
DESIGN OF

SOFTWARE ARCHITECTURE

Instructor: Dr. Hany H. Ammar

Dept. of Computer Science and

Electrical Engineering, WVU

1

Outline

 UML Development – Overview

 The Requirements, Analysis, and Design Models

 What is Software Architecture?

– Software Architecture Elements

 Examples

 The Process of Designing Software Architectures

– Defining Subsystems

– Defining Subsystem Interfaces

 Design Using Architectural Styles

– Software Architecture Styles

– The Attribute Driven Design (ADD)
2

UML Development - Overview

PROGRAM

ACTORS

ANALYSIS
Specify Domain
Objects

Detailed DESIGN

IMPLEMENTATION

D

A

T

A

D

I

C

T

I

O

N

A

R

Y

TimeUSE CASES

ANALYSIS

CLASS DIAGRAM(S)

IMPLEMENTATION

Activity DIAGRAMS

SEQUENCE

DIAGRAMS

OPERATION CONTRACTS

StateChart

DIAGRAMs

DEPLOYMENT DIAGRAM
SUBSYSTEM CLASS/

OR COMPONENT

DIAGRAMS

Architectural
Design
Include
Design Objects

Object
Design

SCENARIOS

REQUIREMENTS
ELICITATION

DESIGN DIAGRAMS

IMPLEMENTATION

CHOICES

DESIGN SEQUENCE/Comm DIAG.

3

The Requirements, Analysis, and

Design Models

Static Analysis

Dynamic Analysis

Functional/

Nonfunctional

Requirements

Use Case Diagrams/

Sequence Diagrams

(the system level)

- Analysis Class Diagrams

- State Diagrams/

Refined Sequence

Diagrams (The object

level)

Requirements

Elicitation

Process

The Analysis

Process

Static Architectural

Design

Dynamic Design

The Design

Process

• Design Class Diagrams and

Components Diagrams

• Design Sequence/

• Collaboration Diagrams4

Outline

 UML Development – Overview

 The Requirements, Analysis, and Design Models

 What is Software Architecture?

– Software Architecture Elements

 Examples

 The Process of Designing Software Architectures

– Defining Subsystems

– Defining Subsystem Interfaces

 Design Using Architectural Styles

5

What is Software

Architecture?

A simplified Definition

A software architecture is defined by

a configuration of architectural

elements--components, connectors,

and data--constrained in their

relationships in order to achieve a

desired set of architectural properties.

6

Software Architecture

Elements

 A component is an abstract unit of software

instructions and internal state that

provides a transformation of data via its

interface

 A connector is an abstract mechanism that

mediates communication, coordination, or

cooperation among components.

7

Software Architecture Elements

 A datum is an element of information that is transferred
from a component, or received by a component, via a
connector.

 A configuration is the structure of architectural
relationships among components, connectors, and data
during a period of system run-time.

 Software Architecture views: Architectures are described
using multiple views such as the static view, the dynamic
view, and deployment view.

 An architectural style is a coordinated set of architectural
constraints that restricts the roles/features of
architectural elements and the allowed relationships
among those elements within any architecture that
conforms to that style.

8

The static view

9

The dynamic view,

a high level diagram

10

The dynamic view of the ATMClient

for a certain Use Case Scenario

11

The dynamic view: another model

12

The deployment view

13

Introducing Architecture Styles
More details on architecture styles to be discussed later

 The Layered Architecture

e.g Network

Services

Architecture

14

Network Services Architecture

Deployment view

15

Layered Software Architectural styles
Example of Web Applications Architecture Style

16

Service Oriented Architecture (SOA):

Makes use of an Enterprise Service Bus ESB

Used in web-based systems and distributed computing

nodes on a network make resources available to other

participants in the network as independent services that

the participants access in a standardized way using the ESB17

Examples of Architecture Styles

 Embedded Systems architecture style

Monitors

<<Interface>>

Input_devices

or actors Controllers

<<Interface>>

Output_devices

or actors

Schedulers

18

Outline

 UML Development – Overview

 The Requirements, Analysis, and Design Models

 What is Software Architecture?

– Software Architecture Elements

 Examples

 The Process of Designing Software Architectures

– Defining Subsystems

– Defining Subsystem Interfaces

 Design Using Architectural Styles

19

Example: Interactive Electronic

Technical Manual (IETM) System

 Web Services 3-tier architecture

Data Access

IETM Electronic Display

System (EDS)

IETM Data
User Interface

Business Services User ServicesData Services

20

Recall Analysis diagram for EMS, Context Diag.

21

EMS Architecture

22

EMS Deployment Architecture view

23

Example of Hierarchical Architecture:
Cruise Control and Monitoring System

24

Example: Consolidated Collaboration Diagram

of the Elevator Control System

25

Online Shopping System: Structured Classes with Ports

26

Outline

 UML Development – Overview

 The Requirements, Analysis, and Design Models

 What is Software Architecture?

– Software Architecture Elements

 Examples

 The Process of Designing Software Architectures

– Step1: Defining Subsystems

– Step 2: Defining Subsystem Interfaces

 Design Using Architectural Styles

27

Information Available At

Architectural Design

 The Requirements model

– Use cases, Use case Diagram, system
sequence diagrams

 The Analysis model

– Analysis class diagram,

– stateCharts for multi-modal classes, and

– Domain Object sequence diagrams

28

Artifacts Developed at Architectural

Design

 Subsystems + their public interfaces (APIs)

 Subsystems class diagrams. A class diagram

for each subsystem

 Subsystem dependencies (interaction

diagrams)

Architecture design

Requirements

And

Analysis models

Design

Class/ and

Interaction

Diagrams
29

The Process of Designing Software

Architectures

 Software Architecture
Step1: Define overall structure of the system into
components or subsystems, or classes

Step 2: Define Component interfaces and
interconnections separately from component internals
(defined during details design)

 Each subsystem performs major service
– Contains highly coupled objects

– Relatively independent of other subsystems

– May be decomposed further into smaller subsystems

– Subsystem can be an aggregate or a composite object

30

Step 1 - Subsystem/Components

Structuring Criteria

Decompose the system into subsystems or classes such that each performs a specific
function or task to maximize cohesion and minimize coupling, the following are
typical examples of subsystems or classes

 Controllers

– Subsystem controls a given aspect of the system (e.g., Cruise cont. Fig. 20.45)

 Coordinators/Schedulers

– Coordinates several control subsystems (e.g., Cruise cont Fig 20.45,20.46)

 Data Collectors/Monitors

– Collects data from external environment (e.g., Cruise cont Fig. 20.45)•

 Data analyzers

Provides reports and/or displays (e.g., Cruise cont Fig. 20.26)

 Servers

– Provides service for client subsystems (e.g., MyTrip example)

 User/Device Interface

– Collection of objects supporting needs of user (e.g., Cruise cont Fig. 20.26)

31

Control, Coordinator, Data Collection

Subsystems

32

Coordinator, Service, and User InterfaceSubsystems

33

Service subsystems, Input & User Interface

34

Coordinator, Control, and Interface

35

User Interface, Coordinator, Service

36

Another way of forming subsystems

 Aggregate into the same subsystem

– Objects that participate in the same use case
(functional cohesion)

– Objects that have a large volume of interactions
(e,g, Control object & objects it controls) or
share common data or file structures
(communicational cohesion)

– Object that execute in the same time (temporal
cohesion)

37

User Interface Subsystem

38

Architecture

39

Aggregate Control, input, and output

of each distributed controller

40

Example: MyTrip System, uses a Global Positioning

System to locate and coordinate a trip for a driver in

an automobile software system

The Analysis Class Diagram

Location

Segment

Crossing

Direction

Destination

Trip

RouteAssistant PlanningService

41

Design Class Diagram

MyTrip Subsystems

Location

Segment

Crossing

Direction

Destination

RoutingSubsystem PlanningSubsystem

Trip

RouteAssistant PlanningService

42

MyTrip Deployment Diagram

:RoutingSubsystem :PlanningSubsystem

:OnBoardComputer :WebServer

Components must be associated with a processor node in

the deployment diagram

43

New Classes and Subsystems

TripLocation

PlanningService

Segment
Crossing

RouteAssistant

Direction

Destination

TripProxy

SegmentProxy

PlanningSubsystem

Message

Connection

CommunicationSubsystem

RoutingSubsystem

44

MyTrip Data Storage

PlanningSubsystem

MapDBStoreSubsystem

TripFileStoreSubsystem

RoutingSubsystem

CommunicationSubsystem

45

Example: Cruise Control and

Monitoring System

46

Example: Cruise Control

And Monitoring System Class Diagram of the

Cruise Control

Subsystem

47

Example: Cruise Control System;

The Monitoring Subsystem

48

Example: Aggregating classes into a subsystem using temporal

cohesion

49

Example: aggregating classes

Using functional cohesion

50

Outline

 UML Development – Overview

 The Requirements, Analysis, and Design Models

 What is Software Architecture?

– Software Architecture Elements

 Examples

 The Process of Designing Software Architectures

– Step1: Defining Subsystems

– Step 2: Defining Subsystem Interfaces

 Design Using Architectural Styles

51

Step 2 - Define Subsystem Interfaces

 The set of public operations forms the subsystem

interface or Application Programming Interface

(API)

 Includes operations and also their parameters,

types, and return values

 Operation contracts are also defined (pre- and

post-conditions) and accounted for by client

subsystems – they can be considered part of the

API

52

Subsystem Interfaces

FeedforwardStrategy

(from POAD1-Feedback)

<<Strategy>> FeedbackObserver

<<Observer>>

(from POAD1-Feedback)

FeedbackStrategy

<<Strategy>>

(from POAD1-Feedback)
ErrorObserver

<<Observer>>

(from POAD1-Feedback)

Blackboard

<<Blackboard>>

(from POAD1-Feedback)

Context

Update Notify Context

Update

Notify

setData getData

Interfaces can be methods such as Notify, update,

Or can be classes such context.

53

Internal and External Interfaces (Informal Notation)

54

Client-Server Interfaces (Informal Notation)

55

Client-Server Interfaces (Informal Notation)

56

(a) And (b) are equivalent

Provided

Service

(server)

Required

Service

(Client)

Interfaces in UML Notation)

57

Client

Servers

(Implement the methods open(),etc.)

58

59

implements the

methods in both

Interfaces

60

Example: A Digital Sound Recorder

From Requirements-to-Analysis-to-Design

 The main function of the DSR is to record and

playback speech.

 The messages are recorded using a built-in

microphone and they are stored in a digital

memory.

 The DSR contains an alarm clock with a calendar.

The user can set a daily alarm. The alarm beeps

until the user presses a key, or after 60 seconds.

61

Digital Sound Recorder:A Complete Example

From Requirements-to-Analysis-to-Design

62

Digital Sound Recorder:

A Complete Example

63

Digital Sound Recorder:

A Complete Example

System

Sequence

Diagram

64

Digital Sound Recorder:

A Complete Example

65

Digital Sound Recorder:

A Complete Example

66

Digital Sound Recorder:

A Complete Example

Analysis

Class Diagram

67

Analysis Sequence Diagram Help find operations of classes

during design

68

Digital Sound Recorder:

A Complete Example

Design

Class

Diagram:

Designing

The

Subsystems,

The names of

subsystems

Should be

improved

<<Interface>>

<<Interface>> <<Control>>

69

Digital Sound Recorder:

A Complete Example

Interactions between

Objects are defined

Using Design

Sequence diagrams

70

Digital Sound Recorder:

A Complete Example

71

Digital Sound Recorder:

A Complete Example

72

Digital Sound Recorder:

A Complete Example

73

Outline

 UML Development – Overview

 The Requirements, Analysis, and Design Models

 What is Software Architecture?

– Software Architecture Elements

 Examples

 The Process of Designing Software Architectures

– Defining Subsystems

– Defining Subsystem Interfaces

 Design Using Architectural Styles

– Software Architecture Styles

– The Attribute Driven Design (ADD)
74

75

OUTLINE of SW Architecture Styles

 Introduction

 Software Architecture Styles
 Independent Components

 Virtual Machines

 Data Flow

 Data-Centered

 Call-and return

 Other Important Styles

 Model-View-Controller

 Broker Architecture Style

 Service Oriented Architecture (SOA)

 Peer-to-Peer Architecture

 SW Systems Mix of Architecture Styles

Design Using Architectural Styles

 An architectural style is a class of architectures

characterized by:

 Components types: are component classes

characterized by either SW packaging properties

or functional or computational roles within an

application.

 Communication patterns between the components:

kinds of communications between the component

types.

76

77

Families of Architecture Styles

 There is a number of families of styles that has been

defined and used in many software systems Notable

examples are:

1. Independent Components: Event-based

Architectures

2. Virtual Machines

3. Data Flow: Pipes and Filters

4. Data-Centered Systems

5. Call-and Return Architectures

Architectural Styles

Grouped Into Five Families

1. Independent Components. SW system is

viewed a set of independent processes or

objects or components that communicate

through messages.

Two subfamilies:

- Event based systems (implicit and direct

invocation style), and

- Communicating processes family (client-server

style).

78

Architectural styles: Event-based Architecture

Some processes post events, others express an interest in events

79

Event-based Architecture
Implicit Invocation: The Observer Pattern (to be discussed later)

80

81

82

83

OUTLINE of SW Architecture Styles
• Introduction

• Software Architecture Styles
•Independent Components

• Virtual Machines
• Data Flow

• Data-Centered

• Call-and return

• Other Important Styles

• Buffered Massage-Based

• Model-View-Controller

• Presentation-Abstraction-Control

• Broker Architecture Style

• Service Oriented Architecture (SOA)

• Peer-to-Peer Architecture

• SW Systems Mix of Architecture Styles

Architectural Styles: Virtual Machines

2. Virtual Machines. Originated from the

concept that programs are treated as

data by a virtual machine, which is an

abstract machine implemented entirely

in software, that runs on top of the

actual hardware machine.

84

Architectural Styles

Java Virtual Machines

Java Virtual Machine. Java code translated to

platform independent bytecodes. JVM is

platform specific and interprets the bytecodes.

85

Virtual Machines: The primary benefits are the

separation between instruction and implementation,

(Used when inputs are defined by a scrip or Commands,

and data)

86

87

OUTLINE of SW Architecture Styles
• Introduction

• Software Architecture Styles
•Independent Components

• Virtual Machines

• Data Flow
• Data-Centered

• Call-and return

• Other Important Styles

• Buffered Massage-Based

• Model-View-Controller

• Presentation-Abstraction-Control

• Broker Architecture Style

• Service Oriented Architecture (SOA)

• Peer-to-Peer Architecture

• SW Systems Mix of Architecture Styles

3. Data Flow. Include batch sequential systems
(BSS) and pipes and filters (PF).

– - BSS: different components take turns at
processing a batch of data, each saving the result
of their processing in a shared repository that the
next component can access. Ex. Dynamic control
of physical processes based on a feedback loop.

- PF: A stream of data processed by a complex
structure of processes (filters). Ex, UNIX.

Architectural Styles: Data Flow

88

Architectural Styles: Data Flow

Control Loop

BSS

89

90

PF Another Architecture Example:
Watch for the Two Views

91

92

OUTLINE of SW Architecture Styles
• Introduction

• Software Architecture Styles
•Independent Components

• Virtual Machines

• Data Flow

• Data-Centered
• Call-and return

• Other Important Styles

• Buffered Massage-Based

• Model-View-Controller

• Presentation-Abstraction-Control

• Broker Architecture Style

• Service Oriented Architecture (SOA)

• Peer-to-Peer Architecture

• SW Systems Mix of Architecture Styles

Architectural Styles

4. Data-Centered Systems. Consist of having

different components communicate through

shared data repositories. When data

repository is an active repository that

notifies registered components of changes

in it then-blackboard style.

93

Data-Centered Architectural Styles

Repository Architecture Style

94

Data-Centered Architectural Styles
Repository Architecture Example: CASE

Tools Example

95

Data-Centered Architectural Styles
Repository Architecture Example: Compiler

Architecture

96

Data-Centered Systems: Central data repository

Components perusing shared data, and communicating

through it.

Used in Database intensive systems

97

Data-Centered Architectural Styles
Blackboard Architecture Style Example

Compare with the PFs Style

98

Data-Centered Architectural Styles

Blackboard Architecture Style:
Intelligent Agent Systems Example

99

Data-Centered Architectural Styles

Blackboard Architecture Style:

Travel Counseling System Example

100

101

OUTLINE of SW Architecture Styles
• Introduction

• Software Architecture Styles
•Independent Components

• Virtual Machines

• Data Flow

• Data-Centered

• Call-and return

• Other Important Styles

• Model-View-Controller

• Broker Architecture Style

• Service Oriented Architecture (SOA)

• Peer-to-Peer Architecture

• SW Systems Mix of Architecture Styles

Architectural styles

5. Call-and Return Architectures. Due to heir simple control

paradigm and component interaction mechanism , these

architectures have dominated the SW landscape by the early

decades of the SW Eng.

There are several styles within this family: examples are

1) Main program and subroutine,

2) Layered architectures.

 Main Program and Subroutine Style. Programs are modularized

based on functional decomposition, single thread of control held

by the main program, which is then passed to subprograms,

along with some data on which the subprograms can operate.
102

Main Program and Subroutine Style

CourseInfo

PeopleInfo

Course

CourseOffering

StudentInfo ProfessorInfo

Register.exe

Course registration

System example

Main component

103

Architectural styles

-) Layered. Functionality is divided into layers of

abstraction-each layer provides services to the

layer(s) above it, and uses the services of layer(s)

below it. In its purest form, each layer access only

the layer below it, but does not depend on other

lower layers.

104

Layered Architectural styles
Example of a Layered Application Architecture

105

106

OUTLINE

• Introduction

• Software Architecture Styles
•Independent Components

• Virtual Machines

• Data Flow

• Data-Centered

• Call-and return

• Other Important Styles
• Model-View-Controller

• Broker Architecture Style

• Service Oriented Architecture (SOA)

• Peer-to-Peer Architecture

Model-View-Controller Architecture Style

• The Controller manipulates the data Model

• The View retrieves data from the model and

displays needed information 107

Model-View-Controller Architecture Style
Dynamic Interactions

108

Model-View-Controller Architecture Style
Web Applications Java-based Implementation Example

JavaServer Pages (JSP) lets you separate the

dynamic part of your pages from the static HTML

109

110

OUTLINE

• Introduction

• Software Architecture Styles
•Independent Components

• Virtual Machines

• Data Flow

• Data-Centered

• Call-and return

• Other Important Styles
• Model-View-Controller

• Broker Architecture Style

• Service Oriented Architecture (SOA)

• Peer-to-Peer Architecture

Broker Architecture Style

Brokers gets requests from client proxies and manages them by forwarding

to server Proxies or dispatches them to other connected brokers
111

Broker Architecture Style

112

Broker Architecture Style

113

Broker Architecture Style

114

Example: CORBA, Common Object

Request Broker Architecture

Client-Side Proxy

IDL
Server-Side Proxy

(IDL)

115

Example: CORBA, Common Object

Request Broker Architecture

116

117

OUTLINE

• Introduction

• Software Architecture Styles
•Independent Components

• Virtual Machines

• Data Flow

• Data-Centered

• Call-and return

• Other Important Styles
• Model-View-Controller

• Broker Architecture Style

• Service Oriented Architecture (SOA)

• Peer-to-Peer Architecture

Service Oriented Architecture (SOA)

Style
Makes use of an Enterprise Service Bus ESB

Used in web-based systems and distributed computing

nodes make resources available to other

participants in the system as independent services that

the participants access in a standardized way using the ESB

Before

SOA

The SOA Style

118

The SP publishes/updates services using the Web Service Description Language (WSDL)

On the Universal Description Discovery and Integration (UDDI) registry.

119

Service Oriented Architecture (SOA)

Style: A Map of SOA Components

Process Services

Orchestration

System BPM

Business Logic

Databases

Data Services

Enterprise Service Bus (ESB)

Systems of Record

Web Portals

Human Business Process Management (BPM)

S
e

c
u

ri
ty

R
e

g
is

tr
y
 a

n
d

 R
e

p
o
s
it
o

ry

M
a
n

a
g

e
 a

n
d

 m
o

n
it
o
r

The ESB Performs:
• data transformation
• Intelligent routing
• Real time monitoring
• Exception handling

• Service security
120

Cloud Services Architecture
SOA supports Cloud Computing Models

The Grid of Services

and Resources

Clients request the Grid Services

and Resources from the Service Directory

121

Cloud Services Architecture
Human as a service, Software as a service, Infrastructure as a service

Huaas Saas IaaS

122

The Internet of Things (IoT)

123

Example in Telemedicine

124

125

126

OUTLINE
• Introduction

• Software Architecture Styles
•Independent Components

• Virtual Machines

• Data Flow

• Data-Centered

• Call-and return

• Other Important Styles
• Model-View-Controller

• Broker Architecture Style

• Service Oriented Architecture (SOA)

• Peer-to-Peer Architecture

Peer-to-Peer Architecture Style

127

Peer-to-Peer Architecture Style

The Gnutella Example

• Pure Peer-to-Peer

Architecture

• A sends query for a data

resource to neighbors B and H,

they pass it on until the peer having

the resource is found or until

a certain threshold of hops

is reached 128

Peer-to-Peer Architecture Style

The Gnutella Example

Recent Versions of Gnutella supports two types of peers Ultra peers and Leaf peers

Ultra peers runs in systems with fast internet connects and are responsible for request routing

and responses, they are connected to a large number of other Ultra peers and leaf peers, while

the leaf peers are connected to a small number of Ultra peers
129

Peer-to-Peer Architecture Style

The Skype Example

• A mixed client-Server and Pee-to-Peer

• Skype Peers get promoted to a supernode

status based on their network connectivity

And machine performance

• Supernodes perform the

Communication and routing

of massages to establish a call

• When a user logs in to the server

he is connected to a supernode

• If a peer becomes a supernode

he unknowingly bears the cost of routing

a potentially large number of calls.

130

Peer-to-Peer Architecture Style

The Skype Example

131

Conclusions

• An architectural style is a coordinated set of

architectural constraints that restricts the

roles/features of architectural elements and the

allowed relationships among those elements

• Choosing a style to implement a particular

system depends on several factors based on

stakeholders concerns and quality attributes

• Most SW systems use a mix of architecture

styles

132

SW Systems-Mix of Architecture Styles

 Most SW systems use a mix of architecture styles. Ex,

personnel management system with a scheduling

component, implemented using the independent component

style, and a payroll component, using the batch sequential

style.

 Choosing a style to implement a particular system depends

on several factors. The technical factors concern the level of

quality attributes that each style enables us to attain. EX,

event-based systems-achieve very high level of evolvability,

at the expense of performance and complexity. Virtual-

machine style-achieve very high level of portability, at

expense of performance and perhaps even testability.

133

SW Systems-Mix of Architecture Styles

Components of each Layer use different architecture styles

134

SW Systems-Mix of Architecture Styles

135

Outline

 UML Development – Overview

 The Requirements, Analysis, and Design Models

 What is Software Architecture?

– Software Architecture Elements

 Examples

 The Process of Designing Software Architectures

– Defining Subsystems

– Defining Subsystem Interfaces

 Design Using Architectural Styles

– Software Architecture Styles

– The Attribute Driven Design (ADD)
136

Designing Architectures Using Styles

 One method of designing an architecture to

achieve quality and functional needs is called

Attribute Driven Design (ADD).

 In ADD, architecture design is developed by taking sets

of quality attribute scenario inputs and using knowledge

of relationship between quality attributes and

architecture styles.

 http://www.sei.cmu.edu/architecture/tools/define/ad

d.cfm

 http://www.sei.cmu.edu/reports/07tr005.pdf

137

http://www.sei.cmu.edu/architecture/tools/define/add.cfm
http://www.sei.cmu.edu/reports/07tr005.pdf

Attribute-Driven Design (ADD)

 A Method for producing software architecture

based on process decomposition, stepwise

refinement and fulfillment of attribute

qualities.

 It is a recursive process where at each

repetition, tactics and an architecture style or a

pattern is chosen to fulfill quality attribute

needs.

138

Attribute-Driven Design (ADD): Overview

139

140

Updated ADD Steps
http://www.dtic.mil/cgi-

bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA460414

141

http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA460414

Step 1: Confirm There Is Sufficient

Requirements Information

WHAT DOES STEP 1 INVOLVE?

1. Make sure that the system’s stakeholders
have prioritized the requirements according
to business and mission goals.

2. You should also confirm that there is
sufficient information about the quality
attribute requirements to proceed.

142

Step 2: Choose an Element of the System to

Decompose

In this second step, you choose which element of the
system will be the design focus in subsequent steps.
You can arrive at this step in one of two ways:

1. You reach Step 2 for the first time. The only element you
can decompose is the system itself. By default, all
requirements are assigned to that system.

2. You are refining a partially designed system and have
visited Step 2 before.4 In this case, the system has been
partitioned into two or more elements, and requirements
have been assigned to those elements. You must choose
one of these elements as the focus of subsequent steps.

143

Step 3: Identify Candidate Architectural

Drivers

WHAT DOES STEP 3 INVOLVE?

At this point, you have chosen an element of the system to decompose, and stakeholders
have prioritized any requirements that affect that element.

During this step, you’ll rank these same requirements a second time based on their
relative impact on the architecture.

This second ranking can be as simple as assigning “high impact,” “medium impact,” or
“low impact” to each requirement.

Given that the stakeholders ranked the requirements initially, the second ranking

based on architecture impact has the effect of partially ordering the requirements

into a number of groups. If you use simple high/medium/low rankings, the groups

would be (H,H) (H,M) (H,L) (M,H) (M,M) (M,L) (L,H) (L,M) (L,L)

The first letter in each group indicates the importance of requirements to stakeholders,
the second letter in each group indicates the potential impact of requirements on the
architecture.

From these pairs, you should choose several (five or six) high-priority requirements as
the focus for subsequent steps in the design process.

144

Step 4: Choose a Design Concept that

Satisfies the Architectural Drivers

In Step 4, you should choose the major types of
elements that will appear in the architecture and
the types of relationships among them.

Design constraints and quality attribute requirements
(which are candidate architectural drivers) are
used to determine the types of elements,
relationships, and their interactions.

The process uses architecture patterns or styles

145

Step 4: Choose a Design Concept that

Satisfies the Architectural Drivers (cont.)

 Choose architecture patterns or styles that together

come closest to satisfying the architectural drivers

146

Step 4: Example

Mobile Robots example (to be discussed at the end)

Architecture Control Loop Layers Blackboard
Drivers

Task coordination +- - +

Dealing with uncertainty - +- +

Fault tolerance +- +- +-

Safety +- +- +

Performance +- - +

Flexibility - - +

147

Step 4: Major Design Decisions

 Decide on an overall design concept that includes

the major types of elements that will appear in the

architecture and the types of relationships among

them.

 Identify some of the functionality associated with

the different types of elements

 Decide on the nature and type of communications

(synchronous/asynchronous) among the various

types of elements (both internal software elements

and external entities)

148

Step 5: Instantiate Architectural Elements

and Allocate Responsibilities

 In Step 5, you instantiate the various types of software
elements you chose in the previous step. Instantiated
elements are assigned responsibilities from the
functional requirements (captured in use-cases)
according to their types

 At the end of Step 5, every functional requirement (in
every use-case) associated with the parent element must
be represented by a sequence of responsibilities within
the child elements.

 This exercise might reveal new responsibilities (e.g.,
resource management). In addition, you might discover
new element types and wish to create new instances of
them.

149

A Simple Example of Software

Architecture Using UML2

EXAMPLE: SATELLITE CONTROL SYSTEM

Use-Case Diagram

150

A Simple Example of Software

Architecture Using UML2

SATELLITE CONTROL SYSTEM Architecture composition

151

Step 6: Define Interfaces for Instantiated

Elements

WHAT DOES STEP 6 INVOLVE?

 In step 6, you define the services and
properties required and provided by the
software elements in our design. In ADD,
these services and properties are referred to as
the element’s interface.

 Interfaces describe the PROVIDES and
REQUIRES assumptions that software
elements make about one another.

152

SATELLITE CONTROL SYSTEM Architecture Structure

A Simple Example of Software Architecture Using

UML2

153

A Simple Example of Software

Architecture Using UML2

SATELLITE CONTROL SYSTEM Architectural Behavior

154

Step 6: Major Design Decisions

Decisions will likely involve several of the
following:

 The external interfaces to the system

 The interfaces between high-level system
partitions, or subsystems

 The interfaces between applications within high-
level system partitions

 The interfaces to the infrastructure (reusable
components or elements, middleware, run-time
environment, etc.)

155

Step 7: Verify and Refine Requirements and

Make Them Constraints for Instantiated

Elements

WHAT DOES STEP 7 INVOLVE?

 In Step 7, you verify that the element
decomposition thus far meets functional
requirements, quality attribute requirements,
and design constraints. You also prepare child
elements for further decomposition.

 Refine quality attribute requirements for
individual child elements as necessary (e.g.,
child elements that must have fault-tolerance,
high performance, high security, etc.)

156

Example 1 Mobile Robotics System

Overview

– controls manned, partially-manned, or

unmanned vehicle--car, submarine, space

vehicle, etc.

– System performs tasks that involve planning

and dealing with obstacles and other external

factors.

– System has sensors and actuators and real-time

performance constraints.

157

Mobile Robotics System Requirements

(Candidate Architecture Drivers)

Req 1: System must provide both

deliberative and reactive behavior.

Req 2: System must deal with uncertainty.

Req. 3 System must deal with dangers in

robot’s operation and environment.

Req. 4: System must be flexible with respect

to experimentation and reconfiguration of

robot and modification of tasks.

158

Choose an architecture style

159

Control Loop Architecture

Evaluate Control Loop Architecture--Strengths and
Weaknesses w.r.t candidate architecture drivers

• Req 1--deliberative and reactive behavior

– advantage-simplicity

– drawback-dealing with unpredictability

• feedback loops assumes continuous changes in

environment and continuous reaction

• robots are often confronted with disparate, discrete

events that require very different modes of reactive

behavior.

– drawback-architecture provides no leverage for

decomposing complex tasks into cooperating components.

160

Control Loop Architecture
Control Loop Architecture--Continued

• Req 2--dealing with uncertainty

– disadvantage-biased toward one way of dealing with
uncertainty, namely iteration via closed loop feedback.

• Req 3--safety and fault-tolerance

– advantage-simplicity

– advantage-easy to implement duplication (redundancy).

– disadvantage-reaction to sudden, discrete events.

• Req 4--flexibility

– drawback--architecture does not exhibit a modular component
structure

• Overall Assessment: architecture may be appropriate for

– simple systems

– small number of external events

– tasks that do not require complex decomposition,
161

Choose another architecture style

162

Layered Architecture

Evaluate Layered Architecture--Strengths and

Weaknesses

• Req 1--deliberative and reactive behavior

– advantage-architecture defines clear abstraction

levels to guide design

– drawback-architectural structure does not

reflect actual data and control-flow patterns

– drawback-data hierarchy and control hierarchy

are not separated.

163

Layered Architecture

Layered Architecture--Continued

• Req 2--dealing with uncertainty

– advantage-layers of abstraction should provide

a good basis for resolving uncertainties.

• Req 3--safety and fault-tolerance

– advantage-layers of abstraction should also help

(security and fault-tolerance elements in each layer)

– drawback-emergency behavior may require

short-circuiting of strict layering for faster
recovery when failures occur. 164

Layered Architecture

Layered Architecture--Continued

• Req 4--flexibility

– drawback-changes to configuration and/or

behavior may involve several or all layers

• Overall Assessment

– layered model is useful for understanding and

organizing system functionality

– strict layered architecture may break down with

respect to implementation and flexibility.
165

Blackboard Architecture

166

Blackboard Architecture

Evaluate Blackboard Architecture--Strengths

and Weaknesses

• Req1-- Deliberative and reactive behavior

– advantage: Easy to integrate disparate,

autonomous subsystems

– drawback: blackboard may be cumbersome in

circumstances where direct interaction among

components would be more natural.

• Req 2--Dealing with uncertainty

– advantage: blackboard is well-suited for

resolving conflicts and uncertainties.
167

Blackboard Architecture

Blackboard Strengths and Weaknesses--Continued

• Req3--safety and fault-tolerance

– advantage: subsystems can monitor blackboard

for potential trouble conditions

– disadvantage: blackboard is critical resource
(this can be addressed using a back up)

• Req4--flexibility

– advantage: blackboard is inherently flexible

since subsystems retain autonomy.

168

Architecture Comparison

Mobile Robotics--Summary of

Architectural Control Loop Layers Blackboard
Tradeoffs

Task coordination +- - +

Dealing with uncertainty - +- +

Fault tolerance +- +- +-

Safety +- +- +

Performance +- - +

Flexibility - - +

169

