
An asymptotic characterization of finite degree U-statistics with sample
size dependent kernels: applications to nonparametric estimators and test

statistics 1

Feng Yao

Department of Economics IFPRI
West Virginia University 2033 K Street NW
Morgantown, WV 26505, USA & Washington, DC 20006-1002, USA
email: feng.yao@mail.wvu.edu email: f.yao@cgiar.org
Voice: +1 304 293 7867 Voice: + 1 202 862 6488

and

Carlos Martins-Filho

Department of Economics IFPRI
University of Colorado 2033 K Street NW
Boulder, CO 80309-0256, USA & Washington, DC 20006-1002, USA
email: carlos.martins@colorado.edu email: c.martins-filho@cgiar.org
Voice: + 1 303 492 4599 Voice: + 1 202 862 8144

February, 2013

Abstract. We provide a simple result on the H-decomposition of a U-statistics that allows for easy de-
termination of its magnitude when the statistic’s kernel depends on the sample size n. The result provides
a direct and convenient method to characterize the asymptotic magnitude of semiparametric and nonpara-
metric estimators or test statistics involving high dimensional sums. We illustrate the use of our result in
previously studied estimators/test statistics and in a novel nonparametric R2 test for overall significance of
a nonparametric regression model.

Keywords and phrases: U-statistics, nonparametric R2, nonparametric testing.

JEL Classifications: C12, C14.

AMS-MS Classification. 62F10, 62G05, 62G08, 62G20.

1We thank the Associate Editor and two anonymous reviewers for their comments. Any remaining errors are the authors’
responsibility.



1 Introduction

Nonparametric and semiparametric statistical models have gained popularity due to their flexibility in spec-

ifying functional forms for moments or distributions under study (Li and Racine (2007), Tsybakov (2009)).

In many instances, the asymptotic characterization of estimators and test statistics associated with these

models involves the study of U-statistics. For example, consider the estimation of a generalized mean

θ = E(c(X)m(X)) (Newey (1994), Imbens and Ridder (2009)) where m(x) ≡ E(Y |X = x) and c(X) is

a known function. Given a random sample {(yi, xi)}ni=1, the estimator for m(x) can usually be written

as m̂(x) =
n∑
i=1

win(x)yi for weight functions win(x) that generally depend on the sample size n. Hence,

a nonparametric estimator for θ can be defined as θ̂n =
n∑
j=1

c(xj)
n∑
i=1

win(xj)yi = Tn +
(
n
2

)
un, where

Tn =
n∑
i=1

c(xi)win(xi)yi and un =
(
n
2

)−1∑
1≤i<j≤n φn(Zi, Zj) is a U-statistic of degree 2, symmetric

kernel φn(Zi, Zj) = c(xi)wjn(xi)yj + c(xj)win(xj)yi with Zi = (xi, yi).

The asymptotic behavior of Tn can easily be studied by suitable central limit theorems or law of large

numbers for triangular arrays, but a characterization of the asymptotic properties of un is more involved as

the kernel φn(Zi, Zj) depends on the sample size n.

There exists, however, a large literature providing various asymptotic results. For non degenerate U-

statistics with n-dependent kernels of degree k ∈ N, Weber (1983) and Rao Jammalamadaka and Janson

(1986) (k = 2) obtain central limit theorems (CLT) when the sequence {Zi}i=1,2,··· is independent and

identically distributed (IID) under different assumptions on the order of the sequence of U-statistic variances

V (un). For example, Weber requires that the variance of the conditional expectation of the kernels depend

on n in a specific manner (see condition (i) in Theorem 1) and that the U-statistics projections have nonzero

variances. Thus, his results cannot be applied to degenerate U-statistics (see terms A2n or A3n in Lemma 1

of our section 3).

Powell et al. (1989) obtains a CLT for U-statistics of degree k = 2 when E(φ2
n(Zi, Zj)) = o(n) and

{Zi}i=1,2,··· is IID. Under the same conditions, Martins-Filho and Yao (2006) show that U and V statistics of

degree k are
√
n asymptotically equivalent. Their result, together with a lemma in Lee (1988), implies the

√
n
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asymptotic equivalence in probability of a U-statistic projection and a V statistic. These results, however,

provide little guidance on analyzing the asymptotic properties of higher degree U-statistic whose magnitude

are different from
√
n. These situations occur frequently in nonparametric statistics/econometrics, as with

test statistics in Zheng (1996), Fan and Li (1996), Li (1999), Lavergne and Vuong (2000), Gu et al. (2007)

and Su and Ullah (2012) which converge to a normal distribution at a rate of nh1/2
n , where hn is a bandwidth

sequence used in estimation.

Weber (1980) and van Zwet (1984) obtain Berry-Esseen bounds when {Zi}i=1,2,··· is IID and the third

order moment of φn exist and Hall (1984), de Jong (1987) and Fan and Li (1999) have been obtained CLTs

for degenerate U-statistics with kernels that have fixed variance.

Applications of the extant results to characterize non/semiparametric estimators or test statistics requires

the verification of the order for the variance V (un) of their associated U-statistic. It is, therefore, convenient

to use Hoeffding (1961) H-decomposition and write un as a linear combination of k uncorrelated U-statistics

of degree 1, 2, · · · , k. Once the order of the variance of the component U-statistics are obtained, the order

of V (un) can easily be established. Furthermore, since H-decompositions are exact representations of the

U-statistic of interest, contrary to the projections used in Hoeffding (1948) of Weber (1983), it is possible

to focus on the component terms of un with leading variances. Obtaining the order of magnitude of each

components in the H-decomposition easily enables us to ignore the degenerate terms and the terms whose

orders are negligible, so we can focus on the exact expression of the leading term to perform further asymptotic

analysis.

In this paper, following Hoeffding (1961) and Lee (1990), we provide a convenient expression that deter-

mines the order of each component of an H-decomposition for a U-statistic of degree k with n-dependent

kernel. As expected, since the U-statistic kernel depends on n, the order of each component depends on n

explicitly. Furthermore, it depends on the leading variance of the conditional expectation of the U-statistic

kernel, which also depends on n. We illustrate the use of our result by applying it to previously studied

estimators and test statistics considered by Li (1996) and Lavergne and Vuong (2000). In addition, we

propose and apply our result to the study of a novel test statistic for the overall significance of a regression
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model based on a nonparametric R2.1 Besides this introduction, we provide our main result in section 2

and illustrate its use in section 3. A brief conclusion is provided in section 4. All proofs and technical

assumptions are relegated to the Appendix.

2 The order of magnitude of U-statistics

Let {Zi}ni=1 be a sequence of independent and identically distributed (IID) random variables and φn(Z1, · · ·

, Zk) be a symmetric function with k < n. We call φn(Z1, · · · , Zk) a kernel function that depends on n and

a U-statistic un of degree k is defined as

un =
(
n
k

)−1 ∑
(n,k)

φn(Zi1 , · · · , Zik), (1)

where
∑

(n,k)

denotes the sum over all subsets 1 ≤ i1 < i2 < · · · < ik ≤ n of {1, 2, · · · , n}. Now, let

φcn(z1, · · · , zc) = E(φn(Z1, · · · , Zc, Zc+1, · · · , Zk)|Z1 = z1, Z2 = z2, · · · , Zc = zc), σ2
cn = V ar(φcn(Z1, · · · ,

Zc)) and θn = E(φn(Z1, · · · , Zk)). In addition, recursively define h(1)
n (z1) = φ1n(z1)− θn, · · · , h(c)

n (z1, · · · ,

zc) = φcn(z1, · · · , zc) −
c−1∑
j=1

∑
(c,j)

h
(j)
n (zi1 , · · · , zij ) − θn for c = 2, · · · , k, where the sum

∑
(c,j)

is over all subsets

1 ≤ i1 < · · · < ij ≤ c of {1, · · · , c}. By Hoeffding’s H-decomposition we have

un = θn +
(
n
k

)−1 k∑
j=1

(
n− j
k − j

)∑
(n,j)

h(j)
n (Zv1 , · · · , Zvj

) = θn +
k∑
j=1

(
k
j

)
H(j)
n (Zv1 , · · · , Zvj

),

where H(j)
n (Zv1 , · · · , Zvj

) =
(
n
j

)−1 ∑
(n,j)

h
(j)
n (Zv1 , · · · , Zvj

). Since un can be written as a finite sum of

H
(j)
n , its magnitude can be determined by studying H(j)

n . The following result shows that the magnitude of

H
(j)
n is determined by n and the leading variance σ2

jn defined above.

Theorem 1. Let {Zi}ni=1 be an IID sequence and un be defined as in equation (1) such that

un = θn +
k∑
j=1

(
k
j

)
H(j)
n (zv1 , · · · , zvj ).

Then,

(a) V ar
(
H

(j)
n

)
= O

(
n−j

j∑
c=1

σ2
cn

)
= O

(
n−jσ2

jn

)
and H(j)

n = Op

(
(n−jσ2

jn)
1
2

)
;

1As pointed out be a referee, it is possible to generalize equation (5.13) and Theorem 5.1 in Hoeffding (1948) to sample
size dependent kernels to study the asymptotic magnitude of the variance of U-statistics. However, in this case one could not
determine the specific component expressions which determine the order of magnitude of the underlying U-statistic.
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(b) for 1 ≤ c ≤ c′ ≤ k, we have σ2
cn

c ≤
σ2

c′n

c′ .

Theorem 1 establishes that provided the H(j)
n ’s are of different magnitudes, the magnitude of un can be

determined by the largest term among H(j)
n ’s and θn. Instead of a laborious case by case component analysis,

the magnitude of un can easily be determined using H(j)
n = Op((n−jσ2

jn)
1
2 ) for j = 1, · · · , k. Since in most

instances k is relatively small, our theorem provides a convenient manner to determine the magnitude of un

by analyzing the leading variance σ2
jn.

We expect that, in general, the order of degeneracy determines the asymptotic distribution of U-statistics.

For example, when the U-statistic is degenerate of order d, i.e., 0 = σ2
1n = · · · = σ2

dn < σ2
d+1n, then H

(d+1)
n

will determine its asymptotic distribution. We can draw a similar observation for U-statistics whose kernels

are independent of sample size. However, we note that since σ2
jn’s all depend on n, we need to argue

separately that H(j)
n = Op

(
(n−jσ2

jn)
1
2

)
for j = d + 2, · · · , k is of smaller order than H

(d+1)
n , so that we

can focus on H
(d+1)
n to study the asymptotic distribution of un. This could entail additional regularity

conditions, for example, assumptions on the bandwidth to decay to zero in the examples studied in section

3. There will be, of course, no additional work in U-statistics whose kernel does not depend on n, since σ2
j ’s

do not depend on n, H(j+1) is automatically of smaller order than H(j).

Theorem 1 is useful in a variety of settings. As mentioned in the introduction, Lemma 3.1 in Powell et al.

(1989) is a special case with k = 2. Alternatively, if the U-statistic kernel does not depend on n then our

theorem reproduces classical results in Hoeffding (1961) and Lee (1990) which give H(j)
n = Op((n−j)

1
2 ).

Theorem 1 is also useful in establishing the magnitude of some symmetric statistics. In particular, if

Sn(Z1, Z2, · · · , Zn) is a symmetric statistic of finite order k, then by Theorem 1 in Lee (1990, p. 164), Sn is

a U-statistic of degree k with n-dependent kernels given by

ψn(z1, · · · , zk) =
k∑
j=0

(
n
j

)(
k
j

)−1 ∑
(k,j)

s(j)n (zi1 , · · · , zij )

where s(j)n (z1, · · · , zj) = E(Sn(Z1, Z2, · · · , Zn)|Z1 = z1, · · · , Zj = zj)−
∑j−1
l=0

∑
(j,l)

s
(l)
n (zi1 , · · · , zil) and s

(0)
n =

E(Sn(Z1, Z2, · · · , Zn)). Thus, Theorem 1 can be used to establish bounds and orders for the variance of

these symmetric statistics. As such, our Theorem 1 aides the verification of bounds on second moments
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assumed, for example, in Rubin and Vitale (1980).

Lenth (1983) has shown that symmetric statistics that satisfy

Sn(Z1, · · · , Zn) =
1
n

n∑
i=1

Sn−1(X1, · · · , Xi−1, Xi+1, · · · , Xn) (2)

are U-statistics of degree k < n. Hence, Theorem 1 can also be applied to establish the magnitude of

symmetric statistics that satisfy condition (2).

Although there exists a rich literature on asymptotic characterizations of symmetric statistics based on

H-decompositions (Efron and Stein (1981), Karlin and Rinott (1982), Dynkin and Mandelbaum (1983),

Takemura (1983), Mandelbaum and Taqqu (1984), van Zwet (1984), Friedrich (1989) and Pecatti (2004)),

all of these papers assume a priori the existence of higher order moments for the symmetric statistic, failing

to provide a route for the determination of the magnitude of un as in Theorem 1. To our knowledge, the

most promising result in this regard is Theorem 4.1 in Vitale (1992). He provides a useful representation for

the variance of conditional expectations of symmetric statistics, but gives no additional insight on how to

establish their magnitude as n→∞.

3 Applications: nonparametric estimator and test statistics

3.1 Previous literature

We consider the application of Theorem 1 to semiparametric estimation of partially linear models. Li (1996)

shows that a
√
n consistent estimator for the coefficients of the parametric part of the regression function can

be obtained by using a nonnegative second-order kernel if the dimension of the variables in the nonparametric

part is less than or equal to five. The result is obtained by, among other things, determining the order of

magnitude of a sum of squared differences between a nonparametric conditional mean estimator and the true

conditional mean, which is a U-statistic of finite degree. A specific result is provided in his Lemma 2 for

Sĝ−g = 1
n

n∑
i=1

(ĝi− gi)2I(f̂i > b), where ĝi = 1
(n−1)aq

∑
j 6=i
Kijgj/f̂i, f̂i = 1

(n−1)aq

∑
j 6=i
Kij and Kij = K(Zi−Zj

a ). K

is assumed to be a vth order kernel function, a is a bandwidth, I(·) is an indicator function and b ∈ R. We

show below that the order of magnitude of Sĝ−g can be determined conveniently by applying our theorem.

5



Using the assumptions and notations in Li (1996) we have,

Sĝ−g =
1
n

n∑
i=1

 1

f̂i(n− 1)aq
∑
j 6=i

Kij(gj − gi)

2

I(f̂i > b)

≤ 1
n(n− 1)2a2qb2

n∑
i=1

∑
j 6=i

∑
l 6=i

Kij(gj − gi)Kil(gl − gi)

=
1

n(n− 1)2
∑∑
i 6=j

1
a2qb2

K2
ij(gj − gi)2︸ ︷︷ ︸
ψnij

+
1

n(n− 1)2
∑∑∑

i 6=j 6=l

1
a2qb2

KijKil(gj − gi)(gl − gi)︸ ︷︷ ︸
ψnijl

= S1n + S2n.

nS1n = 1
(n−1)2

n∑
i=1

n∑
j=1

i<j

(ψnij + ψnji︸ ︷︷ ︸
φnij

) = 1
2

(
O(n−3) +

(
n
2

)−1
)

n∑
i=1

n∑
j=1

i<j

φnij and
(
n
2

)−1 n∑
i=1

n∑
j=1

i<j

φnij is a sec-

ond degree U-statistic un. For an arbitrary constant c, a3qb4σ2
2n ≤ ca3qb4E(ψ2

nij) = c
aqE

(
K4
ij(gj − gi)4

)
=

O(1), thus H(2)
n = Op((n−2a−3qb−4)

1
2 ) and H

(1)
n = Op((n−1a−2qb−4)

1
2 ). By his assumption A1 for v ≥ 1,

|g(Zi + aψ)− g(Zi)| ≤ Hg(Zi)aψ, where Hg(·) has finite fourth moment. Hence, θn = 1
aqb2

∫
K2(ψ)(g(Zi +

aψ)− g(Zi))2f(Zi)f(Zi + aψ)dψdZi = O(a−q+2b−2). Combing the results, we have nS1n = Op(a−q+2b−2),

and consequently S1n = Op(n−1a−q+2b−2).

Now, S2n = 1
6

(
O(n−4) +

(
n
3

)−1
)∑∑∑

i<j<l

(ψnijl + ψnilj + ψnjil + ψnjli + ψnlij + ψnlji︸ ︷︷ ︸
φnijl

) and we have

that
(
n
3

)−1∑∑∑
i<j<l

φnijl is a third degree U-statistic. a2qb4σ2
3n ≤ ca2qb4E(φ2

nijl) = c
a2qE(K2

ijK
2
il(gj −

gi)(gl − gi)) = O(a2). Hence, σ2
3n = O(a−2q+2b−4) and H

(3)
n = Op((n−3a−2q+2b−4)

1
2 ). Furthermore,

we have σ2
2n ≤ cE

(
E2(ψnijl|Zi, Zj) + E2(ψnijl|Zi, Zl) + E2(ψnijl|Zj , Zl)

)
and given his assumption A1 we

have E(ψnijl|Zi, Zj) = Kij

aqb2 (gj − gi) 1
aqE(Kil(gl − gi)|Zi) = Kij

aqb2 (gj − gi)O(av) uniformly over Zi. Thus,

E(E2(ψnijl|Zi, Zj)) = O(a−q+2v+2b−4). Similar arguments give E(E2(ψnijl|Zi, Zl)) = O(a−q+2v+2b−4) and

E(E2(ψnijl|Zi, Zj)) = O(a−q+4b−4). Thus, σ2
2n = O(a−q+4b−4) and H

(2)
n = Op((n−2a−q+4b−4)

1
2 ). In addi-

tion, σ2
1n ≤ cE(E2(ψnijl|Zi) +E2(ψnijl|Zj) +E2(ψnijl|Zl)). E(ψnijl|Zi) = 1

b2

∫
K(ψ1)K(ψ2)(g(Zi − aψ1)−

g(Zi))(g(Zi − aψ2) − g(Zi))f(Zi − aψ1)f(Zi − aψ2)dψ1dψ2 = O(a2vb−2) uniformly over Zi. Consequently,

E(E2(ψnijl|Zi)) = O(a4vb−4). Similarly, E(E2(ψnijl|Zj)) and E(E2(ψnijl|Zl) are of the same order. Thus,

we have H(1)
n = O(n−

1
2 a2vb−2) and θn = cEψnijl = O(a2vb−2). In all,

S2n = Op(n−
3
2 a−q+1b−2) +Op(n−1a−

q
2+2b−2) +O(n−

1
2 a2vb−2) +O(a2vb−2).
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Combining results for S1n and S2n, we conclude Sĝ−g = Op(n−1a−q+2b−2) +Op(a2vb−2) as in Li (1996).

As a second example, consider the nonparametric significance test proposed in Lavergne and Vuong

(2000). The test statistic is similar to that in Fan and Li (1996), but it places less restrictive conditions on the

smoothing parameters. The test is properly centered and has smaller bias in finite sample. The asymptotic

distribution of the test is studied with eleven terms provided in the proof of their Theorem 1. Here, we

focus exclusively on the term I1,3 as all other terms are of similar nature. Following their assumptions and

notations, we take g and h as bandwidths and L(·) and K(·) as kernel functions. r1(X1i) = E(Y |X1i),

r2(X2i) = E(Y |X2i) = r1(X1i) + δnd(X2i) indicating the local alternative for δn ∈ [0, 1]. The regressors X1i,

X2i are of dimensions p1 and p2 respectively, with p1 < p2 and the components of X1i are a subset of the

components of X2i.

I1,3 =
(n− 3)!
n!

∑∑∑
i 6=j 6=l

(Yi − r1(X1i))f1(X1i)(Yl − r1(X1l))g−p1L
(
X1i −X1l

g

)
h−p2K

(
X2i −X2j

h

)
︸ ︷︷ ︸

ψnijl

=
(
n
3

)−1∑∑∑
i<j<l

ψnijl + ψnilj + ψnjil + ψnjli + ψnlij + ψnlji︸ ︷︷ ︸
φnijl

 ,

which is a U-statistic of degree 3. We determine its order of magnitude using Theorem 1. First, gp1hp2σ2
3n ≤

cgp1hp2Eψ2
nijl = c

gp1hp2E(u2
iu

2
l f

2
1 (X1i)L2(X1j−X1l

g )K2(X2j−X2j

h )) = O(1) and consequently we have σ2
3n =

O(g−p1h−p2) and H
(3)
n = O((n−3g−p1h−p2)

1
2 ).

Second, σ2
2n ≤ cE

(
E2(ψnijl|Zi, Zj) + E2(ψnijl|Zi, Zl) + E2(ψnijl|Zj , Zl)

)
. Since E(ul|X2l) = 0, we have

E(ψnijl|Zi, Zj) = 0. E(ψnijl|Zi, Zl) = uifiulE(LnjlKnij |X2i, X1l) = uifiulO(1) uniformly over X1l, and

X2i. E(ψnijl|Zj , Zl) = ulLnjlE(uifiKnij |X2j) = δnulLnjlE(d(X2i)fiKnij |X2j) = δnulLnjlO(1) uniformly

overX2j , where the second to last equality follows from ui = δnd(X2i)+Yi−r2(X2i) and E(Yi−r2(X2i)|X2i) =

0. Consequently, σ2
2n = O(δ2ng

−p1)) and Hn(2) = Op((n−2δ2ng
−p1)

1
2 ).

Third, σ2
1n ≤ cE(E2(ψnijl|Zi) + E2(ψnijl|Zj) + E2(ψnijl|Zl)). E(ψnijl|Zi) = E(ψnijl|Zj) = 0 and

E(ψnijl|Zl) = ulE(uif1(X1i)LnjlKnij |X1l) = δnulE(d(X2i)f1(X1i)LnjlKnij |X1l) = δnulO(1) uniformly

over X1l. Consequently, σ2
1n = O(δ2n) and H

(1)
n = Op((n−1δ2n)

1
2 ).

Finally, given that θn = 0 we have I1,3 = Op((n−1δ2n)
1
2 ) + Op((n−2δ2ng

−p1)
1
2 ) + Op((n−3g−p1h−p2)

1
2 ).
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Under the assumptions in Theorem 1 of Lavergne and Vuong (2000) we obtain nh
p2
2 I1,3 = δn

√
nh

p2
2 Op(1) +

op(1), which coincides with their Proposition 2.

3.2 A new test for overall significance of a nonparametric regression

Here, we use Theorem 1 to establish the asymptotic distribution of a new test for overall significance of a

nonparametric regression. For simplicity of exposition we consider the standard univariate nonparametric

regression model

yt = m(xt) + εt, with t = 1, 2, · · · , n, (3)

where m(xt) = E(yt|xt), E(εt|xt) = 0, V (εt|xt) = σ2(xt). Pearson’s correlation ratio for this model is given

by V (m(x))
V (y) = 1− E(y−m(x))2

V (y) and can be interpreted as a nonparametric R2 (Doksum and Samarov (1995)).

Under the null hypothesis H0 : P (E(yt|xt) = µ) = 1 we have R2 = 0 with alternative hypothesis given by

H1 : P (E(yt|xt) = µ) < 1, where µ ∈ < is some constant. Thus, we define

R̂2 = 1−

1
n

n∑
t=1

(yt − m̂(xt))2

s2y
(4)

where s2y = 1
n

n∑
t=1

(yt − ȳ)2, ȳ = n−1
∑n
t=1 yt and m̂(x) is the local linear estimator (Stone (1977), Fan

(1992)) for m(x). Specifically, m̂(x) = α̂ where (α̂, β̂) = argminα,β
∑n
t=1(yt − α − β(xt − x))2K

(
xt−x
hn

)
,

K(·) : R→ R is a kernel function and 0 < hn → 0 as n→∞ is a bandwidth. Values of R̂2 in the vicinity of

zero are an indication of poor model fit, i.e., an indication that xt is not a regressor. The following lemma

provides the asymptotic distribution of a suitably centered and normalized R̂2. We note that, as is common

with these types of test statistics, a bias correction is needed. However, we do not explore this correction

here as our purpose is simply to illustrate the use of Theorem 1.

Lemma 1. Under H0 and assumptions A1-A7 in the Appendix, we have that

nh1/2
n

(
R̂2 +

A1n + I3n
s2y

)
d→ N(0, E(σ2(xt))−2V ),

where V = 2E
(
σ4(x)
f(x)

) ∫
(2K(u) −

∫
K(x)K(u + x)dx)2du, I3n = 1

n3h2
n

n∑
t=1

n∑
i=1

t6=i

K2(xi−xt

hn
) ε2i
f2(xt)

and A1n =

− 2
n2hn

n∑
t=1

K(0) ε2t
f(xt)

.
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In essence, the proof of the Lemma (see Appendix) requires the analysis of the asymptotic behavior of s2y

and 1
n

n∑
t=1

(yt − m̂(xt))2. Theorem 1 is used repeatedly. First, ȳ2 is a second degree U-statistics whose kernel

does not depend on n, thus a straightforward application of Theorem 1 gives ȳ2 = µ2 + 2
n

n∑
t=1

µεt +Op(n−1).

Hence, underH0 we have 1
n

n∑
t=1

(yt−ȳ)2 = µ2+ 2
n

n∑
t=1

µεt+ 1
n

n∑
t=1

ε2t−(µ2+ 2
n

n∑
t=1

µεt+Op(n−1)) = 1
n

n∑
t=1

ε2t+Op(n
−1).

Also, under H0 we have 1
n

n∑
t=1

(yt − m̂(xt))2 = 1
n

n∑
t=1

ε2t + 2
n

n∑
t=1

(µ− m̂(xt))εt + 1
n

n∑
t=1

(µ− m̂(xt))2. The second

and third terms on the right side of the last equality can be represented as U-statistics of order up to three.

We apply Theorem 1 repeatedly to determine their order of magnitude and obtain converge in distribution

at the rate nh
1
2
n .

4 Summary and conclusion

We provide a simple result that permits the determination of the magnitude of a U-statistics of finite degree

k with kernel that depends on n. The order of magnitude depends on the leading variance of the conditional

expectation of the kernel function, which depends on n. Our result permits researchers to easily obtain the

magnitude of nonparametric and semiparametric estimators and test statistics where high dimensional sums

are involved.

Appendix

The proof of Theorem 1: Let Gx(·) be the distribution function of a single point mass at x, and let F (·)
be the distribution of the random variable Zi. As in Lee (1990) we have

h(j)
n (z1, · · · , zj) =

∫
· · ·
∫
φn(u1, · · · , uk)

j∏
i=1

(dGzi(ui)− dF (ui))
k∏

i=j+1

dF (ui).

Define h
(j)
c,n(z1, · · · , zc) = E(h(j)

n (Z1, · · · , Zc, Zc+1, · · · , Zj)|Z1 = z1, · · · , Zc = zc) and γ2
cjn = V ar(h(j)

c,n

(Z1, · · · , Zc)). Then, from Theorem 2 in section 1.6 in Lee (1990) we have h(j)
j−1,n(z1, · · · , zj−1) = 0 and for

any 1 ≤ c ≤ j − 1, E(h(j)
j−1,n(z1, · · · , zc, Zc+1, · · · , Zj−1)) = 0. By the Law of Iterated Expectation, we have

E(h(j)
c,n(Z1, · · · , Zc)) = E(h(j)

n (Z1, · · · , Zj)) = 0. Hence, we have γ2
cjn = 0 for all 1 ≤ c ≤ j − 1 and the only

nonzero γ2
cjn is γ2

jjn ≡ γ2
jn = V ar(h(j)

j,n(Z1, · · · , Zj)) = V ar(h(j)
n (Z1, · · · , Zj)). Now, consider the covariance

9



between h
(j)
n (Zv1 , · · · , Zvj

) and h
(j)
n (Zu1 , · · · , Zuj

) with c1 = 0, · · · , j variables in common. Then,

cov(h(j)
n (Zv1 , · · · , Zvj ), h(j)

n (Zu1 , · · · , Zuj )) = E
(
h(j)
n (Z1, · · · , Zj)h(j)

n (Z1, · · · , Zc1 , Zj+1, · · ·Z2j−c1)
)

=∫
· · ·
∫
h(j)
n (z1, · · · , zj)h(j)

n (z1, · · · , zc1 , zj+1, · · · z2j−c1)
2j−c1∏
i=1

dF (zi) =

∫
· · ·
∫

(
∫
· · ·
∫
h(j)
n (z1, · · · , zj)

j∏
i=c1+1

dF (zi)× (
∫
· · ·
∫
h(j)
n (z1, · · · , zc1 , zj+1, · · · z2j−c1)

×
2j−c1∏
i=j+1

dF (zi))
c1∏
i=1

dF (zi) =
∫
· · ·
∫

(h(j)
c1n(z1, · · · , zc1))2

c1∏
i=1

dF (zi) = E(h(j)
c1n(z1, · · · , zc1))2

= V (h(j)
c1n(z1, · · · , zc1)) = γ2

c1jn 6= 0 only when c1 = j.

The total number of pairs of h(j)
n (Zv1 , · · · , Zvj ) and h

(j)
n (Zu1 , · · · , Zuj ) with c1 elements in common such

that cov(h(j)
n (Zv1 , · · · , Zvj

), h(j)
n (Zu1 , · · · , Zuj

)) = γ2
c1jn

is
(
n
j

)(
j
c1

)(
n− k
k − c1

)
because there are(

n
j

)
ways to choose the variables in h

(j)
n (Zv1 , · · · , Zvj

), and there are
(

j
c1

)
ways to choose c1 vari-

ables among the j variables in h
(j)
n (Zv1 , · · · , Zvj

) so that they appear in h
(j)
n (Zu1 , · · · , Zuj

). Also, the

different variables in h
(j)
n (Zu1 , · · · , Zuj ) can be chosen in

(
n− k
k − c1

)
number of ways. Hence, V ar(H(j)

n ) =(
n
j

)−1 j∑
c1=0

(
j
c1

)(
n− k
k − c1

)
γ2
c1jn

=
(
n
j

)−1

γ2
jn since γ2

c1jn
= 0 ∀ 0 ≤ c1 ≤ j − 1. Furthermore, for

j′ ≥ j we have

cov(h(j)
n (Zv1 , · · · , Zvj ), h(j′)

n (Zv1 , · · · , Zvj , Zvj+1 , · · · , Zvj′ )) =

E
(
h(j)
n (Zv1 , · · · , Zvj

)E(h(j)
n (Zv1 , · · · , Zvj

, Zvj+1 , · · · , Zv′
j
|Zvj+1 = zvj+1 , · · · , Zvj′ = zvj′ )

)
= 0.

Thus,

σ2
cn = V ar(φcn(Z1, · · · , Zc)) = V ar

 j∑
c=1

∑
(c,j)

h(j)
n (Zi1 , · · · , Zij ) + θn


=

j∑
c=1

V ar

∑
(c,j)

h(j)
n (Zi1 , · · · , Zij )

 =
j∑
c=1

(
c
j

)2

V ar(H(j)
cn ) =

c∑
j=1

(
c
j

)
γ2
jn.

Here, H(j)
cn =

(
c
j

)−1 ∑
(c,j)

h
(j)
n (Zi1 , · · · , Zij ) and by following similar arguments as above we obtain V ar(H(j)

cn ) =(
c
j

)−1

γ2
jn.
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Since

d∑
c=1

(
d
c

)
(−1)d−cσ2

cn =
d∑
c=1

c∑
j=1

(
c
j

)(
d
c

)
(−1)d−cγ2

jn =
d∑
j=1

d∑
c=j

(
c
j

)(
d
c

)
(−1)d−cγ2

jn

and with c′ = c− j,

=
d∑
j=1

d−j∑
c′=0

(
c′ + j
j

)(
d

c′ + j

)
(−1)d−c

′−jγ2
jn

=
d∑
j=1

d−j∑
c′=0

(
d− j
c′

)(
d
j

)
(−1)d−c

′−jγ2
jn

given
(
c′ + j
j

)(
d

c′ + j

)
=
(
d− j
c′

)(
d
j

)
=

d∑
j=1

(
d−j∑
c′=0

(
d− j
c′

)
(−1)−c

′
)(−1)d−j

(
d
j

)
γ2
jn

= γ2
dn,

where the last equality follows from
d−j∑
c′=0

(
d− j
c′

)
(−1)−c

′
=

d−j∑
c′=0

(
d− j
c′

)
(−1)c

′
= 0 except when j = d.

Hence, we obtain result (a) that V ar(H(j)
n ) =

(
n
j

)−1

γ2
jn =

(
n
j

)−1 j∑
c=1

(
j
c

)
(−1)j−cσ2

cn. Second,

since σ2
cn = V ar(φcn(Z1, · · · , Zc)) =

c∑
j=1

(
c
j

)
γ2
jn ≥ 0, for c ≤ c′, we have cσ2

c′n−c′σ2
cn = c

c′∑
j=1

(
c′

j

)
γ2
jn−

c′
c∑
j=1

(
c
j

)
γ2
jn =

c∑
j=1

(c
(
c′

j

)
− c′

(
c
j

)
)γ2
jn +

c′∑
j=c+1

c

(
c′

j

)
γ2
jn ≥ 0, since c

(
c′

j

)
− c′

(
c
j

)
≥ 0 for

c′ ≥ c ≥ j ≥ 1, which verifies result (b).

The proof of Lemma1 depends on the following assumptions:

A1. {xt, yt}nt=1 is an independently and identically distributed sequence.

A2. E(εt|xt) = 0, V (εt|xt) = σ2(xt) > 0, σ2(x) is continuous at x and E
(
(σ2(xt))2

)
<∞.

A3. Denote the marginal density of xt by f . We have: (1) 0 < Bf ≤ f(x) ≤ B̄f < ∞ for all x ∈ G, G a
compact subset of R; (2) for all x, x′ ∈ G, |f(x)− f(x′)| < mf |x− x′| for some 0 < mf <∞; (3) f(x)
is uniformly continuous in G.

A4. 0 < Bm ≤ m(x) ≤ B̄m < ∞ for all x ∈ G, where m(x) : R → R is a measurable twice continuously
differentiable function in R, |m(2)(x)| < B̄2m <∞ for all x ∈ G.

A5. nh3
n →∞.

A6. K(·) : S → < is a symmetric density function with bounded support S ⊂ R such that
∫
xK(x)dx = 0,∫

x2K(x)dx = σ2
K , |K(x)| < Bk <∞ for all x ∈ R and |ujK(u)−vjK(v)| ≤ ck|u−v|, for j = 0, 1, 2, 3.

A7. E(ε4t |xt) <∞, fxt|εt(x) <∞, f(x, ε) is continuous around x.

11



The proof of Lemma 1: Given A1 and A2 we have (1) 1
n

n∑
t=1

(yt − ȳ)2 = 1
n

n∑
t=1

ε2t + Op(n−1). Under

H0
1
n

n∑
t=1

(yt − m̂(xt))2 = 1
n

n∑
t=1

ε2t + 2
n

n∑
t=1

(µ − m̂(xt))εt + 1
n

n∑
t=1

(µ − m̂(xt))2. Letting e′ = (1, 0) we follow

Fan (1992) and write 2
n

n∑
t=1

(µ − m̂(xt))εt = − 2
n2hn

n∑
t=1

n∑
i=1

e′S−1
n (xt)K(xi−xt

hn
)εiεt

(
1

xi−xt

hn

)
where Sn(x) =(

S0n(x) S1n(x)
S1n(x) S2n(x)

)
where Sjn(xt) = 1

nhn

n∑
i=1

K(xi−xt

hn
)(xi−xt

hn
)j , j = 0, 1, 2. Under A5 and A6 we can

use Lemma 1 in Martins-Filho and Yao (2007) to obtain sup
xt∈G
|Sjn(xt) − ESjn(xt)| = Oa.s.((nhn

lnn )−
1
2 ). In

addition, under A3, E(Sjn(xt)) =
∫
K(ψ)ψjf(xt + hnψ)dψ → f(xt)

∫
K(ψ)ψjdψ uniformly over xt ∈ G.

Hence, sup
xt∈G
|S−1
jn (xt)− S−1

j (xt)| = oa.s.(1) and

2
n

n∑
t=1

(µ− m̂(xt))εt = − 2
n2hn

n∑
t=1

n∑
i=1

e′
(
S−1
n (xt)− S−1(xt) + S−1(xt)

)
K(

xi − xt
hn

)εiεt

(
1

xi−xt

hn

)

=

− 2
n2hn

n∑
t=1

1
f(xt)

K(0)ε2t −
2

n2hn

n∑
t=1

n∑
i=1

t6=i

1
f(xt)

K(
xi − xt
hn

)εiεt

 (1 + oa.s.(1))

= (A1n +A2n)(1 + oa.s.(1)).

Using similar arguments we have 1
n

n∑
t=1

(µ− m̂(xt))2 = In(1 + oa.s.(1)) where

In =
1

n3h2
n

n∑
t=1

n∑
i=1

n∑
j=1

1
f2(xt)

K

(
xi − xt
hn

)
K

(
xj − xt
hn

)
εiεj .

The magnitude of In is obtained by considering the following cases: (a) when t = i = j we have the

corresponding terms in In being I1n = 1
n3h2

n

n∑
t=1

1
f2(xt)

K2(0)ε2t , which by A2, A3 and A5, we have I1n =

Op((nhn)−2) = op(n−1); (b) when t = i (or t = j) we have the corresponding terms in In being

I2n =
2

n3h
3
2
n

n∑
t=1

n∑
j=1

t 6=j

1
2
√
hnf2(xt)

K(0)K(
xj − xt
hn

)εtεj =
2

n3h
3
2
n

n∑
t=1

n∑
j=1

t6=j

ψn(Zt, Zj)

where Zt = (xt, εt). Then,

nh
3
2
n I2n =

1
n2

n∑
t=1

n∑
j=1

t 6=j

(ψn(Zt, Zj) + ψn(Zj , Zt)) =
1
n2

n∑
t=1

n∑
j=1

t 6=j

φn(Zt, Zj) =
2
n2

n∑
t=1

n∑
j=1

t<j

φn(Zt, Zj),

which is U-statistic of degree 2. Its magnitude is easily obtained applying Theorem 1. We have H(1)
n = 0,

θn = 0 as E(φn(Zt, Zj)|Zt) = 0 and E (φn(Zt, Zj)) = 0. Hence, by A2 and A7 we have that nh
3
2
n I2n =

Op((n−2σ2
2n)

1
2 ) = Op

(
n−1

(
E
(
φ2
n(Zt, Zj)

)) 1
2
)

and

E
(
φ2
n(Zt, Zj)

)
≤ cE

(
ψ2
n(Zt, Zj)

)
=

c

4hn
K2(0)E

(
1

f4(xt)
K2(

xj − xt
hn

)× ε2t ε2j
)

→ c

4
K2(0)E

(
1

f3(xt)
σ4(xt)

)∫
K2(ψ)dψ <∞.
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Thus, nh
3
2
n I2n = Op(n−1) and I2n = op(n−1); (c) when i = j but t 6= i, we have the corresponding terms

in In being I3n = 1
n3h2

n

n∑
t=1

n∑
i=1

t 6=i

1
f2(xt)

K2(xi−xt

hn
)ε2i ; (d) when t, i and j are distinct we put ψn(Zt, Zi, Zj) =

1
h2

n

1
f2(xt)

K(xi−xt

hn
)K(xj−xt

hn
)εiεj and the corresponding terms in In are

I4n =
1
n3

n∑
t=1

n∑
i=1

n∑
j=1

t 6=i6=j

ψn(Zt, Zi, Zj) =
1

3n3

n∑
t=1

n∑
i=1

n∑
j=1

t6=i 6=j

(ψn(Zt, Zi, Zj) + ψn(Zi, Zt, Zj) + ψn(Zj , Zi, Zt)︸ ︷︷ ︸
φn(Zt,Zi,Zj)

)

=
1
n3

∑∑∑
1=t<i<j=n

2φn(Zt, Zi, Zj), where φn(Zt, Zi, Zj) is symmetric.

=
1
3

(
6
n3
−
(
n
3

)−1

+
(
n
3

)−1
)∑∑∑

1=t<i<j=n

φn(Zt, Zi, Zj).

Note that 6
n3 −

(
n
3

)−1

= O(n−4) and un =
(
n
3

)−1 ∑∑∑
1=t<i<j=n

φn(Zt, Zi, Zj) is a U-statistic of degree

three. Again, its magnitude can be easily obtained from Theorem 1. In this case θn = E(φn(Zt, Zi, Zj)) =
H

(1)
n = 0 since the conditional expectation of φn(Zt, Zi, Zj) is zero conditioning on Zt, Zi, or Zj . Now,

E(φn(Zt, Zi, Zj)|Zt, Zi) = E(ψn(Zt, Zi, Zj) + ψn(Zi, Zt, Zj) + ψn(Zj , Zi, Zt)|Zt, Zi)

=
εiεt
hn

E

(
1

hnf2(xj)
K

(
xi − xj
hn

)
K

(
xt − xj
hn

)
|Zt, Zi

)
= φ2n(Zt, Zi),

and un = 6
n(n−1)

n∑
t=1

n∑
i=1

t<i

φ2n(Zt, Zi) + Op(H
(3)
n ), where V ar(H(3)

n ) = O(n−3(σ2
1n + σ2

2n + σ2
3n)). Now, σ2

1n =

V ar(E(φn(Zt, Zi, Zj)|Zt)) = 0 and σ2
2n = V ar(E(φn(Zt, Zi, Zj)|Zt, Zi)) ≤ E(E(φn(Zt, Zi, Zj)|Zt, Zi))2 ≤

E(φ2
n(Zt, Zi, Zj)) = σ2

3n ≤ 3cE(ψ2
n(Zt, Zi, Zj)). Now, under assumptions A3 and A7

h2
nE(ψ2

n(Zt, Zi, Zj)) =
1
h2
n

E

(
1

f4(xt)
K2(

xi − xt
hn

)K2(
xj − xt
hn

)σ2(xi)σ2(xj)
)

→
(∫

K2(ψ)dψ
)2

E

(
σ4(xt)
f2(xt)

)
<∞

Hence, V ar(H(3)
n ) = O(n−3h−2

n ) = o(n−2), and thus I4n = 1
n(n−1)

n∑
t=1

n∑
i=1

t<i

(φ2n(Zt, Zi) + φ2n(Zi, Zt))+o(n−1).

Therefore, we can conclude that

1
n

n∑
t=1

(µ− m̂(xt))2 − I3n(1 + oa.s.(1)) =
1

n(n− 1)

n∑
t=1

n∑
i=1

t<i

(φ2n(Zt, Zi) + φ2n(Zi, Zt)) + o(n−1))(1 + oa.s.(1))

=
1

n(n− 1)

n∑
t=1

n∑
i=1

t<i

[
εiεt
hn

E(
1

hnf2(xj)
K(

xi − xj
hn

)K(
xt − xj
hn

)|Zt, Zi)

+
εtεi
hn

E(
1

hnf2(xj)
K(

xt − xj
hn

)K(
xi − xj
hn

)|Zi, Zt)](1 + oa.s.(1)) + op(n−1)

= A3n(1 + oa.s.(1)) + op(n−1),
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and consequently we can write

1
n

n∑
t=1

(yt − m̂(xt))2 − (I3n +A1n)(1 + oa.s.(1)) =
1
n

n∑
t=1

ε2t + (A2n +A3n)(1 + oa.s.(1)) + op(n−1).

The terms An and A1n are bias terms and we focus on A2n and A3n to determine the asymptotic distribution.
Note that

A3n =
(

1
n(n− 1)

− 1
n2

+
1
n2

) n∑
t=1

n∑
i=1

t<i

(φ2n(Zt, Zi) + φ2n(Zi, Zt))

=
(
O(n−3) +

1
n2

) n∑
t=1

n∑
i=1

t<i

(φ2n(Zt, Zi) + φ2n(Zi, Zt))

=
1
n2

n∑
t=1

n∑
i=1

t<i

[φ2n(Zt, Zi) + φ2n(Zi, Zt)] + op(n−1) = A31n + op(n−1).

Since A31n = 1
n2

n∑
t=1

n∑
i=1

t<i

(φ2n(Zt, Zi) + φ2n(Zi, Zt)) is a U-statistic of degree 2 we have using Theorem 1 and

given A2 that A31n = Op(n−1(E(φ2
2n(Zt, Zi)))

1
2 ). Furthermore,

hnE(φ2
2n(Zt, Zi))→

∫
κ2(ψ1)dψ1E

(
σ4(xt)
f(xt)

)
<∞

where κ(x) =
∫
K(u)K(u+ x)du, hence (E(φ2

2n(Zt, Zi)))
1
2 = O(h−

1
2

n ) and A31n = Op((n2hn)−
1
2 ). Now,

A2n +A31n =
1

n2hn

n∑
t=1

n∑
i=1

t<i

[
(−2)

1
f(xt)

K(
xi − xt
hn

)εiεt − 2
1

f(xi)
K(

xt − xi
hn

)εtεi

+ εiεtE(
1

hnf2(xj)
K(

xi − xj
hn

)K(
xt − xj
hn

)|Zt, Zi)

+ εtεiE(
1

hnf2(xj)
K(

xt − xj
hn

)K(
xi − xj
hn

)|Zi, Zt)
]

=
1

n2hn

n∑
t=1

n∑
i=1

t<i

[ψn(Zt, Zi) + ψn(Zi, Zt) + ψ′n(Zt, Zi) + ψ′n(Zi, Zt)]

=
1

n2hn

n∑
t=1

n∑
i=1

t<i

φn(Zt, Zi).

Since φn(Zt, Zi) is symmetric and E(φn(Zt, Zi)|Zt) = 0 we have that A2n +A31n is a degenerate U-statistic
of degree 2. It is easy to show that: (i) 1

hn
E
(
φ2
n(Zt, Zi)

)
→ 2(2E

(
σ4(xt)
f(xt)

)
(4
∫
K2(ψ)dψ +

∫
κ2(ψ)dψ −

4
∫
K(ψ)κ(ψ)dψ)) = 2V ; (ii) For Gn(Z1, Z2) = E(φn(Zt, Z1)φn(Zt, Z2)|Z1, Z2), we have E(G2

n(Z1, Z2)) =

O(h3
n); (iii) Eφ4

n(Zt, Zi) = O(hn). From (i)-(iii), we have E(G2
n(Z1,Z2))

(E(φ2
n(Zt,Zi)))2

= O(h3
n)

O(h2
n) → 0, and

1
nE(φ4

n(Zt,Zi))

(E(φ2
n(Zt,Zi)))2

=
1
nO(hn)

O(h2
n) → 0. Hence, by the central limit theorem in Hall (1984) nh

1
2
n (A2n+A31n) d→ N(0, V ) and given that

s2y
p→ E(σ2(xt)) > 0 we have nh

1
2
n

(
R̂2 + (s2y)−1((I3n +A1n)(1 + oa.s.(1)))

)
d→ N(0, (E(σ2(xt)))−2V ).
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