = op(1), we follow Theorem 1 (1) to have Ai = op(1) for

i = 1, · · · , 9. So we have the claim in (a′) and (a).

(b) The kth element in 1
nŴ

′[Ω−1(~Z1) − Ω̂−1(~Z1)](Ê(Y | ~Z) − Ê(Y | ~Z1)) is

Ck = 1
n

∑

t[
1

σ2(Z1t)
− 1

σ̂2(Z1t)
][ĝk(Zt) − gk(Zt)][Ê(m(z1)|Zt) − Ê(m(z1)|Z1t)]

= 1
n

∑

t[
1

σ2(Z1t)
− 1

σ̂2(Z1t)
][g1,k(Z1t) − ĝ1,k(Z1t)][Ê(m(z1)|Zt) − Ê(m(z1)|Z1t)]

= 1
n

∑

t[
1

σ2(Z1t)
− 1

σ̂2(Z1t)
][gk(Zt) − g1,k(Z1t)][Ê(m(z1)|Zt) − Ê(m(z1)|Z1t)]

= 1
n

∑

t[
1

σ2(Z1t)
− 1

σ̂2(Z1t)
][ĝk(Zt) − gk(Zt)][Ê(ε|Zt) − Ê(ε|Z1t)]

= 1
n

∑

t[
1

σ2(Z1t)
− 1

σ̂2(Z1t)
][g1,k(Z1t) − ĝ1,k(Z1t)][Ê(ε|Zt) − Ê(ε|Z1t)]

= 1
n

∑

t[
1

σ2(Z1t)
− 1

σ̂2(Z1t)
][gk(Zt) − g1,k(Z1t)][Ê(ε|Zt) − Ê(ε|Z1t)]

With supZ1t∈G1
| 1
σ2(Z1t)

− 1
σ̂2(Z1t)

| = Op((
nh

l1c
1

ln(n) )
− 1

2 ) + Op(h
s+1
1 ) + op(n

− 1
2 ), and Theorem 1 proof

(1)(d), (f), (2)(b),(f), we easily have
√
nCk = op(1), thus we obtain the claim in (b).
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