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EFFICIENT SEMIPARAMETRIC INSTRUMENTAL VARIABLE 
ESTIMATION UNDER CONDITIONAL HETEROSKEDASTICITY 

FENG YAO1 

Abstract 

We consider the estimation of a semiparametric regression model where the data 

is independently and identically distributed. Our primary interest is the estimation 

of the parametric vector, where the associated regressors are correlated with the 

errors, contain both continuous and discrete variables, and the error term is 

conditionally heteroskedastic. Under general conditional heteroskedasticity that 

depends on both excluded and included exogenous variables, we propose a new 

estimator based on Yao and Zhang’s (2011, Efficient semiparametric 

instrumental variable estimation, working paper, Economics Department, West 

Virginia University) framework and establish its asymptotic properties. It is 

consistent and asymptotically normally distributed. It allows the reduced form to 

be nonparametric and is efficient as it reaches the semiparametric efficiency 

bound. Furthermore, it is asymptotically equivalent to a GMM estimator that 

optimally select the instrumental variables with conditional moment restriction, 

and thus is also efficient among a class of semiparametric IV estimators. We 

perform a Monte Carlo study, which illustrates its finite sample properties and 

confirms our theoretical result.   

Keywords: Instrumental variables, semiparametric regression, efficient 

estimation. 

JEL Classifications: C14, C21  

 

                                                
1
 Department of Economics, West Virginia University, Morgantown, WV 26505 USA 

email: feng.yao@mail.wvu.edu 
 
I am indebted to the associate editor, AmanUllah, whose detailed comments greatly improves this paper. 

 



 EFFICIENT SEMIPARAMETRIC INSTRUMENTAL VARIABLE ESTIMATION UNDER CONDITIONAL ... 33 

1. Introduction 

There is now a vast and increasing literature on nonparametric and semiparametric 

estimation of structural models with endogenous regressors (Blundell and Powell 2003 and 

references). We specifically consider the literature on nonparametric and semiparametric 

extensions of the classical simultaneous equations models. Here, endogenous and 

predetermined variables are related through a system of equations, so endogeneity arises from 

the feedback of the dependent variable to the explanatory variable. Many recent nonparametric 

and semiparametric approaches account for the endogeneity in the spirit of classical two-stage 

least squares (2SLS) (see Matzkin 1994, 2008; Imbens and Newey 2009). The estimation and 

inference relax the tight parametric assumptions on the functional forms of structural equations or 

the error term distribution, thus are robust to potential models misspecification.  

In this paper, we consider a semiparametric additive regression model  

 t 1t t t 1t t tY g(Z X ε ) m(Z ) X β ε t 1 n              ... (1) 

We denote the endogenous explanatory variables explicitly by K

tX'  , the included exogenous 

variable by 1l

1tZ ' , and the excluded exogenous variable by 2l

2tZ ' , with 
1 2l l l    We 

explicitly consider continuous and discrete variables in c d

t t tX (X X )    where cKc

tX    are the 

continuous variables, d

tX dK
   discrete variables, and c dK K K    Similarly, c d

1t 1t 1tZ (Z Z )  , 

c d

2t 2t 2tZ (Z Z )    where c

1tZ 1cl
  , c

2tZ 2cl
   are the continuous variables, and d

1tZ 1dl
  , 

d

2tZ 2dl
   discrete variables.  

The semiparametric regression model in (1) when tX  is considered exogenous is 

familiar in the literature (see Robinson 1988 and Speckman 1988 under iid assumption with 

continuous regressors; Delgado and Mora 1995 for discrete regressor and weakerconditions than 

those in Robinson 1988). Theoretical results on semiparametric estimation without endogenous 

variables are available for dependent data (see Aneiros and Quintela 2001;Aneiros-Perez and 

Quintela-del-Rio 2002; and the monograph on partially linear models by Härdle, Liang and Gao 

2000). Li (2000), Fan et al. (1998) and Chen and Shen (1998) consider estimation in additive 

partially linear models, where the nonparametric component is further assumed to be additive 

functions.  

The partially linear model in (1) provides much needed flexibility through the 

nonparametric control function 1tm(Z ) , while the endogenous variables tX  enter the model 

parametrically, allowing for convenient interpretation, faster convergence rateand easy 

implementation. First, consider the problem of estimating returns to schooling in Card (1995), 

where tY  is the log of wage, tX  is the years of schooling and 1tZ  includes potential experience 

(treated as exogenous), and demographic variables, i.e., race, southern residence, and residence 

in a standard metropolitan statistical area. Parameter β  can be conveniently interpreted as the 

marginal return to schooling, provided there is an exogenous source of variation in the education 

choices for estimation. Second, since we model the parametric component in a linear fashion, 
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relative to the fully nonparametric model 
1t t tg(Z X ε )   (see Matzkin 1994; Imben and Newey 

2009) or 
1t t t 1t t tg(Z X ε ) g(Z X ) ε      (see e.g., Das 2005; Newey and Powell 2003; Darolles et al. 

2011; Newey et al. 1999; Ng and Pinkse 1995;Pinkse 2000; Florens et al. 2008), we have less 

variables in the nonparametric control function 
1tm(Z ) , thus the convergence rate could be faster. 

For example, it can be convenient when 
tX  is a vector of discrete variables that take a large 

number of different values, or when 
tX  consists of categorical variables. Third, it is not a trivial 

task to incorporate both continuous and discrete variables as in Das (2005),Newey and Powell 

(2003), and Darolles et al. (2011). In the control function approach considered by Newey et al. 

(1999), Ng and Pinkse (1995), Pinkse (2000), and Florens et al. (2008), an important assumption 

is on the control variable 
t t tV X E(X )   tZ , where 

1t 2t(Z Z ) tZ . The fact that 
tX  and 

tV  are 

functionally related generally requires that endogenous components 
tX  and 

tV  be continuously 

distributed with unbounded support conditional on 
tZ . The requirement that 

tX  is continuously 

distributed limits the application of the control function approach. In model (1), we can easily 

incorporate both continuous and discrete variables in 
tX , 

1tZ  and 
2tZ .  

With endogenous variables, the precision of the estimator for β  is a concern because 

the restrictions imposed on 
1tm(Z )  and on the reduced form tE(X ) tZ  are so weak. Newey 

(1990, 1993) considers efficient estimation of a parametrically specified structural model with 

conditional moment restrictions using nearest neighbor and series estimators. Ai and Chen 

(2003) consider a more general semiparametric model with conditional moment restrictions, 

where sieve estimation is employed andthe parametric component estimator reaches the 

semiparametric efficiency bound. Chen and Pouzo (2009) consider semiparametric efficient 

estimation of conditional moment models with possibly nonsmooth residuals using penalized 

sieve minimum distance estimator, where the square-root-n normality and the optimal 

convergence rate are achieved for the parametric and nonparametric estimators. Otsu (2007) 

proposes a penalized empirical likelihood estimation for semiparametric models, with the 

parametric component being efficiently estimated. Florens et al. (2009) consider an instrumental 

regression in partially linear models with endogenous variables in ( )m  , where the estimation of 

the parametric components could be ill-posed. A locally efficient estimators for semiparametric 

measurement error model is also considered by Ma and Carroll (2006), using an estimating 

equation approach. Efficient instrumental variable estimation of a semiparametric dynamic panel 

data model is considered in Li and Stengos (1996), Li andUllah (1998), Berg et al. (2001), and 

Baltagi and Li (2002). Yao and Zhang (2011) consider efficient semiparametric instrumental 

variable (IV) estimation in model (1) and propose three estimators for the parametric vector. 

However, whenconditional heteroskedasticity depends on both the included and excluded 

exogenous variables, their estimators are not efficient.  

We cite Li and Racine (2007, p237) to illustrate the potential difficulty in the efficient 

estimation of β , “We point out that an efficient semiparametric estimator of β  is quite complex. 

It requires estimation of a nonparametric model with dimension p q  (the dimension of ( t 1tX Z )), 

while the estimation of β  and m( )  involves only nonparametric estimation with dimension q . 
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Therefore, the “curse of dimensionality” may prevent researchers from applying efficient 

estimation procedures to a partially linear model when the error is conditionally heteroskedastic.”  

In this paper, we propose a new kernel based estimator in the simple model (1) under 

general conditional heteroskedasticity structure. The partially linear model has been considered 

by many literatures, however, we notice the efficient estimation of the parametric component β  

associated with endogenous variables using the popular kernel estimator has not been formally 

considered. We show that the kernel based estimator with both continuous and discrete 

endogenous variables is easy to construct, and furthermore it offers the following advantages. 

Both β  and the nonparametric component m( )  are easily identified or well-posed with fairly 

reasonable assumptions. We demonstrate the β ’s estimator is square-root-n normal and its 

asymptotic distribution is not impacted by m( ) ’s estimation, taking advantage of the kernel 

based estimator by using a higher order kernel and assuming the higher order differentiability on 

m( ) . We only assume m( )  is smooth, but does not have to be in a compact function space. The 

efficient estimation requires the information of the heteroskedasticity function and we propose a 

simple estimator for it, whose properties are well studied in the asymptotic results. The estimator 

for β  is feasible, can be written in explicit form and is a GMM based estimator that optimally 

selects the instrument variables, enabling easy construction and interpretation. We show it to be 

consistent, and asymptotically normally distributed. Its limiting distribution, i.e., the asymptotic 

variance used for inference purpose, can be easily estimated without resorting to the simulation 

based bootstrap procedure. Last, the new estimator is efficient as it reaches the semiparametric 

efficiency bounds. We notethat above mentioned papers could be applied in more general 

situations, however, the implementation could be involved. For example, implementing the 

efficient sieve minimum distance estimator proposed by Ai and Chen (2003) entails the numerical 

optimization under the partially linear model. Our proposed estimator can be expressed in closed 

form, can be easily implemented, and we demonstrate that our estimator outperforms theirs in the 

simulation study.  

Our semiparametric model (1) could be considered as a special case of the functional 

coefficient instrumental variable (IV) model (2.1) in Su et al. (2011) in the sense that they allow 

the vector 1t(m(Z ) β )  to be fully nonparametric. Although their model is quite general, our model 

(1) and the proposed estimator provide a useful alternative. First, our semiparametric 

specification in 1t(m(Z ) β )  allows estimation of β  at the n  parametric rate (see 
E

β  and 

Theorem 2 in section 3), while the estimator for the nonparametric local parameters in Su et al. 

suffers from the curse of dimensionality. Second, the construction of local linear GMM estimator 

in Su et al. calls for the choice of IV. The chosen IV in their (2.12) is computationally simple but it 

may not be optimal in the sense of minimizing the asymptotic variance for the class of local linear 

GMM estimators under the conditional moment condition. It is not clear how to construct the 

optimal instruments in their framework (see Remark 1 in Su et al.). On the other hand, utilizing 

the semiparametric structure in 1t(m(Z ) β ) , we construct feasible efficient estimator 
E

β  for β  

that fully explores the moment conditions tE(ε ) 0 tZ  and 2 2

tE(ε ) ζ ( ) t tZ Z . We show in 

section 3 that 
E

β  is asymptotically equivalent to a GMM estimator that optimally selects the IV, 
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which is given by t

2
t

W

ζ ( )


Z


, where 

tW  is defined in assumption A6(2) (see the discussion 

following Theorem 3). We show it is semiparametrically efficient as it reaches the semiparametric 

efficiency bound. Third, we notice our model (1) further allows both continuous and discrete 

endogenous variables 
tX .  

In what follows, we introduce the semiparametric model and propose the new estimator 

in section 2, provide the asymptotic properties in section 3, perform a Monte Carlo study to 

demonstrate its finite sample properties and to compare with previously considered estimators in 

section 4, and conclude in section 5. The tables and graphs are relegated to appendix 1, and all 

proofs are collected in Yao (2011).  

2. Semiparametric Model 

Consider the model in Equation (1) and assume the existence of instrumental variables 

1t 2t(Z Z ) tZ  with tE(ε ) 0 tZ  for all t . Suppose the true conditional expectation 

t 1t 1t t 1tE(Y Z ) m(Z ) E(X Z )β     is known. Hence, we could subtract 
t 1tE(Y Z )  from (1)  to 

obtain  

t t 1t t t 1t tY E(Y Z ) (X E(X Z ))β ε             ... (2) 

The conditional expectations are generally unknown, but we can replace them with 

nonparametric conditional mean estimators t 1tÊ(Y Z ) and t 1tÊ(X Z ) . However, due to the 

correlation between tε and tX , we can not apply Robinson’s (1988) estimator by regressing 

t t 1t
ˆY E(Y Z )   on t t 1t

ˆX E(X Z )  . Since t t 1tE(X E(X Z ) )   tZ  is a function of 
tZ  and is 

uncorrelated with tε , Yao and Zhang (2011) propose to use t t 1t
ˆ ˆE(X ) E(X Z )  tZ  as the 

instrumental variables, where tÊ(X ) tZ  is a nonparametric estimator for tE(X ) tZ , and 

estimate β  by  

1

1
ˆ ˆ ˆ ˆ ˆβ (WW) W (E(Y Z) E(Y ))Z

     
        ... (3) 

11 1 2 1K1

2 1 2 2 2 K2

t k t k 1tt k

n 1 n 2 n Kn

ˆ ˆ ˆˆ W W WW

ˆ ˆ ˆˆ W W WWˆ ˆ ˆˆwhere W E(X ) E(X Z )W

ˆ ˆ ˆˆ W W WW

  

  

 

  

  
  
        
  
  
    

tZ





   



,  

and t kX


 is the kth  element of random vector tX . Furthermore, 

1 1
ˆ ˆE(Y Z) (E(Y )   Z


2 2Ê(Y )  Z  nÊ(Y )) nZ , and 

1 111
ˆ ˆE(Y ) (E(Y Z )Z   


2 12 n 1n

ˆ ˆE(Y Z ) E(Y Z ))    . When conditional heteroskedasticity depends 

only on the included exogenous variables, that is, 2 2

t 1tE(ε ) ζ (Z ) tZ , they propose to account 

for the heteroskedasticity by  
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H 1 11

1 1 1
ˆ ˆ ˆ ˆ ˆˆ ˆ(W ( )W) W ( )(E(Y Z) E(Y ))β Z Z ZΩ Ω

      
       ... (4) 

where the conditional variance is estimated with 2 2
t1t 1t

ˆ(Z ) E( Z )ˆ εζ   , with 

t t t 1t t t 1t
ˆ ˆY E(Y Z ) (X E(Y Z ))βε        . The conditional covariance matrix 

1
Ω( )Z


 is estimated by 

1
Ω̂( )Z


, which is a diagonal matrix with the t th  element as 2

1t(Z )ζ̂ . These estimators are 

consistent and asymptotically normally distributed. Under conditional homoskedasticity, β  is 

efficient relative to previously considered estimators, i.e., Li and Stengos (1996), and reach the 

semiparametric efficiency bound in Chamberlain (1992). Under special conditional 

heteroskedasticity that depends only on the included exogenous variables, they show 
H

β  also 

reaches the semiparametric efficiency bound.  

However, conditional heteroskedasticity generally depends on the included and excluded 

exogenous variables, i.e., 2 2

tE(ε ) ζ ( ) t tZ Z . Let’s consider the returns to schooling example in 

the introduction. The heteroskedasticity may depend not only on the included exogenous 

variables, i.e., the potential experience, and indicators for race, southern residence, and 

residence in a standard metropolitan statistical area, but also on the excluded exogenous 

variable, i.e., the proximity to a four year college. Thus, there is a need for the efficient estimator 

to account for the information properly. First, let’s examine the semiparametric efficiency bound 

derived in Chamberlain (1992). Under assumption A1(2) in section 3 that tE(ε ) 0 tZ  for all t , 

our Equation (1) considers the estimation of β  in the model of t t 1t tε Y m(Z ) X β    with the 

conditional moment restriction tE(ε ) 0 tZ . Since tε

tβ
X




  , define 

tε

0 tβ
D ( ) E( ) E(X )




    t t tZ Z Z , 2

0 t tΣ ( ) E(ε ε ' ) ζ ( )  t t tZ Z Z  with the general 

heteroskedasticity structure in assumption A4(3), tε

0 r
H ( ) E( ) 1




   t tZ Z  for 1tr m(Z ) . The 

inverse of the semiparametric efficiency bound for β  is  

t

2 2 2

1 1

0 0 0 0 1t 0 0 0 1t

1 1 1

0 0 0 1t 0 0 0 1t

E(X )11 1
t 1t 1tζ ( ) ζ ( ) ζ ( )

1
t

J E{E(D ( )Σ ( ) D ( ) Z ) E(D ( ) Σ ( ) H ( ) Z )

[E(H ( )Σ ( ) H ( ) Z )] E(H ( ) Σ ( ) D ( ) Z )}

E{[E(X ) (E( Z )) E( Z )]

[E(X ) (E(

 

  



    

   

    

  

t

t t t

t t t t t t

t t t t t t

Z

t Z Z Z

t

Z Z Z Z Z Z

Z Z Z Z Z Z

Z

Z t

2 2

2

E(X )1

1t 1tζ ( ) ζ ( )

1
t tζ ( )

Z )) E( Z )]}

E( ' )W W

 

 

t

t t

t

Z

Z Z

Z
 

  

and the semiparametric efficiency bound is 1

0J . Define t t t 1tW E(X ) E(X Z )   tZ . Under 

homoskedasticity, 2

t tE(ε ε ' ) ζ tZ , then 
2

1 11
0 t tζ

J ( E(W 'W ))  . When theheteroskedasticity 

function depends only on the included exogenous variables, 2

t t 1tE(ε ε ' ) ζ (Z ) tZ , 

2
1t

1 11
0 t tζ (Z )

J (E( W ' W ))  . They are the asymptotic variance of estimators β and 
H

β , derived in 

Theorem 1 and 4 respectively in Yao and Zhang (2011). But the semiparametric efficiency bound 

is different under general heteroskedasticity structure. Second, inspection of the construction of 
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H

β  indicates the semiparametric efficiency bound is not achieved. So we propose a new 

estimator that accomplishes this goal.  

To motivate this estimator, let’s consider Equation (1), which together with assumption 

A1(2) that 
tE(ε ) 0 tZ  implies t t

2 2 2

Y X1
1t 1t 1t 1tζ ( ) ζ ( ) ζ ( )

E( Z ) E( Z )m(Z ) E( Z )β     
t t tZ Z Z

 Here we use 

the fact that t t

2 2 2

ε ε 1
1t 1t t 1tζ ( ) ζ ( ) ζ ( )

E( Z ) E(E( ) Z ) E( E(ε ) Z ) 0       
t t t

t tZ Z Z
Z Z . Thus, given 

2ζ ( ) C 0 tZ  in assumption A6(1), we multiply above by 
2

11
1tζ ( )

(E( Z ))
tZ

, then subtract it from 

Equation (1) to obtain  

1 1t t
t 1t 1t t 1t 1t t2 2 2 2

Y X1 1
Y (E( Z )) E( Z ) (X (E( Z )) E( Z ))β ε

ζ ( ) ζ ( ) ζ ( ) ζ ( )

         
t t t tZ Z Z Z

 ... (5) 

Suppose the conditional expectations are known. However, due to the correlation 

between 
tX and 

tε , we cannot regress t

2 2

Y11
t 1t 1tζ ( ) ζ ( )

Y (E( Z )) E( Z )  
t tZ Z

 on 

t

2 2

X11
t 1t 1tζ ( ) ζ ( )

X (E( Z )) E( Z )  
t tZ Z

. Different from Yao and Zhang (2011), we use estimates of 

t

2 2

X11
t 1t 1tζ ( ) ζ ( )

E(X ) (E( Z )) E( Z )   
t t

t Z Z
Z  as instrumental variables. Since  

1 1t t
t 1t 1t t 1t 1t2 2 2 2

Y X1 1
E(Y ) (E( Z )) E( Z ) (E(X ) (E( Z )) E( Z ))β

ζ ( ) ζ ( ) ζ ( ) ζ ( )

          t t

t t t t

Z Z
Z Z Z Z

 ... (6) 

we consider  

E 1 1F F F1

1
ˆˆ ˆ ˆ( ' (Z) ) ' (Z)[E(Y Z) (Y )]β W W W ZEΩ Ω

      
           ... (7) 

Here, 
F

W  is a n K  matrix with the (t k)th element 

t k

2 2

XF 11
t k 1t 1tt k ( ) ( )ˆ ˆζ ζ

ˆ ˆ ˆE(X ) (E( Z )) E( Z )W



    

t t
t Z Z

Z . 2 2
t

ˆ( ) E( )ˆ εζ  t tZ Z , where 

t t t 1t t t 1t
ˆ ˆY E(Y Z ) (X E(X Z ))βε        , where β  estimator is consistent under our assumptions. 

The diagonal matrix Ω̂(Z)


 has the t th  element as 2( )ζ̂ tZ . Furthermore, 
1

ˆ (Y )ZE





 is a n 1  

vector with the t th  element as t

2 2

Y11
t 1t 1t 1t( ) ( )ˆ ˆζ ζ

ˆ ˆˆ (Y Z ) (E( Z )) E( Z )E
     

t tZ Z
 

We use different instrument variables in 
F

W  and transformed regressand 1
ˆ (Y )ZE





 in 

constructing 
E

β , compared to 
H

β  in Yao and Zhang. The estimator is constructed by weighting 

the data in a specialfashion. However, we note first that the weighting scheme enables us to 

remove the m( )  in equation (5). Second, the weighting scheme is what is called for by the 

semiparametric efficiency bound. Third, we demonstrate in next section that 
E

β is a GMM based 

estimator that optimally selects the instrumental variables. We will show that 
E

β  is consistent, 
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asymptotically normally distributed with variance 1

0J , thus it reaches the semiparametric 

efficiency bound.  

Here, we define the density of 
1tZ  at 

10z as 
1 10f (z ) , and the density of 

tZ  at 

0 10 20(z z ) z  as 
0f( )z . We estimate them with the Rosenblatt density estimators with both 

continuous and discrete variables, use the Nadaraya-Watson estimators for 
0 10E(A z ) , and 

0 0E(A ) z  for its simplicity. Specifically,  

 
1c

c cn
d d1t 10

10 1 1t 101 l
t 1 11

Z z1
ˆ (z ) K ( )I(Z z )f

hnh 


    

 
1c 2c

c c c cn
d d d d1t 10 2t 20

0 2 1t 10 2t 20l l
t 1 2 22

Z z Z z1
f̂( ) K ( )I(Z z Z z )

h hnh 


 
     z  

 

c c
1t 10

l1c 1
1

n Z z d d1
1 1t 10 tht 1nh

0 10

101

K ( )I(Z z )A
Ê(A z )

ˆ (z )f






  


 

 

c c c c
1t 10 2t 20

l l1c 2c 2 2
2

n Z z Z z d d d d1
2 1t 10 2t 20 th ht 1nh

0 0

0

K ( )I(Z z Z z )A
Ê(A )

f̂( )



 


   

  


z
z

 

where 1h  and 2h  are bandwidths which go to zero as n  . 1 2K ( ) K ( )    and I( )  are the kernel 

and indicator functions. We expect the use of the local linear estimator will work and produce the 

same asymptotic theory as well due to its well known properties. Furthermore, for ease of 

notation, we suppress the use of a trimming function that trim out small 
1

ˆ ( )f  and f̂( ) , or replace 

them with a small but positive constant. It avoids the technical difficulty due to the random 

denominators 
1

ˆ ( )f  and f̂( ) , which could be small. This will not change the asymptotic results so 

we will not introduce it in the definition explicitly.  

3. Asymptotic Properties 

Similar to the parametric instrumental variable estimation, our semiparametric 

instrumental variable estimator is likely to be biased. We investigate its asymptotic properties with 

the following assumptions.  

We let C  denote a generic constant below, which can vary from one place to another. 

Let c d c d l

1 1 2 2G G G G G      , G  is compact. 1lc d

1 1 1G G G    and 2lc d

2 2 2G G G    .  

Let’s denote a generic function s

1t 1g(Z ) C  if 1tg(Z )  is s  times continuously 

differentiable w.r.t. c

1tZ , with its sth  order derivative uniformly continuous on c

1G , and for 

j 1 2 s     , 
j

c j
1t 1 1t

Z G 1t(Z )
sup g(Z )

 
    Here, we denote the j th   order derivative as 

j c dj
1t 1t

c j jlj jc c c 1c1 21t 1t 1 1t 2 1t l1c

g(Z Z )

1t(Z ) (Z ) (Z ) (Z )
g(Z )

 

  

 

   
 


 We adopt the notation that 

1c1 2 lj ( j j j )    , 
1cl

ii 1
j j


    For 
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future purposes, we denote 

0 j s j 0 j 1 j s
,

       
      

1c1 2 lj j j j ,      l1c1 2

1c

jj jc j c c c

1t 1t 1 1t 2 1t l(Z ) (Z ) (Z ) (Z )
  

    , where 

c

1t iZ

 refers to the i th  element in c

1tZ .  

Denote a generic function 1s

1t 1g(Z ) C  if 
1tg(Z )  is 

1s  times continuously differentiable 

w.r.t. c

1tZ , with its sth  and 
1s th  order derivative uniformly continuous on c

1G , and for 

1j 1 2 s     , 
j

c j
1t 1 1t

Z G 1t(Z )
sup g(Z )

 
     Denote a generic function 1s

1 2g( ) C


tZ  if g( )tZ  is 
1s  

times continuously differentiable w.r.t. c c

1t 2t(Z Z ) c

tZ , with its sth  and 
1s th  order derivative 

uniformly continuous on c c c

1 2G G G  , and for 
1j 1 2 s     , 

j

jG ( )
sup g( )

 
  c

t t
Z tZ

Z  Here, we 

denote the j th   order derivative as 
j c d c dj

1t 1t 2t 2t

j j j j jl l 1 l 2 l lj jc c c c c c1c 1c 1c 1c 2c1 2
1t 1 1t 2 1t l 2t 1 2t 2 2t l1c 2c

g(Z Z Z Z )

( ) (Z ) (Z ) (Z ) (Z ) (Z ) (Z )
g( )

 

  
     

   

      
 c

t
tZ

Z
 

 

A1: (1) n

t t t 1{Y X }


  tZ  is an independent and identically distributed (iid) sequence of 

random vectors related as in Equation (1) . (2) E(
tε ) 0 tZ  for all t .  

(3) Let t t t 1tW E(X ) E(X Z )   tZ , 
t tE(W 'W )  is a symmetric and positive definite 

matrix.  

A2: (1) Denote the density of 1tZ  at 10z by c d

1 10 10f (z z ) . Assume c d s

1 10 10 1f (z z ) C  .  

(2) c d

1 10 100 C f (z z )     , for all 10 1z G .  

(3) 
t k t k 1t t k t k 1t 1k 1t 1ktX E(X Z ) X E(X Z ) g (Z ) e
     
       , and 10 1z G  , assume 

1s

1k 10 1g (z ) C


 . The conditional density of 1tZ  given 
1 kte


 is bounded, and the conditional density 

of 
t kX


 given 1tZ  is continuous at c

1tZ .  

(4) Denote the density of tZ  at 0z by c d c d

z 10 10 20 20 z 0f (z z z z ) f ( )    z , and assume 

1s

z 0 1 2f ( ) C


z .  

(5) z 00 C f ( )   z , for all 0 Gz .  

(6) t k t k t k t k k ktX E(X ) X E(X ) g ( ) e
   
      t t tZ Z Z , and 0 G z  assume 

1s

k 0 1 2g ( ) C


z . The conditional density of tZ  given kte is bounded, and the conditional density of 

t kX


 given tZ  is continuous at c

tZ . (7) m(z 1s

10 1) C .  

A3: (1) For dx , 1cd l  or 2cl , the kernel function 1K(x)(K (x)  or 2K (x))  is bounded 

with bounded support, and it is of order 13s .  

(2) i i

KuK(u) vK(v) C u v      , 1i 0 1 2 s      .  
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A4: (1) For some δ 0 , 2 δ 2 δ

t k t k 1tE(X ) E(X Z ) 

 
    tZ

k 1k 1tg ( ) g (Z )


   tZ  almost 

everywhere.  

(2) 2 δ 2 δ

t t 1tE(ε ) E(ε Z )     tZ  (3) 2 2

tE(ε ) ζ ( ) t tZ Z .  

(4) The conditional density of 
1tZ  given 

tε  is bounded, and the conditional density of 
tε  

given 
1tZ  is continuous at c

1tZ . The conditional density of 
tZ  given 

tε  is bounded, and the 

conditional density of 
tε  given 

tZ  is continuous at c

tZ .  

A5: (1) 1c2l

1nh  . (2) 1c 2c2(l l )

2nh 
 . (3) 12(s 1)2(s 1)

1 2nh nh 0   .  

A6: (1) (i) 20 C ζ ( )   tZ . (ii) 1s2

1 2ζ ( ) C


tZ .  

(2) Define t

2 2

E(X )11
t 1t 1tt ζ ( ) ζ ( )

E(X ) (E( Z )) E( Z )W
    t

t t

Z

t Z Z
Z . Let 2

1
t tζ ( )

E( ' )W W
tZ

   bea 

symmetric and positive definite matrix.  

(3) For some δ 0 , 4 δ

t kE( X )


    tZ , and 4 δ

tE( ε )    tZ . The conditional density 

of 
tZ  given 

t k tX ε


   is bounded, and the conditional density of 
t k tX ε


   given 
tZ  is continuous 

at c

tZ . The conditional density of 
tZ  given 

1 kt 1 k te e  
 is bounded, and the conditional density of 

t k t kX X  
   given tZ  is continuous at c

tZ  for all k k {1 K}    .  

(4) We assume 1

2

s1
1t 1ζ ( )

E( Z ) C 
tZ

 and t k 1

2

E(X ) s

1t 1ζ ( )
E( Z ) C   t

t

Z

Z
for k {1 K}   .   

Assumptions A1-A5 are used in Yao and Zhang to identify parameter β  and to obtain 

asymptotic properties of estimators β . Since our new estimator 
E

β  is constructed with β , we 

adopt them here. In A1(2), we require the conditional expectation of the error term tε  given tZ  

to be zero, but we allow tε ’s and tX ’s to be possibly correlated, and thus tZ  plays the role of 

instrumental variables. A1(3) guarantees that β  in equation (1) is identified. First, tX  cannot 

contain a constant. Second, it implies that t t 1tE(X ) E(X Z )  tZ . Since 1t 2t(Z Z ) tZ , any 

element of tX  cannot be perfectly a.s. predictable by 1tZ , i.e., tX  cannot be some function of 

1tZ  only. Obviously, 2tZ  cannot simply be a linear combination of 1tZ , so 2tZ  needs to contain 

variables that are linearly independent of 1tZ . A1(3) forbids more general forms of dependence. 

Third, because tW  cannot be a.s. zero, no elements of t t 1tE(X ) E(X Z )  tZ  are multicollinear. 

This fails if tX  is collinear. Alternative but similar condition A6(3) also guarantees that β  is 

identified.  

Assumptions A2(1), (2), (4), (5), and (7) require the densities 1 10f (z ) , z 0f ( )z , and 10m(z )  

to be continuously differentiable w.r.t. its continuous components and bounded. These 

assumptions are commonly used in nonparametric kernelregression, enabling the use of Taylor 

expansion (Martins-Filho and Yao 2007). They are similar in spirit to the smoothness and 
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boundedness condition in Definition 2 of Robinson (1988), or the assumption A1 of Li and 

Stengos (1996). A2(3) and (6) explicitly assume the relationship between 
tX  and 

1tZ and 

between 
tX  and 

tZ . Similar assumptions have been maintained in Aneiros and Quintela (2001) 

and Speckman (1988) in the fixed design case. Assumption A3 requires the kernel functionto be 

smooth and bounded (Martins-Filho and Yao 2007). Since the kernel function depends on n , the 

asymptotic distribution of β  is established using Liapunov’s central limit theorem, with 

conditional moments assumption of 
tε  and 

tX  given 
tZ  or 

1tZ  in A4. The bandwidth 

assumptions A5(1) and (2) are in line with those used in the literature (Martins-Filho and Yao 

2007). A3, together with A5(3), specifies the kernel properties and the rate of decay for the 

bandwidths. They are used to control the bias introduced in the nonparametric regression, which 

is similar to assumptions in, for example, Robinson (1988) and Li and Stengos (1996). However, 

A5(3) is stronger than that maintained in Li and Stengos, Li andUllah, or Robinson. As β  

involves estimation of 
tW , the bias arises not only from the estimation of 

t 1tE(X Z ) , but also 

from the estimation of tE(X ) tZ . A5 requires choosing a higher order kernel to eliminate the 

biasasymptotically, so the asymptotic distribution is not impacted by the estimation of m( ) . 

However, m( )  may not be estimated at the optimal rate. But given the important work on twicing 

kernels by Newey et al. (2004), we expect using the twicing kernels will enable us to estimate 

m( )  at its optimal rate and maintain n  normality of estimators for β . Asymptotic properties of 

β  are obtained for general heteroskedasticity structure in A4(3). We do not need theparameter 

space for β  to be compact, as the model is partially linear. In the GMM setting, for example, it is 

well known that the compactness can be relaxed if the objective function is concave.  

For efficient estimation using 
E

β , we place additional assumptions in A6. Different from 

H

β  in Yao and Zhang, we allow the heteroskedasticity to depend on both included and excluded 

exogenous variables. A6(1)(i) require 2ζ ( )tZ  to be bounded away from zero. (ii) requires the 

heteroskedasticity function to be smooth in the sense that 1s2

1 2ζ ( ) C


tZ . Because estimated 

2 1(ζ ( ))tZ  is used in constructing
E

β , A6(1) enables us to perform Taylor expansion and to 

guarantee that the estimator will behave properly. A6(2) requires the semiparametric information 

bound 2

1
0 t tζ ( )

J E( ' )W W
tZ

   be a symmetric and positive definite matrix. From Equation (6), we 

obtain  

t

2 2 2 2

E(Y )1 11 1 1
t 1t 1tt t tζ ( ) ζ ( ) ζ ( ) ζ ( )

β (E( ' )) E( ' [E(Y ) (E( Z )) E( Z )])W W W
      t

t t t t

Z

tZ Z Z Z
Z    

Since conditional expectation is identified, β  is identified in Equation (1) with A6(2). 

Assumption A6(3) provides higher moments, additional boundedness and smoothness conditions 

on the conditional distribution, enabling us to obtain the asymptotic results for 
E

β , which involves 

estimation of the conditional covariance matrix of tε . Assumption A6(4) further requires 
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2

1
1tζ ( )

E( Z )
tZ

 and t

2

E(X )

1tζ ( )
E( Z )


t

t

Z

Z
 to be smooth, so that we could use Taylor expansion. Lemma 1 

in the Appendix 2 of Yao (2011) establishes the order in probability of certain linear combinations 

of kernel functions that appear repeatedly in the component expressions of our estimators. 

Lemma 2 collects useful results obtained in Yao and Zhang (2011). We use them in the proofs of 

the Theorems below.  

First, suppose 2ζ ( )tZ  is known and we consider the infeasible estimator as  

I II I I1 1 1

1
ˆ ˆ( 'Ω (Z) ) 'Ω (Z)[E(Y Z) (Y )]β W W W ZE

      
           ... (8) 

where
I

W  is a n K  matrix with the (t k)th  element 

t k

2 2

XI 11
t k 1t 1tt k ζ ( ) ζ ( )

ˆ ˆ ˆE(X ) (E( Z )) E( Z )W



    

t t
t Z Z

Z . The diagonal matrix Ω(Z)


 has its t th  element 

as 2ζ ( )tZ . Furthermore, 
I

1
ˆ (Y )ZE





 is a n 1  vector with the t th  element as 

t

2 2

YI 11
t 1t 1t 1tζ ( ) ζ ( )

ˆ ˆˆ (Y Z ) (E( Z )) E( Z )E
     

t tZ Z
 Thus, the true heteroskedasticity information is utilized 

in 
I

W , Ω(Z)


 and 
I

1
ˆ (Y )ZE





. The asymptotic property of 
I

β  given in Theorem 1represents the 

“oracle” property.  

Theorem 1Given assumptions A1-A5, A6(1) and A6(2), we have 

 
I d 1

t t2

1
n( β) N(0 ((E( ' )) )β W W

ζ ( )

   
tZ

    

Theorem 1 shows the infeasible estimator 
I

β  reaches the semiparametric efficiency 

bound. Since the structure of 2ζ ( )tZ  is generally unknown, we estimate it in 
E

β with 

2 2
t

ˆ( ) E( )ˆ εζ  t tZ Z , where t t t 1t t t 1t
ˆ ˆY E(Y Z ) (X E(X Z ))βε        . In Lemma 3 in Appendix 2 of 

Yao (2011), we establish the uniform convergence result of 2( )ζ̂ tZ . We use it in Theorem 2 to 

show 
E

β  and 
I

β  are asymptotically equivalent at rate n , thus 
E

β  inheritsthe “oracle” property 

of 
I

β  and we conclude 
E

β  reaches the semiparametric efficiency bound as well.  

Theorem 2Given assumptions A1-A6, we have 

I E

p

E d 1

t t2

(1) n( ) o (1)β β

1
(2) Given Theorem 1 we have n( β) N(0 ((E( ' )) )β W W

ζ ( )



  

    
tZ

 

  
 

To conduct statistical inference on the parametric vector β , we need a consistent 

estimator of the covariance matrix. We provide one such estimator, which consistently estimates 

each component of 2

11
t tζ ( )

(E( ' ))W W


tZ
   given in Theorem 2. Note from Lemma 3 in the Appendix 
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2 of Yao (2011), a consistent estimator of 2ζ ( )tZ  already exists. We propose to estimate 

2

11
t tζ ( )

(E( ' ))W W


tZ
  with 1F F 11

tn
ˆ( ' )W WΩ
   . Theorem 3 below shows it is a consistent estimator.  

 

Theorem3Given assumption A1-A6, we have
2

1F F 1 11 1
pt t tn ζ ( )

ˆ( ' ) (E( ' )) o (1)W W W WΩ
    

tZ
     

To shed light on the theoretical results above, let us consider a class of semiparametric 

IV estimators based on the model in Equation (1) that satisfies the conditional moment restriction 

tE(ε ) 0 tZ , where  

t t

2 2 2 2

1
Y X11 1

t t t 1t 1t t 1t 1tζ ( ) ζ ( ) ζ ( ) ζ ( )
ε ε (β) Y E Z E Z X E Z ) E Z β


                    
          

          

        
t t t tZ Z Z Z

as in 

Equation (5). Then, 
E

β  is asymptotically equivalent to the generalized method of moments 

(GMM) estimator that optimally selects instrument variables. Thus, 
E

β  is efficient among this 

class of semiparametric IV estimators in the sense that its asymptotic variance is smallest. To 

establish this, suppose t

2

Y

1tζ ( )
E Z

 
 
 
 


tZ

, t

2

X

1tζ ( )
E Z

 
 
 
 


tZ

 and 
2

1
1tζ ( )

E Z
 
 
 
 


tZ

 are known, or can be 

consistently estimated at a certain rate, then let H( )tZ  denote an h 1  vector of functions of 
tZ , 

h K . By law of iterated expectation we have tE(H( )ε (β)) 0tZ . Following Yao and Zhang 

(2011), we could construct the IV estimators using the GMM estimator. It is defined as  

n
GMM

β tn n n
t 1

1ˆˆ ˆ ˆβ argmin (β)P (β) (β) H( )ε (β)g g g
n 

    tZ  

forh h  positive semidefinite matrix P̂ , which may be random. Since tε (β)  is linear in β , by 

solving the minimization problem we easily obtain,  

GMM

1

t
t 1t 1t2 2

t

1
1

t
t 1t 1t2 2

t

n(β β)

X1 1 ˆX E Z E Z 'H( ) P
n ζ ( ) ζ ( )

X1 1
H( ) X E Z E Z

n ζ ( ) ζ ( )

 
     
     
     
         

     
 


 

     
     
     
         

     
 




    



   





t

t t

t

t t

Z
Z Z

Z
Z Z

1

t
t 1t 1t t2 2

t t

X11 1ˆX E Z E Z 'H( ) P n H( )ε
ζ ( ) ζ ( )n n








 
     
     
     
         

      
 

     t t

t t

Z Z
Z Z

 

Assume pP̂ P , a positive semi-definite matrix,  
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t t

2 2

1
X ε (β)p1 1

t 1t 1tn βt ζ ( ) ζ ( )
H( ) X E Z E Z E(H( ) ) G

 
      
     
          

 

     
t t

t tZ Z
Z Z , and define 

2

t tV EH( )ε ε 'H( ) Eζ ( )H( )H( )  t t t t tZ Z Z Z Z , then  

GMM d 1 1n(β β) N(0 (GPG) GPVPG(GPG) )         

Let 
tA G PH( )ε (β) tZ , t t

2 2 2

1
X ε (β)1

t 1t 1tζ ( ) ζ ( ) ζ ( )
B E X E Z E Z '

  
      
      
          

   

     
t t t

tZ Z Z
Z , then  

1 1 1

t t2

1 1 1 1

1
(G PG) G PVP G(G PG) ) (E( ' ))W W

ζ ( )

E{(EAB ) [A (EAB )(EBB ) B][A B (EBB ) (EBA )](EBA ) }

  

   

    

         

tZ
 

 

which is a quadratic form, so the difference is positive semidefinite. We note the asymptotic 

variances will be the same if we let the optimal instrumental variable to be t

2

W

ζ ( )
H( )  

t
t Z

Z


 and let 

1P V . Thus, asymptotically, 
E

β  behaves like a GMM estimator that optimally selects the 

instrumental variables. Comparing 
E

β  and GMMβ  from a technical point of view, we notice there 

are extra steps taken in
E

β , i.e., 
tX  and 

tY  are further projected with the conditional expectation 

operator E( )  tZ . This step is well justified. By performing an expansion of GMMβ , we notice it 

contains an extra term relative to 
E

β . The magnitude of this extra term can be controlled 

asymptotically, but the existence of it impacts GMMβ ’s finite sample performance in separate 

experiments we run, thus it is not considered further in the Monte Carlo study. Chen et al.(2003) 

provides a general framework and sufficient conditions for asymptotic properties of a class of 

semiparametric estimators. Our result further illustrates careful choices of instrumental variables 

can lead to efficient estimators.  

4. Monte Carlo Study 

To implement our efficient semiparametric instrumental variable estimator, and to 

evaluate its finite sample performance, we perform a Monte Carlo study. The simulation is 

conducted on a data-generating process in Baltagi and Li(2002) and Yao and Zhang (2011), 

adapted to the iid set-up as  

2

t t 1 1t 2 1t t t i 1t 1t tY βX α Z α Z ε and X g (Z Z ) U          

Here, we fix 1 2β α α 1   , so the nonlinear function 1tm(Z )  is 2

1t 1tZ Z . We generate 

the exogenous variables 1tZ  and 2tZ  independently from a standard normal distribution, 

truncated to [ 11]  . We select two functions for ig , where 1 1t 2t 1t 2tg (Z Z ) Z Z    and 

2 2

2 1t 2t 1t 2tg (Z Z ) Z Z   . Hence, the endogenous variable tX  depends on tZ  linearly with 

1 1t 2tg (Z Z ) , while tX  related to tZ  in a nonlinear fashion in 2 1t 2tg (Z Z ) . Conditional on tZ , we 
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generate 
tε  and 

tU  from a bivariate normal distribution with zero mean, variance 2

iζ ( )tZ  and 

correlation θ . We truncate 
tε  and 

tU to [ 11] [ 11]     . We choose θ 0 2 0 5    and 0 8 . As θ  

increases, the correlation between 
tX  and 

tε  increases, thus endogeneity is magnified. We 

consider 2 2

1 1t 2tζ ( ) (Z Z ) tZ , and 2

2 1t 2tζ (Zt) exp(Z 2Z )   for the heteroskedasticity case, and 

2

3ζ ( ) 1tZ  for the homoskedasticity case. It is easy to verify that assumptions maintained in A1, 

A2, A4 and A6 are satisfied. We consider two sample sizes, n 200  and 400 , and perform 

1000  repetitions for each experimental design.  

To implement out estimator 
E

β , we need to select the bandwidth sequences 
1h  and 

2h . 

We select the bandwidth 
1ĥ  using therule-of-thumbdata driven plug-in method of Ruppert et al. 

(1995). We select 
2ĥ with 

1
61 25SD( )n


 tZ , where SD( )tZ  is the standard deviation of 

tZ . We 

choose a second order Epanechnikov kernel, which satisfies our assumption A3(2) and part of 

A3(1). Assumption A3(1) further requires higher order kernel to make the bias disappear as in 

A5(3). With the choice of bandwidth and kernel function, our assumption A5(3) is violated. Thus, 

we investigate the robustness of our estimators against a popular kernel function of lower order.  

Aside from the estimator we propose, we also include the semiparametric estimator 
(1)

β


 

without considering the endogenous variable as in Robinson, two estimators β  and 
H

β  

proposed in Yao and Zhang (2011). 
(1)

β


serves as the benchmark because it ignores the 

endogeneity problem. Following the 2SLS literatures, we expect larger bias but smaller variance 

for 
(1)

β


 relative to the other estimators considered. The performance of β  and 
H

β  relative to 

other popular estimators, i.e., Li and Stengos (1996), has been investigated in Yao and Zhang 

(2011). It indicates β  and 
H

β  perform better, especially when i 1t 2tg (Z Z )  is nonlinear and 

heteroskedasticity is present. So we do not consider them here. We evaluate the performance of 

each estimator using bias (B), standard deviation (S), and root mean squared error (R) as criteria. 

In Appendix 1, we summarize the experiment results with 2 2

1 1t 2tζ ( ) (Z Z ) tZ  in Table 1 for 1g  

and Table 2 for 2g . The results with 2

2 1t 2tζ ( ) exp(Z 2Z ) tZ  are provided in Tables 3 and 4. 

The homoskedastic results with 2

3ζ ( ) 1tZ  are listed in Tables 5 and 6.  

We notice all estimators carry positive bias. As the sample size n  increases, estimators 

E

β , β  and 
H

β  perform better in terms of smaller bias, standard deviation and root mean 

squared error. This observation confirms our asymptotic results in Theorems 1, 2 as well as the 

asymptotic results obtained in Yao and Zhang (2011) that the three estimators are 

consistent.
(1)

β


’s performance does not improve because its bias does not go down as sample 

size increases. It is expected since 
(1)

β


 ignores the endogeneity problem. As θ  increases, the 

endogeneity problem is magnified and correspondingly, it is more difficult to estimate β . We 

observe all estimators’ bias increases. Though their standard deviation drops slightly, the drop is 
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dominated by the increase in bias. Thus the root mean square error increases with θ . It is harder 

to estimate β  when 
2 1t 2tg (Z Z )  is in the data-generating process, as indicated by the larger 

magnitudes on bias, standard deviation and root mean squared error for all estimators in 

2 1t 2tg (Z Z )  (Tables 2, 4, and 6) relative to those in 
1 1t 2tg (Z Z )  (Tables 1, 3, and 5).  

Across all experiment designs, 
(1)

β


carries the largest bias, generally smallest standard 

deviation, but largest root mean squared error, relative to the other estimators considered. So we 

focus on the relative performance of 
E

β , β  and 
H

β . When heteroskedasticities are present in 

the data-generating process, i.e., Tables 1-4 with 2

1ζ ( )tZ and 2

2ζ ( )tZ , 
E

β  performs best in 

terms of its smallest bias, standard deviation and root mean squared error, followed by 
H

β , then 

by β . It confirms our asymptotic results in Theorems 1 and 2 that 
E

β reaches the semiparametric 

efficiency bound. It makes sense to take the conditional heteroskedasticity information into 

account when constructing estimators, like 
E

β and 
H

β . Note even though 2

1ζ ( )tZ  and 2

2ζ ( )tZ  

are functions of both included and excluded exogenous variables 
1tZ  and 

2tZ , which is not the 

maintained heteroskedasticity structure for 
H

β  in assumption A6 of Yao and Zhang (2011), 
H

β  

still improves on β , which does not utilize any heteroskedasticity information. However, it pays to 

account for the information properly as in 
E

β . With 
E

β , we notice the further reduction of 

standard deviation and root mean squared error relative to 
H

β  is over 15% . On the other hand, 

when homoskedasticity is present in Tables 5 and 6, β  performs best, followed by 
H

β  and then 

by 
E

β . The outcome is expected as well. Since 
H

β  and 
E

β  involve additional estimation of the 

heteroskedasticity function which is unnecessary in the case of homoskedasticity, they generate 

additional noise in the estimation process. We notice the performances of the three estimators 

are fairly close in this case.  

To further illustrate the performances in finite sample, we provide Rosenblatt density 

estimates of the four estimates centered around the true value when 2

1ζ ( )tZ , 2 1t 2tg (Z Z )  and 

θ 0 8   are used in the data-generating process in Figure 1 for n 200  and Figure 2 when 

n 400 . The experiment designs correspond to the case of heteroskedasticity, tE(X ) tZ  is 

nonlinear, and severe endogeneity presented in Table 2. Similar graphs can be generated for 

other heteroskedastic experiments. We notice the density for 
(1)

β


 is generally taller, but centered 

farther away from zero, indicating smaller variance, but much larger bias that we observe above. 

As sample size increases, we note the density estimates for 
E

β , 
H

β  and β  get spikier, and 

centered closer around zero, confirming the asymptotic results. The density estimate for 
E

β  is 

significantly more tightly centered around zero, relative to those of the others, which indicates the 

finite sample improvement of 
E

β  over the other estimators considered.  
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We further compare our efficient estimator 
E

β  with the efficient sieve minimum distance 

estimator 
S

β  proposed by Ai and Chen (2003) in the simulation, whose implementation calls for 

numerical optimizations. Since the two estimators are constructed with different nonparametric 

estimators, we follow their simulation data generating process carefully for meaningful 

comparisons. The only changes we made here are that the endogenous variable 
tX  shows up 

only in the parametric part, and we investigate their performances with sample sizes 200 , 400 , 

and perform 200  repetitions. Larger value for the parameter ρ denotes higher degree of 

endogeneity(they use R, but we use ρ  since R is reserved here for the root mean squared 

error)and we set ρ 0 1   and 0 9  according to their prescription. The results aresummarized in 

Table A. We observe that as the sample size increases, both estimators’ performance improves, 

and it is harder to estimate for both when ρ  gets larger. The performance of 
E

β  is better than 

that of 
S

β , illustrating the finite sample gains obtained by using our kernel based 
E

β , which is 

explicitly constructed and easy to implement.  

5. Conclusion 

We propose an estimator for the parametric vector in a semparametric regression model, 

in which the associated regressors are correlated with the errors. We assume the data is iid, but 

can contain both continuous and discrete variables. Under general conditional heteroskedasticity 

structure, we show that our new estimator is consistent and asymptotically normally distributed. It 

allows the reduced form to be nonparametric and incorporates the heteorskedasticity information. 

We show it is efficient in the sense that it reaches the semiparametric efficiency bound. It is also 

asymptotically equivalent to semiparametric instrumental variable estimators that optimally select 

the instrumental variables, and thus are efficient among a class of semiparametric IV estimators 

with conditional moment restrictions. We perform a Monte Carlo study that implements the 

estimator, and illustrates its finite sample performance, which confirms our asymptotic result.  

 

 



54 JOURNAL OF QUANTITATIVE ECONOMICS 

Florens, J-P., Johannes, J. and Van Bellegem, S. (2009) Instrumental regression in partially 
linear models, IDEI working paper series, Num. 613 

Härdle, W., Liang, H. and J. Gao(2000) Partially linear models, Physica-Verlag, Heidelberg 

,mEenV��G��W��and�W��.��NeZe\�(200�)³Identification and estimation of triangular simultaneous 
equations models witKRXt�additiYit\´�Econometrica, 77(5),1481-1512 

/i�� 4�� (2000)³Efficient estimation of additive partially linear models´�International Economic 
Review, 41(4), 1073-1092 

Li, Q. and J. S. Racine(2007)Nonparametric Econometrics, Princeton University Press, Princeton 

/i��4��� and�6tengRV�� 7�(1���)³Semiparametric estimation of partially linear panel data modeOV´��
Journal of Econometrics, 71(1-2), 389-397 

/i�� 4�� and� $�� UOOaK(1��8)³Estimating partially linear panel data models with one-way error 
FRmpRnentV´�Econometric Reviews, 17(2), 145-166 

0a�� Y�� and� 5�� -�� CarrROO� (200�)� ³/RFaOO\� eIIiFient� eVtimatRrV� IRr� VemiparametriF� mRdeOV� ZitK 
meaVXrement�errRr´��Journal of the American Statistical Association, 101(476), 1465-1474 

Martins-)iOKR��C��and�)��YaR(200�)³Nonparametric frontier estimation via�ORFaO�Oinear�regreVViRn´��
Journal of Econometrics, 141(1), 283-319 

0at]Nin��5�/�(1���)³Restrictions of economic theory in nonparametric methods´��,n�EngOe��5��)���
and D. L. McFadden (Eds.) Handbook of Econometrics: Vol. IV, Elsevier Science, North Holland 

0at]Nin�� 5�/�(2008)³Identification in nonparametric simultaneous equations´, Econometrica, 
76(5), 945-978 

Newey, W. K. (1��0)³Efficient instrumental variable estimation of nonlinear 
models´�Econometrica, 58(4), 809-837 

NeZe\�� W�� .�(1���)³Efficient estimation of models with conditional moment 
restrictions´�inMaddala, G. S., C.R. Rao, and H.D. Vinod (Eds.) Handbook of Statistics, Vol. 11, 
419-454, Amsterdam: North-Holland 

Newey, W. K., F. Hsieh and J. M. Robins(200�)³Twicing kernels and a small bias property of 
VemiparametriF�eVtimatRrV´��Econometrica, 72(3), 947-962 

Newey, W.K. and J.L. Powell(200�)³Nonparametric instrumental variables estimation of 
nonparametric models´��(FRQRPHWULFD, 71(5), 1565-1578 

Newey, W. .��� -�� /�� PRZeOO�� and� )�� VeOOa� (1���)³Nonparametric estimation of triangular 
simultaneous equations models´�Econometrica, 67(3), 565±603 

Ng, S. and J. Pinkse(1995)Nonparametric two step estimation of unknown regression function 
when the regressors and the regressor error are not independent,working paper, University of 
Montreal 

PinNVe�� -�(2000)³Nonparametric two-step regression functions when regressors and error are 
dependent´�Canadian Journal of Statistics, 28(1), 289-300 

Otsu, T.(2007)³Penalized empirical likelihood estimation of semiparametric models´�Journal of 
Multivariate Analysis, 98(10), 1923-1954 

Robinson, P.(1988)³Root-n-consistent semiparametric regression´�Econometrica, 56(4), 931-954 



 EFFICIENT SEMIPARAMETRIC INSTRUMENTAL VARIABLE ESTIMATION UNDER CONDITIONAL ... 55 

Speckman, P.(1988)³Kernel smoothing in partial linear models´�Journal of the Royal Statistical 
Society, Series B, 50(3), 413-436 

Ruppert, D., S. J. Sheather, M. P. Wand(1995)³An effective bandwidth selector for local least 
squares regression´�Journal of the American Statistical Association, 90(432), 1257-1270 

Su, L., I. Murtazashvili, and A. Ullah(2011) Local linear GMM estimation of functional coefficient 
IV models with an application to estimating the rate of return to schooling, working paper, 
Singapore Management University 

Yao, F.(2011)Appendix to: Efficient semiparametric instrumental variable estimation under 
conditional heteroskedasticity,Economics Department, West Virginia 
University.http://community.wvu.edu/~fy006/hp/yao2011a.pdf  

Yao, F. and Zhang, J.(2011)Efficient semiparametric instrumental variable estimation, working 
paper, Economics Department, West Virginia University. 
http://community.wvu.edu/~fy006/hp/yao-zhang2009.pdf  

iii 

 




