Instructor: Dr. Hany H. Ammar

Dept. of Computer Science and
Electrical Engineering, WVU

Outline

UML Development — Overview
The Requirements, Analysis, and Design Models

What I1s Software Architecture?
Software Architecture Elements

Examples

The Process of Designing Software Architectures
Defining Subsystems
Defining Subsystem Interfaces

Design Using Architectural Styles

Software Architecture Styles
The Attribute Driven Design (ADD)

UML Development - Overview

l ...

USE CASES

ACTORS
REQUIREMENTS
ELICITATION
SCENARIOS
ANALYSIS ANALYSIS

— | StateChart

AMSs
N

Objects

y

Time

\4

\DlAq
'\

OPERATION CONTRACTS \= """ ""7"""""777""77

Y

Architectural

Design SUBSYSTEM CLASSL_’DEPLOYMENT DIAGRAM
Include OR COMPONENT
Design Objects DIAGRAMS

\DAESIGN SEQUENCE/Comm DI
A

DESIGN DIAGRAMS

/

Detailed DESIGN

cD)bj‘?Ct IMPLEMENTATION—» | IMPLEMENTATIO
esign CHOICES Activity DIAGRAMS
Y
IMPLEMENTATION

PROGRAM

AG.

>—4>0

<A>»Z20—4—0-—-0

The Requirements, Analysis, and
Design Models

Requirements
Elicitation
Process

The Analysis
Process

The Design
Process

Functional/
Nonfunctional
Requirements

Static Analysis
Dynamic Analysis

Static Architectural
Design
Dynamic Design

Use Case Diagrams/
Sequence Diagrams
(the system level)

- Analysis Class Diagrams
- State Diagrams/

Refined Sequence
Diagrams (The object
level)

* Design Class Diagrams and
Components Diagrams
 Design Sequence/

» Collaboration Diagrams

Outline

UML Development — Overview
The Requirements, Analysis, and Design Models

What 1s Software Architecture?
Software Architecture Elements
Examples
The Process of Designing Software Architectures

Defining Subsystems
Defining Subsystem Interfaces

Design Using Architectural Styles

What 1s Software
Architecture?

A simplified Definition

A software architecture is defined by
a configuration of architectural
elements--components, connectors,
and data--constrained in their
relationships In order to achieve a
desired set of architectural properties.

Software Architecture
Elements

A component Is an abstract unit of software
Instructions and internal state that
provides a transformation of data via Its
Interface

A connector 1s an abstract mechanism that
mediates communication, coordination, or
cooperation among components.

Software Architecture Elements

A datum is an element of information that is transferred
from a component, or received by a component, via a
connector.

A configuration Is the structure of architectural
relationships among components, connectors, and data
during a period of system run-time.

Software Architecture views: Architectures are described
using multiple views such as the static view, the dynamic
view, and deployment view.

An architectural style is a coordinated set of architectural
constraints that restricts the roles/features of
architectural elements and the allowed relationships
among those elements within any architecture that
conforms to that style.

Figure 21.8. Banking System: major subsystems

The dynamic view,
a high level diagram

wextermal O
devicexs
: CardReader

cardReaderinput \l/ 1‘ cardReaderCutput
I

wsoftware system:s
: BankinoSystem
customerinput 0O
:Z*Efrﬁ?a| users —) ATMTransaction wSenices
; ustomer wclients — - xsubsystem:s
KeypadDisplay _ - wsubsysteme B ?k'
- display : ATMClient < oo
Information s Sernvice
bankResponiss
operator
|F'III"-IT//_? dispenser
printer Qutput
: .k—/l l Output
operator
cwextermnal users Information |
: Dperator

I
wexternal output
dewvices

: ReceiptPrinter

wexternal output
devices

CardDiispenser
Figure 12.2. Dynamic view of client/server software architecture: high-level
communication diagram for Banking System

10

The dynamic view of the ATMClient
for a certain Use Case Scenario

awsubsysEm:=
: BankingSarvica

J

2.7 Malidk
Walid PIM
[Account #=)

wchiant s

1: Card wsubsystam =

Readar | - ATMCliant 2 6: validate PIN

Imput FIMN validation T saction)
waxiEamal 150 L:} w = 0 sheshEn e i

davicas : CardRaadar ==
. CardReadar Intarfaca HRLE: Card Insertad
—
"'\-\.__\.-
Ry

1.4 PIM Prompt,
2.9 Salaction e

mu

1.1: Card Id,
Start Data,

Expiration Data

wa ity =
: ATMCard

22 Card Id,

Start Date, Freou st
Expiration Daia\l/ /r q

2.1: Card

waxEmal usars -

: ATMCU siomear

HoeypadDisplay —
2 PIM Input

FIM “alidation Transaction = {lmnsadionld, transactionTypa, canrdld, PIN, starDais, axpiration Data}

Figure 21.11. Communication diagram: ATM client Validate PIN use case

: Customar

2.5 FIN Entamad
[(PIM Walidation Transaction)

~—

—

Intaraction

2 4: PINValidation Transaction

astate dapandant
controls
: ATNC onbra |

1.3: Gat PIM,
2 8 Display Manu
[Avocount #=)

2.3 Card id, PIM,
wuser intaraction= //"E.‘Lari Duate, Expiration Dals

2.8a: Updala
Status (PIM Walid)

o -Bl'lﬁ‘[ﬁl':-a-
: AT Transaction

11

The dynamic view: another model

«external /O «externat «HO» «entity» «state dependent «user interaction» .
device» user» : CardReader - ATMCard control» : Customer) «entity» .) “S“b,SyStem’?
: CardReader ATM interface : ATMControl Interaction : ATMTransaction : BankingService
Customer ; T .
1 Keypad i i : 1 '
i Display H ! H ! !
1 T 1 i : ! '
T | t | H i :
! 1 ! ! i ! I
1 1: Card Re_ader Input | } : ' :
f ! : ; : .*
! 1.1: Card Id, Start Date, Expiration Date ! : I
| 1.2: Card Inserted f : f
H] — 1.3: Get PIN : !
1 4 I ! 1
!]
i 1.4: PIN Prompt ! : !
1
2I: PIN Input : \: :
i T] 1
] ; : :
t
i 2.1: Card Reguest | :
. - 1
I i ;
i 1
I 2.2: Card Id, Start Date, Expiration Date 1 !
= i
I

2.3: Card I'd, PiN, Start Date, Expir;ation Date
; .

2.4: PIN Validation Transacti(I)n
< ;

[N N w

H 1
2.5: PIN Entered (PIN ValidationT ransaction)
f— -

H
I
1
I
I
H
I
1
I
1
|
1
i
I
1
I
H
I
1
I
|
¥
I
1
I
I
1
3
I
1
I
I
1
f
I
1
i
I
1
P
I
1
i
1
H
I
1
i
)
i
|
i
I
I
1
1
|
i
I
1
]
I
§
£
I

1
I
1
i
|
H
I
1
i
I
1
1
|
i
I
I
1
I
i
]
3
|
I
i
I
I
1
I
|
1
I
|
[
I
1
I
|
i
]
1
i
I
]
3
I
1
I
|
1
3
I
1

1
I
I
!
E
I
I
H
|
! ? ! !
; L 2.6: Validate PIN (PIN Validation Transaction)
! i 1 i
: : S 2.7 [Valid]: Valid PIN {Account #s)
1 . :
i ! ' !
) 2.8: Display Menu (Account #s) :
1 | ! |
i ; 2.8a: Update Status (PIN Valid) |
) :
| 2.9: Selection Menu | : i
H I
T] H 1
.‘ ! i .

L

Figure 21.12. Sequence diagram: ATM client Validate PIN use case
12

/ N

: ATMClient : ATMClient : ATMClient
{1 node per ATM} {1 node per ATM} {1 node per ATM}

Figure 21.36. Deployment diagram for Banking System

Introducing Architecture Styles

More details on architecture styles to be discussed later

The Layered Architecture
e.g Network

Services

Architecture

/

Layer

Lavyer 1

Application Layer

Transport Layver
(TCP)

Internet Laver
(1F)

Metwark Interface
Layer

Physical Layer

L

Figure 12.4. Layers of Abstraction architectural pattern:
example of the Internet (TCP/IP) reference model

14

Network Services Architecture
Deployment view

Mode 2

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Application
Layer

Transport
Layer
(TCP)

Internet
Layer (IP)

Metwork
Interface
Layer

Physical
Layer

wwide area network

ﬂ

Mode 1
Layer Application
Layer
[
Transport
Layer Layer
(TCP)
I
Internet Internet Layer
Layer Layer (IP) Layer 3 (1P)
I
Metwork Metwork
Layer Interface Layer 2 Interface
L.i:wer Layer
|
Physical)
Layer Layer / Layer 1 Physical Layer
Router
Mode
A
/ /
#local area networks s |
'
Figure 12.5.

Layers of Abstraction architectural pattern: Internet communication with TCP/IP

15

Layered Software Architectural styles
Example of Web Applications Architecture Style

-~
EXTERMAL SYSTEMS
USERS
Service Consumears
'.""-n_
I -
= o et
(]
E.;: Ul Components N N Y
==
-
= (Presentation Logic
: Componaents
(=
T
0 = g || <
= : [on =
a Service Interfaceas Message Types 5 = = E
& L = = =
1] _— =1
@ | = = £
- I = 2 £
- Aoolicat . &= = || S
ety pplication Fagade o
= &
= >
w j Business Business Business
E Workflow Components Emtitias
M .
' it
i‘_: ﬁ Data Accass Data Helpers), Service
Ej Components utilities Agents L A N i W
M A M .

Drata i
& o Poas [:l Serwvices

Service Oriented Architecture (SOA):
Makes use of an Enterprise Service Bus ESB
Used in web-based systems and distributed computing

Clent | et | | Gient | | Oiest |

TRY

| E 8888 8

TR RPC st Erent/Fle | | | |

| |
| : : : :
S B %|1$|1%|5||5||5|1$|.
! i —— Sk
W I | :
; ‘b == -~ 3
I FF’?L g%ajﬂ =
vy % g_j
, SRS
¢ nodes on a network make resources available to other
Eji‘j‘ic:_‘_f participants in the network as independent services that
— the participants access in a standardized way using thetESB

Examples of Architecture Styles

Embedded Systems architecture style

>>
I<<|ntte(r}|fac_e S —
nput devices .
PUL_ Monitors
or actors & —Controllers

~N
~N
~N
~N
~N
~N
~N
~N
~N

| >~
<<Interface>>
Schedulers Output_devices
or actors

18

Outline

UML Development — Overview
The Requirements, Analysis, and Design Models

What I1s Software Architecture?
Software Architecture Elements

Examples
The Process of Designing Software Architectures

Defining Subsystems
Defining Subsystem Interfaces

Design Using Architectural Styles

19

Example: Interactive Electronic
Technical Manual (IETM) System

Web Services 3-tier architecture

Data Services Business Services User Services

IETM Electronic Display

System (EDS)
IETM Data < Data Access User Interface

20

Recall Analysis diagram for EMS, Context Diag.

Interacts with

[

wsofthware swsbemme:

EmergencyhMonitoring
Swvster 1

1

F

Communicates
with

I =

aoexternal systerns»

FemoteSvystem

Figure 232.2. Software system context class diagram for

Emergency Monitoring System

wextermal users

Monitoring Operator

Imputs to

wexternal input devices

M onitoringSensor

21

EMS Architecture

wextermal input devices
s MonitoringSensor

wexternal systermy
s Remote System

wsoftware Systerm

EmergencyMonitoring

IS ystem

J/ Sensor Input

¢ Sensor Input

wing

s MonitoringSensor
Component

L b

Ni‘\. larm

Monitoring
Diata

HPTOX Y
: RemoteSystem Proxy

\

Alarm

/

Alarm Info

 AlarmService

Monitoring Data

Alarm Motification

Maonitoring
Status
Request

wuser interactiony

: Operator
Presentation

Alarm Reguest

wuser interctiony
» AdarmWindow

I

WUseT interactions

s

 Operator] nteraction

Display Info
[~~~ -—..__\él

Operator Request

wuser interactions
: EventMonitoring
Window

_-___..—-"

,‘i_
—

Display Info

: Monitoring
Operator

|
Display Info

4

Info

HServicen

wservicey

: MonitoringData

Savice

domitoring

7

Event Motification

Figure 23.8. Integrated communication diagram for Emergency Monitoring System

22

EMS Deployment Architecture view

e

Proxy

Remote System

{1 node per remote

',.r'

Monitoring Sensor

Component
{1 node per

system) monitonng location)
e -~
y Operator
Presentation
‘ ewide area netwaorks (1 node per
operator
| | perator) y
&
Monitoring Data
Alarm Service SErvice
{1 node) {1 node)
P

L~

Figure 13.5. Example of geographical distribution: Emergency Monitoring System

23

Example of Hierarchical Architecture:

Cruise Control and Monitoring System

«subsystem»

AutoControl
Subsystem

«subsystem» I

«subsystem» I

TripAverages
Subsystem

Maintenance
Subsystem

. «subsystem»
3)\| Distance&Speed
w Subsystem

A(«subsysterm» ot —

e o - - - E
Calibration q‘—,/' :
Subsystem :

“ - - : .
~ A"4

ShaftSubsystem

12.3 Example of hierarchical architecture: Cruise Control and Monitoring

24

Example: Consolidated Collaboration Diagram
of the Elevator Control System

o

«external output
device»
: Motor

«external input

«external output

«external input

I

«external input
device»
: FloorButton

«external output
device»

: FloorLamp

device» device» device»
: ElevatorButton : ElevatorLamp : ArrivalSensor
Elevator Ellilv:‘lt;r Arrival
- Sensor Input
Button Request \ Output / P
Motor Door
Command «system» \ / .)
: ElevatorControl r Command
T System «control —
—_— subsystem» <
: ElevatorSubsystem
Motor ¥ 1 Door
Response Floor Lamp : Respoise
C d Scheduler
omman . 4
) / Arrival (Floor #)\ Request
Direction Lamp \ \\
Command / Departed (Floor #)
Floor Elevator Commitment \
Button r
Request «data collection «coordinator
subsystem» subsystem»
> : FloorSubsystem > : Scheduler
| Service Request
= \L Direction Lamp
Floor Lamp Output
Output —

«external output
device»

: DirectionLamp

Figure 12.4 Example of distributed software architecture: Elevator Control System

«external output
device»
: Door

25

Online Shopping System: Structured Classes with Ports

WLISer irerac tior s
HCOMIPonEnts ALIsEr interaction:
Customer 00T POTER B
[nteraction Supplier
M Interaction
1

RCustomerC oordinator RSy F'P' ierCocrdi nator

PsuppherCoord inator

L

wcoordina o) . acoordinat o
R InterC oordinator ’
ACOMMPOnEnts:

PCustomerCoordinator

L

) - . L L HComponent s
scoordinator Billing [_J L-] Supplier
“eomponents Coordinator PlnterCoordmnator Coordinator

Customer

RDOService

Coordinator S R redinard™ . . _ D [] o
e Service % RDOService RDOService L'\" R Inventorvservice
. - SErvIce 3, : |))
T RCustAccount =20 e mail \RCustAegount \
RCreditCard| RE! alog—Service Service \ Service \
Service | Service\ Service~_ \ \
Y
Y
!
Y
I".
!
Y
- I".
r:r Y
PCrediCardService \
§ | m S [P ' ' 5 il T NI T T
L PEmailservice PCatalogService PCustAccountService PDOService I‘Lll Inventory Service
LI LI LI
HRETVICED

CreditCard HEETVICEY HRBTVICED aERIVICER HRETVICE HRervicen
Service Email Catalog CustomerAccount DelivervOrder [nventory
Service Service Service Service Service

Figure 22.25. Service-oriented software architecture for the Online Shopping System 26

Outline

UML Development — Overview
The Requirements, Analysis, and Design Models

What i1s Software Architecture?
Software Architecture Elements

Examples

The Process of Designing Software Architectures

Stepl: Defining Subsystems
Step 2: Defining Subsystem Interfaces

Design Using Architectural Styles

27

Information Available At

Architectural Design

The Requirements model

Use cases, Use case Diagram, system
sequence diagrams

The Analysis model
Analysis class diagram,
stateCharts for multi-modal classes, and
Domain Object sequence diagrams

28

Artifacts Developed at Architectural

Design

Subsystems + their public interfaces (APIs)

Subsystems class diagrams.
for each subsystem

A class diagram

Subsystem dependencies (interaction

diagrams)

Requirements

And —> Architecture design
Analysis models

Design
— Class/ and
Interaction

Diagrams

The Process of Designing Software
Architectures

Software Architecture

Stepl: Define overall structure of the system into
components or subsystems, or classes

Step 2: Define Component interfaces and
Interconnections separately from component internals
(defined during details design)

Each subsystem performs major service
Contains highly coupled objects
Relatively independent of other subsystems
May be decomposed further into smaller subsystems
Subsystem can be an aggregate or a composite object

30

Step 1 - Subsystem/Components
Structuring Criteria

Decompose the system into subsystems or classes such that each performs a specific
function or task to maximize cohesion and minimize coupling, the following are
typical examples of subsystems or classes

Controllers

Subsystem controls a given aspect of the system (e.g., Cruise cont. Fig. 20.45)
Coordinators/Schedulers

Coordinates several control subsystems (e.g., Cruise cont Fig 20.45,20.46)
Data Collectors/Monitors

Collects data from external environment (e.g., Cruise cont Fig. 20.45)e
Data analyzers

Provides reports and/or displays (e.g., Cruise cont Fig. 20.26)
Servers

Provides service for client subsystems (e.g., MyTrip example)
User/Device Interface

Collection of objects supporting needs of user (e.g., Cruise cont Fig. 20.26)

31

Control, Coordinator, Data Collection
Subsystems

—

«external input

«external output

«external input

—

device» device» device»
: ElevatorButton : ElevatorLamp : ArrivalSensor
Elevator Ele:;t;)r Arrival
o Sensor Input
Button Request \ Output / p
Motor
Command e \ / C Doo'r d
I : ElevatorControl I oA
«external output < System «control —>
device» L= subsystem» <
: Motor : ElevatorSubsystem
Motor N Door
Response 7 esponse
d l-(l‘ooTr‘ Lamdp Scheduler
omman :
/ Arrival (Floor #)\ Request
Direction Lamp \ \
Command z Departed (Floor #)
Floor Elevator Commitment N
- Button r
«external input Request «data collection «coordinator
device» subsystem» subsystem»
: FloorButton > : FloorSubsystem > : Scheduler
|1 Service Request
= \L Direction Lamp
Floor Lamp Output
e Output £

«external output
device»

: FloorLamp

«external output
device»

: DirectionLamp

Figure 12.4 Example of distributed software architecture: Elevator Control System

«external output
device»
: Door

32

Coordinator, Service, and User InterfaceSubsystems

aLSEr iFerac ion e
HCOIMIPONENLs
Customer
[t eraction
1

RCustomerC oordinator

PCustomerCoordinator

L
sicoordinators
“componenty

Customer
Coordinator

RDOService

H_I:‘.{ ustA oo ount —
alog—Sgrvice

. P ..
SETVICE -

RCreditCard| RED

Service Service

iC
LI’E reditCardService

L PEmailservice
L1

HEETVICED
CrediCand

HETVICE

HRBTVICED
Email
Service

alISer interaction:
HCOT PONEN B
Supplier
Interaction
1

RSupplierCoordi nator

PsuppherCoord inator

e RCreditCard”

service

wcoordina o
ACOMMPOnEnts:

Billing [

Coordinator

x
mail \RCust)
Service

PCatalogService

R InterC oordinator

"\ Service

|
acoordinat o
HComponent s

| r : !
— L Supplier
Pl erCoord mator Coordinator
' [1
RDOService RO Sarvice
sount I"'.\'
!
Y
Y
Y
3
PCustAccountservice ,-L PO Service

L'\" R lnventor vservice

_
Q

HRETVICEN
Catalog

SETVICE

aERIVICER
Customerdocount
Service

L

HRErVICE R
Delvervirder
Service

N _—
I‘LI Plrventory Service
L

wRervicey
[nventory
service

Figure 22.25. Service-oriented software architecture for the Online Shopping System

33

Service subsystems, Input & User Interface

- : i Layer 3}
wilser interaction: -
W COTMPOmeni:
: Operator
Presentation
alarmR equest
{im request, out alarmData)
u| m ﬁ.}.
winput= CPIOXY »
W COMpOonent: T DT POTE T {Layer 2}
: MonitoringSensor : RemoteSystem
Component Proxy
1
— [
T Voo st (event) L
T I'| R‘“xx_ pe N monitoringRequest
T | xﬁm 3 {inm request,
T - - -
post {(alarm) i post [-e'--ent:u“‘-x ot monitorimgCata)
)) i e, T
1 """--,___
| R
-H-"‘-\-\._
-H-"‘-\._
\ post (alarm) \H“x
i T
\ —
-\._____--\-\-
.ﬁ"'“-u.__ S,
"'\-\.____--\-\-
HSETVICER
: AlarmService

HEETVICE:
: Monitoring

DataService
Figure 13.9. Examples of service subsystems

g
=
1]
b
]
11
-
=

34

Coordinator, Control, and Interface

« conrdinators
« subsy stems
: Supernvisony System

Mowe Command \l/ 1\ Vehide Ack

Vehicle Status

¥ E
, E-Ziz:tgrfelﬁ-,,, wuser interactions
.) - : wsubsystems
- Autom ﬂtg}ldsGt:g&d‘u'ehmle Dieplay Sy eter

Figure 12.10. Example of control and coordinator subsystems in Fac-

tory Automation System 35

User Interface, Coordinator, Service

auser imteractonss
C OITPOTIeT b
 Customer
Imteraction

Customer
M Coordinator

Customer +
Response

Request

sooordinators

T OTIIPOTIETI D
: Customer
Coordinator

%Scnd

Aunthornzation

Request J

Authorization
Response

h-\.

Catalog
Info

HEETWICSH HEETVICEN:
: CreditCard : Ermnanl
Service Service

Duery,
Select

Store,
Update,
Request
==
Accout

Info

Figure 13.11. Example

CCEETWVICE W
: Catalog
Service

WSErVICE®R
: Customer
Accoumnt
Service

K{¢)

of coordinator subsystem in service-oriented architectures

Another way of forming subsystems

Aggregate Into the same subsystem

Objects that participate in the same use case
(functional cohesion)

Objects that have a large volume of interactions
(e,g, Control object & objects it controls) or
share common data or file structures
(communicational cohesion)

Object that execute in the same time (temporal
cohesion)

37

User Interface Subsystem

R (=i

: Basic Emergency MonitoringSy stem

wuser interact or
4COMpanents
: BasicOperatorPresentation

wuser interact ony Alarm Info

i — —

CAlarmWindow ——{ ||
\%\%

Adarm Reques

alarmR equest

| [[u |'E|que.,\t Fvent |{.Eq|.|L" at
out alarmData) =
— : Monitoring
i ser intem.:‘n' on» L1 Evert Info Operator
: EventMonitoring (=]

Window
WSETVICENR

A larmService

monitorin g Request
(in request,
out monitoringData)

Hservicen
: MonitoringData
Service

Figure 13.8. Examples of user interaction subsystem with multiple windows 38

Architecture

wextermal input devices

vexternal systemys
s MonitoringSensor s Remote System
wsoftware systems . .
I wlser interactiony
EmergencyM onitoringfs ystem
= = : Operator
- ¢Scn.~;nr Input Presentation . .
Sensor Input wuser interactiony»
» AlarmWindow .
I Display Info
[~~~
winputy — =
: MonitoringSensor
. £ : RemoteSystem Proxy
Component)) o
Alarm MNotification Alarm Request)) Operator Request
Monitonng g/ GUser mteraction J/?
Diata Operator] nteraction —
Monitoring Data

Display Info

\

Ni‘\. larm

—
Display Info

: Monitoring
/ Operator
wuser interactions

: EventMonitoring
Window

Maonitoring ——
Status

Request /I
ques J 4

\Z Alarm

{omtoring

Info

7

Event Motification
Alarm Info
ervicen wservices
(LT Cey i i
. : MonitoringData
 AlarmService .-
Savice

Figure 23.8. Integrated communication diagram for Emergency Monitoring System

39

Aggregate Control, input, and output
of each distributed controller

scoordinators
wcomponents
: Hierarchical
Controller
command d
~~._ COmMman
? command \ [response TH“
) response response }
wcontrols «controls ccontrols
ﬂcnmppnentn ﬂcumppnentn «COmponents
: Distributed : Distributed - Distributed
Confroller ?ontnller : Controller
T
acfuator sensor ,fr 1_‘. ng:tuat;:ur censor \ .. aGCL:;JnﬂL:[Dr
Input ;;’-'f f{ \ N\ utpu Input /,1 “-.x N
!/ \ -.'_:H. _."] \,H
/ \ |
. ."\. I|I = b
ouloxis «Inputs woutputs cinputs woutputs
«Components cumpc;'uentn ' n:s-::lrn;:-::urgnh: components «components components
: SensorCmpt - -
\BEI‘IEDFCI‘I‘I?’[- ActuatorCmpt P : ActuatorCmpt : SensorCmpt : ActuatorCmpt

Figure AZ. Hierarchical Control pattern 40

Example: MyTrip System, uses a Global Positioning
System to locate and coordinate a trip for a driver in
an automobile software system

The Analysis Class Diagram

RouteAssistant -—-________-§ PlanningService

\ %

Location Direction

,/////' ‘4=~§§§~§§§““~ Destination
Crossing

—

Segment

41

Design Class Diagram
MyTrip Subsystems

RoutingSubsystem PlanningSubsystem

RouteAssistant PlanningService

\ 7 /

Location Direction

Destination

42

MyTrip Deployment Diagram

Components must be associated with a processor node in
the deployment diagram

e e

:OnBoardComputer :WebServer

I:::I :RoutingSubsystem |‘:I :PlanningSubsystem
I

—

New Classes and Subsystems

RoutingSubsystem PlanningSubsystem

RouteAssistant PlanningService

Location Destination

TripProxy Direction

Crossing
SegmentProxy Segment

CommunicationSubsystem

Message

Connection

44

MyTrip Data Storage

RoutingSubsystem PlanningSubsystem
N -\
/ \\ - - \
/ \\ 2= - \
/ N \
/ A \
y CommunicationSubsystem \
N

TripFileStoreSubsystem
MapDBStoreSubsystem

45

Example: Cruise Control and
Monitoring System

«system»
.1 CruiseControl " .| .
&Monitoring | -

' System

«subsyste:m»" B ' «subsystem». " .
~ CruiseControl * - f@c--iccaoacio.] Monitoring” ~“~ '}
Subsystem.- - | . ' Subsystem

Figure 12.8 Cruise Control and Monitoring System: mizjof subsystems

wayshsqns jo43uoy) ISINAD) 40f wvsSmp Ssv]D) 62'0Z @inbi4

Example: Cruise Contr
And Monitoring System :

«input device interface
BooleanInputDevicelnterface

==, |

Class Diagram of the
Cruise Control

«input device interfacey

«input device

«input device

CruiseControl interfacey interfacey
LeverInterface Brakelnterface Enginelnterface
Notifies Notifies Notifies
y

«state dependent
control»
StateMachine

i

«algorithmy»
Acceleration

«algorithmy
Cruiser

«algorithmy _J
Resumption

«state dependent

Subsystem

«timen»
Timer

contiol:) " Triggers Triggers
CruiseControl Controls
StateMachine - e
« » « »
s Uses i y Uses «entityy
: Desired = Current .
Controls Uses Distance
y : Speed Speed
«algorithmy ,I\
SpeedControl
Algorithm Uses
F Outputs to
«output device
interfacey
ThrottleInterface
«input device interfacey
CalibrationButton
Interface
Notifies -
«input device
«state dependent interface»
controly ShaftInterface
CalibrationControl
Controls Updates
v y
«entity» Uses «entity» Uses
Calibration ShaftRotation < 47
Constant Count

«input device

Example: Cruise Control System;
The Monitoring Subsystem

interface»
ButtonInterface
Ja\
«input device «input device «input device
interface» interface» interface»
Calibration TripReset Maintenance
ButtonInterface ButtonInterface ResetButtonInterface
Resets : : : Resets
v Triggers «timer» Triggers \
Displays Timer Displays :
«output device on AP toniith on «output device
interfacey < @ gonim l<\(4a gorithmy > interface»
TripDisplay AHipavemge —>| «entity» R Maintenance
Interface ? Uses Distance Uses A DisplayInterface
- «algorithm» «algorithmy» «algorithmy «algorithm»
«algorithmy» : : R . ;
TrinSpeed TripFuel OilChange AirFilter MajorService
PSP Consumption Maintenance Maintenance Maintenance

Figure 20.26 Class diagram for Monitoring Subsystem

J,

«output device interface»
DisplayInterface

Example: Aggregating classes into a subsystem using temporal

cohesion

«passive input ; «passive input
it «external timer» e
Raing : DigitalClock . Brake
read read
(out . (out
engine timerEvent brake
[nput) Input)
«temporal clustering»
: e :
AutoSensors «coordinator»
, : AutoSensors
rgad (out Monitor read (out
engmeStatuy \brakeStatus)
«input device «input device
interface» interface»
. Enginelnterface : Brakelnterface
cruiseControl
Request
«control»
: CruiseControl
Figure 20.45 Detailed software design of Auto Sensors task

Example: aggregating classes

«control»
: CruiseControl

Using functional cohesion cruccconor

Command

'

r reachedCruising

«mutually exclusive

clustering»

: Speed Adjustment

enablelncreaseSpeed,
disableIncreaseSpeed

-~

«coordinator»
: SpeedAdjustment

Coordinator

enableMaintainSpeed,
disableMaintainSpeed

enableResumeCruising (out reached

A

Cruising), disableResumeCruising

read
(out
current
Speed
Value)

Figure 20.46

v

«algorithm» «algorithm» «algorithm»
: Acceleration : Cruiser : Resumption
N / NS -

throttle

throttle
Value

read (out

read (out
AesiredSpeed
Value)

desired
Speed «entity»
Value) | : DesiredSpeed throttle
«periodic output Value
device interface» ——
: ThrottleInterface
throttlePositionl
read (out
«external output l CurrentSpecd
device» Va]uc)
: Throttle
A read (out
i currentSpeed
Value)
«entity»
: CurrentSpeed

v

Detailed software design of Speed Adjustment task

read
(out
current
Speed
Value)

50

Outline

UML Development — Overview
The Requirements, Analysis, and Design Models

What i1s Software Architecture?
Software Architecture Elements

Examples

The Process of Designing Software Architectures

Stepl: Defining Subsystems
Step 2: Defining Subsystem Interfaces

Design Using Architectural Styles

o1

Step 2 - Define Subsystem Interfaces

The set of public operations forms the subsystem
Interface or Application Programming Interface
(API)

Includes operations and also their parameters,
types, and return values

Operation contracts are also defined (pre- and
post-conditions) and accounted for by client
subsystems — they can be considered part of the
API

52

Subsystem Interfaces

Interfaces can be methods such as Notify, update,
Or can be classes such context.

()
\

Context

()

<<Obsener>>
FeedbackObserver

(from POAD1-Feedback)

setData

()
<<Strategy>> NETLY
FeedforwardStrategy
(from POAD1-Feedback)
®
Update
<<Obsener>> \/
| ErrorObserver) (>
(from POAD1-Feedback) B :
Notify Context

<<Blackboard>>
Blackboard

(from POAD1-Feedback)

<<Strategy>>
FeedbackStrategy

(from POAD1-Feedback)

N

e

— ./

getData
2\

53

Internal and External Interfaces (Iinformal Notation)

OpePiireliase:n
frdersService ¢

AdrlinePO 5

¢y LodgingPO
Service

ActivityPO
yyService

Client-side
application

Java EE
application

External VWeb
service provider

VWWeb services
endpoint

Data
Fepository

HTTP/HTTPS

SOAP call

Data access

SMTP

Scope of the
application {(not
a component)}

Figure 4.5

Diagram of the SOA view
for the Adventure Builder
system. The OPC (Order
Processing Center)
component coordinates the
interaction with internal and
external service consumers
and providers

54

Client-Server Interfaces (Informal Notation)

server server

server

client

server

ATM QS/2
client process

M TCP socket connector with
Server client and server ports

Windows
application

Figure 4.3

Client-server architecture
of an ATM banking system.
The ATM main process
sends requests to Bank
transaction authorizer
corresponding to user
operations (such as
deposit, withdrawal). It also
sends messages to ATM
monitoring server
informing the overall status
of the ATM (devices, sen-
sors, and supplies). The
Reconfigure and update
process component
sends requests to ATM
reconfiguration server
to find out if a reconfigura-
tion command was issued
for that particuiar ATM.
Reconfiguration of an ATM
(for example, enabling or
disabling a menu option)
and data updates are
issued by bank personnel
using the Monitoring
station program.
Monitoring station
program also sends peri-
odic requests to ATM
monitoring serverto 99
retrieve the status of the

Client-Server Interfaces (Informal Notation)

Interaction
(type unspecified)

Figure 7.1

Graphical notations for
interfaces typically show
symbol on the boundary o
the icon for an element.
Lines connecting interface
symbols denote that the
interface exists between
the connected elements.
Graphical notations like this
can show only the exist-
ence of an interface, not its
definition. (a) An element
with muiltiple interfaces. For
elements with a single
interface, the interface
symbol is often omitted.
(b) Multiple actors at an
interface. Internal client and
External client both interact
with Transaction Authorizer
via the same interface. This
interface is provided by
Transaction Authorizer and
required by both Intggnal
client and External client.

Interfaces in UML Notation)

IMovementControl STl ISensor

_ - Garage _
Provided O— Door _C :

. 7 IRequired on:
Service e Notation: UML
(server) . Service

(Client)

E «usen

And (b) are equivalent

et

Figure 7.2

UML uses a lollipop to
denote a provided interface,
which can be appended to
clagses, components, and
packages. Required inter-
faces are represented with
the socket symbol, whichis
also appended to classes
and other types of elsments,
UML also allows a glass
symbol to be stereotyped
as an interface; a dasheg
ine with a closed, hollow
arrowhead shows that an
element realizes aninterface,
The operations compart-
ment of the class symbol
can be annotated with the
interface's signature ffor-

[R T T |

Figure 7.3

An interface can be shown
separately fromany element
that realizes it, thus empha-
sizing the interchangeability
of element implementa-
tions. OrderDao (and other
classes not shown) require
an object thatimplements a
database connection,
which is represented by the
Connection interface.
Many elements realize this
interface, representing the
interchangeable alterna-
tives of database connec-
tion implementations.

FinancialPlanner

UpdatePrices

~——<\--—7o—~

ManualPriceEntry

required \ / provided

/
. \ .
nterfaces 7y mterfaces

MutualFundAnalyzer

/

_____(_H_m_ﬁo___

QuoteQuery

Figure 14 |60 Inte face supplwrs cmd chemfs

UpdatePnces

59

«interface»

GetQuotes
getQuote(name:String):Money

required N _4 FinancialPlanner
Y\ dependenc -
N OeP i required -7

orovided interface . -
«interface»
UpdatePrices | <} ~~~~~~~ QuoteQuery
getPrice(name:String):Money provided

updateChanges(list:SecurityList) | interface

. Implements the
- o methods In both
generalization of interfaces

Interfaces

«interface»

PeriodicU i
eriodicUpdatePrices <}_ — QuoteServer

é‘riod_ichpdate(list:SecurityList, period:Time)

o0

e 14-161. Full interface notation

Example: A Digital Sound Recorder
From Requirements-to-Analysis-to-Design

The main function of the DSR Is to record and
playback speech.

The messages are recorded using a built-in
microphone and they are stored in a digital
memory.

The DSR contains an alarm clock with a calendar.
The user can set a daily alarm. The alarm beeps
until the user presses a key, or after 60 seconds.

61

Digital Sound Recorder:A Complete Example
From Requirements-to-Analysis-to-Design

Digital Sound Recorder

62

Digital Sound Recorder:
A Complete Example

Record
messadge, set

alarm, set time™ ————

i Flay message,
¥ “=——heep alarm

User , show
tirme:

Powwer

Digital Sound Recorder

Sensors/Actuators

B

1
+Buttons
+Microphone System
+5Creon
+Speaker

+Battery Level Mater

1

Interfaces

= = =m = = v +

* # 4 ® ®E ® F ¥

-fnalog To Digital
-Digital To Analog
-Digitral to Digital

X

Battery

Figure 2.2: Context-Level diagram

63

Digital Sound Recorder:
A Complete Example

System
Sequence
Diagram

<< actor >=

User

s System

1: Play Meassage

=<

0.5 5.}

3. Display Progress Indicator

=

2: Start playing sound

5: Display Clock

e

=

&: Display Progress Indicator

7 Stop

4: Next Second

[0.5s.)

0.5s)
8: Stop playing sound

Ficure 2.4: Plaving message scenario

64

Digital Sound Recorder:
A Complete Example

=-= actor === I Swvstaem
Usar

I 1: Play Messags |

=

2 Start playving sound

3 Display Progress Indicator

o
| = Maxt Second
S5 Display Clock
=
G Display Prograess Indicator
e

S = 7IoAlanm!
— :I

|j._.-

=1

2 Start playing alarm

-

9 Displaw .f:'-.li'?ll'r‘l‘l Indicator

10: Stop 11: Stop playving alarm sound

13: Display Coclk

; | 12 Next Second

B el
-

Ficure 2.5: Adlarm while plaving scenario

Digital Sound Recorder:
A Complete Example

. Eattery

D Swstaerm | |

1

1:

Mo Powvesr! 1

4

; | 1: MNeaext s sl

i
il
0

;- | =2 Maext Second

3 Switch off displany

: Displany IS peaker |
| |
| |
-— 1 |

4 Swwitch off glr‘nplif_:e-r

L

RN

_

)
|
|

After somea minutes

] wwithhaout armny activity

; | S5 MNext sscond
| S o Adarrm !

T Swwitah on displayw

g Switch omn amiplifier

D Start plawing

Slarm

il

; | 10: MNext second

12 Stop playing alarm sournd

Figure

1
I
=
t
|
|
|
|
|
|
|

T
132 Swwitch off amplifisr
I

14 Swwiteh Off dispolay

-
1
1
1

|
T

66

Y, s NS, {, BO—, S

Z2.o: Entering and exiting stand-by mmode scemnario

Digital Sound Recorder:
A Complete Example

Analysis
Class Diagram

Display

Eattery

Iserinterfaca

Fevboard

AlarmClock

AudioController

Audiolnput

MessagehMemory

Microphone

AvdioOutput

Speaker

i 10
Message |

Figure 3.2: Sound Recorder class diagram

67

Analysis Sequence Diagram Help find operations of classes

during design

- Userlnterface

| 1:playMessage (X) |

- AudioController

. Message
Memory

X : Message

- AudioQutp

e

2. getMessage () |

|

L

3: getAudioBlock ()
|

|

|

|

|

4: playAudioBlock ()
|

B
=

T

5: deleteMessage (X)

=16: stop () :
= |
7: deleteMessage ()|

u
|
|
|

Figure 3.8: Deleting a message while playing it

68

Digital Sound Recorder:
A Complete Example

Design
Class
Diagram:
Designing
The
Subsystems,

The names of
subsystems
Should be
Improved

[]
<<subsystem:s:
Alarm Clock
<<Interfacep>
Y
~
)
— I
<<subsystem=>> <<subsystem>>
User Interface Memory
.‘-‘L ______
A R 7
7/ \ V'
s \ /!
p 7 \ /
] L_I ¥
<<subsystem=> <<subsystem==>
Battery Audio
<<|nterface>p <<Control>>

Figure 3.3: Subsystems in the sound recorder
69

Digital Sound Recorder:

A Complete Example

AudioBlock

MMessage

AudioController

Synthesiser

$qetaudioBlock])

SgetSamplal)
SaddSample()

1

CompressedAudioBlock

Interactions between
ODbjects are defined
Using Design
Sequence diagrams

$appendAudioBlock])
$getHeader()
¥setHeader()

&playMessage()

Srecordivessagei)

¥deleteMessage|)
¥playalarmi)

stopi

B playMotei)

silznoed

B playChord()

% build AudioBlock()

Audiolnput

*-rec-:-r-:IC:-:-mpres.se-:l-l.lei-:-E:I-'J-:Imj i

SselactinputFilter)

Timer

AndioCutput

I

*

Microphone

SgetSamplei)

i¥
=

¥playCompressedAudioBlock)

SplayAudioBlock()
selactOutputFilter|)

Speaker

% playSamplel)

ure 3.4: Audio subsystem class diagram

70

Digital Sound Recorder:
A Complete Example

AudioController

1

MessageMemory

¥newMessage()
CdeleteMessage()
¥getMessage()

>

Message

%getAudioBlock()

¢

AudioBlock

Is a sequence of

. ®appendAudioBlock()
[®getHeader()
¥setHeader()

1

[

0.*

Figure 3.7: Message memory class diagram

Digital Sound Recorder:

A Complete Example

Mo

Tirmme

S

Aldarmm T loclk

BgetTimed)
TogetDate(|)

ot)

st)
ThnextSecond({)
®oyvoleHour()
ToyolehMinmnuted)

Az T e

TogetAlarmmid) e
ToetslarmState()
ootlMlarmState()

Todaw

CDhate
Woat()
Wt)

ThaextDaw({)
WoyveleDawyw()
WwoywoclehMonthl)
woyvoeleYaear()

Ficure 3.9: Alarm clock class diaazmram

Digital Sound Recorder:
A Complete Example

Keyboard

WgetLastKeyi)

AvudioController

Battery

AlarmClock

Userlnterface

TsetlUsarfode()
“Alarm!i)

LseriModa

Tactivate()
“deactivate()
update()

LgatlLevel()

""\.'.l-i 'E! .'nl‘ll-..

GraphicContext

L

MenullsarModea

SettingTimeUserMode

SettingDatellserMadea

Figure 3.11: User interface subsvstem class diagram

Supdate()

Fal

ClockWiew

TaskWiew

MenuWiaew

WdrawLina()
SdrawPoint()
SdrawText(
DforegroundColor()
ShackgroundColor])
®font()

Welear()
SsetViewport])

Display

‘[:}]
“lﬁ:ﬁlf'ﬁi jl

73

Outline

UML Development — Overview
The Requirements, Analysis, and Design Models

What i1s Software Architecture?
Software Architecture Elements

Examples
The Process of Designing Software Architectures

Defining Subsystems
Defining Subsystem Interfaces

Design Using Architectural Styles

Software Architecture Styles
The Attribute Driven Design (ADD)

74

OUTLINE of SW Architecture Styles

> Introduction

Software Architecture Styles

> Independent Components
» Virtual Machines

» Data Flow

» Data-Centered

» Call-and return

» Other Important Styles
» Model-View-Controller
» Broker Architecture Style
» Service Oriented Architecture (SOA)
» Peer-to-Peer Architecture
» SW Systems Mix of Architecture Styles

75

Design Using Architectural Styles

An architectural style is a class of architectures
characterized by:

Components types: are component classes
characterized by either SW packaging properties
or functional or computational roles within an
application.

Communication patterns between the components:

kinds of communications between the component
types.

76

Families of Architecture Styles

There iIs a number of families of styles that has been

defined and used in many software systems Notable
examples are:

Independent Components: Event-based
Architectures

Virtual Machines

Data Flow: Pipes and Filters
Data-Centered Systems
Call-and Return Architectures

77

Architectural Styles
Grouped Into Five Families

Independent Components. SW system Is
viewed a set of independent processes or
objects or components that communicate
through messages.

Two subfamilies:

- Event based systems (implicit and direct
Invocation style), and

- Communicating processes family (client-server
style).

78

Architectural styles: Event-based Architecture
Some processes post events, others express an interest in events

——p Control

g Publish
====——pp Subscribe

Event

+

[———
1~~.._______

The publish and subscribe event-based architectural style.

79

Event-based Architecture

Implicit Invocation: The Observer Pattern (to be discussed later)

+addEventListener()
+removeEventListener()
+notify()

3

+handTeEvent()

A

~-5tate

+notify()
+getState()
+setState()

~5tate

+handleEvent()

(lass diagram for event-
based implicit invecation
architecture

80

Events at Different Levels of Abstraction

Eventst User lActfons EventTarget Events

0 Pixel (1 Key pressed on
Physical I/O Objects keyboard
1 Character
= 1 Mouse moved
= Actions Events
' : 0 Window] Menu item
Logical GUI Objects
) J O Text field selected

Actions Events

Represented

[Article window O Article moved

Mapped to

Application Objects

\/ ' Events
_ CJ Article [1 Message created
Database Objects |
1 News feed [News arrived

[News article list [Article dropped

81

Example: GUI Event Processing

[0 Event: “Button” “double-clicked™ “17:31:22"

[EventSource: Button managed by the GUI subsystem of the operating system

O EventHandler: Notification method in the application code

O EventManager: Operating system or GUI library code

e

aHandler:ClickHandler | :Application

new()
register (aHandler)
mouseClick w 8 -. dispatchEvents ()
anwounce{anEvenfL
action(aButton, anEvent
_getinfo () h
‘ | ,
| concurrency!

Software Architecturss Chapter 5: E

vent-bazed Architectures

118

82

OUTLINE of SW Architecture Styles

 Introduction

Software Architecture Styles
Independent Components

 VVirtual Machines
e Data Flow

» Data-Centered

e Call-and return

e Other Important Styles
« Buffered Massage-Based
* Model-View-Controller
Presentation-Abstraction-Control
Broker Architecture Style
Service Oriented Architecture (SOA)
Peer-to-Peer Architecture
« SW Systems Mix of Archite%gure Styles

Architectural Styles: Virtual Machines

2. Virtual Machines. Originated from the
concept that programs are treated as
data by a virtual machine, which is an
abstract machine implemented entirely
In software, that runs on top of the
actual hardware machine.

84

tectural Styles

Archi
Java V

INES

tual Machi

1

Java Virtual Machine. Java code translated to

IS

. JVM

platform independent bytecodes

platform specific and interprets the bytecodes.

£
#
i
il

1

Role of Java Virtual

Machine

85

Virtual Machines: The primary benefits are the
separation between instruction and implementation,
(Used when inputs are defined by a scrip or Commands,

and data)
nputs Program Interpreted
> data program
4 State of the
. Next statement/
rpreted o
DrogR Instruction
data updates
Y

Outputs Interpreter Staternent/instruction Current state of

4 s EVEIGT ERITEY Interpreter

The virtual machine architectural style.

86

OUTLINE of SW Architecture Styles

 Introduction

Software Architecture Styles

Independent Components
» Virtual Machines

e Data Flow
e Data-Centered
e Call-and return

e Other Important Styles
« Buffered Massage-Based
* Model-View-Controller
Presentation-Abstraction-Control
Broker Architecture Style
Service Oriented Architecture (SOA)
Peer-to-Peer Architecture
« SW Systems Mix of Archite%t7ure Styles

Architectural Styles: Data Flow

3. Data Flow. Include batch sequential systems
(BSS) and pipes and filters (PF).

- BSS: different components take turns at
processing a batch of data, each saving the result
of their processing in a shared repository that the

next component can access. EX. Dynamic control
of physical processes based on a feedback loop.

- PF: A stream of data processed by a complex
structure of processes (filters). Ex, UNIX.

88

Architectural Styles: Data Flow

ContrOI Loop Act:m‘tors Sensors
BSS = Z —

Pipe

-

The pipes-and-filters architectural style.

89

Example: P&F Compiler Architecture ()

0 Sources & Sinks, Input & Output Streams

Unicode
Character
Stream

N
lkTﬁ'

h J

O Flexible composability Machine N

Code —H_ /,'

0 Aggregation / Decomposition of Filters Generator |
N Machine

- Decorated Code

St?e:; e Abstract Syntax Stream

stract SyNaX a0 Nodes
Tree Nodes o Bytecode
~| Optimizer

Scanner| % Parser ySemantic_| Bytecode, q‘\i

Checker Generato N
Bytecode

| Stream

¥ ¥ ¥ _

T

: > > > |

+ + + ,\i},

Error
Message

Stream

90

PF Another Architecture Example:
Watch for the Two Views

Component View

<
Database

Extractor +=:=

1 Sorter +='.:=

1 Aggregator +='.:u

Formatter

KEY: Fump |:+ FilterE Sink+:| Fipe ;=0 |rwvokes —» Data Flow o—e
MDEIIJ'E ViEW == interface ==
== ghstract == InPort
OutPort
ooen)
InPort nextFort putDataiOhiect data)
connectTaflnPort port) close()
I I
I
== ghstract ==
Filter
I
Extractor Sorter Agogregator Formatter
execUtel) openi) opent opent
putDataiOhject data) putDataiOhbject data) putDataiOhject data)
closel) closed) closed)

91

OUTLINE of SW Architecture Styles

 Introduction

Software Architecture Styles

Independent Components
* Virtual Machines
 Data Flow

- Data-Centered
e Call-and return

e Other Important Styles
« Buffered Massage-Based
* Model-View-Controller
Presentation-Abstraction-Control
Broker Architecture Style
Service Oriented Architecture (SOA)
Peer-to-Peer Architecture
« SW Systems Mix of Archite%tzure Styles

Architectural Styles

4. Data-Centered Systems. Consist of having
different components communicate through
shared data repositories. When data
repository Is an active repository that
notifies registered components of changes
In It then-blackboard style.

93

Data-Centered Architectural Styles
Repository Architecture Style

Command line client

insert £ D delete

update . retrieve

GUI form client Database system'

Data-Centered Architectural Styles

CASE

Itecture Example:

Repository Arch
Tools Example

Program

Generated diagram

form RE

Reporis (text
specifications)

:
%
A

3
= 8B
= 5
-
g
.m o
P et
» 8
3
[
g =
m &y
it
& 5
!

[T} ~~ =
£ EZas
o

2 247 i
4 88 8
1 on

= =]

.-y e

K N -
A 5
=

Lo
(@]

Data-Centered Architectural Styles

Repository Architecture Example: Compiler
Architecture

— o Statermment
in / '
Var = exp : i
. {(Int) {Int) ix] address of variable x
l /I\ In symbol table
x ¥ + 1
{Int) {Int) (Int)
Svimbol
table Parse tree

Type check
by semantic
parser

96

Data-Centered Systems: Central data repository
Components perusing shared data, and communicating

through It.
Used in Database intensive systems

—— (ontrol flow
e [ata flow

The Blackboard architectural style.

97

Data-Centered Architectural Styles
Blackboard Architecture Style Example

Figure 4-16.
Lunar Lander in
Blackboard style.

- Compare with the PFs Style

Figure 4-15.
TLunar Lander in
pipe-ard-filter
style.

98

Data-Centered Architectural Styles

Blackboard Architecture Style:
Intelligent Agent Systems Example

Figure6.8

Blackboard architecture

99

Data-Centered Architectural Styles
Blackboard Architecture Style:
Travel Counseling System Example

E
;!

Figure
Bladdhoard architecture
for a travel consuiting
system

100

OUTLINE of SW Architecture Styles

 Introduction

Software Architecture Styles

Independent Components
* Virtual Machines

e Data Flow

« Data-Centered

 Call-and return
e Other Important Styles
« Model-View-Controller
« Broker Architecture Style
 Service Oriented Architecture (SOA)
« Peer-to-Peer Architecture
« SW Systems Mix of Architecture Styles

101

Architectural styles

5. Call-and Return Architectures. Due to heir simple control
paradigm and component interaction mechanism , these
architectures have dominated the SW landscape by the early
decades of the SW Eng.

There are several styles within this family: examples are
1) Main program and subroutine,
2) Layered architectures.

Main Program and Subroutine Style. Programs are modularized
based on functional decomposition, single thread of control held
by the main program, which is then passed to subprograms,

along with some data on which the subprograms can operate.
102

Main Program and Subroutine Style

Course registration Main component
System example
’/” A{
: Professorinfo

CourseOffering

|
M

103

Architectural styles

-) Layered. Functionality is divided into layers of
abstraction-each layer provides services to the
layer(s) above it, and uses the services of layer(s)
below it. In its purest form, each layer access only
the layer below it, but does not depend on other
lower layers.

Connections:
Usually procedure
calls

Components.

Basic Utility

composites
of various
elements

104

Layered Architectural styles
Example of a Layered Application Architecture

EXTERMAL SYSTEMS
USERS
Service Consumers

= .~ ™
L=
E.;: Ul Components N N Y
=~
-
= (Presentation Logic
: Componaents
(=1
T
0 = g || <
= : [on =
a Service Interfaceas Message Types 5 = = E
& L = = =
1] _— =1
@ | = = £
- I = 2 £
- Aoolicat . &= = || S
ety pplication Fagade o
= &
—
w j Business Busimess Business
E Workflow Components Emtitias
e oy
- Y
i‘_: ﬁ Data Accass Data Helpers), Service
Ej Components utilities Agents L A N i W
h'.'-_

I I - L. A
S-c?uartcaes [:l Services 105

OUTLINE

* |ntroduction

e Data Flow
» Data-Centered
 Call-and return

» Other Important Styles

 Model-View-Controller

106

Model-View-Controller Architecture Style

Database

MVl architecture

« The Controller manipulates the data Model
* The View retrieves data from the model and
displays needed information 107

Model-View-Controller Architecture Style
Dynamic Interactions

initiatize(), register()

initialize()
) register()
update() .)
| notify()
- update()
update()

A

-~
g

Sequence diagram for MVC
architecture

108

Model-View-Controller Architecture Style

Web Applications Java-based Implementation Example

request

separate the
in the static HTML

MV(architecture on Java

Web
Web platform eb servet

109

OUTLINE

* |ntroduction

e Data Flow
» Data-Centered
 Call-and return

» Other Important Styles

* Broker Architecture Style

110

Broker Architecture Style

Brokers gets requests from client proxies and manages them by forwardinc

to server Proxies or dispatches them to other connected brokers »

Broker Architecture Style

Transfers
messages

+pack_data()
+unpack_data()
+send_request ()
+return(}

1

+call_server()
+start_task()
+use_Broker API()

.

Uses

Transfers
messages

\i

API

- —

+main_event_Toop()
+update repository()
+register_service()
+acknowledgement ()
+find_server()
+forward_request ()
+forward_response()

Calis

+pack_data()
+unpack _data(}
+forward message()
+transmit_message()

Uses
APL

+pack_data()
+unpack data()
+call_service()
+send_response()

Calls

- ——

+initiatize()
+enter _main_toop()
+run_service(}
+use_Broker_ API()

112

Broker Architecture Style

-n-.-u-...1'

E]
i
[
]
I
I

r service()

e
I e e e e

registe

N

update repository(}

ety

packﬂata()
J'

l
forward@equest(

acknowledgement

o —

D’]\
---1L-...._._

sendRequest()

FindServer()
T
]'

_-_____4_,

unpackData()

- e oy .

ca11Serv1ce() N

r\-—-‘
—

runServ1ce()
)

forwardResponse(

andCT1ent() LrJ ckData()
i)
i
]
]
I
1
i
!
1
I
i
1
I
f
i

]
]
i
I
!
!
I
)
i
]
]
I

1
return{)
il]
unpackData()

]

lremﬂt]

“"“““"-i_}-—-
A

-
e ——

Server-side 112

—T—— ¥

e Ay e

Client-side

Broker Architecture Style

B L S S VL UL W W

Advantages:
» Server component implementation and location transparency
»« Changeability and extensibility

» Simplicity for clients to access server and server portability

114

Example: CORBA, Common Object
Request Broker Architecture

. —— M i o —— e Wl oy ot W RA o m—

S — S i U o —— o o Pl W gt M Vit

Returnvalue, out args

Client-Side Proxy
IDL

Server-Side Proxy] Skeleton
Interface
(IDL) repository

Software bus

The Object Request Broker (ORB) protocol provides a software bus on the
network for brokering the requests from clients and the responses from
servers; the protocol also supports increased interoperability with other

implementations. 115

Example: CORBA, Common Object
Request Broker Architecture

CORBA also supports the Dynamic Invocation Interface (DII), which
allows CORBA clients to use another CORBA object without knowing its
interface information until runtime. Dynamic Skeleton Interface (DSI) is
used by ORB to issue requests to objects that are implemented independ-
ently and for which the ORB has no compile-time knowledge of their
implementation. Although the dynamic approach of DII and DSI is more
flexible, they are always slower than their static IDL counterpart. The
dynamic remote invocation mode was the only invocation mode available
in the early version of CORBA. In some cases the IDL is not available at
compilation time and the stub and skeleton cannot be generated at compi-
lation time. For example, if a COM client wants to make a CORBA request
or a DCOM object wants to provide its services on CORBA, a bridge inter-

face is required to do the conversion Tn tho £

116

OUTLINE

* |ntroduction

e Data Flow
» Data-Centered
 Call-and return

» Other Important Styles

» Service Oriented Architecture (SOA)

117

Service Oriented Architecture (SOA)
Style

Makes use of an Enterprise Service Bus ESB
Used in web-based systems and distributed computing

Geot | [o | 'Uiianti | “i?"‘] The SOA Style

TR | |

—t O NN NN
|

1
ThY RRC (sateful
1

| | | I .
' R $|]$|1$||5 |5||5|1$|.
=
bR ! | ! |
v g Y = o :'Jﬁi =
Before vy %_&j
SOA L
nodes make resources available to other
Eé :,__i___.. participants in the system as independent services that
_J the participants access in a standardized way using thetESB

The SP publishes/updates services using the Web Service Description Language (WSDL
On the Universal Description Discovery and Integration (UDDI) registry.

Refers to —————®1 -

Access WSDL document

AT

SOAP
request

SOAP Service requester

provider

pleweb service interaction among provider, user, and the UDD! registry. 119

Service Oriented Architecture (SOA)

Style: A Map of SOA Components

Web Portals
|2
ﬁg -% Human Business Process Management (BPM)
=3 = i i
g ;; 'c% Enterprise Service Bus (ESB)
S| g
‘25 ?)) Data Services Process Services
o Business Logic Orchestration
System BPM

The ESB Performs:
data transformation

. Intelligent routing

* ¥ Real time monitoring
Exception handling Databases Systems of Record

Service security

120

Cloud Services Architecture
SOA supports Cloud Computing Models

Grid = Service + Resource 1 he Grid of Services

Client and Resources

Clients request the Grid Services

and Resources from the Service Directory
Service directory

Grid service architecture

Cloud Services Architecture

Human as a service, Software as a service, Infrastructure as a service
Huaas Saas laaS

=K
Crowdsourcing e.g. Mechanical Turk L —
oD
l Information Aggregation Services e.g. lowa Electronic Markets I O
oD
- - O
Applications e.g. Google Docs jat]
oD
Application Services
Composite Application Services e.g. Opensocial
Basic Application Services — e.g. Openlid
(=3
= = = = = = =
355, 5 |
Programming Environment e.g. Django o0
oD
Execution Environment e.g. Google App Engine
Infrastructure Services 8
Higher iInfrastructure Services e g. Google Bigtable I T
Basic Infrastucture Services
Computational e.g. Hadoop MapReduce
Storage e g. GoogleFsS
l Network e.g. OpenFlow
Resocource Set
Virtual Resource Set e.g. Amazon EC2 I
Physical Resource Set e.g. Emulab I

Lonenstuupy

\uauaBeueyy ajof)-ajr ‘Guioyuoyy ‘oneinjuoy uetwfojdeg

Moddns ssauisng

IauwaBeueww s ‘woneanuauy uyyg Sussja

T 58585858w8B

The Internet of Things (1oT)

\pplication | mMerchandise || Environment intelligent Tele- Intelligent Smart
layer tracking protection search medicine traffic home

Cloud computing
platform

Network .
[ayer Mobile | nformation
telecom network
AT | Sensor GPS
RFID network
Sensing
layer Road navigators
RFID {abel Sensor nodes
IGURE 9.15

'hie architecture of an loT consisting of sensing devices that are connected to various applications via mol

etworks, the Internet, and processing clouds.
123

Example in Telemedicine

Hospital
or
medical centar
server PC

“IEEE802.15.4/
{ ZigBee compliant
N ommunications

Doctors
4 rnobile F’DA.

| sensor

Wearable devices
node

(Chest belt, wrist band, etc...)

ﬁl- : 3 .) =
) " Celiular

e | networks
Patient's J

[mobile phone

(Doctor’s
mobile phone
FIGURE 9.19

An example of how measured data ¢

an be transferred 1o doctors or medical professionals using a wirslags
sensor network,

Cost reduction leading

Miniaturization, power- fusion
efficient electronics, and
available spectrum

Ability of devices located
indoors {o receive

Software agents and
advanced sensor

Teleoperation and
telepresence: Ability to
mertitor and control

distant objects Physical-worid
web

geolocation signals | | peating people and
everyday objecis

Ubiquitous positioning

to diffusion info 2nd
wave of applications

Technology reach

Demand for expedited
logisfics

Surveillance, security,

healthcare, transport,

food safety, document
management

RFID tags for
facilitating routing,
inventorying, and loss
prevention

Supply-chain helpers

e

Vertical-market applications

2000

FIGURE 9.14

2010
Time

2020

Technology road map of the Internet of things.

OUTLINE

* |Introduction

e Data Flow
» Data-Centered
e Call-and return

« Other Important Styles

 Peer-to-Peer Architecture

126

Peer-to-Peer Architecture Style

Hybrid Client-Server/Peer-to-Peer: Napster
P2P systems became part of the popular technical parlance due in large measure to the

popularity of the original Napster system that appeared in 1999, Napster was dESIf’ﬂLd

to facilitate the sharing of digital ecordings in the form of MP3 fles. Napster was not
howevet, a true P2P system. Its design choices, however, are mstructlve

Peer &
Content
Directory

Figure 11-4,
Notional view of
the operation of
Napster. In steps
I and 2, Peers A
and B log in with
the server. In step
3, Peer A queries
the server where
it can find Rondo
Veneziano’s
“Masquerade.”
The location of
Peer B is
retumed to A
(step 4). In step
5, A asks B for
the song, which is
then transferred
to A (step 6).

127

Peer-to-Peer Architecture Style
The Gnutella Examnle

Figure 11-5.
Notional
mteractions
berween peers
using the original
Grutella
protocol.

* Pure Peer-to-Peer
Architecture

» Asends query for a data
resource to neighbors Band H, A\ ~
they pass it on until the peer havmg -

the resource is found or until

a certain threshold of hops

Is reached .

Peer-to-Peer Architecture Style

The Gnutella Example

Requestreply using Gnuielia
protocol owver TCP aor UDP

3 HTTPE file transfer
i fromAtoB

e

Recent Versions of Gnutella supports two types of peers Ultra peers and Leaf peers
Ultra peers runs in systems with fast internet connects and are responsible for request routing
and responses, they are connected to a large number of other Ultra peers and leaf peers, while

the leaf peers are connected to a small number of Ultra peers

Figure 4.4

A CE&C diagram of a
Gnutella network, using
informal notation

129

Peer-to-Peer Architecture Style
The Skype Example

Figure 11-6.
Notional mstance
of the Skype
grchitectyre.

» A mixed client-Server and Pee-to-Peer
» Skype Peers get promoted to a supernode

status based on their network connectivity /5, g.’j’,;.g’,;:.__
And machine performance 1 node

» Supernodes perform the

Communication and routing
of massages to establish a call \

» When a user logs in to the server *,
he Is connected to a supernode

» |If a peer becomes a supernode

he unknowingly bears the cost of routing
a potentially large number of calls.

130

Peer-to-Peer Architecture Style
The Skype Example

Several aspects of this architectute are noteworthy:

» A mixed client-server and peer-to-peer architecture addresses the discovery prob[em..,-.;
The network is not flooded with requests in attempts to locate a buddy, such as woul.dj{;
happen with the original Gnutella. g

» Replication and distribution of the directories, in the form of supetnodes, addrnsﬂﬁ‘?;;:
the scalability and robustness problems encountered in Napster. .

131

Conclusions

 An architectural style is a coordinated set of
architectural constraints that restricts the
roles/features of architectural elements and the
allowed relationships among those elements

* Choosing a style to implement a particular
system depends on several factors based on
stakeholders concerns and quality attributes

* Most SW systems use a mix of architecture
styles

132

SW Systems-Mix of Architecture Styles

Most SW systems use a mix of architecture styles. EX,
personnel management system with a scheduling
component, implemented using the independent component
style, and a payroll component, using the batch sequential
style.

Choosing a style to implement a particular system depends
on several factors. The technical factors concern the level of
quality attributes that each style enables us to attain. EX,
event-based systems-achieve very high level of evolvability,
at the expense of performance and complexity. Virtual-
machine style-achieve very high level of portability, at
expense of performance and perhaps even testability.

133

SW Systems-Mix of Architecture Styles
Components of each Layer use different architecture styles

Buevic sl e ! D;.-n.-mw;:ic-»:|;-r,¢ul|{m;hl::-p:1

|

S hesiinrilaedn gt Ptttz Stk o

- T

‘J{S:‘.‘-D:?w.-miu_" e T e LY

i e 4 | —3

Seauinction mmar HrrscuMopenesiogl]

Connectivity

resiviigedini hahdaihaddzion

Ebethosd 3

Sttty
1zl

1 [ErREGk e]
farruniiests Il Mz urian = | E= ﬁ_tl e - I | J e [T)
L 1= LL.JIAUU‘ Nz Tl k»-nm_l D05 FavlETpa I GGl ::qur-;;‘l[el |f¢ rilicalnFaus .] t:::-::ﬁ

R | I | — =7
e

BinzrpSermn i1y ol xenng

. * = -
Graatclalo 4 F GG Legem g achE Seesnt { | GEREC redze Al |:I [E WE Y Ceabdrby f] AullB bR
....,wg |- i___........j

| =

Fabric

Figure 11-3. Architecture of Globus Grid technology (recovered). (Matemann, Medvidovié et aIB
2005).

SW Systems-Mix of Architecture Styles

o | J 2

Gateway Architecture PDA +Hub Architecture
Service- _ Architecture
Oriented Topology que | s : Event
Subarchitecture Calculator Info | £ R ' 2| | Notification

Sve

. =
Session & 4 GwToHub "'%3, 8
Operator |y, ! Processor L B
o v
o g
Publish- }3 B Hub
Subscribe Sessian o Cperator
o
=

Subarchitecture Administrator

Event
Display

Pub-Sub Conn

G WTO GW |
5 Processor b

4 Sensor
* Processor p

[Pub-Sub Conn] [Pub-Sub Conn

ar gateways
To other PDAs

To sensors

Too

Peer-to-Peer
Subarchitecture :

Un ié;ista
Conn

Prism-MW Meta-level '
Architecture |:l Compoenent Companent Service C:] Connector
Distribution Distribution
W Request Port B4 Reply Port Request Port Reply Port ‘!_ Pointer

Figure 11-12. The MIDAS wireless sensor network architecture. Diagram adapred from (Malek et

al. 2007) © IEEE 2007 . 135

Outline

UML Development — Overview
The Requirements, Analysis, and Design Models

What i1s Software Architecture?
Software Architecture Elements

Examples

The Process of Designing Software Architectures
Defining Subsystems
Defining Subsystem Interfaces

Design Using Architectural Styles

Software Architecture Styles
The Attribute Driven Design (ADD) -

Designing Architectures Using Styles

One method of designing an architecture to
achieve quality and functional needs is called
Attribute Driven Design (ADD).

« In ADD, architecture design is developed by taking sets
of quality attribute scenario inputs and using knowledge
of relationship between quality attributes and

architecture styles.

137

http://www.sei.cmu.edu/architecture/tools/define/add.cfm
http://www.sei.cmu.edu/reports/07tr005.pdf

Attribute-Driven Design (ADD)

A Method for producing software architecture
based on process decomposition, stepwise
refinement and fulfillment of attribute
qualities.

It IS a recursive process where at each
repetition, tactics and an architecture style or a

pattern is chosen to fulfill quality attribute
needs.

138

Attribute-Driven Design (ADD): Overview
T T

Swysterm

ke emlEly Aptrilbueis Raqguirasmasnis
Cresigmn Constraimts
Functional Raguirameanis

o >
Flaam I Saelact typas of alameantis
Co - Instantiate elements

Crheck - Aonalyvza the desigr

o I >
| o T / I
S e
E [Loy =] 4_II :}

T | Y o = o

—_——— Raalrxa=
— Ll===

Froepares JC The A0y e, Fheo, evvacd e ok e e 139

Design the Software Architecture U

sing the Attribute-Diriven Design (ADD) Method

Purpose: The Attribute-Driven Design (ADD)} Method is an approach to defining software architectures by bas-
ing the design process on the architecture™s guality attribute requirements. It follows a recursive decomposition
process where, at cach stage in the decomposition. architectural tactics and patterns arce chosen to satistiv a sct of
quality attribute scenarios.

Role: Software architect | Sofiware architect]

Frequency: This activity is optional in the Inception Phase. It should occcur in the first iteration of the Elaboration
Phase and can recur in later iterations 1f substantial changes or additions to the software architecture need to be

explored.

Steps:
1. Choose the module to decompose.
2. Refine the module according to these steps:
a. Choose the architectural drivers.
k. Choose an architectural pattern that satisties
the architectural drivers.
. Instantiate modules and allocate functionality
from the usc cases. Represent the results using multiple views.
d. Define interfaces of the child modules.
= Werity and refine the use cases and quality scenarios
and make them constraints for the child modules.
3. Repeat the abowve steps for the next module.
Input Artifacts: Resulting Artifacts:
- wvision [constraints] - software architecture document [decomposition
- architectural prootfioficoncept of the architecture expressed in module, concur-
[constraints] rency., and deplovment views]
- use case model [functional requirements, qualitw
requirements|
- supplementary specifications
[quality reguircments]

Tool Mentors: None

More Information: [Bass (03]

Workflow Detail

- Analwvsis and Design
- Detfine a Candidate Aaorchitecture
- Perform Architectural Syvnthesis

140
Figure 9: The ADD Method as a RUP Activity®

Updated ADD Steps

Functional Design Cuality attribute
recguirements constraints reguirem ents

Step 1: Confirrm there is
sufficient requirements
inforrmation

decompose

Step 3: dentify candidate architectural
drivers

Step 4 Choose a design concept that
satisfies the architectural drivers

Step 5 Instantiate architectural elements
and allocate responsibilities

Step 6: Defimne interfaces for instantiated
clements

Step F: WVerify and refine requirem ents anmnd
make them constraints for instantiated
elements

Softwvware
architecture
design

Step 2Z2: Choose an element ofthe systerm to

A0 reguireaments are well-formed
and prioritized by stakeholdaers

ey
IMmputyfouutput
artitact
Process
step

141

http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA460414

Step 1: Confirm There Is Sufficient
Requirements Information

WHAT DOES STEP 1 INVOLVE?

1. Make sure that the system’s stakeholders
have prioritized the requirements according
to business and mission goals.

2. You should also confirm that there Is
sufficient information about the quality
attribute requirements to proceed.

142

Step 2: Choose an Element of the System to
Decompose

In this second step, you choose which element of the
system will be the design focus in subsequent steps.
You can arrive at this step in one of two ways:

1. You reach Step 2 for the first time. The only element you
can decompose Is the system itself. By default, all
requirements are assigned to that system.

2. You are refining a partially designed system and have
visited Step 2 before.4 In this case, the system has been
partitioned into two or more elements, and requirements
have been assigned to those elements. You must choose
one of these elements as the focus of subsequent steps.

143

Step 3: lIdentify Candidate Architectural
Drivers

WHAT DOES STEP 3 INVOLVE?

At this point, you have chosen an element of the system to decompose, and stakeholders
have prioritized any requirements that affect that element.

During this step, you’ll rank these same requirements a second time based on their
relative impact on the architecture.

This second ranking can be as simple as assigning “high impact,
“low impact” to each requirement.

Given that the stakeholders ranked the requirements initially, the second ranking
based on architecture impact has the effect of partially ordering the requirements
Into a number of groups. If you use simple high/medium/low rankings, the groups
would be (H,H) (H,M) (H,L) (M,H) (M,M) (M,L) (L,H) (L,M) (L,L)

29 ¢¢

medium impact,” or

The first letter in each group indicates the importance of requirements to stakeholders,
the second letter in each group indicates the potential impact of requirements on the
architecture.

From these pairs, you should choose several (five or six) high-priority requirements as
the focus for subsequent steps in the design process.

144

Step 4. Choose a Design Concept that
Satisfies the Architectural Drivers

In Step 4, you should choose the major types of
elements that will appear in the architecture and
the types of relationships among them.

Design constraints and quality attribute requirements
(which are candidate architectural drivers) are
used to determine the types of elements,
relationships, and their interactions.

The process uses architecture patterns or styles

145

Step 4: Choose a Design Concept that
Satisfies the Architectural Drivers (cont.)

Choose architecture patterns or styles that together
come closest to satisfying the architectural drivers

Table I Structure of Matrix to Evaluate Candidate Patterns

Pattern 1 Pattern 2 .. Pattern n

Fros Cons Fros ons Pros Cons

146

Step 4: Example

Mobile Robots example (to be discussed at the end)

Architecture Control Loop Layers Blackboard
Drivers

Task coordination +- _ ¥
Dealing with uncertainty - +- +
Fault tolerance +- +- +-
Safety +- +- +
Performance +- - +
Flexibility - _ +

147

Step 4: Major Design Decisions

Decide on an overall design concept that includes
the major types of elements that will appear in the
architecture and the types of relationships among

them.

|dentify some of the functionality associated with
the different types of elements

Decide on the nature and type of communications
(synchronous/asynchronous) among the various
types of elements (both internal software elements
and external entities)

148

Step 5: Instantiate Architectural Elements
and Allocate Responsibilities

In Step 5, you instantiate the various types of software
elements you chose in the previous step. Instantiated
elements are assigned responsibilities from the
functional requirements (captured in use-cases)
according to their types

At the end of Step 5, every functional requirement (in
every use-case) associated with the parent element must
be represented by a sequence of responsibilities within
the child elements.

This exercise might reveal new responsibilities (e.g.,
resource management). In addition, you might discover
new element types and wish to create new instances of
them.

149

A Simple Example of Software
Architecture Using UML2
EXAMPLE: SATELLITE CONTROL SYSTEM

Use-Case Diagram

SatelliteControlSystem

X—

UserEquipm ent

[———
|

ProcessCommsMessage Ground Station

i ——
e
SSSSSSSSSSS

MaintainPosition

Actuator

150

A Simple Example of Software
Architecture Using UML2

SATELLITE CONTROL SYSTEM Architecture composition

s ControlSystem::SatelliteControlSystem

I |]
¥ PC db
cC

PowerController | DataBus

CommunicationsController

wac

AttitudeController

151

Step 6: Define Interfaces for Instantiated
Elements

WHAT DOES STEP 6 INVOLVE?

In step 6, you define the services and
properties required and provided by the
software elements in our design. In ADD,
these services and properties are referred to as
the element’s interface.

Interfaces describe the PROVIDES and
REQUIRES assumptions that software
elements make about one another.

152

A Simple Example of Software Architecture Using
UML2

SATELLITE CONTROL SYSTEM Architecture Structure

CompositeStructure active class SatelliteControlSystem {3/5}
lActuator _ IJ__I‘] ISensor
D [Je pc : PowerController ac : AttitudeController LI O
|ActuatorPaort If—\ctuatorF’ort Bus Port Busp%ﬁnsorport SensorPort

IDataFromBus IDataFromB

DataPort
db : DataBus
D ataPort
IDataToBus

IDataFromBus

BusPort

IReqPosition ICommsin

(2>|:|‘ cc : CommunicationsController o
GroundStationPort IGroundStationP ort Userqu_llpmentPortI UserEquipmentPort

Wlert, ICurrPos itign

ICommsOut

153

A Simple Example of Software
Architecture Using UML2

SATELLITE CONTROL SYSTEM Architectural Behavior

sd Basic CourseJ interaction ProcessPositionMessage {1/1}

<<gcfors >
"Ground Control'

oo CommunicationsController db : DataBus ac AttitudeController

requiredF"asitinnI'I.ﬂeasage(ﬁbﬂ; DD, . . .]

checkCik = messageVerified(. BA;

alt[lcheckOk])

nak (1

[checkOik]
ack ()

Step 6: Major Design Decisions

Decisions will likely involve several of the
following:

The external interfaces to the system

The Interfaces between high-level system
partitions, or subsystems

The interfaces between applications within high-
level system partitions

The Interfaces to the infrastructure (reusable
components or elements, middleware, run-time
environment, etc.)

155

Step 7: Verify and Refine Requirements and
Make Them Constraints for Instantiated
Elements

WHAT DOES STEP 7 INVOLVE?

In Step 7, you verify that the element
decomposition thus far meets functional
requirements, quality attribute requirements,
and design constraints. You also prepare child
elements for further decomposition.

Refine quality attribute requirements for
Individual child elements as necessary (e.g.,
child elements that must have fault-tolerance,
high performance, high security, etc.)

156

Example 1 Mobile Robotics System

Overview
— controls manned, partially-manned, or
unmanned vehicle--car, submarine, space
vehicle, etc.
— System performs tasks that involve planning
and dealing with obstacles and other external
factors.
— System has sensors and actuators and real-time
performance constraints.

157

Mobile Robotics System Requirements
(Candidate Architecture Drivers)

Req 1: System must provide both
deliberative and reactive behavior.

Req 2: System must deal with uncertainty.

Req. 3 System must deal with dangers in
robot’s operation and environment.

Req. 4. System must be flexible with respect
to experimentation and reconfiguration of
robot and modification of tasks.

158

Mobile Robots--Control Loop
Architecture

Control Loop Architecture

Evaluate Control Loop Architecture--Strengths and
Weaknesses w.r.t candidate architecture drivers

- Req 1--deliberative and reactive behavior

— advantage-simplicity

— drawback-dealing with unpredictability
» feedback loops assumes continuous changes in

environment and continuous reaction

* robots are often confronted with disparate, discrete
events that require very different modes of reactive
behavior.

— drawback-architecture provides no leverage for

decomposing complex tasks into cooperating components.

160

Control Loop Architecture

Control Loop Architecture--Continued
» Req 2--dealing with uncertainty

— disadvantage-biased toward one way of dealing with
uncertainty, namely iteration via closed loop feedback.

» Req 3--safety and fault-tolerance
— advantage-simplicity
— advantage-easy to implement duplication (redundancy).
— disadvantage-reaction to sudden, discrete events.
* Req 4--flexibility
— drawback--architecture does not exhibit a modular component
structure
 Overall Assessment: architecture may be appropriate for
— simple systems
— small number of external events

— tasks that do not require complex decomposition,
161

Choose another architecture style
Mobile Robots--Layered Architecture

Supervisor Level 8
Global planning
Confrol
Navigation
Real-world modeling
Sensor mtegration
Sensor interpretation

Robot control Level 1

1

e ___‘-\—__

\ Environment >
— -

162

Layered Architecture

Evaluate Layered Architecture--Strengths and

Weaknesses
* Req 1--deliberative and reactive behavior
— advantage-architecture defines clear abstraction
levels to guide design
— drawback-architectural structure does not
reflect actual data and control-flow patterns
— drawback-data hierarchy and control hierarchy

are not separated.

163

Layered Architecture

Layered Architecture--Continued
* Req 2--dealing with uncertainty
— advantage-layers of abstraction should provide
a good basis for resolving uncertainties.

» Req 3--safety and fault-tolerance
— advantage-layers of abstraction should also help
(security and fault-tolerance elements in each layer)
— drawback-emergency behavior may require

short-circuiting of strict layering for faster
recovery when failures occur.

164

Layered Architecture

Layered Architecture--Continued
* Req 4--flexibility
— drawback-changes to configuration and/or
behavior may involve several or all layers

* Overall Assessment
— layered model is useful for understanding and
organizing system functionality
— strict layered architecture may break down with
respect to implementation and flexibility.

165

Blackboard Architecture

Mobile Robotics--Blackboard
Architecture

Captain Navigator

Pilot

Lookout

—'-'-'-'-
-—'-'-'-'_

=’

[w - F

Blackboard

A N
£ N\

Perception subsvstem

166

Blackboard Architecture

Evaluate Blackboard Architecture--Strengths
and Weaknesses
» Reql-- Deliberative and reactive behavior
— advantage: Easy to integrate disparate,
autonomous subsystems
— drawback: blackboard may be cumbersome in
circumstances where direct interaction among
components would be more natural.
» Req 2--Dealing with uncertainty
— advantage: blackboard is well-suited for
resolving conflicts and uncertainties.

167

Blackboard Architecture

Blackboard Strengths and Weaknesses--Continued

» Req3--safety and fault-tolerance
— advantage: subsystems can monitor blackboard
for potential trouble conditions

— disadvantage: blackboard is critical resource
(this can be addressed using a back up)

» Reg4--flexibility
— advantage: blackboard is inherently flexible
since subsystems retain autonomy.

168

Architecture Comparison

Mobile Robotics--Summary of

Architectural Control Loop Layers Blackboard
Tradeoffs

Task coordination +- _ ¥
Dealing with uncertainty - +- +
Fault tolerance +- +- +-
Safety +- +- +
Performance +- - +

Flexibility : : ¥

169

