Instructor: Dr. Hany H. Ammar

Dept. of Computer Science and
Electrical Engineering, WVU

outline

Review of development phases and UML Development — Overview
Requirements Engineering and the Requirements model
Introduction and importance of Use Case Diagrams
Use Case Diagram Rules
Examples of Use Case diagrams
Requirements Elicitation Process
Identify Actors
Identify Scenarios
Identify Use Cases
Refine Use Cases
Identify Relationships between actors and Use Cases
Identify Initial Analysis Objects
Identify Non-functional requirements

Review: Phases of System Development

Requirements: Develop the Requirements Model

Reguirements
\ _ Engineering
Analysis: Develop the Logical Model
Design: Develop the Architecture
\ Model Engineering
. Design
Implementation

Testing

Workflows and Models

|
ReqUirements ------ Use Case _
Model

i FEE A R R R R I E N NN — AnalySIS
Analysis Model
1] [1
DesSign cemeeee el --4--Design Depl.
Model Model
[]
Implementation =-==--seemcmmmmmmmmm e —-Jpl.
Model
[]
__ _--Jest
Test Model

Use Case Model

1]

Use Case
Model

1

Analysis
Model

1

Design
Model

1

Depl.
Model

]

Impl.
Model

]

Test
Model

Use Case

/ Diagrams

Class
Diagrams

Object
Diagrams

Component
Diagrams

Deployment
Diagrams

Sequence
Diagrams

Collaboration
Diagrams

" Statechart
Diagrams

.. Activity
Diagrams

Analysis & Design Model

1]

Use Case
Model

1

Analysis
Model

1

Design
Model

1

Depl.
Model

]

Impl.
Model

]

Test
Model

Use Case
Diagrams

Class Object

/ Diagrams Diagrams
Component

Diagrams m
Deployment
Diagrams

Diagrams

.........................,‘,_._CoIIaboration
~ Diagrams

> Statechart
Diagrams

Activity
Diagrams

Deployment and Implementation Model

Use Case
| Diagrams
Use Case
Model Class Object
— Diagrams Diagrams
AMngl(ﬁ's Component
Diagrams
1
Design Deployment
Model Diagrams
—
Seo| Sequence
epl. .
Model Diagrams
Collaboration
Impl. Diagrams
Model
] Statechart
Diagrams
Test
Model
Activity

Diagrams

UML Development - Overview

ACTORS |
REQUIREMENTS USE CASES Time
ELICITATION - —
- SCENARIOS ..
Requirements ——F———. e
5 A SEQUENCE
Engineering l SEQUENCE
ANALYSIS ANALYSIS | stateChart
Objects

DIAGRAMs
Y \4

OPERATION CONTRACTS \"~~"""7"""""777""°77

Architectural Y *

Design SUBSYSTEM CLASSAG——» DESIGN SEQUENCE DIAG.
DEPLOYMENT DIAGRAM

Include OR COMPONENT T~ 3

Design Objects DIAGRAMS

Detailed DESIGN

DESIGN DIAGRAMS

>—2>0

\%

<AT>»rZ20—-—4—-0-—-0

gbj‘?Ct IMPLEMENTATION———>| IMPLEMENTATIO
esign Activity DIAGRAMS
\4
IMPLEMENTATION

PROGRAM

outline

Review of development phases and UML Development — Overview
Requirements Engineering and the Requirements model
Introduction and importance of Use Case Diagrams
Use Case Diagram Rules
Examples of Use Case diagrams
Requirements Elicitation Process
Identify Actors
Identify Scenarios
Identify Use Cases
Refine Use Cases
Identify Relationships between actors and Use Cases
Identify Initial Analysis Objects
Identify Non-functional requirements

What Is Requirements Engineering ?

Requirements Engineering

AN

Requirements Engineering

/

Requirements Development

I

Requirements Management

Elicitation

Analysis

Specification

Verification

Figure 2. Subdisciplines of requirements engineering.

What Is Requirements Engineering?

| Requirements Engineering |

\

| Requirements Development | | Requirements Managemen

Elicitation | | Analysis | | Specification | | Verification |

Figure 2. Subdisciplines of requirements engineering.

Requirements Management:

Requirements management activities include
evaluating the impact of proposed changes, tracing
Individual requirements to downstream work
products, and tracking requirements status during
development

Several Requirements management tools are
available In industry

What Is Requirements Engineering?

Major Requirements Management Tools:

1. Caliber-RM by Technology Builders, Inc.;

2. RequisitePro by Rational Software
Corporation; www.rational.com

3. RTM Workshop by Integrated Chipware,
Inc.; www.chipware.com

http://www.capterra.com/requirements-management-software
http://www.tbi.com/

What is Requirements Englneerlng?

Requirements Engin

| Requirements Development | | Requirements Management

itation | Analysis || Specification || wWerification

[Eiicitat
Requirements Elicitation e o rearamants sngneen

IS the process of gathering the different types of requirements
from suitable stakeholders.

Business requirements describe why the product is being
built and identify the benefits for both the customers and the
business.

User requirements, describe the tasks or business processes
a user will be able to perform with the product. (Developing
use-cases)

Functional requirements describe the specific system
behaviors that must be implemented (Developing usage
scenarios)

Non-functional requirements, describe the non-functional
features such as quality attributes of Reliability, Performance,
availability, and maintainability.

What Is Requirements Engineering?

T

Requirements Development Requirements Management

N

Elicitation Analysis Specification Verification

Figure 2. Subdisciines of requirements engineering.

Requirements analysis:

Requirements analysis includes decomposing high-level
requirements into detailed functional requirements,
constructing graphical requirements models or logical
models (structured Analysis models, or Object-Oriented
Analysis models) (for developers), and building prototypes.

Analysis models and prototypes provide alternative views of
the requirements, which often reveal errors and conflicts that

are hard to spot in a textual SRS.

| Elicitation ysis ion |
Requirements Specification —........ ctines ofrequtremenngzee"

Specification key practice Is to erte down the
requirements in some accepted, structured format
as you gather and analyze them.

The objective of requirements development is to
communicate a shared understanding of the new
product among all project stakeholders.

Historically, this understanding is captured in the
form of a textual SRS document written in natural
language, augmented by appropriate analysis
models. (to be discussed in detail)

What Is Requirements Engineering?

| Requirements Engineering |

/\

| Requirements Development | | Requirements Management

Elicitation | | Analysis | | Specification | | Verification |

Req u i re ments Ve r i fi Cati O n Figure 2. Subdisciplines of requirements enginee

Verification involves evaluating the correctness,
completeness, unambiguity, and verifiability of the
requirements, to ensure that a system built to those
requirements will satisfy the users’ needs and expectations.
The goal of verification is to ensure that the requirements
provide an adequate basis to proceed with design

Prototyping (or executable specifications) is a major
technique used in verification. Examples include GUI
development for user requirements verification, and Formal
requirements specification environments

Requirements Engineering:
The Requirements Model

Problem statement

The Requirements Functional/
Elicitation Nonfunctional | Use Case Diagrams/
Process Requirements Sequence Diagrams

(the system level)

The Object-Oriented _ _ :
Analysis Static Analysis | - Class Diagrams
Process Dynamic Analysis, - State Diagrams/

Refined Sequence
Diagrams (The object
level)

outline

Review of development phases and UML Development — Overview
Requirements Engineering and the Requirements model
Introduction and importance of Use Case Diagrams
Use Case Diagram Rules
Examples of Use Case diagrams
Requirements Elicitation Process
Identify Actors
Identify Scenarios
Identify Use Cases
Refine Use Cases
Identify Relationships between actors and Use Cases
Identify Initial Analysis Objects
Identify Non-functional requirements

Use Case Diagrams
Introduction and importance

Use cases are widely regarded as one of the
Important artifacts needed to successfully
develop complex software systems

Use cases define the scope of the system
and clarify the behavioral system
requirements

Use Case Diagrams
Introduction and importance

Provide a basis for a coherent conceptual
understanding of the system under
consideration without requiring knowledge
of software design or implementation
technology

Used as organized means of capturing
domain expertise

Use Case Diagrams
Introduction and importance

Can be used to track the progress of the
system development effort

Provide means to trace requirements to the
design

Provide the basis for developing system
acceptance tests

Use Case Driven

Req.ts Analysis Design Impl. Test

Use Cases bind these workflows together

Use Cases Drive lterations

Drive a number of development activities

Creation and validation of the system’s
architecture

Definition of test cases and procedures
Planning of iterations

Creation of user documentation
Deployment of system

Synchronize the content of different models

Use case

organizational
Unit

dermvedRequirement

nestedRequirement

_____? - validation

Test Fixdure

-

Test Suite stimulator

Y -

Test

test vweaotor

L

VS

InteractionRaq

Operalional

InterfaceReq

Requirement - -
specification realization
P Systemn
repireseniation * ?
1 i
= Scenario
1 representation -
— interace
> 1
Functiornal - Collaboration
representation
- 1

/7 CQuality of Service - Constraint

Safety

T:‘\reF}res.:—-;n'l':atic:n -

Caality

Security

Reliabiliby

Figure 5-1: Reguirerternts Taxocrrorrry

Use Case Diagrams
Introduction and importance

The identification of use cases and
actors occurs during the initial
requirements analysis phase of a
project

The use cases most essential to the
system are selected, analyzed, and
specified.

Use Case Diagrams
Introduction and importance

These essential use cases eventually
become the basis for defining the
architecture of the system during the
first iterations of system development

The use cases are then allocated to
iterative releases, which are planned
and eventually executed

Use Case Diagrams
Introduction and importance

In the requirements phase of each
delivery, the use cases allocated to that
delivery are analyzed and completely
specified

the use cases would then be realized by

domain level analysis/design using
class and interaction diagrams

Use Case Diagrams
Introduction and importance

The domain level realization is further
refined into a detailed design that
typically employs class and interaction
diagrams and often includes state
transition diagrams and/or decision
tables.

outline

Review of development phases and UML Development — Overview
Requirements Engineering and the Requirements model
Introduction and importance of Use Case Diagrams
Use Case Diagram Rules
Examples of Use Case diagrams
Requirements Elicitation Process
Identify Actors
Identify Scenarios
Identify Use Cases
Refine Use Cases
Identify Relationships between actors and Use Cases
Identify Initial Analysis Objects
Identify Non-functional requirements

Use Case Diagrams

Use Case Diagram Rules

Use a “stick man” figure for an actor, and show
the actor’s name below the stick man

The UML standard allows for the option of
using a class rectangle with the stereotype

«actor»
<<Stereotype>>

Command End
ftem Hardw are «actor»
Sensor

User

Use Case Diagram Rules

The only valid relationship between an
actor and another actor Is generalization

Run Applications Install Applications

A User can Run Applications.
A Super User can Install
Applications and Run

() Applications, since a Super

User is a specialization of
B User.

User Super User

Use Case Diagram Rules

Use only the following relationships
between use cases
Use the relationship to show that the

behavior of one use case Is wholly and
unconditionally used in another use case

Use the relationship to show that
a use case Is a specialization of another use case

Use Case Diagram Rules

the include relationship

The Perform Transaction
use case includes the
processing specified by
both the Send Command
and Receive Response
Application «include» .~ ~.«include» use cases.

Perform Transaction

Send Command Receive Response

Use Case Diagram Rules

the generalization relationship

Identify by retinal scan
Validate Identity & Identify by fingerprint scan

dentify by badge scan

Customer

Use Case Diagram Rules

Use the relationship to show that one
use case conditionally augment (or extend)
the behavior of another use case.

Example of Extends relationship

| Place phone «extend» Place
/\ call ~ 77T j o conference call
Cellular extends relationship
network
Receive | «extend» Receive

phone call additional call

\
O

[
or \

J

Luse case

system boundary /

Cellular Telephone

Use

|
scheduler

5

association

Use Case Diagram Rules

Extension points for a base use case are identified
within the specification of that base use case

These are the locations where another use case
may extend the base use case. These extension
points are optionally shown in a diagram by listing
them in a compartment of the base use case bubble
under the heading “extension points

The extending relationship identifies, within

parenthesis, the extension point(s) in the use case
being extended

Identify, within brackets, the condition
under which the extension Is executed

Log In

extension pt::
Set Privileges

<<exte§nds >>
(Set Privileges)
[Administrator {Login event]]

Grant Administrator Privledges

User

Example of Extends, includes, and generalization

Ground

relationships

Acme Spacecrafi
Execute Scheduled

Bownlink

«waxtends >
= {ext pt: Compression }

Extension points:
Compression

-

Take Piciure

\\
LY .
11 «<inciudes> ¢
rd
«includes»>» Y i
‘\ 4 'l
Y F § %
AY ” !
, - «extends:
{ext pt:- Security }
H 1y
*

LY
v <extends»
‘\‘ fext pt: Compraession H

“,

LY

Command
Yalidation

Nonlossy

Adjust Spacecraft
Compression

Adttitude

Ineriial Adjustment

Rocket Adjustment

Figure 2-7: Use Case Relations

Use Case Diagram Rules

There must be one extension point listed for
each segment identified in the extension use
case

Although considered optional, It Is
recommended that the extending
relationship also identify, within brackets,
the condition under which the extension is
executed

Use Case Diagram Rules
Use Case Packages

Use cases are often written and organized In
layers of abstractions using Use Case
Packages

A use case package contains a number of
actors, use cases, their relationships, and
perhaps other packages

A Use Case Package

Use Case Diagrams
and Packages

Log In

extension pt::
Set Privileges

<<exte§nds >>
(Set Privileges)
[Administrator {Login event]]

Grant Administrator Privledges

User

/

Use the system
Use case package

outline

Review of development phases and UML Development — Overview
Requirements Engineering and the Requirements model
Introduction and importance of Use Case Diagrams
Use Case Diagram Rules
Examples of Use Case diagrams
Requirements Elicitation Process
Identify Actors
Identify Scenarios
Identify Use Cases
Refine Use Cases
Identify Relationships between actors and Use Cases
Identify Initial Analysis Objects
Identify Non-functional requirements

Examples of Use Case Diagrams

Example 1: Medical Clinic Software,
could be missing use case relations

///@ncel Appnintmzﬁt—___'“ %
ii Scheduler
Patient _—____ﬂl{e Appninth

\@questhﬂedicatw i%

Dactar

X

Clerk

Fay Bill

Each use-case Is described further by textual document and by
Scenarios developed using UML sequence diagrams

Example 2: E-Commerce Application (Incomplete)
Missing a link between “Place Requisition™ and “Supplier”
and missing use case relationships

Process Delivery Order

customer \ / -
Place Requisition

Send Invoice
Bank
Confirm Delivery

Example 3: Coffee Maker, “waiting state”
Not a good name for a use-case (bad example)

CoffeeMaker

i
",

- Wialing State
____:—"

—_

add Recips & T wincludess

Add Inventory

s

Edit Recipe

|I sincludes:

-a:inn:ludes:a-ﬂ

'|

!

oy

fainclude%x

.|I gincludes:

!

zincludes:
e — Check Inventory
o

s
!
¢
iy

Aeincludes:s

Example 4: Anesthesia System
(Incomplete)

Anesthesia System
Display Patient
Status /
| E

CG Monitor
Event

Ventilate Patient I
Chart
Patient Deliver Anesthésia Recorder

\

A

Alarm on Critical

Physican

/4

N

Fihapsody - AN ro

Example 5:
Automated
Alr

Traffic

Control | ' aircraft
SyS te m . : Transponder
(AATCYS)

N

primary radar i\, :
_ display flight
- path

detact separation
distance vinlation

Bt)
topeological —— N\ P controlier
map — - - ,

/ display topology

Py process user
comnangd

~ T

show runway set zoom level '
queue _

weather call

Figure 5-4: AATCS Use Case Diagram

Example 6: Use case diagram of the Internal Thermal
Control subsystem (NASA-ISS project) Showing

probabilities of use cases

<<extend>>

’,/ff” P MOde_Setting Monrtonng
_—-"" <<extengd>>
- DA AN s
~————__ g ') <<eXtend>> <gextend>>
————zl__ - <<extenij>> \ | <costondsS
! == Retry Both_Pumps

: - e~ ~—— i _ \
Setting_1 7 <<exend>> To=- NTm e <
s / [-
7 / <<exten SRSt O‘\ <<extend>>
g —el———="" S -=7 T~
—————7 | <<extend>> T Failure_Recovery ~~<
/</<extend>> - -
L - <\<extend‘$ A n
\\<\<extend>> Pump_2_ Retry
N

‘ -]
- : el <\ <<ext9(|d>>

) Z N/
Setting_3 O O
Pump_1 Retry

Setting_4 Setting_5

Example 7: showing QoS Reqrs. Using UML notes

Cardionada Pacemaker { Rate set in units of ppm from
- 30..120.
Pulse width set in units of ms from
Set Pacing 1.15

Parameters Pulse Amplitude set in units of mV

from 10..100 }

[\

Set Operational
Mode

{ Modes: Off, AAl, AAT, VVI,
VVT, AVl }

Prograrr’ame\

{ See "Cardionada Comm.
Reliability. HTML" for
reliability QoS regs.}

Report Pacemaker
Status

/

{ Rate accuracy +/- 100ms.
Pulse Width accuracy +/- 0.25 ms.
Pulse amp. accuracy +/- 2 mV. }

Heart Pace the Heart

Figure 2-6: Capturing QoS Requirements

Example 8: Elevator Control System

D Stop
Dispatch Elevator at :5'
Elevator
Floor

' Arrival

Sensor

«include» «includey»

Select Destination Request Elevator

Elevator
User

Example 9: Factory Control System,
consists of several packages of use cases

«use case package»
FactoryOperatorUseCasePackage

View Workstation
Status

X

Factory
Operator

/" Generate Alarm
and Notify

Factory

Generate Workstation }—" _
Robot

Status and Notify

Figure 21.2 Factory Operator use Cases

Example 9: Factory Control System (cont.)

«use case package»
ProcessEngineerUseCasePackage

Create/Update
Operation

Process
Engineer

wextend»

)

Create/Update
Process Plan

~ Figure 21.3 Process Engineer use cases

«use case package»
ProductionManagerUseCasePackage

Receive Process Part
Part _at Workstation
vs =
. e . R .
«include» s «include» winclude» -

. o Pick & Place
— Robot

Manufacture
Part

Production %
Manager
™~ | Assembly
Robot

Create/Modify
Work Order

Figure 21.4 Production Manager use cases

Example 10: cruise Control and Monitoring

System: Cruise Control Package

Shaft

d

Driver

Figure 20.2 Use case model: Cruise Control Use Case Package

«use case package»
CruiseControl
UseCasePackage

/fpc;; Shaft Rotation Count

Y

Y

ﬁ ontrol Speed

\

!

@e Distance and Speed
\Qﬂm Calibration

\

Y

Timer

Example 10: Cruise Control and Monitoring System (cont.):
Monitoring Package
Not Good A D

UseCasePackagc

n
TOO Ma y KRGS& Trip SPBED

USE CaSes,

% Qct:ate Trip Speed
t @p Fuel Cox‘l@
@Trip Fuel Consumption

ﬁ On Mentenance >
Ql{ Qil Maintenance
Timer
Tech 11iciat\

Check Air Filter Maintenance

Reset Major Service M@
Check Major Service Maintenance

Figure 20.3 Lise case rrrodel: AMMoritoririe (Lise Case Packoaoe

Example 11: Airport Check-in

#Business»

Airport
Group
Check-In
Tour Guide |
«includex»
aextend»
Individual
Check-l Baggage
__ Handlin /
Minor Fassenger wextendy N
Baggage
% Check-| /
Passenger

Passenger
With Special Needs

Security
Screeni

© uml-diagrams.org

outline

Review of development phases and UML Development — Overview
Requirements Engineering and the Requirements model
Introduction and importance of Use Case Diagrams
Use Case Diagram Rules
Examples of Use Case diagrams
Requirements Elicitation Process
Identify Actors
Identify Scenarios
Identify Use Cases
Refine Use Cases
Identify Relationships between actors and Use Cases
Identify Initial Analysis Objects
Identify Non-functional requirements

Requirements Elicitation Process

The process of requirements elicitation

consists of the following steps
|dentify Actors
Identify Scenarios
Identify Use Cases
Refine Use Cases

Identify Relationships between actors and Use
Cases

Identify Initial Analysis Objects
Identify Non-functional requirements

Requirements Elicitation Process

Identifying Actors: ldentify the users or external
entities the system will interact with or support.

Examples: Medical Clinic Software: Patient, Doctor, Scheduler,
and the Clerk

Actors may have a generalization relationship

% Scheduler Run Applications Install Applications
Fatient hMake Appointrment r— T

A Super User can Install
Applications and Run

octor
Fav Bill % Applications, since a Super

- - User is a specialization of
< User.

User Super User

A User can Run Applications.

Requirements Elicitation Process

Identifying Actors from Business process models

| o
:
|
il
3¢
=l g
'E'!.'l
:
EE?
2|52
5l
i
38

http://www.visual-paradigm.com/product/ag/tutorials/frombptouc.jsp

Requirements Elicitation Process
Identifying Actors from Business process models

L
FPlaos Ordor
s ~

s hoaTee

PN G

i T el Sl A e B mdi |

j i At angey Dhl iy

Lol =fter D ot =il Pl ae] et

http://www.youtube.com/watch?v=d4_yvQwC66o

Requirements Elicitation Process

2. ldentify Scenarios of usage (user/actor stories):
these are examples of typical user or actor
Interactions with the system. The are defined by
a flow of events

Example 1: Medical Clinic Software: in one
scenario, the patient will contact the scheduler to
make an appointment he finds an answer that
office is closed, in another scenario he will
contact the doctor to request medication, the
doctor responds to him with the name of the
medication

Requirements Elicitation Process
2. ldentify Scenarios of usage (cont.)

Example 3. The Coffee Maker walts for
user input. There are six options to chose
from: 1) add recipe, 2) delete a recipe, 3)
edit a recipe, 4) add inventory, 5) check
Inventory, and 6) purchase beverage, the
user chooses to delete a recipe which does
not exist.

Recall that the scenarios are user driven
and not system driven (user perspective)

Requirements Elicitation Process

3. Identify Use Cases: Once scenarios of usage
are Identified, use cases are defined to model
the main user-based processes of the system.

Example: identify the “Make an
Appointment” use case from one scenario and
the “Request Medication” from another
scenario

Requirements Elicitation Process

The process of requirements elicitation consists of the
following steps

Identify Actors
Identify Scenarios
Identify Use Cases

Refine Use Cases

Identify Relationships between actors and Use
Cases

Identify Initial Analysis Objects
Identify Non-functional requirements

Requirements Elicitation Process

4. Refine Use Cases: describe the detalls of
each use case. A Textual template Is used as
well as UML interaction diagrams (UML
seqguence diagrams or object collaboration

diagrams).
Textual: Brief Description, Actors, Preconditions, Basic Flow of Events,
Alternate flow of events,
X — X
Syst ‘ _ ‘ ‘
ystem e
Sequence 1 = R
Diagram i — @ = _
J Serewmwem =S o> ETS =

Requirements Elicitation Process

4. Refining Use Cases (cont.)

Sequence Diagrams capture scenarios
(to be discussed later in slides 4)

Objectl:C1 Object2:C2

T 1
i Click Update Button | |
updateStatus() |

User >

Requirements Elicitation Process
4. Refining Use Cases (cont.)

System Sequence Diagram

System S The sequence diagram of use case UCL1

Use-case %
. System: S
diagram

Lthde'),éP
|

List of Guide Words =——=

|_ st of Guide Words == \
Attor,
Aciory 4 ‘

E22

|
Ue; List of Guide Words ==
Llst of Guide Words I>| ’ :
-— ! Es
V E41

List of Guide Words == | List of Guide Words ==

Requirements Elicitation Process
4. Refining Use Cases (cont.)

A Template for textual description of Use Cases

Use Case name: Name of Use Case, which should

be related to the result, purpose or the event of the
Use Case.

Purpose:The main purpose of the Use Case and
what the participants expect of the transaction.
Description: A paragraph(s) describing the goal(s)

and the scenario(s) illustrated by this Use Case.

Requirements Elicitation Process
4. Refining Use Cases (cont.)

A Template for textual description of Use Cases
(cont.)

Actors: Who or what participates in the Use Case. That
Includes what individuals, organizations, job functions,
software applications, software functions or machines
collaborate in the Use Case.

Data Content: What data are in scope of this Use Case. What
Information is exchanged In the transactions that
Implement the Use Case.

Preconditions: What conditions are expected to exist prior to
the start of the Use Case.

Begins When: What starts or triggers the performance of this
Use Case.

Requirements Elicitation Process
4. Refining Use Cases (cont.)

A Template for textual description of Use Cases (cont.)
Ends When: When is the Use Case finished.

Exceptions: What exceptional outcomes are there besides the

normal one expected for a successful performance of the
Use Case.

Post Conditions: What is the state of "the system" after the
Use Case has been completed

References: If this Use Case references other works or
documents, or other Use Cases the references to these
sources are placed here

Requirements Elicitation Process
4. Refining Use Cases (cont.)

A simplified example of some sections: The Coffee Maker

UC3: Flow of Events for the Delete Recipe Use Case
3.1 Preconditions: recipes exist in the system
3.2 Main Flow: The user will be shown a list of all recipes In
the system, and asked to choose the recipe, by number, that they
wish to delete. [S1][E1][EZ]
3.3 Subflows:
[S1] If the user selects an empty recipe to delete, the user is
returned to the main menu.
3.4 Alternative Flows:
[E1] If the user selects a number that is out of bounds of the
number of recipes, the user Is returned to the main menu.

[E2] If the user enters a alphabetic character, the user is returned
to the main menu. .

The components of Use case description template

Participating
Actors

Alternative
Flow

User Case
Description
Entry
conditions

Exit
conditions

Requirements Elicitation Process

The process of requirements elicitation consists
of the following steps

Identify Actors

Identify Scenarios

Identify Use Cases

Refine Use Cases

Ildentify Relationships between actors
and Use Cases

Identify Initial Analysis Objects
Identify Non-functional requirements

Requirements Elicitation Process

5. Identify Relationship among Actors and Use Cases:
Establish and Label (initiate, set, or get) the
association or communication relationship between
actors and use cases

Establish include, extend or generalization
relationships between use cases

Use include to factor out redundancies for
“common’ use cases (or utility Use Cases) used
by other use cases

Use extend to show use cases having added
functionality to other use cases

Use generalization to add abstraction or subtype
cases between use cases

Label Associatons,e.g. Receive order, and accept payment,

i '._!EECEEEE/

% receiwe order
Wia it

Patromn
% accept paymant
Cas hiar

ud hMultiplicity
Identify Multiplicity of % e) %
7 1 0.1 0.7 1
associations A N

Requirements Elicitation Process

6. Identify Initial Analysis Objects

These can be nouns or processes in the textual
requirements (also called Domain objects)
Types of objects may include:

Interfaces to External Entities: Sensors, actuators,
control panel, devices

Information Items : Displays, Commands, etc.

Entities which establishes the context of the system
(to support Use case functionality): Controller,
monitors, schedulers, handlers, servers, agents,
wrappers

Requirements Elicitation Process

/. ldentify Non-functional requirements

Includes the following types:

Usability: e.g. determined by the level of user expertise to
determine user interface look and feel

Reliability: determined by the risk of Failures (e.g. safety
critical systems must have high level of reliability

Performance: e.g. response time of usage scenarios,
throughput (no of transactions processed per unit time)

Maintainability (Supportability): the level of adaptive,
perfective, and corrective maintenance

Implementation/operation constraints

