
• • • • • •

• • • • • • • •

• • • • • • •

• • • • •

M I C R O S O F T
®

A P P L I C AT I O N

A R C H I T E C T U R E
G U I D E

2nd Edit ion

ISBN: 9780735627109

Information in this document, including URL and other Internet Web site references,
is subject to change without notice. Unless otherwise noted, the example companies,
organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious, and no association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event
is intended or should be inferred. Complying with all applicable copyright laws is
the responsibility of the user. Without limiting the rights under copyright, no part of
this document may be reproduced, stored in or introduced into a retrieval system,
or transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission
of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as
expressly provided in any written license agreement from Microsoft, the furnishing
of this document does not give you any license to these patents, trademarks, copy-
rights, or other intellectual property.

© 2009 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, Windows Server, Active Directory, MSDN,
Visual Basic, Visual C++, Visual C#, Visual Studio, and Win32 are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trade-
marks of their respective owners.

Contents

Forewords and Preface
Foreword by S. Somasegar . xxi
Foreword by Scott Guthrie. xxii
Preface by David Hill . xxiii

Introducing the Guide	 xxvii
Audience. xxviii
How to Use This Guide. xxviii
Feedback and Support . xxix

Technical Support. xxix
Community and Newsgroup Support. xxix

The Team Who Brought You This Guide. xxx
Contributors and Reviewers. xxx

Tell Us About Your Success. xxxi

Software Architecture and Design	 1

Chapter 1: What Is Software Architecture?	 3
Why Is Architecture Important?. 4
The Goals of Architecture . 5

The Architectural Landscape. 6
The Principles of Architecture Design. 7

Key Architecture Principles. 7
Additional Resources . 8

Chapter 2: Key Principles of Software Architecture	 9
Overview. 9
Key Design Principles . 11
Key Design Considerations. 14

Determine the Application Type. 15
Determine the Deployment Strategy. 15
Determine the Appropriate Technologies . 16
Determine the Quality Attributes. 16
Determine the Crosscutting Concerns. 17

.NET Application Architecture Guide, 2nd Editioniv

Chapter 3: Architectural Patterns and Styles	 19
Overview. . 19
What Is an Architectural Style?. . 19
Summary of Key Architectural Styles . . 20

Combining Architectural Styles. . 21
Client/Server Architectural Style. . 21
Component-Based Architectural Style . . 23
Domain Driven Design Architectural Style. . 25
Layered Architectural Style. . 26
Message Bus Architectural Style. 29
N-Tier / 3-Tier Architectural Style . . 30
Object-Oriented Architectural Style. . 32
Service-Oriented Architectural Style. . 33
Additional Resources. . 35

Chapter 4: A Technique for Architecture and Design	 37
Overview. . 37
Inputs, Outputs, and Design Steps. . 37
Identify Architecture Objectives . . 39

Scope and Time. . 40
Key Scenarios. . 41

Architecturally Significant Use Cases. . 41
Application Overview. . 42

Relevant Technologies . . 43
Whiteboard Your Architecture. . 44

Key Issues . . 45
Quality Attributes . . 45
Crosscutting Concerns. . 46
Designing for Issue Mitigation. . 46

Candidate Solutions. . 48
Baseline and Candidate Architectures. 49
Architectural Spikes . . 49

What to Do Next. . 50
Reviewing Your Architecture . . 50

Scenario-Based Evaluations. . 50
Representing and Communicating Your Architecture Design. . 51

Additional Resources . . 52

Contents v

Design Fundamentals	 53

Chapter 5: Layered Application Guidelines	 55
Overview. 55
Logical Layered Design. 56

Presentation, Business, and Data Layers. 56
Services and Layers. 58

Services Layer. 58
Design Steps for a Layered Structure. 60

Step 1 – Choose Your Layering Strategy. 60
Step 2 – Determine the Layers You Require. 62
Step 3 – Decide How to Distribute Layers and Components. 62
Step 4 – Determine If You Need to Collapse Layers. 63
Step 5 – Determine Rules for Interaction Between Layers . 63
Step 6 – Identify Cross Cutting Concerns. 64
Step 7 – Define the Interfaces between Layers . 64
Step 8 – Choose Your Deployment Strategy. 66
Step 9 – Choose Communication Protocols . 66

Chapter 6: Presentation Layer Guidelines	 67
Overview. 67
General Design Considerations . 69
Specific Design Issues. 70

Caching . 70
Communication. 71
Composition. 71
Exception Management . 72
Navigation. 73
User Experience . 73
User Interface. 74
Validation. 75

Technology Considerations. 75
Mobile Applications. 75
Rich Client Applications . 76
Rich Internet Applications. 76
Web Applications. 77

Performance Considerations. 77
Design Steps for the Presentation Layer . 78
Relevant Design Patterns . 80
patterns & practices Offerings . 82
Additional Resources. 82

.NET Application Architecture Guide, 2nd Editionvi

Chapter 7: Business Layer Guidelines	 83
Overview. 83
General Design Considerations . 86
Specific Design Issues. 87

Authentication. 87
Authorization. 88
Caching . 88
Coupling and Cohesion. 89
Exception Management . 89
Logging, Auditing, and Instrumentation. 90
Validation. 91

Deployment Considerations . 91
Design Steps for the Business Layer . 92
Relevant Design Patterns . 93
patterns & practices Offerings . 94
Additional Resources. 94

Chapter 8: Data Layer Guidelines	 95
Overview. 95
General Design Considerations . 97
Specific Design Issues. 99

Batching . 99
Binary Large Objects. 100
Connections. 100
Data Format. 101
Exception Management . 101
Object Relational Mapping. 102
Queries. 103
Stored Procedures. 103
Stored Procedures vs. Dynamic SQL. 104
Transactions . 105
Validation . 107
XML . 107

Technology Considerations. 108
Performance Considerations. 109
Security Considerations. 109
Deployment Considerations . 110
Design Steps for the Data Layer. 110
Relevant Design Patterns . 112
Additional Resources. 113

Contents vii

Chapter 9: Service Layer Guidelines	 115
Overview. 115
Design Considerations. 117
Specific Design Issues. 118

Authentication. 119
Authorization. 119
Communication. 120
Exception Management . 120
Messaging Channels. 121
Message Construction . 121
Message Endpoint . 122
Message Protection . 122
Message Routing. 123
Message Transformation . 123
Service Interface. 124
Validation. 124

REST and SOAP . 125
Design Considerations for REST. 126
Design Considerations for SOAP . 127

Technology Considerations. 127
Deployment Considerations . 128
Design Steps for the Service Layer. 129
Relevant Design Patterns . 130
Additional Resources. 133

Chapter 10: Component Guidelines	 135
Overview. 135
General Guidelines for Component Design. 135
Layered Component Distribution . 136
Presentation Layer Components. 138
Services Layer Components. 139
Business Layer Components. 139
Data Layer Components . 141
Crosscutting Components. 142
Relevant Design Patterns . 142
patterns & practices Offerings . 144
Additional Resources. 144

.NET Application Architecture Guide, 2nd Editionviii

Chapter 11: Designing Presentation Components	 145
Overview. 145
Step 1 – Understand the UI Requirements . 145
Step 2 – Determine the UI Type Required. 146
Step 3 – Choose the UI Technology . 147
Step 4 – Design the Presentation Components . 150

User Interface Components. 150
Presentation Logic Components . 151
Presentation Model Components . 152

Step 5 – Determine the Binding Requirements. 155
Step 6 – Determine the Error Handling Strategy. 156
Step 7 – Determine the Validation Strategy. 157
patterns & practices Offerings . 158
Additional Resources. 158

Chapter 12: Designing Business Components	 159
Overview. 159
Step 1 – Identify Business Components Your Application

Will Use . 159
Step 2 – Make Key Decisions for Business Components. 160
Step 3 – Choose Appropriate Transaction Support. 162
Step 4 – Identify How Business Rules Are Handled . 163
Step 5 – Identify Patterns That Fit the Requirements. 164
Additional Resources. 166

Chapter 13: Designing Business Entities	 167
Overview. 167
Step 1 – Choose the Representation. 168
Step 2 – Choose a Design for Business Entities. 168
Step 3 – Determine Serialization Support. 170
Domain Driven Design. 170
Additional Resources. 172

Chapter 14: Designing Workflow Components	 173
Overview. 173
Step 1 – Identify the Workflow Style Using Scenarios. 174
Step 2 – Choose an Authoring Mode. 174
Step 3 – Determine How Rules Will Be Handled. 175
Step 4 – Choose a Workflow Solution. 175
Step 5 – Design Business Components to Support Workflow . 176

Windows Workflow Foundation. 177
BizTalk Server . 177
BizTalk with ESB . 179
Using Windows Workflow Foundation and BizTalk Together. 180

Additional Resources. 180

Contents ix

Chapter 15: Designing Data Components	 181
Overview. 181
Step 1 – Choose a Data Access Technology . 182
Step 2 – Choose How to Retrieve and Persist Business Objects from the Data Store. 183
Step 3 –Determine How to Connect to the Data Source. 184

Connections. 184
Connection Pooling. 185
Transactions and Concurrency. 186

Step 4 – Determine Strategies for Handling Data Source Errors. 187
Exceptions. 188
Retry Logic. 188
Timeouts . 189

Step 5 – Design Service Agent Objects (Optional). 189
Additional Resources. 189

Chapter 16: Quality Attributes	 191
Overview. 191
Common Quality Attributes. 192

Availability . 194
Conceptual Integrity . 195
Interoperability . 196
Maintainability. 196
Manageability . 197
Performance. 198
Reliability. 199
Reusability. 200
Scalability. 200
Security . 201
Supportability . 202
Testability. 202
User Experience / Usability . 203

Additional Resources. 204

Chapter 17: Crosscutting Concerns	 205
Overview. 205
General Design Considerations . 206
Specific Design Issues. 207

Authentication. 207
Authorization. 208
Caching . 209
Communication. 210
Configuration Management. 210
Exception Management . 211
Logging and Instrumentation. 212

.NET Application Architecture Guide, 2nd Editionx

State Management. 213
Validation. 213

Design Steps for Caching . 214
Step 1 – Determine the Data to Cache. 214
Step 2 – Determine Where to Cache Data . 214
Step 3 – Determine the Format of Your Data to Cache . 216
Step 4 – Determine a Suitable Cache Management Strategy . 216
Step 5 – Determine How to Load the Cache Data . 217

Design Steps for Exception Management . 218
Step 1 – Identify Exceptions That You Want to Handle. 218
Step 2 – Determine Your Exception Detection Strategy. 218
Step 3 – Determine Your Exception Propagation Strategy. 219
Step 4 – Determine Your Custom Exception Strategy. 219
Step 5 – Determine Appropriate Information to Gather. 220
Step 6 – Determine Your Exception Logging Strategy . 221
Step 7 – Determine Your Exception Notification Strategy . 221
Step 8 – Determine How to Handle Unhandled Exceptions. 222

Design Steps for Validating Input and Data. 222
Step 1 – Identify your Trust Boundaries . 222
Step 2 – Identify Key Scenarios. 223
Step 3 – Determine Where to Validate . 223
Step 4 – Identify Validation Strategies . 224

Relevant Design Patterns . 224
patterns & practices Solution Assets. 225
Additional Resources. 225

Chapter 18: Communication and Messaging	 227
Overview. 227
General Design Guidelines. 228
Message-Based Communication Guidelines. 229

Asynchronous vs. Synchronous Communication. 230
Coupling and Cohesion. 231
Data Formats. 231
Interoperability . 232
Performance. 233
State Management. 233

Contract First Design. 234
Security Considerations. 235

Transport Security. 235
Message Security . 235

Technology Options. 236
WCF Technology Options. 236
ASMX Technology Options . 237

Additional Resources. 237

Contents xi

Chapter 19: Physical Tiers and Deployment	 239
Overview. 239
Distributed and Nondistributed Deployment. 240

Nondistributed Deployment. 240
Distributed Deployment . 240
Performance and Design Considerations for Distributed Environments. 241
Recommendations for Locating Components within a Distributed

Deployment. 242
Distributed Deployment Patterns. 243

Client-Server Deployment. 243
n-Tier Deployment. 244
2-Tier Deployment. 244
3-Tier Deployment. 244
4-Tier Deployment. 245
Web Application Deployment. 246
Rich Internet Application Deployment. 246
Rich Client Application Deployment. 246

Performance Patterns. 247
Load-balanced Cluster . 247
Affinity and User Sessions . 250
Application Farms. 250

Reliability Patterns. 250
Failover Cluster. 250

Security Patterns. 252
Impersonation/Delegation. 252
Trusted Subsystem. 253
Multiple Trusted Service Identities. 254

Scale Up and Scale Out. 255
Considerations for Scaling Up . 255
Designing to Support Scale Out. 256
Design Implications and Tradeoffs. 256

Network Infrastructure Security Considerations. 258
Manageability Considerations. 259
Relevant Design Patterns . 260
Additional Resources. 261

.NET Application Architecture Guide, 2nd Editionxii

Application Archetypes	 263

Chapter 20: Choosing an Application Type	 265
Overview. 265
Application Archetypes Summary. 266

Application Type Considerations . 266
Mobile Application Archetype. 268
Rich Client Application Archetype. 269
Rich Internet Application Archetype. 271
Service Archetype . 272
Web Application Archetype . 274

Chapter 21: Designing Web Applications	 277
Overview. 277
General Design Considerations . 279
Specific Design Issues. 280

Application Request Processing. 280
Authentication. 282
Authorization. 282
Caching . 283
Exception Management . 283
Logging and Instrumentation. 284
Navigation. 284
Page Layout . 285
Page Rendering. 286
Session Management. 286
Validation. 287

Design Considerations for Layers. 287
Presentation Layer . 287
Business Layer . 288
Data Layer. 288
Service Layer. 288

Testing and Testability Considerations. 289
Technology Considerations. 289
Deployment Considerations . 290

NonDistributed Deployment. 290
Distributed Deployment . 291
Load Balancing. 292

Relevant Design Patterns . 294
Additional Resources. 296

Contents xiii

Chapter 22: Designing Rich Client Applications	 297
Overview. 297
General Design Considerations . 299
Specific Design Issues. 300

Business Layer . 300
Communication. 301
Composition. 302
Configuration Management. 303
Data Access. 303
Exception Management . 304
Maintainability. 305
Presentation Layer . 306
State Management. 307
Workflow . 307

Security Considerations. 308
Data Handling Considerations . 309

Caching Data. 309
Data Concurrency. 310
Data Binding. 310

Offline/Occasionally Connected Considerations. 311
Technology Considerations. 312
Deployment Considerations . 313

Stand-alone Deployment . 313
Client/Server Deployment . 313
N-Tier Deployment. 314
Deployment Technologies. 315

Relevant Design Patterns . 315
Additional Resources. 317

Chapter 23: Designing Rich Internet Applications	 319
Overview. 319
General Design Considerations . 321
Specific Design Issues. 323

Business Layer . 323
Caching . 324
Communication. 324
Composition. 325
Data Access. 326
Exception Management . 326

.NET Application Architecture Guide, 2nd Editionxiv

Logging. 327
Media and Graphics. 327
Mobile . 328
Portability. 328
Presentation . 329
State Management. 329
Validation. 330

Security Considerations. 330
Data Handling Considerations . 331
Technology Considerations. 332
Deployment Considerations . 334

Installation of the RIA Plug-In. 334
Distributed Deployment . 335
Load Balancing. 336
Web Farm Considerations . 337

Relevant Design Patterns . 337
Additional Resources. 338

Chapter 24: Designing Mobile Applications	 339
Overview. 339
General Design Considerations . 341
Specific Design Issues. 342

Authentication and Authorization. 342
Caching . 343
Communication. 344
Configuration Management. 345
Data Access. 345
Device Specifics . 346
Exception Management . 347
Logging. 347
Porting Applications . 348
Power Management . 349
Synchronization. 349
Testing. 350
User Interface. 350
Validation. 351

Technology Considerations. 352
Microsoft Silverlight for Mobile. 352
.NET Compact Framework . 352
Windows Mobile . 353
Windows Embedded. 354

Deployment Considerations . 355
Relevant Design Patterns . 356
Additional Resources. 357

Contents xv

Chapter 25: Designing Service Applications	 359
Overview. 359
General Design Considerations . 361
Specific Design Issues. 363

Authentication. 364
Authorization. 364
Business Layer . 364
Communication. 365
Data Layer . 366
Exception Management . 366
Message Construction . 367
Message Endpoint . 367
Message Protection . 368
Message Transformation . 369
Message Exchange Patterns . 369
Representational State Transfer . 370
Service Layer. 371
SOAP . 372
Validation. 373

Technology Considerations. 373
Deployment Considerations . 374
Relevant Design Patterns . 375
Additional Resources. 378

Chapter 26: Designing Hosted and Cloud Services	 379
Overview. 379

Cloud Computing. 379
Common Vocabulary for Hosted and Cloud Services. 381

Benefits of Cloud Applications . 382
Benefits for ISVs and Service Hosts. 382
Benefits for Enterprise Service Consumers. 383

Design Issues. 384
Data Isolation and Sharing. 384
Data Security . 386
Data Storage and Extensibility. 387
Identity Management. 389
Multi-tenancy. 392
On-premises or Off-premises, Build or Buy. 393
Performance. 394
Service Composition. 395
Service Integration . 397
Service Management. 399

Relevant Design Patterns . 400
Additional Resources. 401

.NET Application Architecture Guide, 2nd Editionxvi

Chapter 27: Designing Office Business Applications	 403
Overview. 403

Components of an Office Business Application . 404
Key Scenarios for Office Business Applications. 405

Enterprise Content Management . 406
Business Intelligence . 407
Unified Messaging. 407

Common OBA Patterns . 408
Extended Reach Channel. 408
Document Integration. 410
Document Workflow . 413
Composite UI. 414
Data Consolidation (Discovery Navigation) . 415
Collaboration. 417
Notifications and Tasks. 417

General Design Considerations . 418
Security Considerations. 419
Deployment Considerations . 420
Relevant Design Patterns . 420
Additional Resources. 422

Chapter 28: Designing SharePoint LOB Applications	 423
Overview. 423

Logical Layers of a SharePoint LOB Application. 424
Physical Tier Deployment. 425

Key Scenarios and Features. 426
General Design Considerations . 427
Specific Design Issues. 428

Business Data Catalog. 428
Document and Content Storage. 429
Excel Services. 430
InfoPath Form Services. 430
SharePoint Object Model . 431
Web Parts . 431
Workflow . 432

Technology Considerations. 433
Deployment Considerations . 433
Relevant Design Patterns . 434
Additional Resources. 434

Contents xvii

Appendices	 435

Appendix A: The Microsoft Application Platform	 437
Overview. 437
Finding Information and Resources. 438

How Microsoft Organizes Technical Information on the Web. 438
Microsoft Developer Network . 439
Microsoft TechNet. 440

The .NET Framework. 440
Common Language Runtime . 440
Data Access. 440
Mobile Applications. 442
Rich Client . 442
Rich Internet Application. 443
Services . 443
Workflow. 444
Web Applications. 445
Web Server – Internet Information Services . 445
Database Server – SQL Server. 446
Visual Studio Development Environment. 446
Other Tools and Libraries . 447

patterns & practices Solution Assets. 447
Additional Resources. 448

Appendix B: Presentation Technology Matrix	 449
Overview. 449
Presentation Technologies Summary. 449

Mobile Applications. 449
Rich Client Applications . 450
Rich Internet Applications. 451
Web Applications. 451

Benefits and Considerations Matrix. 452
Mobile Applications. 452
Rich Client Applications . 453
Rich Internet Applications. 454
Web Applications. 455

Common Scenarios and Solutions. 456
Mobile Applications. 456
Rich Client Applications . 456
Rich Internet Applications. 457
Web Applications. 458

Additional Resources . 459

.NET Application Architecture Guide, 2nd Editionxviii

Appendix C: Data Access Technology Matrix	 461
Overview. 461
Data Access Technologies Summary. 461
Benefits and Considerations Matrix. 463

Object-Relational Data Access. 463
Disconnected and Offline. 464
SOA/Service Scenarios. 464
N-Tier and General . 465

General Recommendations. 466
Common Scenarios and Solutions. 467
LINQ to SQL Considerations . 468
Mobile Considerations. 469
Additional Resources . 469

Appendix D: Integration Technology Matrix	 471
Overview. 471
Integration Technologies Summary . 471
Benefits and Considerations Matrix. 472
Common Scenarios and Solutions. 474
Additional Resources. 475

Appendix E: Workflow Technology Matrix	 477
Overview. 477
Workflow Technologies Summary. 477
Human Workflow vs. System Workflow. 478
Benefits and Considerations Matrix. 478
Common Scenarios and Solutions. 480
Additional Resources. 481

Appendix F: patterns & practices Enterprise Library	 483
Overview. 483
Goals of Enterprise Library. 483
What’s Included in Enterprise Library. .484

Application Blocks. 485
Caching Application Block. 486

Key Scenarios. 486
When to Use . 486
Considerations . 487

Cryptography Application Block. 488
Key Scenarios. 488
When to Use . 488
Considerations . 488

Contents xix

Data Access Application Block. 489
Key Scenarios. 489
When to Use . 489
Considerations . 489

Exception Handling Application Block . 490
Key Scenarios. 490
When to Use . 490

Logging Application Block. 491
Key Scenarios. 491
When to Use . 491
Considerations . 492

Policy Injection Application Block. 492
Key Scenarios. 492
When to Use . 493
Considerations . 493

Security Application Block. 494
Key Scenarios. 494
When to Use . 494
Considerations . 494

Unity Application Block . 495
Key Scenarios. 495
When to Use . 495
Considerations . 495

Validation Application Block. 496
Key Scenarios. 496
When to Use . 496
Considerations . 496

Additional Resources. 497

Appendix G: patterns & practices Pattern Catalog	 499
Composite Application Guidance for WPF . 499
Data Movement Patterns . 500
Enterprise Solution Patterns. 501
Integration Patterns. 504
Web Services Security Patterns . 506
Additional Resources. 507

Index	 509

Foreword by S. Somasegar

In using our own technologies to build Microsoft products, and working with cus-
tomers and partners every day, we have developed practical guidance on applying
best practices for application architecture and design patterns and principles
using our technologies. This guidance is valuable to both the developer and to
the solution architect. We have built the Microsoft Application Architecture Guide to
consolidate guidance that we have gathered from our internal practices, external
experts, customers, and others in the community in order to share it with you.

The purpose of the guide is to help solution architects and developers to design and
build applications on the Microsoft platform that are more effective, to support key
decision making at the early stages of a new project, as well as providing topic-specific
content to help architects and developers improve their existing solutions. This guidance
incorporates the contributions and reviews from more than 25 external experts and
customers.

By thinking about solutions in terms of architectural patterns and principles, quality
attributes, and crosscutting concerns, you can very quickly determine a baseline appli-
cation architecture and the relevant technologies, patterns, and guidance assets that
will help you build your solution. You can then use the guide to identify key areas of
your application architecture so you can refine them for your scenario.

The guide includes reference application architectures for common application types,
such as Web, rich client, RIA, mobile, and services applications; guidelines for quality
attributes and crosscutting concerns; and guidelines on design approaches that can
help you to design and refine your solution architecture.

We are confident that the Microsoft Application Architecture Guide 2nd Edition will help
you choose the right architecture, the right technologies, and the relevant patterns
that will help you make more effective design decisions.

Sincerely,
S. Somasegar
Senior Vice President of Developer Division
Microsoft

	 Contents

Foreword by S. Somasegar	 xxi

Foreword by Scott Guthrie	 xxii

.NET Application Architecture Guide, 2nd Editionxxii

Foreword by Scott Guthrie

Application architecture is a challenging topic, as evidenced by the wide variety of
books, articles, and white papers on the subject. It is still too hard for developers and
architects to understand architecture and best practice design for the Microsoft plat-
form. The original Application Architecture for .NET: Designing Applications and Services
guide did a great job of covering this topic, but it was written in 2002.

To deal with the many technology additions since then, J. D. Meier, David Hill,
and their team from Microsoft patterns & practices have created a new application
architecture guide to provide insightful guidance for designing applications and
services that run on the Microsoft platform based on the latest best practices and
technologies. The outcome is Microsoft Application Architecture Guide 2nd Edition, a
guide targeted to help solution architects and developers design effective applica-
tions on the Microsoft platform. While the guide provides an overview of the .NET
Framework, the Microsoft platform, and the main technologies and capabilities
within them, it also provides platform-independent, pattern-oriented, principles-
based guidance that will help you design your applications on a solid foundation.

The guide is based on a number of key architecture and design principles that provide
structure. It includes guidelines for identifying and dealing with key engineering
decisions, and an explanation of the quality attributes, crosscutting concerns, and
capabilities that shape your application architecture; such as performance, security,
scalability, manageability, deployment, communication, and more.

The guide also describes, at a meta-level, the tiers and layers that a solution architect
should consider. Each tier/layer is described in terms of its focus, function, capabilities,
common design patterns, and technologies. Using these as a backdrop, the guide
then overlays relevant principles, patterns, and practices. Finally, the guide provides
canonical application archetypes to illustrate common application types. Each
archetype is described in terms of the target scenarios, technologies, patterns, and
infrastructure it contains.

The guidance as a whole is based on the combined experience and knowledge of
Microsoft experts, Microsoft partners, customers, and others in the community. It
will help you understand our platform, choose the right architecture and the right
technologies, and build applications using proven practices and lessons learned.

Sincerely,
Scott Guthrie
Corporate Vice President of .NET Developer Platform
Microsoft

Preface by David Hill

There is an old joke, told amongst mischievous developers, that in order to be
considered an architect you just need to answer every technical question with “it
depends”—Q: What’s the best way to implement authentication and authorization in
my solution? —A: It depends; Q: How should I implement my data access layer?—A:
It depends; Q: Which technology should I use for my solution’s UI?—A: It depends.
Q: How can I make my application scalable?—A: It depends. You get the general idea.

The truth is, of course, that it really does depend. Ultimately, every solution is
different and there are many factors, both technical and non-technical, that can
significantly affect the architecture and design of a solution at both the small and
the large scales. The role of the developer and solution architect is to balance the
(frequently contradictory) requirements and constraints imposed by the business,
the end user, the organization’s IT environment and management infrastructure, the
economic environment, and of course the technologies and tools that are used to
build the solution.

And, to make life really interesting, these requirements and constraints are constantly
evolving as new opportunities arise or as new demands are imposed on the system.
Changes to business rules or the emergence of new business areas can affect both new
and existing applications. Over time, users expect richer, more consistent and more
highly integrated user experiences. New compliance requirements might emerge. Or
new IT infrastructure technologies might appear that can reduce costs or improve
availability or scalability. And, of course new technologies, frameworks, and tools are
being released all the time with promises to reduce development costs, or to enable
scenarios that were previously difficult to implement.

Clearly, making sense of all of this and at the same time delivering an effective solu-
tion on budget and to schedule is not an easy task. It requires that the developer or
solution architect have to account for a whole host of competing and overlapping
factors (some of which are non-technical) and strike a pragmatic balance between
them all. Trying to account for too many factors can result in over-engineered,
complex solutions that take a long time to build and nevertheless fail to deliver
on promises of improved longevity or flexibility. On the other hand, consideration
of too few factors can result in constrained, inflexible, and improvised solutions that
are difficult to evolve or that do not scale well. In other words, developers and solu-
tion architects often have to walk the path between a “golden solution” on the one
hand, and a “point-in-time solution” on the other.

	 Contents

Preface by David Hill	 xxiii

.NET Application Architecture Guide, 2nd Editionxxiv

This, to me, is what application architecture is all about—it’s about using today’s
tools and technologies to create as much business value as possible whilst keeping
one eye on the requirements and constraints imposed by the business today, and one
eye looking to tomorrow to maximize ongoing value through scalability, flexibility
and maintainability. A good understanding of architectural principles and patterns
allows the developer or solution architect to understand and factor into the overall
design process the important design issues that can have a big impact on the overall
success of their solution. Armed with this knowledge, they can make more informed
decisions, better balance competing or overlapping requirements and constraints,
and make sure that the solution not only meets or exceeds its business goals but it
does so in way that is cost effective and scalable, maintainable and flexible.

You’ll notice that I refer to both developers and solution architects. I believe that
both can benefit greatly from a solid understanding of the architectural patterns
and principles outlined in this guide. Some might argue that the implementation
details are less important than the overall design. In my experience this is not the
case. Small decisions accumulate over time. Implementation-level details can have
a very large impact on the overall solution architecture and on its scalability, main-
tainability, and flexibility, so a solid understanding by both developers and solution
architects is essential. In addition, a shared understanding leads to better communi-
cation between developers and architects, which is a good thing.

This guide aims to provide an overview of the application architecture and design
principles and patterns that will help you make better decisions and build more
successful solutions. The guide is structured in a way that allows you to read it
from start to finish, or use as a reference resource so you can jump directly to the
most relevant sections. The first half of the guide is focused on generally applicable
architecture and design principles and apply to any type of solution. The last half
is focused on common application types—such as Web applications, rich client
application, or mobile applications—and describes the typical architecture and key
design considerations for each. It’s likely that your particular solution won’t map
directly to these, but they can serve to provide a baseline architecture that you can
take and evolve for your particular situation. The guide provides advice on how to
identify the key elements of your architecture so you can refine it over time.

There is a particular focus throughout the guide on developing solutions on the
Microsoft platform with the .NET Framework so the guide contains references to
articles and resources that provide details on relevant technologies and tools. You’ll
find though that the underlying principles and patterns are generally applicable to
any platform. It is also worth noting that the guide is not meant to be a complete and
comprehensive reference to every aspect of application architecture and design—that
would require either a much larger guide, or multiple volumes—so the guide aims to
provide a pragmatic overview of the most important topics along with links to more
detailed guidance or in-depth material.

Preface xxv

The field of application architecture and design is dynamic and constantly evolving. The
foundations on which successful solutions have been built in the past will continue
to serve us well into the foreseeable future, but we should also expect that the pace
of innovation, in both technologies and new design approaches, will not decrease.
The Microsoft platform and the .NET Framework and the range of technologies and
scenarios that they support are both deep and wide, and getting deeper and wider
all the time. On the other hand, we don’t need to wait for what might be. We can
build compelling valuable solutions right now, and hopefully this guide will help
you do just that.

David Hill
patterns and practices
September 2009

Introducing the Guide

The goal of this guide is to help developers and solution architects build effective,
high quality applications on the Microsoft platform and the .NET Framework more
quickly and with less risk by leveraging tried and trusted architecture and design
principles and patterns.

The guide provides an overview of the underlying principles and patterns that provide
a solid foundation for good application architecture and design. On top of this founda-
tion, the guide provides generally applicable guidance for partitioning an application’s
functionality into layers, components, and services. It goes on to provide guidance on
identifying and addressing the key design characteristics of the solution and the key
quality attributes (such as performance, security, and scalability) and crosscutting
concerns (such as caching and logging). The guide builds still further and provides
guidance that is more specific on the architecture and design of the most common
application types, such as Web, rich Internet applications (RIA), rich client, services,
and mobile applications.

The guidance is presented in parts that correspond to major architecture and design
focus points. It is designed to be used as a reference resource, or it can be read from
beginning to end.

The guide will help you to:
l	 Understand the underlying architecture and design principles and patterns for

developing successful solutions on the Microsoft platform.
l	 Identify appropriate strategies and design patterns that will help you design your

solution’s layers, components, and services.
l	 Identify and address the key engineering decision points for your solution.
l	 Identify and address the key quality attributes and crosscutting concerns for your

solution.
l	 Choose the right technologies for your solution.
l	 Create a candidate baseline architecture for your solution.
l	 Identify patterns & practices solution assets and further guidance that will help

you to implement your solution.

Note that while the guide is extensive, it is should not be considered a complete and
comprehensive treatise on the field of application architecture and design. The guide
is intended to serve as a practical and convenient overview of and reference to the
general principles of architecture and design on the Microsoft platform and the .NET
Framework.

	 Contents

Introducing the Guide	 xxvii

.NET Application Architecture Guide, 2nd Editionxxviii

In particular, the guide does not try to provide a definitive or authoritative solution
architecture for any particular scenario. Rather, it provides a concise overview of the
principles and patterns that underpin good architecture and design, and highlights
and provides recommendations for some of the most important issues you might
encounter.

The bulk of the guide is technology-agnostic and principled-based, and can be applied
to any platform or technology. However, we have added specific Microsoft and .NET
Framework technology considerations where we think it helps you to choose amongst
available technologies, or to make the most of them in a particular situation.

Audience
This guide is primarily written for developers and solution architects who are looking
for guidance on architecting and designing applications on the Microsoft platform and
the .NET Framework.

However, this guide will benefit any technologist who is generally interested in the
field of application architecture and design, wishes to understand the underlying
patterns and principles behind good application design on the .Microsoft platform or
the .NET Framework, or is new to the Microsoft platform or the .NET Framework.

How to Use This Guide
This guide is not a step-by-step tutorial for application architecture and design, but
rather an overview and a reference. The guide is divided into four main sections,
each containing a number of chapters:
l	 The first section of the guide, “Software Architecture and Design,” provides a

summary of the underlying principles and patterns that provide the founda-
tion for good application architecture and design and a suggested approach for
creating your architecture design. If you are using the guide to learn about the
fundamentals of application architecture, start with this section and then work
through the remaining parts to learn about layered design, components, quality
attributes, crosscutting concerns, communication, deployment, and common
application types.

l	 The second section of the guide, “Design Fundamentals,” provides generally
applicable guidance for designing a solution’s layers, components, and services;
and guidance on addressing quality attributes and crosscutting concerns. It also
covers communication and deployment topics. If you want to learn about the
layered approach to application architecture and design, or the design of specific
components and services, start with this section and then explore the following
sections to see how to take account of quality attributes and how to design a
physical deployment strategy.

Introduction xxix

l	 The third section of the guide, “Application Archetypes,” provides specific guidance
on the architecture and design of typical application types, such as Web, RIA, rich
client, mobile, and services applications. If you have some prior experience with
application architecture and design and want to learn about the architecture and
major design features of common types of application and the specific guidance for
each type, start with this section and then use the remaining sections to expand and
verify your knowledge.

l	 Finally, the Appendices provide an overview of the Microsoft platform and
.NET Framework technologies and their capabilities. This section also provides
a summary of common design patterns, and references to additional resources
and materials. If you are new to the .NET Framework, or want to learn about the
technologies available on the Microsoft platform, use this section to get an over-
view of the .NET Framework and platform services, see the major technology
matrices, and read descriptions of patterns & practices assets such as Enterprise
Library and the patterns & practices design pattern library.

Depending on your experience and requirements, you can refer directly to the
specific section(s) that best address your needs. Alternatively, if you are looking for
an extensive overview of design and architecture on the Microsoft platform and the
.NET Framework, you can read the guide from start to finish. It will help you to
understand the architecture and design approach. You can work the guidance into
your application development life cycle and processes, and use it as a training tool.

Feedback and Support
We have made every effort to ensure the accuracy of this guide. However, we welcome
feedback on any topics it contains. This includes technical issues specific to the recom-
mendations, usefulness and usability issues, and writing and editing issues. To more
easily access the various Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.

If you have comments on this guide, please visit the Application Architecture Guide
community site at http://www.codeplex.com/AppArchGuide.

Technical Support
Technical support for the Microsoft products and technologies referenced in this
guidance is provided by Microsoft Product Support Services (PSS). For product
support information, please visit the Microsoft Product Support Web site at:
http://support.microsoft.com.

Community and Newsgroup Support
You can also obtain community support, discuss this guide, and provide feedback by
visiting the Microsoft MSDN® Newsgroups site at http://msdn.microsoft.com/en-us/
subscriptions/aa974230.aspx.

http://www.microsoft.com/architectureguide
http://www.codeplex.com/AppArchGuide
http://support.microsoft.com
http://msdn.microsoft.com/en-us/

.NET Application Architecture Guide, 2nd Editionxxx

The Team Who Brought You This Guide
This guide was produced by the following .NET architecture and development
specialists:
l	 J.D. Meier
l	 David Hill
l	 Alex Homer
l	 Jason Taylor
l	 Prashant Bansode
l	 Lonnie Wall
l	 Rob Boucher Jr.
l	 Akshay Bogawat

Contributors and Reviewers
Many thanks to the contributors and reviewers:
l	 Test Team.  Rohit Sharma; Praveen Rangarajan
l	 Edit Team.  Dennis Rea
l	 External Contributors and Reviewers.  Adwait Ullal; Andy Eunson; Brian Sletten;

Christian Weyer; David Guimbellot; David Ing; David Weller; David Sussman;
Derek Greer; Eduardo Jezierski; Evan Hoff; Gajapathi Kannan; Jeremy D. Miller;
John Kordyback; Keith Pleas; Kent Corley; Mark Baker; Paul Ballard; Peter Oehlert;
Norman Headlam; Ryan Plant; Sam Gentile; Sidney G Pinney; Ted Neward; Udi
Dahan; Oren Eini aka Ayende Rahien; Gregory Young

l	 Microsoft Contributors and Reviewers.  Ade Miller; Amit Chopra; Anna Liu;
Anoop Gupta; Bob Brumfield; Brad Abrams; Brian Cawelti; Bhushan Nene; Burley
Kawasaki; Carl Perry; Chris Keyser; Chris Tavares; Clint Edmonson; Dan Reagan;
David Hill; Denny Dayton; Diego Dagum; Dmitri Martynov; Dmitri Ossipov;
Don Smith; Dragos Manolescu; Elisa Flasko; Eric Fleck; Erwin van der Valk;
Faisal Mohamood; Francis Cheung; Gary Lewis; Glenn Block; Gregory Leake;
Ian Ellison-Taylor; Ilia Fortunov; J.R. Arredondo; John deVadoss; Joseph Hofstader;
Kashinath TR; Koby Avital; Loke Uei Tan; Luke Nyswonger; Manish Prabhu;
Meghan Perez; Mehran Nikoo; Michael Puleio; Mike Francis; Mike Walker;
Mubarak Elamin; Nick Malik; Nobuyuki Akama; Ofer Ashkenazi; Pablo Castro;
Pat Helland; Phil Haack; Rabi Satter; Reed Robison; Rob Tiffany; Ryno Rijnsburger;
Scott Hanselman; Seema Ramchandani; Serena Yeoh; Simon Calvert; Srinath
Vasireddy; Tom Hollander; Vijaya Janakiraman; Wojtek Kozaczynski

Introduction xxxi

Tell Us About Your Success
If this guide helps you, we would like to know. Tell us by writing a short summary
of the problems you faced and how this guide helped you out. Submit your sum-
mary by e-mail to MyStory@Microsoft.com.

mailto:MyStory@Microsoft.com

Software Architecture and Design

This section of the guide contains a series of topics that will help you to understand
the fundamentals of architecture and design. It starts by describing what is software
architecture is, why is it important. It discusses the general issues you must consider,
such as requirements and constraints and the intersection between the user, the
business, and the system on which the application will run. This is followed by a
description of the key design principles, and the architectural patterns and styles
in common use today. Finally, this section provides an insight into the approach
you should follow when designing your architecture. For more information, see
the following chapters:
l	 Chapter 1, “What is Software Architecture?”
l	 Chapter 2, “Key Principles of Software Architecture”
l	 Chapter 3, “Architectural Patterns and Styles”
l	 Chapter 4, “A Technique for Architecture and Design”

	 Contents

Software Architecture and Design	 1

1
What Is Software Architecture?

Software application architecture is the process of defining a structured solution that
meets all of the technical and operational requirements, while optimizing common
quality attributes such as performance, security, and manageability. It involves a
series of decisions based on a wide range of factors, and each of these decisions can
have considerable impact on the quality, performance, maintainability, and overall
success of the application.

Philippe Kruchten, Grady Booch, Kurt Bittner, and Rich Reitman derived and refined
a definition of architecture based on work by Mary Shaw and David Garlan (Shaw
and Garlan 1996). Their definition is:

“Software architecture encompasses the set of significant decisions about the
organization of a software system including the selection of the structural
elements and their interfaces by which the system is composed; behavior as
specified in collaboration among those elements; composition of these structural
and behavioral elements into larger subsystems; and an architectural style
that guides this organization. Software architecture also involves functionality,
usability, resilience, performance, reuse, comprehensibility, economic and
technology constraints, tradeoffs and aesthetic concerns.”

In Patterns of Enterprise Application Architecture, Martin Fowler outlines some common
recurring themes when explaining architecture. He identifies these themes as:

“The highest-level breakdown of a system into its parts; the decisions that are
hard to change; there are multiple architectures in a system; what is architecturally
significant can change over a system’s lifetime; and, in the end, architecture boils
down to whatever the important stuff is.”

[http://www.pearsonhighered.com/educator/academic/product/
0,3110,0321127420,00.html]

	 Contents

1	3

What Is Software Architecture?	 3
Why Is Architecture Important?. 4
The Goals of Architecture . 5

The Architectural Landscape. 6
The Principles of Architecture Design. 7

Key Architecture Principles. 7
Additional Resources . 8

http://www.pearsonhighered.com/educator/academic/product/0,3110,0321127420,00.html
http://www.pearsonhighered.com/educator/academic/product/0,3110,0321127420,00.html

.NET Application Architecture Guide, 2nd Edition4

In Software Architecture in Practice (2nd edition), Bass, Clements, and Kazman define
architecture as follows:

“The software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them. Architecture is
concerned with the public side of interfaces; private details of elements—details
having to do solely with internal implementation—are not architectural.”

[http://www.aw-bc.com/catalog/academic/product/0,4096,0321154959,00.html]

Why Is Architecture Important?
Like any other complex structure, software must be built on a solid foundation.
Failing to consider key scenarios, failing to design for common problems, or failing
to appreciate the long term consequences of key decisions can put your application
at risk. Modern tools and platforms help to simplify the task of building applica-
tions, but they do not replace the need to design your application carefully, based
on your specific scenarios and requirements. The risks exposed by poor architecture
include software that is unstable, is unable to support existing or future business
requirements, or is difficult to deploy or manage in a production environment.

Systems should be designed with consideration for the user, the system (the IT
infrastructure), and the business goals. For each of these areas, you should outline
key scenarios and identify important quality attributes (for example, reliability
or scalability) and key areas of satisfaction and dissatisfaction. Where possible,
develop and consider metrics that measure success in each of these areas.

Figure 1
User, business, and system goals

http://www.aw-bc.com/catalog/academic/product/0,4096,0321154959,00.html

Chapter 1:  What Is Software Architecture? 5

Tradeoffs are likely, and a balance must often be found between competing require-
ments across these three areas. For example, the overall user experience of the solution
is very often a function of the business and the IT infrastructure, and changes in one or
the other can significantly affect the resulting user experience. Similarly, changes in the
user experience requirements can have significant impact on the business and IT infra-
structure requirements. Performance might be a major user and business goal, but the
system administrator may not be able to invest in the hardware required to meet that
goal 100 percent of the time. A balance point might be to meet the goal only 80 percent
of the time.

Architecture focuses on how the major elements and components within an applica-
tion are used by, or interact with, other major elements and components within the
application. The selection of data structures and algorithms or the implementation
details of individual components are design concerns. Architecture and design con-
cerns very often overlap. Rather than use hard and fast rules to distinguish between
architecture and design, it makes sense to combine these two areas. In some cases,
decisions are clearly more architectural in nature. In other cases, the decisions are
more about design, and how they help you to realize that architecture.

By following the processes described in this guide, and using the information it
contains, you will be able to construct architectural solutions that address all of
the relevant concerns, can be deployed on your chosen infrastructure, and provide
results that meet the original aims and objectives.

Consider the following high level concerns when thinking about software architecture:
l	 How will the users be using the application?
l	 How will the application be deployed into production and managed?
l	 What are the quality attribute requirements for the application, such as security,

performance, concurrency, internationalization, and configuration?
l	 How can the application be designed to be flexible and maintainable over time?
l	 What are the architectural trends that might impact your application now or after

it has been deployed?

The Goals of Architecture
Application architecture seeks to build a bridge between business requirements
and technical requirements by understanding use cases, and then finding ways to
implement those use cases in the software. The goal of architecture is to identify the
requirements that affect the structure of the application. Good architecture reduces
the business risks associated with building a technical solution. A good design is
sufficiently flexible to be able to handle the natural drift that will occur over time

.NET Application Architecture Guide, 2nd Edition6

in hardware and software technology, as well as in user scenarios and requirements.
An architect must consider the overall effect of design decisions, the inherent trade-
offs between quality attributes (such as performance and security), and the tradeoffs
required to address user, system, and business requirements.

Keep in mind that the architecture should:
l	 Expose the structure of the system but hide the implementation details.
l	 Realize all of the use cases and scenarios.
l	 Try to address the requirements of various stakeholders.
l	 Handle both functional and quality requirements.

The Architectural Landscape
It is important to understand the key forces that are shaping architectural decisions
today, and which will change how architectural decisions are made in the future.
These key forces are driven by user demand, as well as by business demand for
faster results, better support for varying work styles and workflows, and improved
adaptability of software design.

Consider the following key trends:
l	 User empowerment.  A design that supports user empowerment is flexible,

configurable, and focused on the user experience. Design your application with
appropriate levels of user personalization and options in mind. Allow the user to
define how they interact with your application instead of dictating to them, but do
not overload them with unnecessary options and settings that can lead to confu-
sion. Understand the key scenarios and make them as simple as possible; make it
easy to find information and use the application.

l	 Market maturity.  Take advantage of market maturity by taking advantage of
existing platform and technology options. Build on higher level application
frameworks where it makes sense, so that you can focus on what is uniquely
valuable in your application rather than recreating something that already exists
and can be reused. Use patterns that provide rich sources of proven solutions for
common problems.

l	 Flexible design.  Increasingly, flexible designs take advantage of loose coupling to
allow reuse and to improve maintainability. Pluggable designs allow you to provide
post-deployment extensibility. You can also take advantage of service orientation
techniques such as SOA to provide interoperability with other systems.

l	 Future trends.  When building your architecture, understand the future trends
that might affect your design after deployment. For example, consider trends in
rich UI and media, composition models such as mashups, increasing network
bandwidth and availability, increasing use of mobile devices, continued improve-
ment in hardware performance, interest in community and personal publishing
models, the rise of cloud-based computing, and remote operation.

Chapter 1:  What Is Software Architecture? 7

The Principles of Architecture Design
Current thinking on architecture assumes that your design will evolve over time
and that you cannot know everything you need to know up front in order to fully
architect your system. Your design will generally need to evolve during the imple-
mentation stages of the application as you learn more, and as you test the design
against real world requirements. Create your architecture with this evolution in
mind so that it will be able to adapt to requirements that are not fully known at
the start of the design process.

Consider the following questions as you create an architectural design:
l	 What are the foundational parts of the architecture that represent the greatest risk

if you get them wrong?
l	 What are the parts of the architecture that are most likely to change, or whose

design you can delay until later with little impact?
l	 What are your key assumptions, and how will you test them?
l	 What conditions may require you to refactor the design?

Do not attempt to over engineer the architecture, and do not make assumptions that
you cannot verify. Instead, keep your options open for future change. There will be
aspects of your design that you must fix early in the process, which may represent
significant cost if redesign is required. Identify these areas quickly and invest the
time necessary to get them right.

Key Architecture Principles
Consider the following key principles when designing your architecture:
l	 Build to change instead of building to last.  Consider how the application may

need to change over time to address new requirements and challenges, and build
in the flexibility to support this.

l	 Model to analyze and reduce risk.  Use design tools, modeling systems such as
Unified Modeling Language (UML), and visualizations where appropriate to help
you capture requirements and architectural and design decisions, and to analyze
their impact. However, do not formalize the model to the extent that it suppresses
the capability to iterate and adapt the design easily.

l	 Use models and visualizations as a communication and collaboration tool. 
Efficient communication of the design, the decisions you make, and ongoing
changes to the design, is critical to good architecture. Use models, views, and
other visualizations of the architecture to communicate and share your design
efficiently with all the stakeholders, and to enable rapid communication of
changes to the design.

.NET Application Architecture Guide, 2nd Edition8

l	 Identify key engineering decisions.  Use the information in this guide to under-
stand the key engineering decisions and the areas where mistakes are most often
made. Invest in getting these key decisions right the first time so that the design is
more flexible and less likely to be broken by changes.

Consider using an incremental and iterative approach to refining your architecture.
Start with a baseline architecture to get the big picture right, and then evolve can-
didate architectures as you iteratively test and improve your architecture. Do not
try to get it all right the first time—design just as much as you can in order to start
testing the design against requirements and assumptions. Iteratively add details to
the design over multiple passes to make sure that you get the big decisions right
first, and then focus on the details. A common pitfall is to dive into the details too
quickly and get the big decisions wrong by making incorrect assumptions, or by
failing to evaluate your architecture effectively. When testing your architecture,
consider the following questions:
l	 What assumptions have I made in this architecture?
l	 What explicit or implied requirements is this architecture meeting?
l	 What are the key risks with this architectural approach?
l	 What countermeasures are in place to mitigate key risks?
l	 In what ways is this architecture an improvement over the baseline or the last

candidate architecture?

For more information about the key principles of software architecture design, see
Chapter 2, “Key Principles of Software Architecture.”

For information about the incremental and iterative approach to architecture, baseline
and candidate architectures, and representing and communicating the design, see
Chapter 4, “A Technique for Architecture and Design.”

Additional Resources
Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in Practice, 2nd ed.
Addison-Wesley Professional, 2003.

Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.

2
Key Principles of Software
Architecture

Overview
In this chapter, you will learn about the key design principles and guidelines for
software architecture. Software architecture is often described as the organization
or structure of a system, where the system represents a collection of components
that accomplish a specific function or set of functions. In other words, architecture
is focused on organizing components to support specific functionality. This orga-
nization of functionality is often referred to as grouping components into “areas of
concern.” Figure 1 illustrates common application architecture with components
grouped by different areas of concern.

	 Contents

2	9

Key Principles of Software
Architecture	 9
Overview. 9
Key Design Principles . 11
Key Design Considerations. 14

Determine the Application Type. 15
Determine the Deployment Strategy. 15
Determine the Appropriate Technologies . 16
Determine the Quality Attributes. 16
Determine the Crosscutting Concerns. 17

.NET Application Architecture Guide, 2nd Edition10

Figure 1
Common application architecture

In addition to the grouping of components, other areas of concern focus on interaction
between the components and how different components work together. The guide-
lines in this chapter examine different areas of concern that you should consider when
designing the architecture of your application.

Chapter 2:  Key Principles of Software Architecture 11

Key Design Principles
When getting started with your design, keep in mind the key principles that will
help you to create an architecture that adheres to proven principles, minimizes costs
and maintenance requirements, and promotes usability and extendibility. The key
principles are:
l	 Separation of concerns.  Divide your application into distinct features with as

little overlap in functionality as possible. The important factor is minimization of
interaction points to achieve high cohesion and low coupling. However, separating
functionality at the wrong boundaries can result in high coupling and complexity
between features even though the contained functionality within a feature does not
significantly overlap.

l	 Single Responsibility principle.  Each component or module should be responsible
for only a specific feature or functionality, or aggregation of cohesive functionality.

l	 Principle of Least Knowledge  (also known as the Law of Demeter or LoD). A
component or object should not know about internal details of other components
or objects.

l	 Don’t repeat yourself (DRY).  You should only need to specify intent in one place.
For example, in terms of application design, specific functionality should be imple-
mented in only one component; the functionality should not be duplicated in any
other component.

l	 Minimize upfront design.  Only design what is necessary. In some cases, you may
require upfront comprehensive design and testing if the cost of development or a
failure in the design is very high. In other cases, especially for agile development,
you can avoid big design upfront (BDUF). If your application requirements are
unclear, or if there is a possibility of the design evolving over time, avoid making
a large design effort prematurely. This principle is sometimes known as YAGNI
("You ain’t gonna need it").

When designing an application or system, the goal of a software architect is to
minimize the complexity by separating the design into different areas of concern.
For example, the user interface (UI), business processing, and data access all repre-
sent different areas of concern. Within each area, the components you design should
focus on that specific area and should not mix code from other areas of concern. For
example, UI processing components should not include code that directly accesses a
data source, but instead should use either business components or data access com-
ponents to retrieve data.

However, you must also make a cost/value determination on the investment you
make for an application. In some cases, you may need to simplify the structure to
allow, for example, UI data binding to a result set. In general, try to consider the
functional boundaries from a business viewpoint as well. The following high level
guidelines will help you to consider the wide range of factors that can affect the ease
of designing, implementing, deploying, testing, and maintaining your application.

.NET Application Architecture Guide, 2nd Edition12

Design Practices
l	 Keep design patterns consistent within each layer.  Within a logical layer,

where possible, the design of components should be consistent for a particular
operation. For example, if you choose to use the Table Data Gateway pattern
to create an object that acts as a gateway to tables or views in a database, you
should not include another pattern such as Repository, which uses a different
paradigm for accessing data and initializing business entities. However, you
may need to use different patterns for tasks in a layer that have a large variation
in requirements, such as an application that contains business transaction and
reporting functionality.

l	 Do not duplicate functionality within an application.  There should be only one
component providing a specific functionality—this functionality should not be
duplicated in any other component. This makes your components cohesive and
makes it easier to optimize the components if a specific feature or functionality
changes. Duplication of functionality within an application can make it difficult
to implement changes, decrease clarity, and introduce potential inconsistencies.

l	 Prefer composition to inheritance.  Wherever possible, use composition over
inheritance when reusing functionality because inheritance increases the depen-
dency between parent and child classes, thereby limiting the reuse of child classes.
This also reduces the inheritance hierarchies, which can become very difficult to
deal with.

l	 Establish a coding style and naming convention for development.  Check to see
if the organization has established coding style and naming standards. If not, you
should establish common standards. This provides a consistent model that makes
it easier for team members to review code they did not write, which leads to better
maintainability.

l	 Maintain system quality using automated QA techniques during development. 
Use unit testing and other automated Quality Analysis techniques, such as
dependency analysis and static code analysis, during development. Define clear
behavioral and performance metrics for components and sub-systems, and use
automated QA tools during the build process to ensure that local design or
implementation decisions do not adversely affect the overall system quality.

l	 Consider the operation of your application.  Determine what metrics and opera-
tional data are required by the IT infrastructure to ensure the efficient deployment
and operation of your application. Designing your application’s components and
sub-systems with a clear understanding of their individual operational require-
ments will significantly ease overall deployment and operation. Use automated
QA tools during development to ensure that the correct operational data is pro-
vided by your application’s components and sub-systems.

Chapter 2:  Key Principles of Software Architecture 13

Application Layers
l	 Separate the areas of concern.  Break your application into distinct features that

overlap in functionality as little as possible. The main benefit of this approach is
that a feature or functionality can be optimized independently of other features or
functionality. In addition, if one feature fails, it will not cause other features to fail
as well, and they can run independently of one another. This approach also helps
to make the application easier to understand and design, and facilitates manage-
ment of complex interdependent systems.

l	 Be explicit about how layers communicate with each other.  Allowing every
layer in an application to communicate with or have dependencies upon all of the
other layers will result in a solution that is more challenging to understand and
manage. Make explicit decisions about the dependencies between layers and the
data flow between them.

l	 Use abstraction to implement loose coupling between layers.  This can be accom-
plished by defining interface components such as a façade with well known inputs
and outputs that translate requests into a format understood by components within
the layer. In addition, you can also use Interface types or abstract base classes to
define a common interface or shared abstraction (dependency inversion) that must
be implemented by interface components.

l	 Do not mix different types of components in the same logical layer.  Start by
identifying different areas of concern, and then group components associated
with each area of concern into logical layers. For example, the UI layer should
not contain business processing components, but instead should contain com-
ponents used to handle user input and process user requests.

l	 Keep the data format consistent within a layer or component.  Mixing data for-
mats will make the application more difficult to implement, extend, and maintain.
Every time you need to convert data from one format to another, you are required
to implement translation code to perform the operation and incur a processing
overhead.

Components, Modules, and Functions
l	 A component or an object should not rely on internal details of other components

or objects.  Each component or object should call a method of another object or
component, and that method should have information about how to process the
request and, if appropriate, how to route it to appropriate subcomponents or other
components. This helps to create an application that is more maintainable and
adaptable.

.NET Application Architecture Guide, 2nd Edition14

l	 Do not overload the functionality of a component.  For example, a UI processing
component should not contain data access code or attempt to provide additional
functionality. Overloaded components often have many functions and properties
providing business functionality mixed with crosscutting functionality such as
logging and exception handling. The result is a design that is very error prone
and difficult to maintain. Applying the single responsibility and separation of
concerns principles will help you to avoid this.

l	 Understand how components will communicate with each other.  This requires
an understanding of the deployment scenarios your application must support.
You must determine if all components will run within the same process, or if
communication across physical or process boundaries must be supported—
perhaps by implementing message-based interfaces.

l	 Keep crosscutting code abstracted from the application business logic as far as
possible.  Crosscutting code refers to code related to security, communications, or
operational management such as logging and instrumentation. Mixing the code that
implements these functions with the business logic can lead to a design that is dif-
ficult to extend and maintain. Changes to the crosscutting code require touching all
of the business logic code that is mixed with the crosscutting code. Consider using
frameworks and techniques (such as aspect oriented programming) that can help to
manage crosscutting concerns.

l	 Define a clear contract for components.  Components, modules, and functions
should define a contract or interface specification that describes their usage and
behavior clearly. The contract should describe how other components can access
the internal functionality of the component, module, or function; and the behavior
of that functionality in terms of pre-conditions, post-conditions, side effects, excep-
tions, performance characteristics, and other factors.

Key Design Considerations
This guide describes the major decisions that you must make, and which help to ensure
that you consider all of the important factors as you begin and then iteratively develop
your architecture design. The major decisions, briefly described in the following
sections, are:
l	 Determine the Application Type
l	 Determine the Deployment Strategy
l	 Determine the Appropriate Technologies
l	 Determine the Quality Attributes
l	 Determine the Crosscutting Concerns

For a more detailed description of the design process, see Chapter 4, “A Technique
for Architecture and Design.”

Chapter 2:  Key Principles of Software Architecture 15

Determine the Application Type
Choosing the appropriate application type is the key part of the process of designing
an application. Your choice is governed by your specific requirements and infrastruc-
ture limitations. Many applications must support multiple types of client, and may
make use of more than one of the basic archetypes. This guide covers the following
basic application types:
l	 Applications designed for mobile devices.
l	 Rich client applications designed to run primarily on a client PC.
l	 Rich Internet applications designed to be deployed from the Internet, which

support rich UI and media scenarios.
l	 Service applications designed to support communication between loosely

coupled components.
l	 Web applications designed to run primarily on the server in fully connected

scenarios.

In addition, it provides information and guidelines for some more specialist application
types. These include the following:
l	 Hosted and cloud-based applications and services.
l	 Office Business Applications (OBAs) that integrate Microsoft Office and Microsoft

server technologies.
l	 SharePoint Line of Business (LOB) applications that provide portal style access to

business information and functions.

For more information about application archetypes, see Chapter 20, “Choosing an
Application Type.”

Determine the Deployment Strategy
Your application may be deployed in a variety of environments, each with its own
specific set of constraints such as physical separation of components across different
servers, a limitation on networking protocols, firewall and router configurations, and
more. Several common deployment patterns exist, which describe the benefits and con-
siderations for a range of distributed and non-distributed scenarios. You must balance
the requirements of the application with the appropriate patterns that the hardware can
support, and the constraints that the environment exerts on your deployment options.
These factors will influence your architecture design.

For more information about deployment issues, see Chapter 19, “Physical Tiers and
Deployment.”

.NET Application Architecture Guide, 2nd Edition16

Determine the Appropriate Technologies
When choosing technologies for your application, the key factors to consider are the
type of application you are developing and your preferred options for application
deployment topology and architectural styles. Your choice of technologies will also be
governed by organization policies, infrastructure limitations, resource skills, and so on.
You must compare the capabilities of the technologies you choose against your applica-
tion requirements, taking into account all of these factors before making decisions.

For more information about technologies available on the Microsoft platform, see
Appendix A, “The Microsoft Application Platform.”

Determine the Quality Attributes
Quality attributes—such as security, performance, and usability—can be used to focus
your thinking on the critical problems that your design should solve. Depending on
your requirements, you might need to consider every quality attribute covered in this
guide, or you might only need to consider a subset. For example, every application
design must consider security and performance, but not every design needs to con-
sider interoperability or scalability. Understand your requirements and deployment
scenarios first so that you know which quality attributes are important for your
design. Keep in mind that quality attributes may conflict; for example, security often
requires a tradeoff against performance or usability.

When designing to accommodate quality attributes, consider the following guidelines:
l	 Quality attributes are system properties that are separate from the functionality of

the system.
l	 From a technical perspective, implementing quality attributes can differentiate a

good system from a bad one.
l	 There are two types of quality attributes: those that are measured at run time, and

those that can only be estimated through inspection.
l	 Analyze the tradeoffs between quality attributes.

Questions you should ask when considering quality attributes include:
l	 What are the key quality attributes required for your application? Identify them as

part of the design process.
l	 What are the key requirements for addressing these attributes? Are they actually

quantifiable?
l	 What are the acceptance criteria that will indicate that you have met the require-

ments?

For more information about quality attributes, see Chapter 16, “Quality Attributes.”

Chapter 2:  Key Principles of Software Architecture 17

Determine the Crosscutting Concerns
Crosscutting concerns represent key areas of your design that are not related to a
specific layer in your application. For example, you should consider implementing
centralized or common solutions for the following:
l	 A logging mechanism that allows each layer to log to a common store, or log to

separate stores in such a way that the results can be correlated afterwards.
l	 A mechanism for authentication and authorization that passes identities across

multiple layers to permit granting access to resources.
l	 An exception management framework that will work within each layer, and

across the layers as exceptions are propagated to the system boundaries.
l	 A communication approach that you can use to communicate between the

layers.
l	 A common caching infrastructure that allows you to cache data in the presenta-

tion layer, the business layer, and the data access layer.

The following list describes some of the key crosscutting concerns that you must
consider when architecting your applications:
l	 Instrumentation and logging.  Instrument all of the business-critical and system-

critical events, and log sufficient details to recreate events in your system without
including sensitive information.

l	 Authentication.  Determine how to authenticate your users and pass authenticated
identities across the layers.

l	 Authorization.  Ensure proper authorization with appropriate granularity within
each layer, and across trust boundaries.

l	 Exception management.  Catch exceptions at functional, logical, and physical
boundaries; and avoid revealing sensitive information to end users.

l	 Communication.  Choose appropriate protocols, minimize calls across the network,
and protect sensitive data passing over the network.

l	 Caching.  Identify what should be cached, and where to cache, to improve your
application’s performance and responsiveness. Ensure that you consider Web
farm and application farm issues when designing caching.

For more information about crosscutting concerns, see Chapter 17, “Crosscutting
Concerns.”

3
Architectural Patterns and Styles

Overview
This chapter describes and discusses high level patterns and principles commonly used
for applications today. These are often referred to as the architectural styles, and include
patterns such as client/server, layered architecture, component-based architecture,
message bus architecture, and service-oriented architecture (SOA). For each style, you
will find an overview, key principles, major benefits, and information that will help
you choose the appropriate architectural styles for your application. It is important to
understand that the styles describe different aspects of applications. For example, some
architectural styles describe deployment patterns, some describe structure and design
issues, and others describe communication factors. Therefore, a typical application will
usually use a combination of more than one of the styles described in this chapter.

What Is an Architectural Style?
An architectural style, sometimes called an architectural pattern, is a set of principles—
a coarse grained pattern that provides an abstract framework for a family of systems.
An architectural style improves partitioning and promotes design reuse by providing
solutions to frequently recurring problems. You can think of architecture styles and
patterns as sets of principles that shape an application. Garlan and Shaw define an
architectural style as:

“…a family of systems in terms of a pattern of structural organization. More
specifically, an architectural style determines the vocabulary of components
and connectors that can be used in instances of that style, together with a set
of constraints on how they can be combined. These can include topological
constraints on architectural descriptions (e.g., no cycles). Other constraints—say,
having to do with execution semantics—might also be part of the style definition.”

[David Garlan and Mary Shaw, January 1994, CMU-CS-94-166, see “An Introduction
to Software Architecture” at http://www.cs.cmu.edu/afs/cs/project/able/ftp/
intro_softarch/intro_softarch.pdf]

	 Contents

3	19

Architectural Patterns and Styles	 19
Overview. 19
What Is an Architectural Style?. 19
Summary of Key Architectural Styles . 20

Combining Architectural Styles. 21
Client/Server Architectural Style. 21
Component-Based Architectural Style . 23
Domain Driven Design Architectural Style. 25
Layered Architectural Style. 26
Message Bus Architectural Style. 29
N-Tier / 3-Tier Architectural Style . 30
Object-Oriented Architectural Style. 32
Service-Oriented Architectural Style. 33
Additional Resources. 35

http://www.cs.cmu.edu/afs/cs/project/able/ftp/

.NET Application Architecture Guide, 2nd Edition20

An understanding of architectural styles provides several benefits. The most impor-
tant benefit is that they provide a common language. They also provide opportuni-
ties for conversations that are technology agnostic. This facilitates a higher level of
conversation that is inclusive of patterns and principles, without getting into specif-
ics. For example, by using architecture styles, you can talk about client/server versus
n-tier. Architectural styles can be organized by their key focus area. The following
table lists the major areas of focus and the corresponding architectural styles.

Category Architecture styles
Communication Service-Oriented Architecture (SOA), Message Bus
Deployment Client/Server, N-Tier, 3-Tier
Domain Domain Driven Design
Structure Component-Based, Object-Oriented, Layered Architecture

Summary of Key Architectural Styles
The following table lists the common architectural styles described in this chapter. It
also contains a brief description of each style. Later sections of this chapter contain
more details of each style, as well as guidance to help you choose the appropriate
ones for your application.

Architecture style Description
Client/Server Segregates the system into two applications, where the client makes requests

to the server. In many cases, the server is a database with application logic
represented as stored procedures.

Component-Based
Architecture

Decomposes application design into reusable functional or logical compo-
nents that expose well-defined communication interfaces.

Domain Driven
Design

An object-oriented architectural style focused on modeling a business domain
and defining business objects based on entities within the business domain.

Layered Architecture Partitions the concerns of the application into stacked groups (layers).
Message Bus An architecture style that prescribes use of a software system that can

receive and send messages using one or more communication channels, so
that applications can interact without needing to know specific details about
each other.

N-Tier / 3-Tier Segregates functionality into separate segments in much the same way as
the layered style, but with each segment being a tier located on a physically
separate computer.

Object-Oriented A design paradigm based on division of responsibilities for an application or
system into individual reusable and self-sufficient objects, each containing
the data and the behavior relevant to the object.

Service-Oriented
Architecture (SOA)

Refers to applications that expose and consume functionality as a service
using contracts and messages.

Chapter 3:  Architectural Patterns and Styles 21

Combining Architectural Styles
The architecture of a software system is almost never limited to a single architectural
style, but is often a combination of architectural styles that make up the complete
system. For example, you might have a SOA design composed of services developed
using a layered architecture approach and an object-oriented architecture style.

A combination of architecture styles is also useful if you are building a public facing
Web application, where you can achieve effective separation of concerns by using the
layered architecture style. This will separate your presentation logic from your busi-
ness logic and your data access logic. Your organization’s security requirements might
force you to deploy the application using either the 3-tier deployment approach,
or a deployment of more than three tiers. The presentation tier may be deployed to
the perimeter network, which sits between an organization’s internal network and
an external network. On your presentation tier, you may decide to use a separated
presentation pattern (a type of layered design style), such as Model-View-Controller
(MVC), for your interaction model. You might also choose a SOA architecture style,
and implement message-based communication, between your Web server and applica-
tion server.

If you are building a desktop application, you may have a client that sends requests to
a program on the server. In this case, you might deploy the client and server using the
client/server architecture style, and use the component-based architecture style to de-
compose the design further into independent components that expose the appropriate
communication interfaces. Using the object-oriented design approach for these compo-
nents will improve reuse, testability, and flexibility.

Many factors will influence the architectural styles you choose. These factors include
the capacity of your organization for design and implementation; the capabilities
and experience of your developers; and your infrastructure and organizational con-
straints. The following sections will help you to determine the appropriate styles
for your applications.

Client/Server Architectural Style
The client/server architectural style describes distributed systems that involve a
separate client and server system, and a connecting network. The simplest form of
client/server system involves a server application that is accessed directly by mul-
tiple clients, referred to as a 2-Tier architectural style.

.NET Application Architecture Guide, 2nd Edition22

Historically, client/server architecture indicated a graphical desktop UI application
that communicated with a database server containing much of the business logic in the
form of stored procedures, or with a dedicated file server. More generally, however, the
client/server architectural style describes the relationship between a client and one or
more servers, where the client initiates one or more requests (perhaps using a graphical
UI), waits for replies, and processes the replies on receipt. The server typically autho-
rizes the user and then carries out the processing required to generate the result. The
server may send responses using a range of protocols and data formats to communi-
cate information to the client.

Today, some examples of the client/server architectural style include Web browser–
based programs running on the Internet or an intranet; Microsoft Windows® operating
system–based applications that access networked data services; applications that access
remote data stores (such as e-mail readers, FTP clients, and database query tools); and
tools and utilities that manipulate remote systems (such as system management tools
and network monitoring tools).

Other variations on the client/server style include:
l	 Client-Queue-Client systems.  This approach allows clients to communicate with

other clients through a server-based queue. Clients can read data from and send
data to a server that acts simply as a queue to store the data. This allows clients to
distribute and synchronize files and information. This is sometimes known as a
passive queue architecture.

l	 Peer-to-Peer (P2P) applications.  Developed from the Client-Queue-Client style,
the P2P style allows the client and server to swap their roles in order to distribute
and synchronize files and information across multiple clients. It extends the client/
server style through multiple responses to requests, shared data, resource discovery,
and resilience to removal of peers.

l	 Application servers.  A specialized architectural style where the server hosts and
executes applications and services that a thin client accesses through a browser or
specialized client installed software. An example is a client executing an applica-
tion that runs on the server through a framework such as Terminal Services.

The main benefits of the client/server architectural style are:
l	 Higher security.  All data is stored on the server, which generally offers a greater

control of security than client machines.
l	 Centralized data access.  Because data is stored only on the server, access and

updates to the data are far easier to administer than in other architectural styles.
l	 Ease of maintenance.  Roles and responsibilities of a computing system are dis-

tributed among several servers that are known to each other through a network.
This ensures that a client remains unaware and unaffected by a server repair,
upgrade, or relocation.

Chapter 3:  Architectural Patterns and Styles 23

Consider the client/server architectural style if your application is server based and
will support many clients, you are creating Web-based applications exposed through
a Web browser, you are implementing business processes that will be used by people
throughout the organization, or you are creating services for other applications to
consume. The client/server architectural style is also suitable, like many networked
styles, when you want to centralize data storage, backup, and management functions,
or when your application must support different client types and different devices.

However, the traditional 2-Tier client/server architectural style has numerous dis-
advantages, including the tendency for application data and business logic to be
closely combined on the server, which can negatively impact system extensibility
and scalability, and its dependence on a central server, which can negatively impact
system reliability. To address these issues, the client-server architectural style has
evolved into the more general 3-Tier (or N-Tier) architectural style, described below,
which overcomes some of the disadvantages inherent in the 2-Tier client-server
architecture and provides additional benefits.

Component-Based Architectural Style
Component-based architecture describes a software engineering approach to system
design and development. It focuses on the decomposition of the design into individual
functional or logical components that expose well-defined communication interfaces
containing methods, events, and properties. This provides a higher level of abstraction
than object-oriented design principles, and does not focus on issues such as communi-
cation protocols and shared state.

The key principle of the component-based style is the use of components that are:
l	 Reusable.  Components are usually designed to be reused in different scenarios

in different applications. However, some components may be designed for a
specific task.

l	 Replaceable.  Components may be readily substituted with other similar com-
ponents.

l	 Not context specific.  Components are designed to operate in different environments
and contexts. Specific information, such as state data, should be passed to the com-
ponent instead of being included in or accessed by the component.

l	 Extensible.  A component can be extended from existing components to provide
new behavior.

l	 Encapsulated.  Components expose interfaces that allow the caller to use its
functionality, and do not reveal details of the internal processes or any internal
variables or state.

l	 Independent.  Components are designed to have minimal dependencies on
other components. Therefore components can be deployed into any appropriate
environment without affecting other components or systems.

.NET Application Architecture Guide, 2nd Edition24

Common types of components used in applications include user interface com-
ponents such as grids and buttons (often referred to as controls), and helper and
utility components that expose a specific subset of functions used in other compo-
nents. Other common types of components are those that are resource intensive,
not frequently accessed, and must be activated using the just-in-time (JIT) approach
(common in remoting or distributed component scenarios); and queued components
whose method calls may be executed asynchronously using message queuing and
store and forward.

Components depend upon a mechanism within the platform that provides an environ-
ment in which they can execute, often referred to as component architecture. Examples
are the component object model (COM) and the distributed component object model
(DCOM) in Windows; and Common Object Request Broker Architecture (CORBA) and
Enterprise JavaBeans (EJB) on other platforms. Component architectures manage the
mechanics of locating components and their interfaces, passing messages or commands
between components, and—in some cases—maintaining state.

However, the term component is often used in the more basic sense of a constituent part,
element, or ingredient. The Microsoft .NET Framework provides support for building ap-
plications using such a component based approach. For example, this guide discusses
business and data components, which are commonly code classes compiled into .NET
Framework assemblies. They execute under the control of the .NET Framework run-
time, and there may be more than one such component in each assembly.

The following are the main benefits of the component-based architectural style:
l	 Ease of deployment.  As new compatible versions become available, you can

replace existing versions with no impact on the other components or the system
as a whole.

l	 Reduced cost.  The use of third-party components allows you to spread the cost of
development and maintenance.

l	 Ease of development.  Components implement well-known interfaces to provide
defined functionality, allowing development without impacting other parts of the
system.

l	 Reusable.  The use of reusable components means that they can be used to spread
the development and maintenance cost across several applications or systems.

l	 Mitigation of technical complexity.  Components mitigate complexity through
the use of a component container and its services. Example component services
include component activation, lifetime management, method queuing, eventing,
and transactions.

Design patterns such as the Dependency Injection pattern or the Service Locator
pattern can be used to manage dependencies between components, and promote
loose coupling and reuse. Such patterns are often used to build composite applica-
tions that combine and reuse components across multiple applications.

Chapter 3:  Architectural Patterns and Styles 25

Consider the component-based architectural style if you already have suitable
components or can obtain suitable components from third-party suppliers; your
application will predominantly execute procedural-style functions, perhaps with
little or no data input; or you want to be able to combine components written in
different code languages. Also, consider this style if you want to create a pluggable
or composite architecture that allows you to easily replace and update individual
components.

Domain Driven Design Architectural Style
Domain Driven Design (DDD) is an object-oriented approach to designing software
based on the business domain, its elements and behaviors, and the relationships
between them. It aims to enable software systems that are a realization of the under-
lying business domain by defining a domain model expressed in the language of
business domain experts. The domain model can be viewed as a framework from
which solutions can then be rationalized.

To apply Domain Driven Design, you must have a good understanding of the business
domain you want to model, or be skilled in acquiring such business knowledge. The
development team will often work with business domain experts to model the domain.
Architects, developers, and subject matter experts have diverse backgrounds, and in
many environments will use different languages to describe their goals, designs and
requirements. However, within Domain Driven Design, the whole team agrees to only
use a single language that is focused on the business domain, and which excludes any
technical jargon.

As the core of the software is the domain model, which is a direct projection of this
shared language, it allows the team to quickly find gaps in the software by analyzing
the language around it. The creation of a common language is not merely an exercise in
accepting information from the domain experts and applying it. Quite often, communi-
cation problems within development teams are due not only to misunderstanding the
language of the domain, but also due to the fact that the domain’s language is itself
ambiguous. The Domain Driven Design process holds the goal not only of imple-
menting the language being used, but also improving and refining the language of
the domain. This in turn benefits the software being built, since the model is a direct
projection of the domain language.

In order to help maintain the model as a pure and helpful language construct,
you must typically implement a great deal of isolation and encapsulation within
the domain model. Consequently, a system based on Domain Driven Design can
come at a relatively high cost. While Domain Driven Design provides many techni-
cal benefits, such as maintainability, it should be applied only to complex domains
where the model and the linguistic processes provide clear benefits in the commu-
nication of complex information, and in the formulation of a common understanding
of the domain.

.NET Application Architecture Guide, 2nd Edition26

The following are the main benefits of the Domain Driven Design style:
l	 Communication.  All parties within a development team can use the domain model

and the entities it defines to communicate business knowledge and requirements
using a common business domain language, without requiring technical jargon.

l	 Extensible.  The domain model is often modular and flexible, making it easy to
update and extend as conditions and requirements change.

l	 Testable.  The domain model objects are loosely coupled and cohesive, allowing
them to be more easily tested.

Consider DDD if you have a complex domain and you wish to improve communica-
tion and understanding within your development team, or where you must express
the design of an application in a common language that all stakeholders can under-
stand. DDD can also be an ideal approach if you have large and complex enterprise
data scenarios that are difficult to manage using other techniques.

For a summary of domain driven design techniques, see “Domain Driven Design
Quickly” at http://www.infoq.com/minibooks/domain-driven-design-quickly.
Alternatively, see “Domain-Driven Design: Tackling Complexity in the Heart of Software”
by Eric Evans (Addison-Wesley, ISBN: 0-321-12521-5) and “Applying Domain-Driven
Design and Patterns” by Jimmy Nilsson (Addison-Wesley, ISBN: 0-321-26820-2).

Layered Architectural Style
Layered architecture focuses on the grouping of related functionality within an
application into distinct layers that are stacked vertically on top of each other.
Functionality within each layer is related by a common role or responsibility.
Communication between layers is explicit and loosely coupled. Layering your
application appropriately helps to support a strong separation of concerns that,
in turn, supports flexibility and maintainability.

The layered architectural style has been described as an inverted pyramid of reuse where
each layer aggregates the responsibilities and abstractions of the layer directly beneath
it. With strict layering, components in one layer can interact only with components
in the same layer or with components from the layer directly below it. More relaxed
layering allows components in a layer to interact with components in the same layer
or with components in any lower layer.

The layers of an application may reside on the same physical computer (the same tier)
or may be distributed over separate computers (n-tier), and the components in each
layer communicate with components in other layers through well-defined interfaces.
For example, a typical Web application design consists of a presentation layer (func-
tionality related to the UI), a business layer (business rules processing), and a data
layer (functionality related to data access, often almost entirely implemented using
high-level data access frameworks). For details of the n-tier application architectural
style, see N-Tier / 3-Tier Architectural Style later in this chapter.

http://www.infoq.com/minibooks/domain-driven-design-quickly

Chapter 3:  Architectural Patterns and Styles 27

Common principles for designs that use the layered architectural style include:
l	 Abstraction.  Layered architecture abstracts the view of the system as whole while

providing enough detail to understand the roles and responsibilities of individual
layers and the relationship between them.

l	 Encapsulation.  No assumptions need to be made about data types, methods and
properties, or implementation during design, as these features are not exposed at
layer boundaries.

l	 Clearly defined functional layers.  The separation between functionality in
each layer is clear. Upper layers such as the presentation layer send commands
to lower layers, such as the business and data layers, and may react to events in
these layers, allowing data to flow both up and down between the layers.

l	 High cohesion.  Well-defined responsibility boundaries for each layer, and ensuring
that each layer contains functionality directly related to the tasks of that layer, will
help to maximize cohesion within the layer.

l	 Reusable.  Lower layers have no dependencies on higher layers, potentially
allowing them to be reusable in other scenarios.

l	 Loose coupling.  Communication between layers is based on abstraction and
events to provide loose coupling between layers.

Examples of layered applications include line-of-business (LOB) applications such
as accounting and customer-management systems; enterprise Web-based appli-
cations and Web sites, and enterprise desktop or smart clients with centralized
application servers for business logic.

A number of design patterns support the layered architectural style. For example,
Separated Presentation patterns encompass a range of patterns that the handling
of the user’s interactions from the UI, the presentation and business logic, and the
application data with which the user works. Separated Presentation allows graphical
designers to create a UI while developers generate the code to drive it. Dividing the
functionality into separate roles in this way provides increased opportunities to test
the behavior of individual roles. The following are the key principles of the Separated
Presentation patterns:
l	 Separation of concerns.  Separated Presentation patterns divide UI processing

concerns into distinct roles; for example, MVC has three roles: the Model, the
View, and the Controller. The Model represents data (perhaps a domain model
that includes business rules); the View represents the UI; and the Controller
handles requests, manipulates the model, and performs other operations.

l	 Event-based notification.  The Observer pattern is commonly used to provide
notifications to the View when data managed by the Model changes.

l	 Delegated event handling.  The controller handles events triggered from the UI
controls in the View.

.NET Application Architecture Guide, 2nd Edition28

Other examples of Separated Presentation patterns are the Passive View pattern and
the Supervising Presenter (or Supervising Controller) pattern.

The main benefits of the layered architectural style, and the use of a Separated
Presentation pattern, are:
l	 Abstraction.  Layers allow changes to be made at the abstract level. You can increase

or decrease the level of abstraction you use in each layer of the hierarchical stack.
l	 Isolation.  Allows you to isolate technology upgrades to individual layers in order

to reduce risk and minimize impact on the overall system.
l	 Manageability.  Separation of core concerns helps to identify dependencies, and

organizes the code into more manageable sections.
l	 Performance.  Distributing the layers over multiple physical tiers can improve

scalability, fault tolerance, and performance.
l	 Reusability.  Roles promote reusability. For example, in MVC, the Controller can

often be reused with other compatible Views in order to provide a role specific or
a user-customized view on to the same data and functionality.

l	 Testability.  Increased testability arises from having well-defined layer interfaces,
as well as the ability to switch between different implementations of the layer
interfaces. Separated Presentation patterns allow you to build mock objects that
mimic the behavior of concrete objects such as the Model, Controller, or View
during testing.

Consider the layered architectural style if you have existing layers that are suitable
for reuse in other applications, you already have applications that expose suitable
business processes through service interfaces, or your application is complex and the
high-level design demands separation so that teams can focus on different areas of
functionality. The layered architectural style is also appropriate if your application
must support different client types and different devices, or you want to implement
complex and/or configurable business rules and processes.

Consider a Separated Presentation pattern if you want improved testability and sim-
plified maintenance of UI functionality, or you want to separate the task of designing
the UI from the development of the logic code that drives it. These patterns are also
appropriate when your UI view does not contain any request processing code, and
does not implement any business logic.

Chapter 3:  Architectural Patterns and Styles 29

Message Bus Architectural Style
Message bus architecture describes the principle of using a software system that
can receive and send messages using one or more communication channels, so
that applications can interact without needing to know specific details about each
other. It is a style for designing applications where interaction between applications
is accomplished by passing messages (usually asynchronously) over a common
bus. The most common implementations of message bus architecture use either a
messaging router or a Publish/Subscribe pattern, and are often implemented using
a messaging system such as Message Queuing. Many implementations consist of
individual applications that communicate using common schemas and a shared
infrastructure for sending and receiving messages. A message bus provides the
ability to handle:
l	 Message-oriented communications.  All communication between applications is

based on messages that use known schemas.
l	 Complex processing logic.  Complex operations can be executed by combining a

set of smaller operations, each of which supports specific tasks, as part of a multi-
step itinerary.

l	 Modifications to processing logic.  Because interaction with the bus is based on
common schemas and commands, you can insert or remove applications on the
bus to change the logic that is used to process messages.

l	 Integration with different environments.  By using a message-based commu-
nication model based on common standards, you can interact with applications
developed for different environments, such as Microsoft .NET and Java.

Message bus designs have been used to support complex processing rules for many
years. The design provides a pluggable architecture that allows you to insert appli-
cations into the process, or improve scalability by attaching several instances of the
same application to the bus. Variations on the message bus style include:
l	 Enterprise Service Bus (ESB).  Based on message bus designs, an ESB uses ser-

vices for communication between the bus and components attached to the bus.
An ESB will usually provide services that transform messages from one format to
another, allowing clients that use incompatible message formats to communicate
with each other.

l	 Internet Service Bus (ISB).  This is similar to an enterprise service bus, but with
applications hosted in the cloud instead of on an enterprise network. A core
concept of ISB is the use of Uniform Resource Identifiers (URIs) and policies to
control the routing of logic through applications and services in the cloud.

.NET Application Architecture Guide, 2nd Edition30

The main benefits of the message-bus architectural style are:
l	 Extensibility.  Applications can be added to or removed from the bus without

having an impact on the existing applications.
l	 Low complexity.  Application complexity is reduced because each application

only needs to know how to communicate with the bus.
l	 Flexibility.  The set of applications that make up a complex process, or the com-

munication patterns between applications, can be changed easily to match changes
in business or user requirements, simply through changes to the configuration or
parameters that control routing.

l	 Loose coupling.  As long as applications expose a suitable interface for commu-
nication with the message bus, there is no dependency on the application itself,
allowing changes, updates, and replacements that expose the same interface.

l	 Scalability.  Multiple instances of the same application can be attached to the bus
in order to handle multiple requests at the same time.

l	 Application simplicity.  Although a message bus implementation adds complexity
to the infrastructure, each application needs to support only a single connection to
the message bus instead of multiple connections to other applications.

Consider the message bus architectural style if you have existing applications that
interoperate with each other to perform tasks, or you want to combine multiple
tasks into a single operation. This style is also appropriate if you are implementing
a task that requires interaction with external applications, or applications hosted in
different environments.

N-Tier / 3-Tier Architectural Style
N-tier and 3-tier are architectural deployment styles that describe the separation of
functionality into segments in much the same way as the layered style, but with each
segment being a tier that can be located on a physically separate computer. They
evolved through the component-oriented approach, generally using platform specific
methods for communication instead of a message-based approach.

N-tier application architecture is characterized by the functional decomposition of ap-
plications, service components, and their distributed deployment, providing improved
scalability, availability, manageability, and resource utilization. Each tier is completely
independent from all other tiers, except for those immediately above and below it. The
nth tier only has to know how to handle a request from the n+1th tier, how to forward
that request on to the n-1th tier (if there is one), and how to handle the results of the
request. Communication between tiers is typically asynchronous in order to support
better scalability.

Chapter 3:  Architectural Patterns and Styles 31

N-tier architectures usually have at least three separate logical parts, each located on
a separate physical server. Each part is responsible for specific functionality. When
using a layered design approach, a layer is deployed on a tier if more than one ser-
vice or application is dependent on the functionality exposed by the layer.

An example of the N-tier/3-tier architectural style is a typical financial Web appli-
cation where security is important. The business layer must be deployed behind a
firewall, which forces the deployment of the presentation layer on a separate tier in
the perimeter network. Another example is a typical rich client connected applica-
tion, where the presentation layer is deployed on client machines and the business
layer and data access layer are deployed on one or more server tiers.

The main benefits of the N-tier/3-tier architectural style are:
l	 Maintainability.  Because each tier is independent of the other tiers, updates or

changes can be carried out without affecting the application as a whole.
l	 Scalability.  Because tiers are based on the deployment of layers, scaling out an

application is reasonably straightforward.
l	 Flexibility.  Because each tier can be managed or scaled independently, flexibility

is increased.
l	 Availability.  Applications can exploit the modular architecture of enabling systems

using easily scalable components, which increases availability.

Consider either the N-tier or the 3-tier architectural style if the processing require-
ments of the layers in the application differ such that processing in one layer could
absorb sufficient resources to slow the processing in other layers, or if the security
requirements of the layers in the application differ. For example, the presentation
layer should not store sensitive data, while this may be stored in the business and
data layers. The N-tier or the 3-tier architectural style is also appropriate if you
want to be able to share business logic between applications, and you have suffi-
cient hardware to allocate the required number of servers to each tier.

Consider using just three tiers if you are developing an intranet application
where all servers are located within the private network; or an Internet applica-
tion where security requirements do not restrict the deployment of business logic
on the public facing Web or application server. Consider using more than three
tiers if security requirements dictate that business logic cannot be deployed to the
perimeter network, or the application makes heavy use of resources and you want
to offload that functionality to another server.

.NET Application Architecture Guide, 2nd Edition32

Object-Oriented Architectural Style
Object-oriented architecture is a design paradigm based on the division of respon-
sibilities for an application or system into individual reusable and self-sufficient
objects, each containing the data and the behavior relevant to the object. An object-
oriented design views a system as a series of cooperating objects, instead of a set of
routines or procedural instructions. Objects are discrete, independent, and loosely
coupled; they communicate through interfaces, by calling methods or accessing
properties in other objects, and by sending and receiving messages. The key prin-
ciples of the object-oriented architectural style are:
l	 Abstraction.  This allows you to reduce a complex operation into a generalization

that retains the base characteristics of the operation. For example, an abstract in-
terface can be a well-known definition that supports data access operations using
simple methods such as Get and Update. Another form of abstraction could be meta-
data used to provide a mapping between two formats that hold structured data.

l	 Composition.  Objects can be assembled from other objects, and can choose to
hide these internal objects from other classes or expose them as simple interfaces.

l	 Inheritance.  Objects can inherit from other objects, and use functionality in the
base object or override it to implement new behavior. Moreover, inheritance makes
maintenance and updates easier, as changes to the base object are propagated auto-
matically to the inheriting objects.

l	 Encapsulation.  Objects expose functionality only through methods, properties,
and events, and hide the internal details such as state and variables from other
objects. This makes it easier to update or replace objects, as long as their interfaces
are compatible, without affecting other objects and code.

l	 Polymorphism.  This allows you to override the behavior of a base type that
supports operations in your application by implementing new types that are
interchangeable with the existing object.

l	 Decoupling.  Objects can be decoupled from the consumer by defining an abstract
interface that the object implements and the consumer can understand. This
allows you to provide alternative implementations without affecting consumers
of the interface.

Common uses of the object-oriented style include defining an object model that sup-
ports complex scientific or financial operations, and defining objects that represent real
world artifacts within a business domain (such as a customer or an order). The latter is
a process commonly implemented using the more specialized domain driven design
style, which takes advantage of the principles of the object-oriented style. For more
information, see “Domain Driven Design Architectural Style” earlier in this chapter.

Chapter 3:  Architectural Patterns and Styles 33

The main benefits of the object-oriented architectural style are that it is:
l	 Understandable.  It maps the application more closely to the real world objects,

making it more understandable.
l	 Reusable.  It provides for reusability through polymorphism and abstraction.
l	 Testable.  It provides for improved testability through encapsulation.
l	 Extensible.  Encapsulation, polymorphism, and abstraction ensure that a change

in the representation of data does not affect the interfaces that the object exposes,
which would limit the capability to communicate and interact with other objects.

l	 Highly Cohesive.  By locating only related methods and features in an object, and
using different objects for different sets of features, you can achieve a high level of
cohesion.

Consider the object-oriented architectural style if you want to model your application
based on real world objects and actions, or you already have suitable objects and classes
that match the design and operational requirements. The object-oriented style is also
suitable if you must encapsulate logic and data together in reusable components or you
have complex business logic that requires abstraction and dynamic behavior.

Service-Oriented Architectural Style
Service-oriented architecture (SOA) enables application functionality to be provided
as a set of services, and the creation of applications that make use of software services.
Services are loosely coupled because they use standards-based interfaces that can
be invoked, published, and discovered. Services in SOA are focused on providing a
schema and message-based interaction with an application through interfaces that are
application scoped, and not component or object-based. An SOA service should not be
treated as a component-based service provider.

The SOA style can package business processes into interoperable services, using a
range of protocols and data formats to communicate information. Clients and other
services can access local services running on the same tier, or access remote services
over a connecting network.

The key principles of the SOA architectural style are:
l	 Services are autonomous.  Each service is maintained, developed, deployed, and

versioned independently.
l	 Services are distributable.  Services can be located anywhere on a network, locally

or remotely, as long as the network supports the required communication protocols.
l	 Services are loosely coupled.  Each service is independent of others, and can be

replaced or updated without breaking applications that use it as long as the inter-
face is still compatible.

.NET Application Architecture Guide, 2nd Edition34

l	 Services share schema and contract, not class.  Services share contracts and
schemas when they communicate, not internal classes.

l	 Compatibility is based on policy.  Policy in this case means definition of features
such as transport, protocol, and security.

Common examples of service-oriented applications include sharing information,
handling multistep processes such as reservation systems and online stores, exposing
industry specific data or services over an extranet, and creating mashups that com-
bine information from multiple sources.

The main benefits of the SOA architectural style are:
l	 Domain alignment.  Reuse of common services with standard interfaces increases

business and technology opportunities and reduces cost.
l	 Abstraction.  Services are autonomous and accessed through a formal contract,

which provides loose coupling and abstraction.
l	 Discoverability.  Services can expose descriptions that allow other applications

and services to locate them and automatically determine the interface.
l	 Interoperability.  Because the protocols and data formats are based on industry

standards, the provider and consumer of the service can be built and deployed
on different platforms.

l	 Rationalization.  Services can be granular in order to provide specific functionality,
rather than duplicating the functionality in number of applications, which removes
duplication.

Consider the SOA style if you have access to suitable services that you wish to reuse;
can purchase suitable services provided by a hosting company; want to build applica-
tions that compose a variety of services into a single UI; or you are creating Software
plus Services (S+S), Software as a Service (SaaS), or cloud-based applications. The
SOA style is suitable when you must support message-based communication between
segments of the application and expose functionality in a platform independent way,
when you want to take advantage of federated services such as authentication, or you
want to expose services that are discoverable through directories and can be used by
clients that have no prior knowledge of the interfaces.

Chapter 3:  Architectural Patterns and Styles 35

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.

Evans, Eric. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley, 2004.

Nilsson, Jimmy. Applying Domain-Driven Design and Patterns: With Examples in C#
and NET. Addison-Wesley, 2006.

For more information about architectural styles, see the following resources:
l	 “An Introduction To Domain-Driven Design” at

http://msdn.microsoft.com/en-us/magazine/dd419654.aspx.
l	 “Domain Driven Design and Development in Practice” at

http://www.infoq.com/articles/ddd-in-practice.
l	 “Fear Those Tiers” at http://msdn.microsoft.com/en-us/library/cc168629.aspx.
l	 “Layered Versus Client-Server” at

http://msdn.microsoft.com/en-us/library/bb421529.aspx.
l	 “Message Bus” at http://msdn.microsoft.com/en-us/library/ms978583.aspx.
l	 “Microsoft Enterprise Service Bus (ESB) Guidance” at

http://www.microsoft.com/biztalk/solutions/soa/esb.mspx.
l	 “Separated Presentation” at

http://martinfowler.com/eaaDev/SeparatedPresentation.html.
l	 "Services Fabric: Fine Fabrics for New-Era Systems” at

http://msdn.microsoft.com/en-us/library/cc168621.aspx.

http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/magazine/dd419654.aspx
http://www.infoq.com/articles/ddd-in-practice
http://msdn.microsoft.com/en-us/library/cc168629.aspx
http://msdn.microsoft.com/en-us/library/bb421529.aspx
http://msdn.microsoft.com/en-us/library/ms978583.aspx
http://www.microsoft.com/biztalk/solutions/soa/esb.mspx
http://martinfowler.com/eaaDev/SeparatedPresentation.html
http://msdn.microsoft.com/en-us/library/cc168621.aspx

	 Contents

4	37

A Technique for Architecture 	
and Design	 37
Overview. . 37
Inputs, Ouyputs, and Design Steps. . 37
Identify Architecture Objectives . . 39

Scope and Time. . 40
Key Scenarios. . 41

Architecturally Significant Use Cases. . 41
Application Overview. . 42

Relevant Technologies . . 43
Whiteboard Your Architecture. . 44

Key Issues . . 45
Quality Attributes . . 45
Crosscutting Concerns. . 46
Designing for Issue Mitigation. . 46

Candidate Solutions. . 48
Baseline and Candidate Architectures. 49
Architectural Spikes . . 49

What to Do Next. . 50
Reviewing Your Architecture . . 50

Scenario-Based Evaluations. . 50
Representing and Communicating Your Architecture Design. . 51

Additional Resources . . 52

4
A Technique for Architecture 	
and Design

Overview
This chapter describes an iterative technique that you can use to think about and
sketch out your potential architecture. It will help you to bring together the key
decisions discussed in this guide; including quality attributes, architecture styles,
application types, technologies, and deployment decisions.

The technique includes a series of five main steps, each of which breaks down into
individual considerations explained throughout the remainder of the guide. The
iterative process will help you to produce candidate solutions that you can further
refine by repeating the steps, finally creating an architecture design that best fits
your application. At the end of the process, you can review and communicate your
architecture to all interested parties.

Depending on your organization’s approach to software development, you may
revisit your architecture many times during the lifetime of a project. You can use this
technique to refine your architecture further, building on what you have learned in
the intervening period of spiking, prototyping, and actual development.

It is also important to realize that this is just one possible approach. There are many
other more formal approaches to defining, reviewing, and communicating your
architecture. Some are discussed briefly at the end of this chapter.

Inputs, Outputs, and Design Steps
The inputs to your design can help you to formalize the requirements and constraints
that your architecture must accommodate. Common inputs are use cases and usage
scenarios, functional requirements, non-functional requirements (including quality
attributes such as performance, security, reliability, and others), technological require-
ments, the target deployment environment, and other constraints.

.NET Application Architecture Guide, 2nd Edition38

During the design process, you will create a list of the architecturally significant
use cases, the architecture issues that require special attention, and the candidate
architecture solutions that satisfy the requirements and constraints defined in the
design process. A common technique for refining the design over time, until it
satisfies all of the requirements and adheres to all of the constraints, is an iterative
technique consisting of the five major stages shown in Figure 1.

Figure 1
The iterative steps for core architecture design activities

Chapter 4:  A Technique for Architecture and Design 39

The steps, described in more detail in the following sections, are:
	 1.	 Identify Architecture Objectives.  Clear objectives help you to focus on your

architecture and on solving the right problems in your design. Precise objectives
help you to determine when you have completed the current phase, and when
you are ready to move to the next phase.

	 2.	 Key Scenarios.  Use key scenarios to focus your design on what matters most,
and to evaluate your candidate architectures when they are ready.

	 3.	 Application Overview.  Identify your application type, deployment architecture,
architecture styles, and technologies in order to connect your design to the real
world in which the application will operate.

	 4.	 Key Issues.  Identify key issues based on quality attributes and crosscutting con-
cerns. These are the areas where mistakes are most often made when designing an
application.

	 5.	 Candidate Solutions.  Create an architecture spike or prototype that evolves and
improves the solution and evaluate it against your key scenarios, issues, and deploy-
ment constraints before beginning the next iteration of your architecture.

This architectural process is meant to be an iterative and incremental approach. Your
first candidate architecture will be a high-level design that you can test against key
scenarios, requirements, known constraints, quality attributes, and the architecture
frame. As you refine your candidate architecture, you will learn more details about
the design and will be able to further expand key scenarios, your application over-
view, and your approach to issues.

Note:  When taking an iterative approach to architecture, it is often tempting to iterate on horizontal
slices (layers) of the application rather than vertical slices that require you to think about functionality
across layers that comprise a complete feature (use case) for users. If you fail to iterate vertically, you
run the risk of implementing a great deal of functionality before your users can validate it.

You should not try to build your architecture in a single iteration. Each iteration
should add more detail. Do not get lost in the details, but instead focus on the major
steps and build a framework on which you can base your architecture and design.
The following sections provide guidelines and information on each of the steps.

Identify Architecture Objectives
Architecture objectives are the goals and constraints that shape your architecture and
design process, scope the exercise, and help you determine when you are finished.
Consider the following key points as you identify your architecture objectives:
l	 Identify your architecture goals at the start.  The amount of time you spend in each

phase of architecture and design will depend on these goals. For example, are you
building a prototype, testing potential paths, or embarking on a long-running archi-
tectural process for a new application?

.NET Application Architecture Guide, 2nd Edition40

l	 Identify who will consume your architecture.  Determine if your design will be
used by other architects, or made available to developers and testers, operations
staff, and management. Consider the needs and experience of your audience to
make your resulting design more accessible to them.

l	 Identify your constraints.  Understand your technology options and constraints,
usage constraints, and deployment constraints. Understand your constraints
at the start so that you do not waste time or encounter surprises later in your
application development process.

Scope and Time
Based on the high-level goals for your architecture, you can scope the amount of time
to spend on each of your design activities. For example, a prototype might only require
a few days to design, while a complete and fully detailed architecture for a complex
application could potentially take months to complete—and may involve architecture
and design over many iterations. Use your understanding of the objectives to deter-
mine how much time and energy to spend on each step, to gain an understanding of
what the outcome will look like, and to define clearly the purpose and priorities of
your architecture. Possible purposes might include:
l	 Creating a complete application design.
l	 Building a prototype.
l	 Identifying key technical risks.
l	 Testing potential options.
l	 Building shared models to gain an understanding of the system.

Each of these will result in a different emphasis on design, and a varying time commit-
ment. For example, if you want to identify key risks in your authentication architecture,
you will spend much of your time and energy identifying authentication scenarios,
constraints on your authentication architecture, and possible authentication technology
choices. However, if you are in the early stages of considering the overall architecture
for an application, authentication will be only one of many other concerns for which
you address and document solutions.

Some examples of architecture activities are building a prototype to get feedback on
the order-processing UI for a Web application, testing different ways to map location
data to search results, building a customer order-tracking application, and design-
ing the authentication and authorization architecture for an application in order to
perform a security review.

Chapter 4:  A Technique for Architecture and Design 41

Key Scenarios
In the context of architecture and design, a use case is a description of a set of
interactions between the system and one or more actors (either a user or another
system). A scenario is a broader and more encompassing description of a user’s
interaction with the system, rather than a path through a use case. When thinking
about the architecture of your system, the goal should be to identify several key
scenarios that will help you to make decisions about your architecture. The goal
is to achieve a balance between the user, business, and system goals (as shown in
Figure 1 of Chapter 1 “What is Software Architecture?”).

Key scenarios are those that are considered the most important scenarios for the success
of your application. Key scenarios can be defined as any scenario that meets one or
more of the following criteria:
l	 It represents an issue—a significant unknown area or an area of significant risk.
l	 It refers to an architecturally significant use case (described in the following

section).
l	 It represents the intersection of quality attributes with functionality.
l	 It represents a tradeoff between quality attributes.

For example, your scenarios covering user authentication may be key scenarios
because they are an intersection of a quality attribute (security) with important
functionality (how a user logs into your system). Another example would be a
scenario that centered on an unfamiliar or new technology.

Architecturally Significant Use Cases
Architecturally significant use cases have an impact on many aspects of your
design. These use cases are especially important in shaping the success of your appli-
cation. They are important for the acceptance of the deployed application, and
they must exercise enough of the design to be useful in evaluating the architecture.
Architecturally significant use cases are:
l	 Business Critical.  The use case has a high usage level or is particularly impor-

tant to users or other stakeholders when compared to other features, or it implies
high risk.

l	 High Impact.  The use case intersects with both functionality and quality attributes,
or represents a crosscutting concern that has an end-to-end impact across the layer
and tiers of your application. An example might be a Create, Read, Update, Delete
(CRUD) operation that is security-sensitive.

.NET Application Architecture Guide, 2nd Edition42

After you have determined the architecturally significant use cases for your application,
you can use them as a way to evaluate the success or failure of candidate architectures.
If the candidate architecture addresses more use cases, or addresses existing use
cases more effectively, it will help usually indicate that this candidate architecture
is an improvement over the baseline architecture. For a definition of the term use
case, see “What is a Use Case?” at http://searchsoftwarequality.techtarget.com/
sDefinition/0,,sid92_gci334062,00.html.

A good use case will intersect the user view, the system view, and the business
view of the architecture. Use these scenarios and use cases to test your design and
determine where any issues may be. Consider the following when thinking about
your use cases and scenarios:
l	 Early in the project, reduce risk by creating a candidate architecture that sup-

ports architecturally significant end-to-end scenarios that exercise all layers of
the architecture.

l	 Using your architecture model as a guide, make changes to your architecture,
design, and code to meet your scenarios, functional requirements, technological
requirements, quality attributes, and constraints.

l	 Create an architecture model based on what you know at the time, and define a
list of questions that must be addressed in subsequent stories and iterations.

l	 After you make sufficient significant changes to the architecture and design,
consider creating a use case that reflects and exercises these changes.

Application Overview
Create an overview of what your application will look like when it is complete.
This overview serves to make your architecture more tangible, connecting it to
real-world constraints and decisions. An application overview consists of the fol-
lowing activities:

	 1.	 Determine your application type.  First, determine what type of application
you are building. Is it a mobile application, a rich client, a rich Internet appli-
cation, a service, a Web application, or some combination of these types? For
more details of the common application archetypes, see Chapter 20, “Choosing
an Application Type.”

	 2.	 Identify your deployment constraints.  When you design your application
architecture, you must take into account corporate policies and procedures,
together with the infrastructure on which you plan to deploy your application.
If the target environment is fixed or inflexible, your application design must
reflect restrictions that exist in that environment. Your application design must
also take into account Quality-of-Service (QoS) attributes such as security and
reliability. Sometimes you must make design tradeoffs due to protocol restric-
tions and network topologies. By identifying the requirements and constraints

http://searchsoftwarequality.techtarget.com/

Chapter 4:  A Technique for Architecture and Design 43

that exist between the application architecture and infrastructure architecture
early in the design process, you can choose an appropriate deployment topol-
ogy and resolve conflicts between the application and the target infrastructure.
For more information about deployment scenarios, see Chapter 19, “Physical
Tiers and Deployment.”

	 3.	 Identify important architecture design styles.  Determine which architecture
styles you will be using in your design. An architecture style is a set of principles.
You can think of it as a coarse-grained pattern that provides an abstract framework
for a family of systems. Each style defines a set of rules that specify the kinds of
components you can use to assemble a system, the kinds of relationships used in
their assembly, constraints on the way they are assembled, and assumptions about
the meaning of how you put them together. An architecture style improves parti-
tioning and promotes design reuse by providing solutions to frequently recurring
problems. Common architectural styles are Service Oriented Architecture (SOA),
client/server, layered, message-bus, and domain-driven design. Applications will
often use a combination of styles. For more information about the architectural
styles in common use today, see Chapter 3, “Architectural Patterns and Styles.”

	 4.	 Determine relevant technologies.  Finally, identify the relevant technology
choices based on your application type and other constraints, and determine
which technologies you will use in your design. Key factors to consider are the
type of application you are developing, and your preferred options for applica-
tion deployment topology and architectural styles. The choice of technologies
will also be governed by organization policies, infrastructure limitations, resource
skills, and so on. The following section describes some of the common Microsoft
technologies for each type of application.

Relevant Technologies
When choosing the technologies you will use in your design, consider which will help
you to support your chosen architectural styles, your chosen application type, and the
key quality attributes for your application. For example, for the Microsoft platform, the
following list will help you understand which presentation, implementation, and com-
munication technologies are most suited to each type of application:
l	 Mobile Applications.  You can use presentation-layer technologies such as the

.NET Compact Framework, ASP.NET for Mobile, and Silverlight for Mobile to
develop applications for mobile devices.

l	 Rich Client Applications.  You can use combinations of Windows Presentation
Foundation (WPF), Windows Forms, and XAML Browser Application (XBAP)
presentation-layer technologies to develop applications with rich UIs that are
deployed and run on the client.

l	 Rich Internet Client Applications (RIA).  You can use the Microsoft Silverlight™
browser plug-in, or Silverlight combined with AJAX, to deploy rich UI experiences
within a Web browser.

.NET Application Architecture Guide, 2nd Edition44

l	 Web Applications.  You can use ASP.NET Web Forms, AJAX, Silverlight controls,
ASP.NET MVC, and ASP.NET Dynamic data to create Web applications.

l	 Service Applications.  You can use Windows Communication Foundation (WCF)
and ASP.NET Web services (ASMX) to create services that expose functionality to
external systems and service consumers.

For more details about the technologies available for different types of applications,
see the following topics in the appendices at the end of this guide:
l	 The Microsoft Application Platform
l	 Presentation Technology Matrix
l	 Data Access Technology Matrix
l	 Integration Technology Matrix
l	 Workflow Technology Matrix

Whiteboard Your Architecture
It is important that you are able to whiteboard your architecture. Whether you share
your whiteboard on paper, slides, or through another format, the key is to show the
major constraints and decisions in order to frame and start conversations. The value
is actually twofold. If you cannot whiteboard the architecture then it suggests that it
is not well understood. If you can provide a clear and concise whiteboard diagram,
others will understand it and you can communicate details to them more easily.

Figure 2
Example of an architecture whiteboard showing a high-level design for a Web application
indicating the protocols and authentication methods it will use.

Chapter 4:  A Technique for Architecture and Design 45

Key Issues
Identify the issues in your application architecture to understand the areas where
mistakes are most likely to be made. Potential issues include the appearance of new
technologies, and critical business requirements. For example, “Can I swap from
one third party service to another?,” “Can I add support for a new client type?,”
“Can I quickly change my business rules relating to billing?,” and “Can I migrate to
a new technology for X?” While these factors are extremely generalized, they (and
other areas of risk) generally map in implementation terms to quality attributes and
crosscutting concerns.

Quality Attributes
Quality attributes are the overall features of your architecture that affect run-time
behavior, system design, and user experience. The extent to which the application
possesses a desired combination of quality attributes such as usability, performance,
reliability, and security indicates the success of the design and the overall quality of
the software application. When designing applications to meet any of these qualities,
it is necessary to consider the impact on other requirements; you must analyze the
tradeoffs between multiple quality attributes. The importance or priority of each
quality attribute differs from system to system; for example, in a line-of-business
(LOB) system, performance, scalability, security, and usability will be more impor-
tant than interoperability. Interoperability is likely to be far more important in a
shrink-wrap application than in a LOB application.

Quality attributes represent areas of concern that have the potential for application-
wide impact across layers and tiers. Some attributes are related to the overall system
design, while others are specific to run-time, design-time, or user-centric issues. Use
the following list to help you organize your thinking about the quality attributes,
and to understand which scenarios they are most likely to affect:
l	 System qualities.  The overall qualities of the system when considered as a

whole; such as supportability and testability.
l	 Run-time qualities.  The qualities of the system directly expressed at run-time;

such as availability, interoperability, manageability, performance, reliability,
scalability, and security.

l	 Design qualities.  The qualities reflecting the design of the system; such as
conceptual integrity, flexibility, maintainability, and reusability.

l	 User qualities.  The usability of the system.

For more information about ensuring that your design implements the appropriate
quality attributes, see Chapter 16 “Quality Attributes.”

.NET Application Architecture Guide, 2nd Edition46

Crosscutting Concerns
Crosscutting concerns are the features of your design that may apply across all layers,
components, and tiers. These are also the areas in which high-impact design mistakes
are most often made. Examples of crosscutting concerns are:
l	 Authentication and Authorization.  How you choose appropriate authentication

and authorization strategies, flow identity across layers and tiers, and store user
identities.

l	 Caching.  How you choose an appropriate caching technology, determine what
data to cache, where to cache the data, and a suitable expiration policy.

l	 Communication.  How you choose appropriate protocols for communication
across layers and tiers, design loose coupling across layers, perform asynchronous
communication, and pass sensitive data.

l	 Configuration Management.  How you determine what information must be
configurable, where and how to store configuration information, how to protect
sensitive configuration information, and how to handle configuration information
in a farm or cluster.

l	 Exception Management.  How you handle and log exceptions, and provide
notification when required.

l	 Logging and Instrumentation.  How you determine which information to log, how
to make the logging configurable, and determine what level of instrumentation is
required.

l	 Validation.  How you determine where and how to perform validation; the tech-
niques you choose for validating on length, range, format, and type; how you
constrain and reject input invalid values; how you sanitize potentially malicious
or dangerous input; and how you can define and reuse validation logic across
your application’s layers and tiers.

For more information about ensuring that your design correctly handles crosscutting
concerns, see Chapter 17 “Crosscutting Concerns.”

Designing for Issue Mitigation
By analyzing quality attributes and crosscutting concerns in relation to your design
requirements, you can focus on specific areas of concern. For example, the quality
attribute Security is obviously a vital factor in your design, and applies at many
levels and areas of the architecture. The relevant crosscutting concerns for security
provide guidance on specific areas where you should focus your attention. You can
use the individual crosscutting categories to divide your application architecture for
further analysis, and to help you identify application vulnerabilities. This approach
leads to a design that optimizes security aspects. Questions you might consider
when examining the crosscutting concerns for security are:

Chapter 4:  A Technique for Architecture and Design 47

l	 Auditing and Logging.  Who did what and when? Is the application operat-
ing normally? Auditing refers to how your application records security-related
events. Logging refers to how your application publishes information about its
operation.

l	 Authentication.  Who are you? Authentication is the process where one entity
definitively establishes the identity of another entity, typically with credentials
such as a username and password.

l	 Authorization.  What can you do? Authorization refers to how your application
controls access to resources and operations.

l	 Configuration Management.  What context does your application run under?
Which databases does it connect to? How is your application administered?
How are these settings protected? Configuration management refers to how
your application handles these operations and issues.

l	 Cryptography.  How are you handling secrets (confidentiality)? How are you
tamper-proofing your data or libraries (integrity)? How are seeding random
values that must be cryptographically strong? Cryptography refers to how
your application enforces confidentiality and integrity.

l	 Exception Management.  When a method call in your application fails, what
does your application do? How much information does it reveal? Does it return
friendly error messages to end users? Does it pass valuable exception informa-
tion back to the calling code? Does it fail gracefully? Does it help administrators
to perform root cause analysis of the fault? Exception management refers to how
you handle exceptions within your application.

l	 Input and Data Validation.  How do you know that the input your application
receives is valid and safe? Does it constrain input through entry points and
encode output through exit points. Can it trust data sources such as databases
and file shares? Input validation refers to how your application filters, scrubs,
or rejects input before additional processing.

l	 Sensitive data.  How does your application handle sensitive data? Does it protect
confidential user and application data? Sensitive data refers to how your applica-
tion handles any data that must be protected either in memory, over the network,
or in persistent stores.

l	 Session Management.  How does your application handle and protect user sessions?
A session refers to a set of related interactions between a user and your application.

You can use these questions and answers to make key security design decisions
for your application, and document these are part of your architecture. For ex-
ample, Figure 3 shows the security issues identified in a typical Web application
architecture.

.NET Application Architecture Guide, 2nd Edition48

Figure 3
Security issues identified in a typical Web application architecture.

Candidate Solutions
After you define the key issues, you can create your initial baseline architecture
and then start to fill in the details to produce a candidate architecture. Along the
way, you may use architectural spikes to explore specific areas of the design or to
validate new concepts. You then validate your new candidate architecture against
the key scenarios and requirements you have defined, before iteratively following the
cycle and improving the design.

Note:  It is important, especially if your design and development is following an agile process, that
your iteration encompass both architecture and development activities. This avoids the big design
up front approach.

Chapter 4:  A Technique for Architecture and Design 49

Baseline and Candidate Architectures
A baseline architecture describes the existing system —it is how your system looks today.
If this is a new architecture, your initial baseline is the first high-level architectural
design from which candidate architectures will be built. A candidate architecture in-
cludes the application type, the deployment architecture, the architectural style,
technology choices, quality attributes, and crosscutting concerns.

As you evolve the design, ensure that at each stage you understand the key risks and
adapt your design to reduce them, optimize for effective and efficient communication
of design information, and build your architecture with flexibility and refactoring in
mind. You may need to modify your architecture a number of times, through several
iterations, candidate architectures, and by using multiple architectural spikes. If the
candidate architecture is an improvement, it can become the baseline from which
new candidate architectures can be created and tested.

This iterative and incremental approach allows you to get the big risks out of the
way first, iteratively render your architecture, and use architectural tests to prove
that each new baseline is an improvement over the last. Consider the following
questions to help you test a new candidate architecture that results from an archi-
tectural spike:
l	 Does this architecture succeed without introducing any new risks?
l	 Does this architecture mitigate more known risks than the previous iteration?
l	 Does this architecture meet additional requirements?
l	 Does this architecture enable architecturally significant use cases?
l	 Does this architecture address quality attribute concerns?
l	 Does this architecture address additional crosscutting concerns?

Architectural Spikes
An architectural spike is a test implementation of a small part of the application’s
overall design or architecture. The purpose is to analyze a technical aspect of a
specific piece of the solution in order to validate technical assumptions, choose
between potential designs and implementation strategies, or sometimes to estimate
implementation timescales.

Architectural spikes are often used as part of agile or extreme programming devel-
opment approaches but can be a very effective way to refine and evolve a solution’s
design regardless of the development approach adopted. By focusing on key parts
of the solution’s overall design, architectural spikes can be used to resolve impor-
tant technical challenges and to reduce overall risk and uncertainty in the solution’s
design.

.NET Application Architecture Guide, 2nd Edition50

What to Do Next
After you complete the architecture-modeling activity, you can begin to refine the
design, plan tests, and communicate the design to others. Keep in mind the following
guidelines:
l	 If you capture your candidate architectures and architectural test cases in a

document, keep the document lightweight so that you can easily update it.
Such a document may include details of your objectives, application type,
deployment topology, key scenarios and requirements, technologies, quality
attributes, and tests.

l	 Use the quality attributes to help shape your design and implementation. For
example, developers should be aware of anti-patterns related to the identified
architectural risks, and use the appropriate proven patterns to help address
the issues.

l	 Communicate the information you capture to relevant team members and other
stakeholders. This may include your application development team, your test
team, and your network and system administrators.

Reviewing Your Architecture
Reviewing the architecture for your application is a critically important task in order
to reduce the cost of mistakes and to find and fix architectural problems as early
as possible. Architecture review is a proven, cost-effective way of reducing project
costs and the chances of project failure. Review your architecture frequently: at
major project milestones, and in response to other significant architectural changes.
Build your architecture with common review questions in mind, both to improve
your architecture and to reduce the time required for each review.

The main goal of an architecture review is to determine the feasibility of your baseline
and candidate architectures, and verify that the architecture correctly links the func-
tional requirements and the quality attributes with the proposed technical solution.
Additionally, it helps you to identify issues and recognize areas for improvement.

Scenario-Based Evaluations
Scenario-based evaluations are a powerful method for reviewing an architecture
design. In a scenario-based evaluation, the focus is on the scenarios that are most
important from the business perspective, and which have the greatest impact on the
architecture. Consider using one of the following common review methodologies:
l	 Software Architecture Analysis Method (SAAM).  SAAM was originally

designed for assessing modifiability, but later was extended for reviewing
architecture with respect to quality attributes such as modifiability, portability,
extensibility, integratability, and functional coverage.

Chapter 4:  A Technique for Architecture and Design 51

l	 Architecture Tradeoff Analysis Method (ATAM).  ATAM is a refined and improved
version of SAAM that helps you review architectural decisions with respect to the
quality attributes requirements, and how well they satisfy particular quality goals.

l	 Active Design Review (ADR).  ADR is best suited for incomplete or in-progress
architectures. The main difference is that the review is more focused on a set of
issues or individual sections of the architecture at a time, rather than performing
a general review.

l	 Active Reviews of Intermediate Designs (ARID).  ARID combines the ADR aspect
of reviewing in-progress architecture with a focus on a set of issues, and the ATAM
and SAAM approach of scenario-based review focused on quality attributes.

l	 Cost Benefit Analysis Method (CBAM).  This CBAM focuses on analyzing the
costs, benefits, and schedule implications of architectural decisions.

l	 Architecture Level Modifiability Analysis (ALMA).  ALMA evaluates the
modifiability of architecture for business information systems (BIS).

l	 Family Architecture Assessment Method (FAAM).  FAAM evaluates information
system family architectures for interoperability and extensibility.

For information about techniques for analyzing and reviewing architecture designs,
see “Evaluating Software Architectures: Methods and Case Studies (SEI Series in Software
Engineering)” by Paul Clements, Rick Kazman, and Mark Klein (Addison-Wesley
Professional , ISBN-10: 020170482X, ISBN-13: 978-0201704822)

Representing and Communicating Your Architecture Design
Communicating your design is critical for architecture reviews, as well as to ensure it
is implemented correctly. You must communicate your architectural design to all the
stakeholders including the development team, system administrators and operators,
business owners, and other interested parties.

One way to think of an architectural view is as a map of the important decisions.
The map is not the terrain; instead, it is an abstraction that helps you to share and
communicate the architecture. There are several well-known methods for describing
architecture to others, including the following:
l	 4+1.  This approach uses five views of the complete architecture. Four of the

views describe the architecture from different approaches: the logical view (such
as the object model), the process view (such as concurrency and synchronization
aspects), the physical view (the map of the software layers and functions onto
the distributed hardware infrastructure), and the development view. A fifth view
shows the scenarios and use cases for the software. For more information, see
“Architectural Blueprints—The “4+1” View Model of Software Architecture” at
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf.

http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf

.NET Application Architecture Guide, 2nd Edition52

l	 Agile Modeling.  This approach follows the concept that content is more impor-
tant than representation. This ensures that the models created are simple and
easy to understand, sufficiently accurate, and consistent. The simplicity of the
document ensures that there is active stakeholder participation in the modeling
of the artifact. For more information, see “Agile Modeling: Effective Practices for
eXtreme Programming and the Unified Process” by Scott Ambler (J. Wiley, ISBN-10:
0471202827, ISBN-13: 978-0471202820).

l	 IEEE 1471.  IEEE 1471 is the short name for a standard formally known as
ANSI/IEEE 1471-2000, which enhance the content of an architectural descrip-
tion; in particular giving specific meaning to context, views, and viewpoints.
For more information, see “Recommended Practice for Architecture Description
of Software-Intensive Systems” at http://standards.ieee.org/reading/ieee/
std_public/description/se/1471-2000_desc.html.

l	 Unified Modeling Language (UML).  This approach represents three views of
a system model. The functional requirements view (functional requirements
of the system from the point of view of the user, including use cases); the static
structural view (objects, attributes, relationships, and operations including class
diagrams); and the dynamic behavior view (collaboration among objects and
changes to the internal state of objects, including includes sequence, activity,
and state diagrams). For more information, see “UML Distilled: A Brief Guide
to the Standard Object Modeling Language” by Martin Fowler (Addison-Wesley
Professional, ISBN-10: 0321193687, ISBN-13: 978-0321193681)

Additional Resources
Ambler, Scott. Agile Modeling: Effective Practices for eXtreme Programming and the
Unified Process. J. Wiley, 2002.

Clements, Paul, Rick Kazman, and Mark Klein. Evaluating Software Architectures:
Methods and Case Studies (SEI Series in Software Engineering). Addison-Wesley
Professional, 2001.

Fowler, Martin. UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Addison-Wesley Professional, 2003.

http://standards.ieee.org/reading/ieee/

Design Fundamentals

This section of the guide contains a series of topics that will help you to understand
the fundamentals of layered architecture, and provide practical guidance for some
of the typical layers used by most applications, such as presentation, business, data,
and service layers. This section contains the following chapters:
l	 Chapter 5, “Layered Application Guidelines”
l	 Chapter 6, “Presentation Layer Guidelines”
l	 Chapter 7, “Business Layer Guidelines”
l	 Chapter 8, “Data Layer Guidelines”
l	 Chapter 9, “Service Layer Guidelines”

Typically, each layer will contain of number of components. As you design the
components in each layer, you must consider a range of factors that will affect the
overall success of your design. This section of the guide contains guidance to help
you design your components to avoid the commonly found issues, and to follow
best practice. For more details, see the following chapters:
l	 Chapter 10, “Component Guidelines”
l	 Chapter 11, “Designing Presentation Components”
l	 Chapter 12, “Designing Business Components”
l	 Chapter 13, “Designing Business Entities”
l	 Chapter 14, “Designing Workflow Components”
l	 Chapter 15, “Designing Data Components”

The overall quality and the subsequent success and of your application design
depends on how well it addresses a range of quality attributes such as security,
reusability, performance, and maintainability. In addition, your application is
likely to contain crosscutting functionality such as exception handling, caching,
and logging. This section contains guidance on how you should address quality
attributes and design for crosscutting concerns in your applications. See the fol-
lowing chapters for more information:
l	 Chapter 16, “Quality Attributes”
l	 Chapter 17, “Crosscutting Concerns”

	 Contents

Design Fundamentals	 53

.NET Application Architecture Guide, 2nd Edition54

When designing an application, particularly a distributed application, designing an
appropriate communication infrastructure is a key to the success of the design. This
section of the guide will also help you to understand communication requirements
and implement designs that provide the appropriate levels of decoupling, security,
and performance. For more information, see Chapter 18, “Communication and
Messaging.”

Finally, you must consider how you will deploy your application, and take into
account any constraints implied by the physical infrastructure, networking, and
other facilities that will support the application at runtime. The final chapter in this
section discusses physical deployment scenarios, and describes some of the issues
you will encounter, such as security, when employing a multi-tiered deployment
model. For more information, see Chapter 19, “Physical Tiers and Deployment.”

5
Layered Application Guidelines

Overview
This chapter discusses the overall structure for applications in terms of the logical
grouping of components into separate layers that communicate with each other
and with other clients and applications. Layers are concerned with the logical divi-
sion of components and functionality, and do not take into account the physical
location of components. Layers can be located on different tiers, or they may reside
on the same tier. In this chapter, you will learn how to divide your applications into
separate logical parts, how to choose an appropriate functional layout for your appli-
cations, and how applications can support multiple client types. You will also learn
about services that you can use to expose logic in your layers.

Note:  It is important to understand the distinction between layers and tiers. Layers describe the
logical groupings of the functionality and components in an application; whereas tiers describe the
physical distribution of the functionality and components on separate servers, computers, networks,
or remote locations. Although both layers and tiers use the same set of names (presentation, busi-
ness, services, and data), remember that only tiers imply a physical separation. It is quite common
to locate more than one layer on the same physical machine (the same tier). You can think of the
term tier as referring to physical distribution patterns such as two-tier, three-tier, and n-tier. For more
information about physical tiers and deployment, see Chapter 19, “Physical Tiers and Deployment.”

	 Contents

5	55

Layered Application Guidelines	 55
Overview. 55
Logical Layered Design. 56

Presentation, Business, and Data Layers. 56
Services and Layers. 58

Services Layer. 58
Design Steps for a Layered Structure. 60

Step 1 – Choose Your Layering Strategy. 60
Step 2 – Determine the Layers You Require. 62
Step 3 – Decide How to Distribute Layers and Components. 62
Step 4 – Determine If You Need to Collapse Layers. 63
Step 5 – Determine Rules for Interaction Between Layers . 63
Step 6 – Identify Cross Cutting Concerns. 64
Step 7 – Define the Interfaces between Layers . 64
Step 8 – Choose Your Deployment Strategy. 66
Step 9 – Choose Communication Protocols . 66

.NET Application Architecture Guide, 2nd Edition56

Logical Layered Design
Irrespective of the type of application that you are designing, and whether it has
a user interface or it is a services application that only exposes services (not to be
confused with services layer of an application), you can decompose the design into
logical groupings of software components. These logical groupings are called layers.
Layers help to differentiate between the different kinds of tasks performed by the
components, making it easier to create a design that supports reusability of compo-
nents. Each logical layer contains a number of discrete component types grouped
into sub layers, with each sub layer performing a specific type of task.

By identifying the generic types of components that exist in most solutions, you can
construct a meaningful map of an application or service, and then use this map as
a blueprint for your design. Dividing an application into separate layers that have
distinct roles and functionalities helps you to maximize maintainability of the code,
optimize the way that the application works when deployed in different ways, and
provides a clear delineation between locations where certain technology or design
decisions must be made.

Presentation, Business, and Data Layers
At the highest and most abstract level, the logical architecture view of any system
can be considered as a set of cooperating components grouped into layers. Figure 1
shows a simplified, high level representation of these layers and their relationships
with users, other applications that call services implemented within the applica-
tion’s business layer, data sources such as relational databases or Web services that
provide access to data, and external or remote services that are consumed by the
application.

Chapter 5:  Layered Application Guidelines 57

Figure 1
The logical architecture view of a layered system

These layers may be located on the same physical tier, or may be located on separate
tiers. If they are located on separate tiers, or separated by physical boundaries, your
design must accommodate this. For more information, see Design Steps for a Layered
Structure later in this chapter.

.NET Application Architecture Guide, 2nd Edition58

As shown in Figure 1, an application can consist of a number of basic layers. The
common three-layer design shown in Figure 1 consists of the following layers:
l	 Presentation layer.  This layer contains the user oriented functionality responsible

for managing user interaction with the system, and generally consists of compo-
nents that provide a common bridge into the core business logic encapsulated in
the business layer. For more information about designing the presentation layer,
see Chapter 6, “Presentation Layer Guidelines.” For more information about
designing presentation components, see Chapter 11, “Designing Presentation
Components.”

l	 Business layer.  This layer implements the core functionality of the system, and
encapsulates the relevant business logic. It generally consists of components,
some of which may expose service interfaces that other callers can use. For more
information about designing the business layer, see Chapter 7, “Business Layer
Guidelines.” For more information about designing business components, see
Chapter 12, “Designing Business Components.”

l	 Data layer.  This layer provides access to data hosted within the boundaries of the
system, and data exposed by other networked systems; perhaps accessed through
services. The data layer exposes generic interfaces that the components in the
business layer can consume. For more information about designing the data layer,
see Chapter 8, “Data Layer Guidelines.” For more information about designing
data components, see Chapter 15, “Designing Data Components.”

Services and Layers
From a high level perspective, a service-based solution can be seen as being com-
posed of multiple services, each communicating with the others by passing messages.
Conceptually, the services can be seen as components of the overall solution. However,
internally, each service is made up of software components, just like any other applica-
tion, and these components can be logically grouped into presentation, business, and
data layers. Other applications can make use of the services without being aware of the
way they are implemented. The layered design principles discussed in the previous
section apply equally to service-based solutions.

Services Layer
When an application must provide services to other applications, as well as imple-
menting features to support clients directly, a common approach is to use a services
layer that exposes the business functionality of the application, as shown in Figure 2.
The services layer effectively provides an alternative view that allows clients to use a
different channel to access the application.

Chapter 5:  Layered Application Guidelines 59

Figure 2
Incorporating a services layer in an application

In this scenario, users can access the application through the presentation layer, which
communicates either directly with the components in the business layer; or through
an application façade in the business layer if the communication methods require
composition of functionality. Meanwhile, external clients and other systems can
access the application and make use of its functionality by communicating with
the business layer through service interfaces. This allows the application to better
support multiple client types, and promotes re-use and higher level composition of
functionality across applications.

.NET Application Architecture Guide, 2nd Edition60

In some cases, the presentation layer may communicate with the business layer through
the services layer. However, this is not an absolute requirement. If the physical deploy-
ment of the application locates the presentation layer and the business layer on the
same tier, they may communicate directly. For more information about designing the
services layer, see Chapter 9, “Service Layer Guidelines.” For more information about
communication between layers, see Chapter 18, “Communication and Messaging.”

Design Steps for a Layered Structure
When starting to design an application, your first task is to focus on the highest level
of abstraction and start by grouping functionality into layers. Next, you must define
the public interface for each layer, which depends on the type of application you are
designing. Once you have defined the layers and interfaces, you must determine how
the application will be deployed. Finally, you choose the communication protocols
to use for interaction between the layers and tiers of the application. Although your
structure and interfaces may evolve over time, especially if you use agile develop-
ment, these steps will ensure that you consider the important aspects at the start of
the process. A typical series of design steps is the following:
l	 Step 1 – Choose Your Layering Strategy
l	 Step 2 – Determine the Layers You Require
l	 Step 3 – Decide How to Distribute Layers and Components
l	 Step 4 – Determine If You Need to Collapse Layers
l	 Step 5 – Determine Rules for Interaction between Layers
l	 Step 6 – Identify Cross Cutting Concerns
l	 Step 7 – Define the Interfaces between Layers
l	 Step 8 – Choose Your Deployment Strategy
l	 Step 9 – Choose Communication Protocols

Step 1 – Choose Your Layering Strategy
Layering represents the logical separation of an application’s components into groups
that represent distinct roles and functionality. Using a layered approach can improve
the maintainability of your application and make it easier to scale out when necessary
to improve performance. There are many different ways to group related functionality
into layers. However, separating an application into too few or too many layers can
add unnecessary complexity; and can decrease the overall performance, maintain-
ability, and flexibility. Determining the granularity of layering appropriate for your
application is a critical first step in determining your layering strategy.

Chapter 5:  Layered Application Guidelines 61

You must also consider whether you are implementing layering in order to achieve
purely logical separation of functionality, or in order to potentially achieve physical
separation as well. Crossing layer boundaries imposes a local performance overhead,
especially for boundaries between physically remote components. However, the
overall increase in the scalability and flexibility of your application can far outweigh
this performance overhead. In addition, layering can make it easier to optimize the
performance of individual layers without affecting adjacent layers.

In the case of logical layering, interacting application layers will be deployed on the
same tier and operate within the same process, which allows you to take advantage
of higher performance communication mechanisms such as direct calls through com-
ponent interfaces. However, in order to maintain the advantages of logical layering
and ensure flexibility for the future, you must be careful to maintain encapsulation
and loose coupling between the layers.

For layers that are deployed to separate tiers (separate physical machines), communica-
tion with adjacent layers will occur over a connecting network, and you must ensure
that the design you choose supports a suitable communication mechanism that takes
account of communication latency and maintains loose coupling between layers.

Determining which of your application layers are likely to be deployed to separate
tiers, and which are likely to be deployed to the same tier, is also an important part
of your layering strategy. To maintain flexibility, always ensure that interaction
between layers is loosely coupled. This allows you to take advantage of the higher
performance available when layers are located on the same tier, while allowing you
to deploy them to multiple tiers if and when required.

Adopting a layered approach can add some complexity, and may increase initial
development time, but if implemented correctly will significantly improve the
maintainability, extensibility, and flexibility of your application. You must consider
the trade off of reusability and loose coupling that layers provide against their
impact on performance and the increase in complexity. Carefully considering how
your application is layered, and how the layers will interact with each other, will
ensure a good balance between performance and flexibility. In general, the gain
in flexibility and maintainability provided by a layered design far outweighs the
marginal improvement in performance that you might gain from a closely coupled
design that does not use layers.

For a description of the common types of layers, and guidance on deciding which
layers you need, see the section “Logical Layered Design” earlier in this chapter.

.NET Application Architecture Guide, 2nd Edition62

Step 2 – Determine the Layers You Require
There are many different ways to group related functionality into layers. The most
common approach in business applications is to separate presentation, services,
business, and data access functionality into separate layers. Some applications also
introduce reporting, management, or infrastructure layers.

Be careful when adding additional layers, and do not add them if they do not provide
a logical grouping of related components that manifestly increases the maintainability,
scalability, or flexibility of your application. For example, if your application does not
expose services, a separate service layer may not be required and you may just have
presentation, business, and data access layers.

Step 3 – Decide How to Distribute Layers and Components
You should distribute layers and components across separate physical tiers only
where this is necessary. Common reasons for implementing distributed deployment
include security policies, physical constraints, shared business logic, and scalability.
l	 In Web applications, if your presentation components access your business com-

ponents synchronously, consider deploying the business layer and presentation
layer components on the same physical tier to maximize performance and ease
operational management, unless security restrictions require a trust boundary
between them.

l	 In rich client applications, where the UI processing occurs on the desktop, you
may prefer to deploy the business components in a physically separate business
tier for security reasons, and to ease operational management.

l	 Deploy business entities on the same physical tier as the code that uses them. This
may mean deploying them in more than one place; for example, placing copies on
a physically separated presentation tier or data tier where that logic makes use of
or references the business entities. Deploy service agent components on the same
tier as the code that calls the components, unless security restrictions require a
trust boundary between them.

l	 Consider deploying asynchronous business components, workflow components,
and services that have similar load and I/O characteristics on a separate physical
tier so that you can fine tune that infrastructure to maximize performance and
scalability.

Chapter 5:  Layered Application Guidelines 63

Step 4 – Determine If You Need to Collapse Layers
In some cases, it makes sense to collapse or relax layers. For example, an application
with very limited business rules, or one that uses rules mainly for validation, might
implement both the business and presentation logic in a single layer. In an applica-
tion that pulls data from a Web service and displays that data, it may make sense to
simply add a Web service references directly to the presentation layer and consume
the Web service data directly. In this case, you are logically combining the data access
and presentation layers.

These are just some examples of where it might make sense to collapse layers. However,
the general rule is that you should always group functionality into layers. In some
cases, one layer may act as a proxy or pass-through layer that provides encapsula-
tion and loose coupling without providing a great deal of functionality. However, by
separating that functionality, you can extend it later with little or no impact on other
layers in the design.

Step 5 – Determine Rules for Interaction Between Layers
When it comes to a layering strategy, you must define rules for how the layers will
interact with each other. The main reasons for specifying interaction rules are to
minimize dependencies and eliminate circular references. For example, if two layers
each have a dependency on components in the other layer you have introduced a
circular dependency. As a result, a common rule to follow is to allow only one way
interaction between the layers using one of the following approaches:
l	 Top-down interaction.  Higher level layers can interact with layers below, but a

lower level layer should never interact with layers above. This rule will help you
to avoid circular dependencies between layers. You can use events to make com-
ponents in higher layers aware of changes in lower layers without introducing
dependencies.

l	 Strict interaction.  Each layer must interact with only the layer directly below. This
rule will enforce strict separation of concerns where each layer knows only about
the layer directly below. The benefit of this rule is that modifications to the interface
of the layer will only affect the layer directly above. Consider using this approach if
you are designing an application that will be modified over time to introduce new
functionality and you want to minimize the impact of those changes, or you are
designing an application that may be distributed across different physical tiers.

l	 Loose interaction.  Higher level layers can bypass layers to interact with lower level
layers directly. This can improve performance, but will also increase dependencies.
In other words, modification to a lower level layer can affect multiple layers above.
Consider using this approach if you are designing an application that you know will
not be distributed across physical tiers (for example, a stand-alone rich client appli-
cation), or you are designing a small application where changes that affect multiple
layers can be managed with minimal effort.

.NET Application Architecture Guide, 2nd Edition64

Step 6 – Identify Cross Cutting Concerns
After you define the layers, you must identify the functionality that spans layers.
This functionality is often described as crosscutting concerns, and includes logging,
caching, validation, authentication, and exception management. It is important to
identify each of the crosscutting concerns in your application, and design separate
components to manage these concerns where possible. This approach helps you to
achieve of better reusability and maintainability.

Avoid mixing the crosscutting code with code in the components of each layer, so
that the layers and their components only make calls to the crosscutting components
when they must carry out an action such as logging, caching, or authentication. As
the functionality must be available across layers, you must deploy crosscutting com-
ponents in such a way that they are accessible to all the layers—even when the layers
are located on separate physical tiers.

There are different approaches to handling crosscutting functionality, from common
libraries such as the patterns & practices Enterprise Library to Aspect Oriented
Programming (AOP) methods where metadata is used to insert crosscutting code
directly into the compiled output. For more information about crosscutting concerns,
see Chapter 17, “Crosscutting Concerns.”

Step 7 – Define the Interfaces between Layers
When you define the interface for a layer, the primary goal is to enforce loose coupling
between layers. What this means is that a layer should not expose internal details on
which another layer could depend. Instead, the interface to a layer should be designed
to minimize dependencies by providing a public interface that hides details of the
components within the layer. This hiding is called abstraction, and there are many
different ways to implement it. The following design approaches can be used to
define the interface to a layer:
l	 Abstract interface.  This can be accomplished by defining an abstract base class

or code interface class that acts as a type definition for concrete classes. The type
defines a common interface that all consumers of the layer use to interact with
the layer. This approach also improves testability, because you can use test objects
(sometimes referred to as mock objects) that implement the abstract interface.

l	 Common design type.  Many design patterns define concrete object types that
represent an interface into different layers. These object types provide an abstrac-
tion that hides details related to the layer. For example, the Table Data Gateway
pattern defines object types that represent tables in a database and are responsible
for implementing the SQL queries required to interact with the data. Consumers of
the object have no knowledge of the SQL queries, or the details of how the object
connects to the database and executes commands. Many design patterns are based

Chapter 5:  Layered Application Guidelines 65

on abstract interfaces but some are based on concrete classes instead, and most of
the appropriate patterns such as Table Data Gateway are well documented in this
respect. Consider using common design types if you want a fast and easy way to
implement the interface to your layer, or if you are implementing a design pattern
for the interface to your layer.

l	 Dependency inversion.  This is a programming style where abstract interfaces
are defined external to, or independent of, any layers. Instead of one layer
being dependent on another, both layers depend upon common interfaces. The
Dependency Injection pattern is a common implementation of dependency
inversion. With dependency injection, a container defines mappings that specify
how to locate components that another component may depend upon, and the
container can create and inject these dependent components automatically. The
dependency inversion approach provides flexibility and can help to implement a
pluggable design because the dependencies are composed through configuration
rather than code. It also maximizes testability because you can easily inject con-
crete test classes into different layers of the design.

l	 Message-based.  Instead of interacting directly with components in other layers
by calling methods or accessing properties of these objects, you can use message-
based communication to implement interfaces and provide interaction between
layers. There are several messaging solutions such as Windows Communication
Foundation, Web services, and Microsoft Message Queuing that support inter-
action across physical and process boundaries. However, you can also combine
abstract interfaces with a common message type used to define data structures
for the interaction. The key difference with a message-based interface is that the
interaction between layers uses a common structure that encapsulates all the
details of the interaction. This structure can define operations, data schemas,
fault contracts, security information, and many other structures related to com-
munication between layers. Consider using a message-based approach if you are
implementing a Web application and defining the interface between the presen-
tation layer and business layer, you have an application layer that must support
multiple client types, or you want to support interaction across physical and
process boundaries. Also, consider a message-based approach if you want to
formalize the interaction with a common structure, or you want to interact with
a stateless interface where state information is carried with the message.

To implement the interaction between the presentation layer of a Web application
and the business logic layer, the recommendation is to use a message-based interface.
If the business layer does not maintain state between calls (in other words, each call
between the presentation layer and business layer represents a new context), you can
pass context information along with the request and provide a common model for
exception and error handling in the presentation layer.

.NET Application Architecture Guide, 2nd Edition66

Step 8 – Choose Your Deployment Strategy
There are several common patterns that represent application deployment structures
found in most solutions. When it comes to determining the best deployment solution
for your application, it helps to first identify the common patterns. Once you have a
good understanding of the different patterns, you then consider scenarios, require-
ments, and security constraints to choose the most appropriate pattern or patterns.
For more information on deployment patterns, see Chapter 19, “Physical Tiers and
Deployment.”

Step 9 – Choose Communication Protocols
The physical protocols used for communication across layers or tiers in your design
play a major role in the performance, security, and reliability of the application. The
choice of communication protocol is even more important when considering dis-
tributed deployment. When components are located on the same physical tier, you
can often rely on direct communication between these components. However, if you
deploy components and layers on physically separate servers and client machines—
as is likely in most scenarios—you must consider how the components in these layers
will communicate with each other efficiently and reliably. For more information on
communication protocols and technologies, see Chapter 18, “Communication and
Messaging.”

6
Presentation Layer Guidelines

Overview
This chapter describes the key guidelines for designing the presentation layer of an
application. It will help you to understand how the presentation layer fits into the
typical layered application architecture, the components it usually contains, and the
key issues you face when designing the presentation layer. You will see guidelines
for design, the recommended design steps, relevant design patterns, and technology
options.

The presentation layer contains the components that implement and display the user
interface and manage user interaction. This layer includes controls for user input and
display, in addition to components that organize user interaction. Figure 1 shows
how the presentation layer fits into a common application architecture.

	 Contents

6	67

Presentation Layer Guidelines	 67
Overview. 67
General Design Considerations . 69
Specific Design Issues. 70

Caching . 70
Communication. 71
Composition. 71
Exception Management . 72
Navigation. 73
User Experience . 73
User Interface. 74
Validation. 75

Technology Considerations. 75
Mobile Applications. 75
Rich Client Applications . 76
Rich Internet Applications. 76
Web Applications. 77

Performance Considerations. 77
Design Steps for the Presentation Layer . 78
Relevant Design Patterns . 80
patterns & practices Offerings . 82
Additional Resources. 82

.NET Application Architecture Guide, 2nd Edition68

Figure 1
A typical application showing the presentation layer and the components it may contain

The presentation layer will usually include the following:
l	 User Interface components.  These are the application’s visual elements used to

display information to the user and accept user input.
l	 Presentation Logic components.  Presentation logic is the application code that

defines the logical behavior and structure of the application in a way that is inde-
pendent of any specific user interface implementation. When implementing the
Separated Presentation pattern, the presentation logic components may include
Presenter, Presentation Model, and ViewModel components. The presentation layer
may also include Presentation Layer Model components that encapsulate the data
from your business layer, or Presentation Entity components that encapsulate busi-
ness logic and data in a form that is easily consumable by the presentation layer.

Chapter 6:  Presentation Layer Guidelines 69

For more information about the components commonly used in the presentation layer,
see Chapter 10, “Component Guidelines.” For information about designing presenta-
tion layer components, see Chapter 11, “Designing Presentation Components.”

General Design Considerations
There are several key factors that you should consider when designing your pre-
sentation layer. Use the following principles to ensure that your design meets the
requirements for your application, and follows best practices:
l	 Choose the appropriate application type.  The application type you choose will

have considerable impact on your options for the presentation layer. Determine if
you will implement a rich (smart) client, a Web client, or a rich Internet application
(RIA). Base your decision on application requirements, and on organizational and
infrastructure constraints. For information on the main application archetypes, and
their benefits and liabilities, see Chapter 20, “Choosing an Application Type.”

l	 Choose the appropriate UI technology.  Different application types provide
different sets of technologies that you can use to develop the presentation layer.
Each technology type has distinct advantages that can affect your ability to
create a suitable presentation layer design. For information on the technologies
available for each application type, see Appendix B “Presentation Technology
Matrix.”

l	 Use the relevant patterns.  Review the presentation layer patterns (listed at the
end of this chapter) for proven solutions to common presentation problems. Keep
in mind that not all patterns apply equally to all archetypes. However, the general
pattern of Separated Presentation, which separates presentation specific concerns
from the underlying application logic, applies to all application types. Specific
patterns such as MVC, MVP, and Supervising Presenter are commonly used in
presentation layer design of rich client applications and RIAs. Variants of the
Model-View-Controller (MVC) and Model-View-Presenter (MVP) patterns
can be used in Web applications.

l	 Design for separation of concerns.  Use dedicated UI components that focus on
rendering, display, and user interaction. Consider using dedicated presentation logic
components to manage the processing of user interaction where this is complex or
where you want to be able to unit test it. Also, consider using dedicated presentation
entities to represent your business logic and data in a form that is easily consumable
by your UI and presentation logic components. Presentation entities encapsulate
within the presentation layer the business logic and data from your business layer,
for use in much the same way as business entities are used in the business layer. For
more information about the different types of presentation layer components you
may use, see Chapter 11, “Designing Presentation Components.”

.NET Application Architecture Guide, 2nd Edition70

l	 Consider human interface guidelines.  Implement your organization’s guidelines
for UI design, including factors such as accessibility, localization, and usability
when designing the presentation layer. Review established UI guidelines for
interactivity, usability, system compatibility, conformance, and relevant UI
design patterns based on the client type and the technologies that you choose,
and apply those applicable to your application design and requirements.

l	 Adhere to user driven design principles.  Before designing your presentation
layer, understand your customer. Use surveys, usability studies, and interviews to
determine the best presentation design to meet your customer’s requirements.

Specific Design Issues
There are several common issues that you must consider as your develop your
design. These issues can be categorized into specific areas of the design. The
following sections provide guidelines for the common areas where mistakes
are most often made:
l	 Caching
l	 Communication
l	 Composition
l	 Exception Management
l	 Navigation
l	 User Experience
l	 User Interface
l	 Validation

Caching
Caching is one of the best mechanisms you can use to improve application perfor-
mance and UI responsiveness. You can use data caching in the presentation layer
to optimize data lookups and avoid network round trips, and to store the results
of expensive or repetitive processes to avoid unnecessary duplicated processing.
Consider the following guidelines when designing your caching strategy:
l	 Choose the appropriate location for your cache, such as in memory or on disk.

If your application is deployed in Web farm, avoid using local caches that must
be synchronized. In general, for Web and application farm deployments, con-
sider using a transactional resource manager such as Microsoft SQL Server®,
or a product that supports distributed caching such as the Danga Interactive
“Memcached” technology or the Microsoft “Velocity” caching mechanism.
However, if the variation between individual servers is not critical, or the data
changes very slowly, in-memory caching may be appropriate.

Chapter 6:  Presentation Layer Guidelines 71

l	 Consider caching data in a ready to use format when working with an in-memory
cache. For example, use a specific object instead of caching raw database data.
However, avoid caching volatile data as the cost of caching may exceed that of rec-
reating or fetching the data again if it constantly changes.

l	 Do not cache sensitive data unless you encrypt it.
l	 Do not depend on data still being in your cache; it may have been removed.

Also, consider that the cached data may be stale. For example, when conducting
a business transaction, you may want to fetch the most recent data to apply to
the transaction rather than use what is in the cache.

l	 Consider authorization rights for cached data. Only cache data for which you can
apply appropriate authorization if users in different roles may access the data.

l	 If you are using multiple threads, ensure that all access to the cache is thread-safe.

For more information on caching techniques, see Chapter 17, “Crosscutting Concerns.”

Communication
Handle long-running requests with user responsiveness in mind, as well as code
maintainability and testability. Consider the following guidelines when designing
request processing:
l	 Consider using asynchronous operations or worker threads to avoid blocking

the UI for long-running actions in Windows Forms and WPF applications. In
ASP.NET, consider using AJAX to perform asynchronous requests. Provide feed-
back to the user on the progress of the long running action. Consider allowing
the user to cancel the long running action.

l	 Avoid mixing your UI processing and rendering logic.
l	 When making expensive calls to remote sources or layers, such as when calling

Web services or querying a database, consider if it makes more sense to make
these calls chatty (many smaller requests) or chunky (one large request). If the
user requires a large volume of data to complete a task, consider retrieving just
what is required for display and to get started, then incrementally retrieve the
additional data on a background thread or as the user requires it (data paging
and UI virtualization are examples of this approach). Consider using larger,
chunky calls when the user does not have to wait for the call to complete.

Composition
Consider whether your application will be easier to develop and maintain if the
presentation layer uses independent modules and views that are composed at run
time. UI composition patterns support the creation of views and the presentation
layout at run time. These patterns also help to minimize code and library depen-
dencies that would otherwise force recompilation and redeployment of a module
when the dependencies change. Composition patterns help you to implement

.NET Application Architecture Guide, 2nd Edition72

sharing, reuse, and replacement of presentation logic and views. Consider the
following guidelines when designing your UI composition strategy:
l	 Avoid dependencies between components. For example, use abstraction patterns

when possible to avoid issues with maintainability. Consider patterns that sup-
port run-time dependency injection.

l	 Consider creating templates with placeholders. For example, use the Template
View pattern to compose dynamic Web pages in order to ensure reuse and
consistency.

l	 Consider composing views from reusable modular parts. For example, use
the Composite View pattern to build a view from modular, atomic component
parts. Consider decoupling for your application by using separate modules
that can be added easily.

l	 Be cautious when using layouts generated dynamically at run time, which can be
difficult to load and maintain. Investigate patterns and third-party libraries that
support dynamic layout and injection of views and presentation at runtime.

l	 When communicating between presentation components, consider using loosely
coupled communication patterns such as Publish/Subscribe. This will lower the
coupling between the components and improve testability and flexibility.

Exception Management
Design a centralized exception management mechanism for your application that
catches and manages unexpected exceptions (exceptions that you cannot recover from
locally) in a consistent way. Pay particular attention to exceptions that propagate across
layer or tier boundaries, as well as exceptions that cross trust boundaries. Consider the
following guidelines when designing your exception management strategy:
l	 Provide user friendly error messages to notify users of errors in the application,

but ensure that you avoid exposing sensitive data in error pages, error messages,
log files, and audit files. Attempt to leave the application in a consistent state if
possible, or consider terminating it if this is not possible.

l	 Ensure that you catch exceptions that will not be caught elsewhere (such as in a
global error handler), and clean up resources and state after an exception occurs.
A global exception handler that displays a global error page or an error message is
useful for all unhandled exceptions. Unhandled exceptions generally likely indicate
that the system is in an inconsistent state and may need to be gracefully shut down.

l	 Differentiate between system exceptions and business errors. In the case of business
errors, display a user friendly error message and allow the user to retry the opera-
tion. In the case of system exceptions, check to see if an issue such as a service or
database failure caused the exception, display a user friendly error message, and
log the error message to assist in troubleshooting.

l	 Only catch exceptions that you can handle, and avoid the use of custom exceptions
when not necessary. Do not use exceptions to control application logic flow.

Chapter 6:  Presentation Layer Guidelines 73

For more information on exception management techniques, see Chapter 17,
“Crosscutting Concerns.”

Navigation
Design your navigation strategy so that users can navigate easily through your screens
or pages, and so that you can separate navigation from presentation and UI processing.
Ensure that you display navigation links and controls in a consistent way throughout
your application to reduce user confusion and to hide application complexity. Consider
the following guidelines when designing your navigation strategy:
l	 Design toolbars and menus to help users find functionality provided by the UI.
l	 Consider using wizards to implement navigation between forms in a predictable

way, and determine how you will preserve navigation state between sessions if
this is necessary.

l	 Avoid duplication of logic for navigation event handlers, and avoid hard-coding
navigation paths where possible. Consider using the Command pattern to handle
common actions from multiple sources.

User Experience
Good user experience can make the difference between a usable and unusable applica-
tion. Perceived performance is much more important than actual performance and so
expectation management and knowledge of the patterns of user interaction are essen-
tial. For example, users might not mind waiting longer for a page to load if they get
feedback on when the page is likely to be loaded, and this wait time does not interfere
with their activities. In other situations, a very short delay—even fractions of a second
for some UI actions—can make the application feel unresponsive. Consider conducting
usability studies, surveys, and interviews to understand what users require and expect
from your application, and design to achieve an efficient UI with these results in mind.
Consider the following guidelines when designing for user experience:
l	 Do not design overloaded or over complex interfaces. Provide a clear path through

the application for each key user scenario, and consider using colors and noninva-
sive animations to draw the user’s attention to important changes in the UI, such as
state changes.

l	 Provide helpful and informative error messages, without exposing sensitive data.
l	 For actions that might take longer to complete, try to avoid blocking the user. At a

minimum, provide feedback on the progress of the action, and consider if the user
should be able to cancel the process.

l	 Consider empowering the user by providing flexibility and customization of the
UI through configuration and, where appropriate, personalization.

.NET Application Architecture Guide, 2nd Edition74

l	 Consider how you will support localization and globalization, even if this is not
a primary requirement in the initial design. Attempting to add support for local-
ization and globalization once the design is complete can involve a great deal of
rework and refactoring.

User Interface
Design a suitable user interface to support your data input and data validation
requirements. For maximum usability, follow the established guidelines defined by
your organization, and the many established industry usability guidelines that are
based on years of user research into input design and mechanisms. When choosing
a layout strategy for your user interface, consider whether you will have a separate
team of designers building the layout, or whether the development team will create
the UI. If designers will be creating the UI, choose a layout approach that does not
require code or the use of development focused tools. Consider the following guide-
lines when designing your user interface:
l	 Consider using a Separated Presentation pattern such as MVP to separate the lay-

out design from interface processing. Use templates to provide a common look and
feel to all of the UI screens, and maintain a common look and feel for all elements
of your UI to maximize accessibility and ease of use. Avoid over complex layouts.

l	 Consider using forms-based input controls for data collection tasks, a document-
based input mechanism for collecting more free form input such as text or drawing
documents, or a wizard-based approach for more sequenced or workflow driven
data collection tasks.

l	 Avoid using hard-coded strings, and using external resources for text and layout
information (for example, to support right-to-left languages), especially if your
application will be localized.

l	 Consider accessibility in your design. You should consider users with disabilities
when designing your input strategy; for example, implement text-to-speech
software for blind users, or enlarge text and images for users with poor sight.
Support keyboard-only scenarios where possible for users who cannot manipu-
late a pointing device.

l	 Take into account different screen sizes and resolutions, and different device
and input types such as mobile devices, touch screens, and pen and ink–enabled
devices. For example, with touch screen input you will typically use larger but-
tons with more spacing between them than you would in a UI designed only for
mouse and keyboard input. When building a Web application, consider using
Cascading Style Sheets (CSS) for layout. This will improve rendering performance
and maintainability.

Chapter 6:  Presentation Layer Guidelines 75

Validation
Designing an effective input and data validation strategy is critical for the security
and correct operation of your application. Determine the validation rules for user
input as well as for business rules that exist in the presentation layer. Consider the
following guidelines when designing your input and data validation strategy:
l	 Input validation should be handled by the presentation layer, whilst business rule

validation should be handled by the business layer. However, if your business and
presentation layers are physically separated, business rule validation logic should
be mirrored in the presentation layer to improve usability and responsiveness. This
can be achieved using meta-data or by using common validation rule components
in both layers.

l	 Design your validation strategy to constrain, reject, and sanitize malicious input.
Investigate design patterns and third party libraries that can assist in implementing
validation. Identify business rules that are appropriate for validation, such as trans-
action limits, and implement comprehensive validation to ensure that these rules
are not compromised.

l	 Ensure that you correctly handle validation errors, and avoid exposing sensitive
information in error messages. In addition, ensure that you log validation failures
to assist in the detection of malicious activity.

For more information on validation techniques, see Chapter 17, “Crosscutting
Concerns.”

Technology Considerations
For the Microsoft platform, the following guidelines will help you to choose an
appropriate implementation technology for the presentation layer. These guidelines
also suggest common patterns that are useful for specific types of applications and
technologies.

Mobile Applications
Consider the following guidelines when designing a mobile application:
l	 If you want to build full-featured connected, occasionally connected, or disconnected

executable applications that run on a wide range of Microsoft Windows–based
devices, consider using the Microsoft Windows Compact Framework.

l	 If you want to build connected applications that support a wide variety of mobile
devices, or require Wireless Application Protocol (WAP), compact HTML (cHTML),
or similar rendering formats, consider using ASP.NET for Mobile.

.NET Application Architecture Guide, 2nd Edition76

Rich Client Applications
Consider the following guidelines when designing a rich client application:
l	 If you want to build rich media and graphics capable applications, consider using

Windows Presentation Foundation (WPF).
l	 If you want to build applications that are downloaded from a Web server and

execute on a Windows client, consider using XAML Browser Applications (XBAP).
l	 If you want to build applications that are predominantly document-based, or are

used for reporting, consider designing a Microsoft Office Business Application
(OBA).

l	 If you want to take advantage of the extensive range of third party controls, and
rapid application development tools, consider using Windows Forms. If you
decide to use Windows Forms and you are designing a composite application,
consider using the patterns & practices Smart Client Software Factory.

l	 If you decide to build an application using WPF, consider the following:
l	 For composite applications, consider using the patterns & practices Composite

Client Application Guidance.
l	 Consider using the Presentation Model (Model-View-ViewModel) pattern, which

is a variation of Model-View-Controller (MVC) tailored for modern UI develop-
ment platforms where the View is the responsibility of a designer rather than a
classic developer. You can achieve this by implementing DataTemplates over User
Controls to give designers more control. Also, consider using WPF Commands to
communicate between your View and your Presenter or ViewModel.

Rich Internet Applications
Consider the following guidelines when designing a Rich Internet Application (RIA):
l	 If you want to build browser-based, connected applications that have broad cross-

platform reach, are highly graphical, and support rich media and presentation
features, consider using Silverlight.

l	 If you decide to build an application using Silverlight, consider the following:
l	 Consider using the Presentation Model (Model-View-ViewModel) pattern as

described earlier in this chapter.
l	 If you are designing an application that must last and change, consider using

the patterns & practices Composite Client Application Guidance.

Chapter 6:  Presentation Layer Guidelines 77

Web Applications
Consider the following guidelines when designing a Web application:
l	 If you want to build applications that are accessed through a Web browser or

specialist user agent, consider using ASP.NET.
l	 If you decide to build an application using ASP.NET, consider the following:

l	 Consider using master pages to simplify development and implement a consis-
tent UI across all pages.

l	 For increased interactivity and background processing, with fewer page reloads,
consider using AJAX with ASP.NET Web Forms.

l	 If you want to include islands of rich media content and interactivity, consider
using Silverlight controls with ASP.NET.

l	 If you want to improve the testability of your application, or implement a
more clear separation between your application user interface and business
logic, consider using the ASP.NET MVC Framework. This framework supports
a model-view-controller based approach to Web application development.

For information on the patterns & practices Smart Client Software Factory and
Composite Client Application Guidance, see “patterns & practices Offerings” later
in this chapter.

Performance Considerations
Consider the following guidelines to maximize the performance of your presentation
layer:
l	 Design your presentation layer carefully so that it contains the functionality

required to deliver a rich and responsive user experience. For example, ensure
that your presentation layer is able to validate user input in a responsive way
without requiring cross-tier communication. This may require business layer
data validation rules to be represented in the presentation layer, perhaps by
using meta-data or shared components.

l	 Interaction between the presentation layer and the business or services layer of the
application should be asynchronous. This avoids the possibility of high latency or
intermittent connectivity adversely affecting the usability and responsiveness of
the application.

l	 Consider caching data in the presentation layer that will be displayed to the user.
For example, you can cache the historical information that is displayed in a stock
ticker.

.NET Application Architecture Guide, 2nd Edition78

l	 In general, avoid maintaining session data or caching per-user data unless the
number of users is limited, or the total size of the data relatively small. However,
if users tend to be active for a while, caching per user data for short periods may
be an appropriate technique. Be aware of affinity issues in Web or application
farms when storing or caching session data or per user data.

l	 Always use data paging when querying for information. Do not rely on queries
that may return an unbounded volume of data, and use a data page size that is
appropriate for the amount of data you will display. Use client-side paging only
when absolutely necessary.

l	 In ASP.NET, use view state cautiously because it increases the volume of data
included in each round trip, and can reduce the performance of the application.
Consider configuring pages to use read-only sessions, or to not maintain sessions
at all, where this is appropriate.

Design Steps for the Presentation Layer
The following steps describe a suggested process for designing the presentation layer
of your application. This approach will ensure that you consider all of the relevant
factors as you develop your architecture. The steps are:

	 1.	 Identify your client type.  Choose a client type that satisfies your requirements and
adheres to the infrastructure and deployment constraints of your organization. For
instance, if your users are equipped with mobile devices, and will be connected inter-
mittently to the network, a mobile client is probably the best choice. For information
that will help you choose the appropriate type of client, see Chapter 20, “Choosing
an Application Type.”

	 2.	 Choose your presentation layer technology.  Identify the functionality for your
UI and the presentation layer in general and choose a UI technology that meets
these requirements and is available for the type of client you have chosen. At this
point, if the available technologies are not suitable, you may need to reconsider
your choice of client type. For information on the technologies available for each
application type, see Appendix B “Presentation Technology Matrix.”

Chapter 6:  Presentation Layer Guidelines 79

	 3.	 Design your user interface.  Consider if you want your UI to be modular, and
identify how you will enforce separation of concerns in your presentation layer.
Consider separated presentation patterns such as Presentation Model, MVC,
and MVP. Use the guidelines in the sections on Composition, Navigation, User
Experience, and User Interface earlier in this chapter to ensure that you design
a suitable UI that meets your requirements. For details of the types of compo-
nents that you may choose to use in your design, see Chapter 11, “Designing
Presentation Components.”

	 4.	 Determine your data validation strategy.  Use data validation techniques to pro-
tect your system from untrusted input. Also, determine an appropriate strategy
for exception handling and logging. For more details of implementing appropri-
ate strategies for validation, exception handling, and logging see Chapter 17,
“Crosscutting Concerns.”

	 5.	 Determine your business logic strategy.  Factor out your business logic to decouple
it from your presentation layer code. This will improve the maintainability of your
application, making it easier to modify your business logic without affecting the
presentation layer. The technique you choose depends on the complexity of your
application; the following are the common approaches:

l	 UI Validation.  For simple applications where the business logic is used
only to validate user input, you may decide to locate the business logic in
the UI components. However, be careful not to mix any business logic not
concerned with validation within your UI components.

l	 Business Process Components.  For applications that are more complex,
applications that support transactions, or applications that contain basic
business logic that extends beyond UI validation, consider locating the
business logic in separate components that are used by the UI components.

l	 Domain Model.  For complex enterprise applications, where the business
logic is shared among multiple applications, consider separating the
business components into their own logical layer. This allows you
to deploy the business layer onto a separate physical tier to improve
scalability and support reuse by other applications.

l	 Rules Engine.  In applications that must support complex validation,
process orchestrations, and domain logic, consider placing your business
logic in a rules engine such as Microsoft BizTalk® Server.

.NET Application Architecture Guide, 2nd Edition80

	 6.	 Determine your strategy for communication with other layers.  If your applica-
tion has multiple layers, such as a data access layer and a business layer, determine
a strategy for communication between your presentation layer and other layers. If
you have a separate business layer, your presentation layer will communicate with
the business layer. If you do not have a business layer, your presentation layer will
communicate directly with the data access layer. Use the following techniques to
access other layers:

l	 Direct method calls.  If the layer with which you are communicating is
on the same physical tier as the presentation layer, you can make direct
method calls.

l	 Web services.  Use a Web service interface if you want to share the data
access or business logic with other applications, if the business layer or
data access layer are deployed on a separate tier from presentation layer,
or if decoupling is important. Consider WCF using the TCP protocol if
your business logic or data access logic will be consumed by the presenta-
tion layer within your intranet. Consider WCF using the HTTP protocol
if your business logic or data access logic will be consumed by your
presentation layer across the Internet. Consider asynchronous commu-
nication using WCF and message queuing if your business logic or data
access logic performs long-running calls.

For more details of implementing appropriate communication strategies, see
Chapter 18, “Communication and Messaging.”

Relevant Design Patterns
Key patterns for the presentation layer are organized by categories as detailed in the
following table. Consider using these patterns when making design decisions.

Category Relevant patterns
Caching Cache Dependency. Use external information to determine the state of data stored

in a cache.
Page Cache. Improve the response time for dynamic Web pages that are accessed
frequently, but change less often and consume a large amount of system resources
to construct.

Chapter 6:  Presentation Layer Guidelines 81

Category Relevant patterns
Composition
and Layout

Composite View. Combine individual views into a composite representation.
Presentation Model. (Model-View-ViewModel) pattern. A variation of Model-View-
Controller (MVC) tailored for modern UI development platforms where the View is
the responsibility of a designer rather than a classic developer.
Template View. Implement a common template view, and derive or construct views
using this template view.
Transform View. Transform the data passed to the presentation tier into HTML for
display in the UI.
Two-Step View. Transform the model data into a logical presentation without any
specific formatting, and then convert that logical presentation to add the actual
formatting required.

Exception
Management

Exception Shielding. Prevent a service from exposing information about its internal
implementation when an exception occurs.

Navigation Application Controller. A single point for handling screen navigation.
Front Controller. A Web only pattern that consolidates request handling by chan-
neling all requests through a single handler object, which can be modified at run
time with decorators.
Page Controller. Accept input from the request and handle it for a specific page or
action on a Web site.
Command. Encapsulate request processing in a separate command object with a
common execution interface.

User
Experience

Asynchronous Callback. Execute long-running tasks on a separate thread that
executes in the background, and provide a function for the thread to call back into
when the task is complete.
Chain of Responsibility. Avoid coupling the sender of a request to its receiver by
giving more than one object a chance to handle the request.

For more information on the Page Cache pattern, see “Enterprise Solution Patterns Using
Microsoft .NET” at http://msdn.microsoft.com/en-us/library/ms998469.aspx.

For more information on the Application Controller, Front Controller, Page Controller,
Template View, Transform View, and Two-Step View patterns, see Fowler, Martin.
Patterns of Enterprise Application Architecture. Addison-Wesley, 2002. Or at
http://martinfowler.com/eaaCatalog.

For more information on the Composite View and Presentation Model patterns, see
“Patterns in the Composite Application Library” at
http://msdn.microsoft.com/en-us/library/dd458924.aspx.

For more information on the Chain of Responsibility pattern, see “Patterns in Practice”
at http://msdn.microsoft.com/en-us/magazine/cc546578.aspx.

http://msdn.microsoft.com/en-us/library/ms998469.aspx
http://martinfowler.com/eaaCatalog
http://msdn.microsoft.com/en-us/library/dd458924.aspx
http://msdn.microsoft.com/en-us/magazine/cc546578.aspx

.NET Application Architecture Guide, 2nd Edition82

For more information on the Command pattern, see Chapter 5, “Behavioral Patterns”
in Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley Professional, 1995.

For more information on the Asynchronous Callback pattern, see “Creating a
Simplified Asynchronous Call Pattern for Windows Forms Applications” at
http://msdn.microsoft.com/en-us/library/ms996483.aspx.

For more information on the Exception Shielding and Entity Translator patterns,
see “Useful Patterns for Services” at
http://msdn.microsoft.com/en-us/library/cc304800.aspx.

patterns & practices Offerings
For more information on relevant offerings available from the Microsoft patterns &
practices group, see the following resources:
l	 “Composite Client Application Guidance” at

http://msdn.microsoft.com/en-us/library/cc707819.aspx.
l	 “Smart Client Software Factory” at

http://msdn.microsoft.com/en-us/library/aa480482.aspx.
l	 “Web Client Software Factory” at

http://msdn.microsoft.com/en-us/library/bb264518.aspx.

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 “Choosing the Right Presentation Layer Architecture” at

http://msdn.microsoft.com/en-us/library/aa480039.aspx.
l	 “"memcached” distributed memory object caching system at

http://www.danga.com/memcached/.
l	 “Microsoft Inductive User Interface Guidelines” at

http://msdn.microsoft.com/en-us/library/ms997506.aspx.
l	 “Microsoft Project Code Named Velocity” at

http://msdn.microsoft.com/en-us/data/cc655792.aspx.
l	 “User Interface Text Guidelines” at

http://msdn.microsoft.com/en-us/library/bb158574.aspx.
l	 “Design and Implementation Guidelines for Web Clients” at

http://msdn.microsoft.com/en-us/library/ms978631.aspx.
l	 “Web Presentation Patterns” at

http://msdn.microsoft.com/en-us/library/ms998516.aspx.

http://msdn.microsoft.com/en-us/library/ms996483.aspx
http://msdn.microsoft.com/en-us/library/cc304800.aspx
http://msdn.microsoft.com/en-us/library/cc707819.aspx
http://msdn.microsoft.com/en-us/library/aa480482.aspx
http://msdn.microsoft.com/en-us/library/bb264518.aspx
http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/aa480039.aspx
http://www.danga.com/memcached/
http://msdn.microsoft.com/en-us/library/ms997506.aspx
http://msdn.microsoft.com/en-us/data/cc655792.aspx
http://msdn.microsoft.com/en-us/library/bb158574.aspx
http://msdn.microsoft.com/en-us/library/ms978631.aspx
http://msdn.microsoft.com/en-us/library/ms998516.aspx

7
Business Layer Guidelines

Overview
This chapter describes the key guidelines for designing the business layer of an
application. It will help you to understand how the business layer fits into the
typical layered application architecture, the components it usually contains, and
the key issues you face when designing the business layer. You will see guidelines
for design, the recommended design steps, relevant design patterns, and technol-
ogy options. Figure 1 shows how the business layer fits into a typical application
architecture.

	 Contents

7	83

Business Layer Guidelines	 83
Overview. 83
General Design Considerations . 86
Specific Design Issues. 87

Authentication. 87
Authorization. 88
Caching . 88
Coupling and Cohesion. 89
Exception Management . 89
Logging, Auditing, and Instrumentation. 90
Validation. 91

Deployment Considerations . 91
Design Steps for the Business Layer . 92
Relevant Design Patterns . 93
patterns & practices Offerings . 94
Additional Resources. 94

.NET Application Architecture Guide, 2nd Edition84

Figure 1
A typical application showing the business layer and the components it may contain

The business layer will usually include the following:
l	 Application façade.  This optional component typically provides a simplified

interface to the business logic components, often by combining multiple business
operations into a single operation that makes it easier to use the business logic. It
reduces dependencies because external callers do not need to know details of the
business components and the relationships between them.

Chapter 7:  Business Layer Guidelines 85

l	 Business Logic components.  Business logic is defined as any application logic
that is concerned with the retrieval, processing, transformation, and management
of application data; application of business rules and policies; and ensuring data
consistency and validity. To maximize reuse opportunities, business logic compo-
nents should not contain any behavior or application logic that is specific to a use
case or user story. Business logic components can be further subdivided into the
following two categories:

l	 Business Workflow components.  After the UI components collect the
required data from the user and pass it to the business layer, the application
can use this data to perform a business process. Many business processes
involve multiple steps that must be performed in the correct order, and
may interact with each other through an orchestration. Business work-
flow components define and coordinate long running, multistep business
processes, and can be implemented using business process management
tools. They work with business process components that instantiate and
perform operations on workflow components. For more information on
business workflow components, see Chapter 14, “Designing Workflow
Components.”

l	 Business Entity components.  Business entities, or—more generally—busi-
ness objects, encapsulate the business logic and data necessary to represent
real world elements, such as Customers or Orders, within your application.
They store data values and expose them through properties; contain and
manage business data used by the application; and provide stateful pro-
grammatic access to the business data and related functionality. Business
entities also validate the data contained within the entity and encapsulate
business logic to ensure consistency and to implement business rules and
behavior. For more information about business entity components, see
Chapter 13, “Designing Business Entities.”

For more information about the components commonly used in the business layer,
see Chapter 10, “Component Guidelines.”

For more information about designing components for the business layer, see
Chapter 12, “Designing Business Components.”

.NET Application Architecture Guide, 2nd Edition86

General Design Considerations
When designing a business layer, the goal of the software architect is to minimize
complexity by separating tasks into different areas of concern. For example, logic for
processing business rules, business workflows, and business entities all represent
different areas of concern. Within each area, the components you design should focus
on the specific area, and should not include code related to other areas of concern.
Consider the following guidelines when designing the business layer:
l	 Decide if you need a separate business layer.  It is always a good idea to use a

separate business layer where possible to improve the maintainability of your
application. The exception may be applications that have few or no business
rules (other than data validation).

l	 Identify the responsibilities and consumers of your business layer.  This will
help you to decide what tasks the business layer must accomplish, and how you
will expose your business layer. Use a business layer for processing complex busi-
ness rules, transforming data, applying policies, and for validation. If your busi-
ness layer will be used by your presentation layer and by an external application,
you may choose to expose your business layer through a service.

l	 Do not mix different types of components in your business layer.  Use a busi-
ness layer to avoid mixing presentation and data access code with business logic
code, to decouple business logic from presentation and data access logic, and to
simplify testing of business functionality. Also, use a business layer to centralize
common business logic functions and promote reuse.

l	 Reduce round trips when accessing a remote business layer.  If the business
layer is on a separate physical tier from layers and clients with which it must
interact, consider implementing a message-based remote application façade or
service layer that combines fine-grained operations into a smaller number of
coarse-grained operations. Consider using coarse-grained packages for data
transported over the network, such as Data Transfer Objects (DTOs).

l	 Avoid tight coupling between layers.  Use the principles of abstraction to mini-
mize coupling when creating an interface for the business layer. Techniques for
abstraction include using public object interfaces, common interface definitions,
abstract base classes, or messaging. For Web applications, consider a message-
based interface between the presentation layer and the business layer. For more
details, see Chapter 5, “Layered Application Guidelines.”

Chapter 7:  Business Layer Guidelines 87

Specific Design Issues
There are several common issues that you must consider as your develop your design.
These issues can be categorized into specific areas of the design. The following sections
provide guidelines for the common areas where mistakes are most often made:
l	 Authentication
l	 Authorization
l	 Caching
l	 Coupling and Cohesion
l	 Exception Management
l	 Logging, Auditing, and Instrumentation
l	 Validation

Authentication
Designing an effective authentication strategy for your business layer is important
for the security and reliability of your application. Failure to do so can leave your
application vulnerable to spoofing attacks, dictionary attacks, session hijacking, and
other types of attacks. Consider the following guidelines when designing an authen-
tication strategy:
l	 Avoid authentication in the business layer if it will be used only by a presentation

layer or by a service layer on the same tier within a trusted boundary. Flow the
caller’s identity to the business layer only if you must authenticate or authorize
based on the original caller’s ID.

l	 If your business layer will be used in multiple applications, using separate user
stores, consider implementing a single sign-on mechanism. Avoid designing
custom authentication mechanisms; instead, make use of the built-in platform
mechanisms whenever possible.

l	 If the presentation and business layers are deployed on the same machine and
you must access resources based on the original caller’s access control list (ACL)
permissions, consider using impersonation. If the presentation and business
layers are deployed to separate machines and you must access resources based
on the original caller’s ACL permissions, consider using delegation. However,
use delegation only when necessary due to the increased use of resources, and
additionally, because many environments do not support it. If your security
requirements allow, consider authenticating the user at the boundary and using
the trusted subsystem approach for calls to lower layers. Alternatively, consider
using a claims-based security approach (especially for service-based applications)
that takes advantage of federated identity mechanisms and allows target system
to authenticate the user’s claims.

.NET Application Architecture Guide, 2nd Edition88

Authorization
Designing an effective authorization strategy for your business layer is important
for the security and reliability of your application. Failure to do so can leave your
application vulnerable to information disclosure, data tampering, and elevation
of privileges. Consider the following guidelines when designing an authorization
strategy:
l	 Protect resources by applying authorization to callers based on their identity,

account groups, roles, or other contextual information. For roles, consider
minimizing the granularity of roles as far as possible to reduce the number of
permission combinations required.

l	 Consider using role-based authorization for business decisions; resource-based
authorization for system auditing; and claims-based authorization when you
need to support federated authorization based on a mixture of information such
as identity, role, permissions, rights, and other factors.

l	 Avoid using impersonation and delegation where possible because it can signifi-
cantly affect performance and scaling opportunities. It is generally more expensive
to impersonate a client on a call than to make the call directly.

l	 Do not mix authorization code and business processing code in the same com-
ponents.

l	 As authorization is typically pervasive throughout the application, ensure that
your authorization infrastructure does not impose any significant performance
overhead.

Caching
Designing an appropriate caching strategy for your business layer is important for
the performance and responsiveness of your application. Use caching to optimize
reference data lookups, avoid network round trips, and avoid unnecessary and
duplicated processing. As part of your caching strategy, you must decide when and
how to load the cache data. To avoid client delays, load the cache asynchronously
or by using a batch process. Consider the following guidelines when designing a
caching strategy:
l	 Consider caching static data that will be reused regularly within the business

layer, but avoid caching volatile data. Consider caching data that cannot be
retrieved from the database quickly and efficiently, but avoid caching very
large volumes of data that can slow down processing. Cache only the minimum
required.

l	 Consider caching data in a ready to use format within your business layer.

Chapter 7:  Business Layer Guidelines 89

l	 Avoid caching sensitive data if possible, or design a mechanism to protect sensitive
data in the cache.

l	 Consider how Web farm deployment will affect the design of your business layer
caching solution. If any server in the farm can handle requests from the same
client, your caching solution must support the synchronization of cached data.

For more information on caching techniques, see Chapter 17, “Crosscutting Concerns.”

Coupling and Cohesion
When designing components for your business layer, ensure that they are highly
cohesive, and implement loose coupling between layers. This helps to improve the
scalability of your application. Consider the following guidelines when designing
for coupling and cohesion:
l	 Avoid circular dependencies. The business layer should know only about the layer

below (the data access layer), and not the layer above (the presentation layer or
external applications that access the business layer directly).

l	 Use abstraction to implement a loosely coupled interface. This can be achieved with
interface components, common interface definitions, or shared abstraction where
concrete components depend on abstractions and not on other concrete components
(the principle of Dependency Inversion). For more information, see the steps for
designing a layered structure in Chapter 5, “Layered Application Guidelines.”

l	 Design for tight coupling within the business layer unless dynamic behavior
requires loose coupling.

l	 Design for high cohesion. Components should contain only functionality spe-
cifically related to that component. Always avoid mixing data access logic with
business logic in your business components.

l	 Consider using message-based interfaces to expose business components to reduce
coupling and allow them to be located on separate physical tiers if required.

Exception Management
Designing an effective exception management solution for your business layer is
important for the security and reliability of your application. Failing to do so can
leave your application vulnerable to Denial of Service (DoS) attacks, and may allow
it to reveal sensitive and critical information about your application. Raising and
handling exceptions is an expensive operation, so it is important that your exception
management design takes into account the impact on performance. When designing
an exception management strategy, consider following guidelines:
l	 Only catch internal exceptions that you can handle, or if you need to add infor-

mation. For example, catch data conversion exceptions that can occur when
trying to convert null values. Do not use exceptions to control business logic or
application flow.

.NET Application Architecture Guide, 2nd Edition90

l	 Design an appropriate exception propagation strategy. For example, allow excep-
tions to bubble up to boundary layers where they can be logged and transformed as
necessary before passing them to the next layer. Consider including a context identi-
fier so that related exceptions can be associated across layers when performing root
cause analysis of errors and faults.

l	 Ensure that you catch exceptions that will not be caught elsewhere (such as in a
global error handler), and clean up resources and state after an exception occurs.

l	 Design an appropriate logging and notification strategy for critical errors and
exceptions that logs sufficient detail from exceptions and does not reveal sensitive
information.

For more information on exception management techniques, see Chapter 17,
“Crosscutting Concerns.”

Logging, Auditing, and Instrumentation
Designing a good logging, auditing, and instrumentation solution for your business
layer is important for the security and reliability of your application. Failing to do so
can leave your application vulnerable to repudiation threats, where users deny their
actions. Log files may also be required to prove wrongdoing in legal proceedings.
Auditing is generally considered most authoritative if the log information is gener-
ated at the precise time of resource access, and by the same routine that accesses
the resource. Instrumentation can be implemented using performance counters and
events. System monitoring tools can use this instrumentation, or other access points,
to provide administrators with information about the state, performance, and health
of an application. Consider the following guidelines when designing a logging and
instrumentation strategy:
l	 Centralize the logging, auditing, and instrumentation for your business layer.

Consider using a library such as patterns & practices Enterprise Library, or a
third party solutions such as the Apache Logging Services “log4Net” or Jarosław
Kowalski’s “NLog,” to implement exception handling and logging features.

l	 Include instrumentation for system critical and business critical events in your
business components.

l	 Do not store business sensitive information in the log files.
l	 Ensure that a logging failure does not affect normal business layer functionality.
l	 Consider auditing and logging all access to functions within business layer.

Chapter 7:  Business Layer Guidelines 91

Validation
Designing an effective validation solution for your business layer is important
for the usability and reliability of your application. Failure to do so can leave your
application open to data inconsistencies and business rule violations, and a poor
user experience. In addition, it may leave your application vulnerable to security
issues such as cross-site scripting attacks, SQL injection attacks, buffer overflows,
and other types of input attacks. There is no comprehensive definition of what
constitutes a valid input or malicious input. In addition, how your application
uses input influences the risk of the exploit. Consider the following guidelines
when designing a validation strategy:
l	 Validate all input and method parameters within the business layer, even when

input validation occurs in the presentation layer.
l	 Centralize your validation approach to maximize testability and reuse.
l	 Constrain, reject, and sanitize user input. In other words, assume that all user

input is malicious. Validate input data for length, range, format, and type.

Deployment Considerations
When deploying a business layer, you must consider performance and security
issues within the production environment. Consider the following guidelines
when deploying a business layer:
l	 Consider deploying the business layer on the same physical tier as the presenta-

tion layer in order to maximize application performance, unless you must use a
separate tier due to scalability or security concerns.

l	 If you must support a remote business layer, consider using the TCP protocol to
improve application performance.

l	 Consider using Internet Protocol Security (IPSec) to protect data passed between
physical tiers.

l	 Consider using Secure Sockets Layer (SSL) encryption to protect calls from business
layer components to remote Web services.

.NET Application Architecture Guide, 2nd Edition92

Design Steps for the Business Layer
When designing a business layer, you must also take into account the design require-
ments for the main constituents of the layer, such as business components, business
entities, and business workflow components. This section briefly explains the main
activities involved in designing the business layer itself. Perform the following key
steps when designing your data layer:

	 1.	 Create a high level design for your business layer.  Identify the consumers
of your business layer, such as the presentation layer, a service layer, or other
applications. This will help you to determine how to expose your business
layer. Next, determine the security requirements for your business layer, and
the validation requirements and validation strategy. Use the guidelines in the
“Specific Design Issues” section earlier in this chapter to ensure that you con-
sider all of the relevant factors when creating the high level design.

	 2.	 Design your business components.  There are several types of business com-
ponents you can use when designing and implementing an application. Examples
of these components include business process components, utility components,
and helper components. Different aspects of your application design, trans-
actional requirements, and processing rules affect the design you choose for
your business components. For more information, see Chapter 12, “Designing
Business Components.”

	 3.	 Design your business entity components.  Business entities are used to contain and
manage business data used by an application. Business entities should provide vali-
dation of the data contained within the entity. In addition, business entities provide
properties and operations used to access and initialize data contained within the
entity. For more information, see Chapter 13, “Designing Business Entities.”

	 4.	 Design your workflow components.  There are many scenarios where tasks
must be completed in an ordered way based on the completion of specific steps,
or coordinated through human interaction. These requirements can be mapped
to key workflow scenarios. You must understand how requirements and rules
affect your options for implementing workflow components. For more informa-
tion, see Chapter 14, “Designing Workflow Components.”

For more information about designing and using components in your applications,
see Chapter 10, “Component Guidelines.”

Chapter 7:  Business Layer Guidelines 93

Relevant Design Patterns
Key patterns are organized by key categories, as detailed in the following table.
Consider using these patterns when making design decisions for each category.

Category Relevant patterns
Business
Components

Application Façade. Centralize and aggregate behavior to provide a uniform service
layer.
Chain of Responsibility. Avoid coupling the sender of a request to its receiver by
allowing more than one object to handle the request.
Command. Encapsulate request processing in a separate command object with a
common execution interface.

Business
Entities

Domain Model. A set of business objects that represents the entities in a domain
and the relationships between them.
Entity Translator. An object that transforms message data types to business types
for requests, and reverses the transformation for responses.
Table Module. A single component that handles the business logic for all rows in a
database table or view.

Workflows Data-Driven Workflow. A workflow that contains tasks whose sequence is deter-
mined by the values of data in the workflow or the system.
Human Workflow. A workflow that involves tasks performed manually by humans.
Sequential Workflow. A workflow that contains tasks that follow a sequence, where
one task is initiated after completion of the preceding task.
State-Driven Workflow. A workflow that contains tasks whose sequence is deter-
mined by the state of the system.

For more information on the Façade pattern, see Chapter 4, “Structural Patterns” in
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley Professional, 1995.

For more information on the Chain of Responsibility pattern, see “Patterns in Practice”
at http://msdn.microsoft.com/en-us/magazine/cc546578.aspx.

For more information on the Command pattern, see 5, “Behavioral Patterns” in
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley Professional, 1995.

For more information on the Entity Translator pattern, see “Useful Patterns for Services”
at http://msdn.microsoft.com/en-us/library/cc304800.aspx.

For more information on the Data-Driven Workflow, Human Workflow, Sequential
Workflow, and State-Driven Workflow, see “Windows Workflow Foundation Overview”
at http://msdn.microsoft.com/en-us/library/ms734631.aspx and “Workflow Patterns”
at http://www.workflowpatterns.com/.

http://msdn.microsoft.com/en-us/magazine/cc546578.aspx
http://msdn.microsoft.com/en-us/library/cc304800.aspx
http://msdn.microsoft.com/en-us/library/ms734631.aspx
http://www.workflowpatterns.com/

.NET Application Architecture Guide, 2nd Edition94

patterns & practices Offerings
For more information on relevant offerings available from the Microsoft patterns &
practices group, see the following resources:
l	 “Enterprise Library” at http://msdn.microsoft.com/en-us/library/cc467894.aspx.
l	 "Unity" (dependency injection mechanism) at

http://msdn.microsoft.com/en-us/library/dd203101.aspx.

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.

For more information on integrating business layers, see “Integration Patterns” at
http://msdn.microsoft.com/en-us/library/ms978729.aspx.

For more information on Apache Logging Services “log4Net,” see
http://logging.apache.org/log4net/index.html.

For more information on Jarosław Kowalski’s “NLog,” see
http://www.nlog-project.org/introduction.html.

http://msdn.microsoft.com/en-us/library/cc467894.aspx
http://msdn.microsoft.com/en-us/library/dd203101.aspx
http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/ms978729.aspx
http://logging.apache.org/log4net/index.html
http://www.nlog-project.org/introduction.html

8
Data Layer Guidelines

Overview
This chapter describes the key guidelines for designing the data layer of an applica-
tion. It will help you to understand how the data layer fits into the typical layered
application architecture, the components it usually contains, and the key issues you
face when designing the data layer. You will see guidelines for design, the recom-
mended design steps, relevant design patterns, and technology options. Figure 1
shows how the data layer fits into a typical application architecture.

	 Contents

8	95

Data Layer Guidelines	 95
Overview. 95
General Design Considerations . 97
Specific Design Issues. 99

Batching . 99
Binary Large Objects. 100
Connections. 100
Data Format. 101
Exception Management . 101
Object Relational Mapping. 102
Queries. 103
Stored Procedures. 103
Stored Procedures vs. Dynamic SQL. 104
Transactions . 105
Validation . 107
XML . 107

Technology Considerations. 108
Performance Considerations. 109
Security Considerations. 109
Deployment Considerations . 110
Design Steps for the Data Layer. 110
Relevant Design Patterns . 112
Additional Resources. 113

.NET Application Architecture Guide, 2nd Edition96

Figure 1
A typical application showing the data layer and the components it may contain

The data layer may include the following:
l	 Data Access components.  These components abstract the logic required to access

the underlying data stores. They centralize common data access functionality in
order to make the application easier to configure and maintain. Some data access
frameworks may require the developer to identify and implement common data
access logic in separate reusable helper or utility data access components. Other
data access frameworks, including many Object/Relational Mapping (O/RM)
frameworks, implement such components automatically, reducing the amount
of data access code that the developer must write.

Chapter 8:  Data Layer Guidelines 97

l	 Service agents.  When a business component must access data provided by an
external service, you might need to implement code to manage the semantics of
communicating with that particular service. Service agents implement data access
components that isolate the varying requirements for calling services from your
application, and may provide additional services such as caching, offline support,
and basic mapping between the format of the data exposed by the service and the
format your application requires.

For more information about the components commonly used in the data layer, see
Chapter 10, “Component Guidelines.” For more information about creating data
access components, see Chapter 15, “Designing Data Components.”

General Design Considerations
Your data access layer must meet the requirements of your application, perform
efficiently and securely, and be easy to maintain and extend as business require-
ments change. When designing the data layer, consider the following general
design guidelines:
l	 Choose an appropriate data access technology.  The choice of data access

technology depends on the type of data you must handle, and how you intent
to manipulate that data within the application. Certain technologies are better
suited to specific scenarios. The Appendix “Data Access Technology Matrix” at
the end of this guide discusses these options and enumerates the benefits and
considerations for each data access technology.

l	 Use abstraction to implement a loosely coupled interface to the data access
layer.  This can be accomplished by defining interface components, such as a
gateway with well-known inputs and outputs, which translate requests into a
format understood by components within the layer. In addition, you can use
interface types or abstract base classes to define a shared abstraction that must
be implemented by interface components. For more information about layer
abstraction, see Chapter 5, “Layered Application Guidelines.”

l	 Encapsulate data access functionality within the data access layer.  The data
access layer should hide the details of data source access. It should be respon-
sible for managing connections, generating queries, and mapping application
entities to data source structures. Consumers of the data access layer interact
through abstract interfaces using application entities such as custom objects,
Typed DataSets, and XML, and should have no knowledge of the internal details
of the data access layer. Separating concerns in this way assists in application
development and maintenance.

.NET Application Architecture Guide, 2nd Edition98

l	 Decide how to map application entities to data source structures.  The type of
entity you use in your application is the main factor in deciding how to map those
entities to data source structures. Common design approaches follow the Domain
Model or Table Module patterns or use Object/Relational Mapping (O/RM)
frameworks, though you may implement business entities using different formats.
You must identify a strategy for populating the business entities or data structures
from the data source and making them available to the business layer or presenta-
tion layer of the application. For more information about the Domain Model or
Table Module patterns, see the section “Relevant Design Patterns” near the end of
this chapter. For more information about business entities and data formats, see
Chapter 13, “Designing Business Entities.”

l	 Consider consolidating data structures.  If you are exposing data through
services, consider using Data Transfer Objects (DTOs) to help you organize the
data into unified structures. In addition, DTOs encourage coarse-grained opera-
tions while providing a structure that is designed to move data across different
boundary layers. DTOs can also span business entities for aggregate operations.
If you are using the Table Data Gateway or Active Record pattern, you may con-
sider using a DataTable to represent the data.

l	 Decide how you will manage connections.  As a rule, the data access layer
should create and manage all connections to all data sources required by the
application. You must choose an appropriate method for storing and protecting
connection information, perhaps by encrypting sections of the configuration file
or limiting storage of configuration information to the server, in order to con-
form to corporate security requirements. For more information, see Chapter 15,
“Designing Data Components.”

l	 Determine how you will handle data exceptions.  The data access layer should
catch and (at least initially) handle all exceptions associated with data sources and
CRUD (Create, Read, Update, and Delete) operations. Exceptions concerning the
data itself, and data source access and timeout errors, should be handled in this
layer and passed to other layers only if the failures affect application responsive-
ness or functionality.

l	 Consider security risks.  The data access layer should protect against attacks
that try to steal or corrupt data, and protect the mechanisms used to gain access
to the data source. For example, sanitize error and exception information so
that data source information is not revealed, and use least privilege accounts to
restrict privileges to only those needed to perform the operations required by
the application. Even if the data source itself has the ability to limit privileges,
security should be implemented in the data access layer as well as in the data
source. Database access should be through parameterized queries to prevent
SQL injection attacks succeeding. Never use string concatenation to build
dynamic queries from user input data.

Chapter 8:  Data Layer Guidelines 99

l	 Reduce round trips.  Consider batching commands into a single database operation.
l	 Consider performance and scalability objectives.  Scalability and performance

objectives for the data access layer should be taken into account during design.
For example, when designing an Internet-based commerce application, data layer
performance is likely to be a bottleneck for the application. When data layer perfor-
mance is critical, use profiling to understand and then reduce or resolve expensive
data operations.

Specific Design Issues
There are several common issues that you must consider as your develop your design.
These issues can be categorized into specific areas of the design. The following sections
provide guidelines for the common areas where mistakes are most often made:
l	 Batching
l	 Binary Large Objects (BLOBs)
l	 Connections
l	 Data Format
l	 Exception Management
l	 Object Relational Mapping
l	 Queries
l	 Stored Procedures
l	 Stored Procedures vs. Dynamic SQL
l	 Transactions
l	 Validation
l	 XML

Batching
Batching database commands can improve the performance of your data layer. Each
request to the database execution environment incurs an overhead. Batching can
reduce the total overhead by increasing throughput and decreasing latency. Batching
similar queries can improve performance because the database caches and can reuse
a query execution plan for a similar query. Consider the following guidelines when
designing batching:
l	 Consider using batched commands to reduce round trips to the database and

minimize network traffic. However, for maximum benefit, only batch similar
queries. Batching dissimilar or random queries does not provide the same level of
reduction in overhead.

.NET Application Architecture Guide, 2nd Edition100

l	 Consider using batched commands and a DataReader to load or copy multiple
sets of data. However, when loading large volumes of file-based data into the
database, consider using database bulk copy utilities instead.

l	 Do not perform transactions on long-running batch commands that will lock data-
base resources.

Binary Large Objects
When data is stored and retrieved as a single stream, it can be considered to be a
binary large object, or BLOB. A BLOB may have structure within it, but that struc-
ture is not apparent to the database that stores it or the data layer that reads and
writes it. Databases can store the BLOB data or can store pointers to them within
the database. The BLOB data is usually stored in a file system if not stored directly
in the database. BLOBs are typically used to store image data, but can also be used
to store binary representations of objects. Consider the following guidelines when
designing for BLOBs:
l	 Consider whether you need to store BLOB data in a database. Modern databases are

much better at handling BLOB data, providing you choose an appropriate column
data type, and can provide maintainability, versioning, operations, and storage of
related metadata. However, consider if it is more practical to store it on disk and
store just a link to the data in the database.

l	 Consider using BLOBs to simplify synchronization of large binary objects between
servers.

l	 Consider whether you will need to search the BLOB data. If so, create and populate
other searchable database fields instead of parsing the BLOB data.

l	 When retrieving the BLOB, cast it to the appropriate type for manipulation within
your business or presentation layer.

Connections
Connections to data sources are a fundamental part of the data layer. All data
source connections should be managed by the data layer. Creating and managing
connections uses valuable resources in both the data layer and the data source.
To maximize performance and security, consider the following guidelines when
designing for data layer connections:
l	 In general, open connections as late as possible and close them as early as possible.

Never hold connections open for excessive periods.
l	 Perform transactions through a single connection whenever possible.
l	 Take advantage of connection pooling by using a trusted subsystem security

model, and avoiding impersonation or the use of individual identities if possible.

Chapter 8:  Data Layer Guidelines 101

l	 For security reasons, avoid using a System or User Data Source Name (DSN) to
store connection information.

l	 Consider if you should design retry logic to manage the situation where the
connection to the data source is lost or times out. However, if the underlying
cause is something like a resource contention issue, retrying the operation may
exacerbate the problem leading to scaling issues. See Chapter 15, “Designing
Data Components” for more information.

Data Format
Choosing the appropriate data format provides interoperability with other appli-
cations, and facilitates serialized communications across different processes and
physical machines. Data format and serialization are also important in order to
allow the storage and retrieval of application state by the business layer. Consider
the following guidelines when designing your data format:
l	 Consider using XML for interoperability with other systems and platforms, or

when working with data structures that can change over time.
l	 Consider using DataSets for disconnected scenarios in simple CRUD-based

applications.
l	 If you must transfer data across physical boundaries, consider serialization and

interoperability requirements. For example, consider how you will serialize custom
business objects, how you will translate them into Data Transfer Objects (DTOs)
where this is a requirement, and what formats the receiving layer can accept.

For more information on data formats, see Chapter 15, “Designing Data Components.”
For information on designing and using components in your application, see Chapter
10, “Component Guidelines.”

Exception Management
Design a centralized exception management strategy so that exceptions are caught and
thrown consistently in your data layer. If possible, centralize exception handling logic
in components that implement crosscutting concerns in your application. Pay particu-
lar attention to exceptions that propagate through trust boundaries and to other layers
or tiers. Design for unhandled exceptions so they do not result in application reliability
issues or exposure of sensitive application information. Consider the following guide-
lines when designing your exception management strategy:
l	 Identify the exceptions that should be caught and handled in the data access layer.

For example, deadlocks and connection issues can often be resolved within the
data layer. However, some exceptions, such as and concurrency violations, should
be surfaced to the user for resolution.

.NET Application Architecture Guide, 2nd Edition102

l	 Design an appropriate exception propagation strategy. For example, allow excep-
tions to propagate to boundary layers where they can be logged and transformed
as necessary before passing them to the next layer. Consider including a context
identifier so that related exceptions can be associated across layers when perform-
ing root cause analysis of errors and faults.

l	 Consider implementing a retry process for operations where data source errors or
timeouts occur, where it is safe to do so.

l	 Ensure that you catch exceptions that will not be caught elsewhere (such as in a
global error handler), and clean up resources and state after an exception occurs.

l	 Design an appropriate logging and notification strategy for critical errors and
exceptions that logs sufficient detail from exceptions and does not reveal sensitive
information.

Object Relational Mapping
When designing an object oriented (OO) application, consider the impedance mis-
match between the OO model and the relational model, and the factors that can make
it difficult to translate between them. For example, encapsulation in OO designs,
where fields are hidden, may contradict the public nature of properties in a database.
Other examples of impedance mismatch include differences in the data types, struc-
tural differences, transactional differences, and differences in how data is manipulated.
The two common ways to handle these mismatches are design patterns for data
access such as Repository, and Object/Relational Mapping (O/RM) tools. A Domain
Driven Design approach, which is based on modeling entities based on objects within
a domain, is often an appropriate choice. For information about Domain Driven Design,
see Chapter 3, “Architectural Patterns and Styles” and Chapter 13, “Designing
Business Entities.”

Consider the following guidelines when designing for object relational mapping:
l	 Consider using a framework that provides an Object/Relational Mapping (O/RM)

layer between domain entities and the database. Modern O/RM solutions are
available that can significantly reduce the amount of custom code required.

l	 If you are working in a greenfield environment, where you have full control
over the database schema, you can use an O/RM tool to generate a schema to
support the defined object model, and to provide a mapping between the data-
base and domain entities.

l	 If you are working in a brownfield environment, where you must work with an
existing database schema, you can use an O/RM tool to help you to map between
the domain model and the existing relational model.

Chapter 8:  Data Layer Guidelines 103

l	 If you are working with a smaller application or do not have access to O/RM tools,
implement a common data access pattern such as Repository. With the Repository
pattern, the repository objects allow you to treat domain entities as if they were
located in memory.

l	 When working with Web applications or services, group entities and support
options that will partially load domain entities with only the required data—a
process usually referred to as lazy loading. This allows applications to handle
the higher user load required to support stateless operations, and limit the use
of resources by avoiding holding initialized domain models for each user in
memory.

Queries
Queries are the primary data manipulation operations for the data layer. They
are the mechanism that translates requests from the application into CRUD actions
on the database. As queries are so essential, they should be optimized to maximize
database performance and throughput. Consider the following guidelines when
using queries in your data layer:
l	 Use parameterized SQL queries and typed parameters to mitigate security issues

and reduce the chance of SQL injection attacks succeeding. Do not use string
concatenation to build dynamic queries from user input data.

l	 Consider using objects to build queries. For example, implement the Query
Object pattern or use the parameterized query support provided by ADO.NET.
Also consider optimizing the data schema in the database for query execution.

l	 When building dynamic SQL queries, avoid mixing business processing logic
with logic used to generate the SQL statement. Doing so can lead to code that is
very difficult to maintain and debug.

Stored Procedures
In the past, stored procedures represented a performance improvement over dynamic
SQL statements. However, with modern database engines, the performance of stored
procedures and dynamic SQL statements (using parameterized queries) are gener-
ally similar. When considering the use of stored procedures, the primary factors are
abstraction, maintainability, and your environment. This section contains guidelines
to help you design your application when using stored procedures. For guidance on
choosing between using stored procedures and dynamic SQL statements, see the
section that follows.

.NET Application Architecture Guide, 2nd Edition104

In terms of security and performance for stored procedures, the primary guidelines
are to use typed parameters and avoid dynamic SQL within the stored procedure.
Parameters are one of the factors that influence the use of cached query plans
instead of rebuilding the query plan from scratch. When parameter types and the
number of parameters change, new query execution plans are generated, which
can reduce performance. Consider the following guidelines when designing stored
procedures:
l	 Use typed parameters as input values to the procedure and output parameters to

return single values. Consider using XML parameters or table-value parameters for
passing lists or tabular data. Do not format data for display in stored procedures;
instead, return the appropriate types and perform formatting in the presentation
layer.

l	 Use parameter or database variables if it is necessary to generate dynamic SQL
within a stored procedure. However, bear in mind that using dynamic SQL in
stored procedures can affect performance, security, and maintainability.

l	 Avoid the creation of temporary tables while processing data. However, if
temporary tables must be used, consider creating them in memory instead
of on disk.

l	 Implement appropriate error handling designs, and return errors that the
application code can handle.

Stored Procedures vs. Dynamic SQL
The choice between stored procedures and dynamic SQL focuses primarily on the use
of SQL statements dynamically generated in code instead of SQL implemented within
a stored procedure in the database. When choosing between stored procedures and
dynamic SQL, you must consider the abstraction requirements, maintainability, and
environment constraints. In addition, in many cases, the choice between stored proce-
dures and dynamic SQL queries includes developer preference or skill set.

The main advantages of stored procedures are that they provide an abstraction layer
to the database, which can minimize the impact on application code when the data-
base schema changes. Security is also easier to implement and manage because you
can restrict access to everything except the stored procedure, and take advantage of
fine-grained security features supported by most databases (though be aware that
this may affect your ability to take advantage of connection pooling).

The main advantages of dynamic SQL statements are that they are often considered
more flexible than stored procedures, and can enable more rapid development. Many
Object/Relational Mapping (O/RM) frameworks generate dynamic queries for you,
considerably reducing the amount of code developers must write.

Chapter 8:  Data Layer Guidelines 105

Consider the following guidelines when choosing between stored procedures and
dynamic SQL:
l	 If you have a small application that has a single client and few business rules,

dynamic SQL is often the best choice.
l	 If you have a larger application that has multiple clients, consider how you can

achieve the required abstraction. Decide where that abstraction should exist: at the
database in the form of stored procedures, or in the data layer of your application
in the form of data access patterns or O/RM products.

l	 For data-intensive operations, stored procedures allow you to perform the operations
closer to the data, which can improve performance.

l	 To minimize application code changes when the database schema changes, you
might consider using stored procedures to provide access to the database. This can
help to isolate and minimize changes to application code during schema normaliza-
tion or optimization. Changes to inputs and outputs of a stored procedure can affect
application code, but these changes can often be isolated in specific components that
access the stored procedure. Object/Relational Mapping (O/RM) frameworks can
also help you to isolate and minimize application code changes when schemas are
updated.

l	 When considering dynamic SQL queries, you should understand the impact that
changes to database schemas will have on your application. As a result, you should
implement the data access layer in such a way that it decouples business compo-
nents from the execution of database queries. Several patterns, such as Query Object
and Repository, can be used to provide this separation. Object/Relational Mapping
(O/RM) frameworks can help to achieve a clean separation between your business
components and the execution of database queries.

l	 Consider the team you have for development of the application. If you do not have
a team that is familiar with database programming, consider tools or patterns that
are more familiar to your development staff.

l	 Consider debugging support. Dynamic SQL is easier for application developers
to debug.

Transactions
A transaction is an exchange of sequential information and associated actions that are
treated as an atomic unit in order to satisfy a request and ensure database integrity.
A transaction is only considered complete if all information and actions are complete,
and the associated database changes are made permanent. Transactions support
undo (rollback) database actions following an error, which helps to preserve the
integrity of data in the database.

.NET Application Architecture Guide, 2nd Edition106

It is important to identify the appropriate concurrency model and determine how
you will manage transactions. You can choose between an optimistic model and a
pessimistic model for concurrency. With optimistic concurrency, locks are not held
on data and updates require code to check, usually against a timestamp, that the
data has not changed since it was last retrieved. With pessimistic concurrency, data is
locked and cannot be updated by another operation until the lock is released.

Consider the following guidelines when designing transactions:
l	 Consider transaction boundaries, so that retries and composition are possible, and

enable transactions only when you need them. Simple queries may not require
an explicit transaction, but you should make sure that you are aware of your
database’s default transaction commit and isolation level behavior. By default
Microsoft SQL Server® database executes each individual SQL statement as an
individual transaction (auto-commit transaction mode).

l	 Keep transactions as short as possible to minimize the amount of time that locks
are held. Try to avoid using locks for long-running transactions, or locking during
access to shared data, which may block access to data by other code. Avoid the use
of exclusive locks, which can cause contention and deadlocks.

l	 Use the appropriate isolation level, which defines how and when changes become
available to other operations. The tradeoff is data consistency versus contention.
A high isolation level will offer higher data consistency at the price of overall con-
currency. A lower isolation level improves performance by lowering contention at
the cost of consistency.

l	 If you are using the System.Transactions namespace classes, consider using the
implicit model provided by the TransactionScope object in the System.Transactions
namespace. Although implicit transactions are not as fast as manual, or explicit,
transactions, they are easier to develop and lead to middle tier solutions that are
flexible and easy to maintain. When using manual transactions, consider imple-
menting the transaction within a stored procedure.

l	 Where you cannot apply a commit or rollback, or if you use a long-running trans-
action, implement compensating methods to revert the data store to its previous
state in case an operation within the transaction fails.

l	 If you must execute multiple queries against a database, consider the use of mul-
tiple active result sets (MARS), which provides support for multiple forward only,
read only results sets and allows multiple queries to be executed using the same
connection. MARS can be useful in transaction-heavy concurrent applications.

Chapter 8:  Data Layer Guidelines 107

Validation
Designing an effective input and data validation strategy is critical for the security
of your application. Determine the validation rules for data received from other
layers and from third-party components, as well as from the database or data store.
Understand your trust boundaries so that you can validate any data that crosses
these boundaries. Consider the following guidelines when designing a validation
strategy:
l	 Validate all data received by the data layer from all callers. Ensure that you correctly

handle NULL values, and filter out invalid characters.
l	 Consider the purpose to which data will be put when designing validation. For

example, user input used in the creation of dynamic SQL should be examined
for characters or patterns that occur in SQL injection attacks.

l	 Return informative error messages if validation fails.

For more information on validation techniques, see Chapter 17, “Crosscutting
Concerns.”

XML
Extensible Markup Language (XML) is useful for interoperability and for maintain-
ing data structure outside of the database. For performance reasons, be careful when
using XML for very large volumes of data. If you must handle large volumes of data
as XML, use attribute-based schemas where data values are stored as attributes, instead
of element-based schemas that store the data values as the values of elements, and
are consequently larger. Consider the following guidelines when designing for the
use of XML:
l	 Consider using XML readers and writers to access XML formatted data, especially

for extremely large sets of XML data. If you need to interact with a relational data-
base, consider using objects that support this functionality, such as the ADO.NET
DataSet. Use common settings for whitespace and comment handling on XML
readers and writers.

l	 Consider using an XML schema to define formats and to provide validation for
data stored and transmitted as XML. Consider using custom validators for complex
data parameters within your XML schema. However, bear in mind that validation
will impose a performance penalty.

l	 Store XML in typed columns in the database, if available, for maximum perfor-
mance. Set up indexes (if your database supports them) if you will be regularly
querying the XML data.

.NET Application Architecture Guide, 2nd Edition108

Technology Considerations
The following guidelines will help you to choose an appropriate implementation
technology and techniques, depending on the type of application you are designing
and the requirements of that application:
l	 If you require basic support for queries and parameters, consider using ADO.NET

objects directly.
l	 If you require support for more complex data access scenarios, or want to sim-

plify your data access code, consider using the Enterprise Library Data Access
Application Block. For more details about Enterprise Library, see Appendix F,
“patterns & practices Enterprise Library.”

l	 If you are building a data driven Web application with pages based on the data
model of the underlying database, consider using ASP.NET Dynamic Data.

l	 If you want to manipulate XML-formatted data, consider using the classes in
the System.Xml namespace and its subsidiary namespaces, or Linq to XML
(XLinq).

l	 If you are using ASP.NET to create user interfaces, consider using a DataReader
to access data to maximize rendering performance. DataReaders are ideal for
read-only, forward-only operations in which each row is processed quickly.

l	 If you are accessing SQL Server, consider using classes in the ADO.NET SqlClient
namespace to maximize performance.

l	 If you are accessing SQL Server 2008, consider using a FILESTREAM for greater
flexibility in the storage of and access to BLOB data.

l	 If you are designing an object-oriented business layer based on the Domain
Model pattern, consider using an Object/Relational Mapping (O/RM) frame-
work, such as the ADO.NET Entity Framework or the open source NHibernate
framework (see Additional Resources at the end of this chapter for more infor-
mation).

For guidance on choosing a data access technology, see Chapter 15, “Designing Data
Components.” For information about the data access technologies available on the
Microsoft platform, see the Appendix C “Data Access Technology Matrix.”

Chapter 8:  Data Layer Guidelines 109

Performance Considerations
Performance is a function of both your data layer design and your database
design. Consider both together when tuning your system for maximum data
throughput. Consider the following guidelines when designing for performance:
l	 Use connection pooling and tune performance based on results obtained by running

simulated load scenarios.
l	 Consider tuning isolation levels for data queries. If you are building an application

with high-throughput requirements, special data operations may be performed at
lower isolation levels than the rest of the transaction. Combining isolation levels
can have a negative impact on data consistency, so you must carefully analyze
this option on a case by case basis.

l	 Consider batching commands to reduce the number of round trips to the database
server.

l	 Consider using optimistic concurrency with nonvolatile data to mitigate the cost
of locking data in the database. This avoids the overhead of locking database
rows, including the connection that must be kept open during a lock.

l	 If using a DataReader, use ordinal lookups for faster performance.

Security Considerations
The data layer should protect the database against attacks that try to steal or corrupt
data. It should allow only as much access to the various parts of the data source as is
required. The data layer should also protect the mechanisms used to gain access to
the data source. Consider the following guidelines when designing for security:
l	 When using SQL Server, consider using Windows authentication with an

implementation of the trusted subsystem model. For information on the trusted
subsystem model, see Chapter 19, “Physical Tiers and Deployment.”

l	 Encrypt connection strings in configuration files instead of using a System or
User Data Source Name (DSN).

l	 When storing passwords, use a salted hash instead of an encrypted version of the
password.

l	 Require that callers send identity information to the data layer for auditing purposes.
l	 Use parameterized SQL queries and typed parameters to mitigate security issues

and reduce the chance of SQL injection attacks succeeding. Do not use string con-
catenation to build dynamic queries from user input data.

.NET Application Architecture Guide, 2nd Edition110

Deployment Considerations
When deploying the data layer, the goal of the software architect is to consider the per-
formance and security issues in the production environment. Consider the following
guidelines when deploying your data layer:
l	 Locate the data access layer on the same tier as the business layer to improve

application performance unless scalability or security concerns prevent this.
l	 If you must support a remote data access layer, consider using the TCP protocol

to improve performance.
l	 Consider locating the data access layer on a different server to the database. The

physical characteristics of a database server are often optimized for that role, and
will rarely match the optimum operating characteristics for the data layer. The
combination of both on one physical tier is extremely likely to reduce application
performance.

Design Steps for the Data Layer
A correct approach to designing the data layer will reduce development time and
assist in maintenance of the data layer after the application is deployed. This section
briefly outlines an effective design approach for the data layer. Perform the following
key steps when designing your data layer:

	 1.	 Create an overall design for your data access layer. Identify data source constraints
by determining if you are working with a greenfield or brownfield environment,
and determine the associated restrictions. In addition, if any new development is
required, consider how it will coexist with the data source in its current state.
l	 In a greenfield scenario, where there is no prior work related to the data

source, you have full control over the schema used by your data source. Re-
strictions are based on the data source itself.

l	 In a brownfield scenario, you do not have control over data source schemas,
and the data source could be anything from a database to gateway compo-
nents used to interact with existing components. You must understand the
complexity and constraints of the existing business. For example, you must
determine if there a predefined operational data store or other restriction
that will prevent you from changing the existing schema. However, you can
usually add new tables or views to an existing schema. Also, determine if
you are interacting with the data layer using Web services or with a legacy
application using gateway components. In these cases, you will be restricted
to operations defined in the Web service contract or in the interface exposed
by the gateway components.

Chapter 8:  Data Layer Guidelines 111

	 2.	 Choose the entity types you need. Data access components deal with entities.
Entities are used to contain and manage the data used by your application, and
you should consider including any data validation code you require within the
entities. Choosing an appropriate data type and format for your business entities
is also important as it determines how interoperability and serialization require-
ments are met. For guidance on choosing the type of entities to use, and the types
commonly used in business and data components, see Chapter 13, “Designing
Business Entities.” Consider the following while choosing and implementing the
appropriate data format:
l	 If you must support disconnected scenarios in simple CRUD-based applications,

then use DataSets or individual DataTables. The most common approach is to
use the ADO.NET provider. This is ideal when you are working with an existing
application that already uses the ADO.NET providers. If you are developing a
new application, you can use LINQ to Datasets to populate DataSets using LINQ
queries.

l	 If your data access layer will be accessed by other applications and you require
interoperability with other systems and platforms, use an XML format.

l	 If application maintainability is important, use custom business entities. This
requires additional code to map the entities to database operations; however,
Object/Relational Mapping (O/RM) solutions can reduce the amount of custom
code required. Choose the ADO.NET Entity Framework, or another O/RM
framework such as the open source NHibernate framework, if you need more
flexibility.

l	 Implement entities by deriving them from a base class that provides basic
functionality and encapsulates common tasks. However, be careful not to
overload the base class with unrelated operations, which would reduce the
cohesiveness of entities derived from the base class and may result in main-
tainability and performance issues.

l	 Design entities to rely on data access logic components for database interaction.
Centralize implementation of all data access policies and related business logic.
For example, if your business entities access SQL Server databases directly, all
applications deployed to clients that use the business entities will require SQL
connectivity and logon permissions.

	 3.	 Choose your data access technology. Identify the functionality required for your
data access logic and choose a technology that meets these requirements. For
information on the range of data access technologies available on the Microsoft
platform, see Appendix C “Data Access Technology Matrix.”

.NET Application Architecture Guide, 2nd Edition112

	 4.	 Design your data access components. Enumerate the data sources that you
will access and decide on the method of access for each data source. Determine
whether helper components are required or desirable to simplify development
and maintenance of data access components. Finally, identify relevant design
patterns. For example, consider using the Table Data Gateway, Query Object,
Repository, and other patterns. For more information, see Chapter 15, “Designing
Data Components.”

	 5.	 Design your service agents. Use the appropriate tool to add a service reference.
This will generate a proxy and the data classes that represent the data contract
from the service. Then determine how the service will be used in your application.
For most applications, you should access the functionality and data provided by
the service agents through data access components, which will provide a consis-
tent interface regardless of the data source. For smaller applications, the business
layer—or even the presentation layer—may access the service agent directly.

Relevant Design Patterns
Key patterns are organized by categories, as detailed in the following table. Consider
using these patterns when making design decisio ns for each category.

Category Relevant patterns
General Active Record. Include a data access object within a domain entity.

Data Mapper. Implement a mapping layer between objects and the database
structure that is used to move data from one structure to another while keeping
them independent.
Data Transfer Object. An object that stores the data transported between pro-
cesses, reducing the number of method calls required.
Domain Model. A set of business objects that represents the entities in a domain
and the relationships between them.
Query Object. An object that represents a database query.
Repository. An in-memory representation of a data source that works with domain
entities.
Row Data Gateway. An object that acts as a gateway to a single record in a data
source.
Table Data Gateway. An object that acts as a gateway to a table or view in a data
source and centralizes all of the select, insert, update, and delete queries.
Table Module. A single component that handles the business logic for all rows in a
database table or view.

Batching Parallel Processing. Allow multiple batch jobs to run in parallel to minimize the
total processing time.
Partitioning. Partition multiple large batch jobs to run concurrently.

Chapter 8:  Data Layer Guidelines 113

Category Relevant patterns
Transactions Capture Transaction Details. Create database objects, such as triggers and

shadow tables, to record changes to all tables belonging to the transaction.
Coarse Grained Lock. Lock a set of related objects with a single lock.
Implicit Lock. Use framework code to acquire locks on behalf of code that ac-
cesses shared resources.
Optimistic Offline Lock. Ensure that changes made by one session do not conflict
with changes made by another session.
Pessimistic Offline Lock. Prevent conflicts by forcing a transaction to obtain a lock
on data before using it.
Transaction Script. Organize the business logic for each transaction in a single
procedure, making calls directly to the database or through a thin database
wrapper.

For more information on the Domain Model, Table Module, Coarse-Grained
Lock, Implicit Lock, Transaction Script, Active Record, Data Mapper, Data Transfer
Object, Optimistic Offline Locking, Pessimistic Offline Locking, Query Object,
Repository, Row Data Gateway, and Table Data Gateway patterns, see Fowler,
Martin. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.
Or at http://martinfowler.com/eaaCatalog/.

For more information on the Capture Transaction Details pattern, see “Data Patterns”
at http://msdn.microsoft.com/en-us/library/ms998446.aspx.

Additional Resources
To more easily access Web resources on general data access guidelines and
information, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 “.NET Data Access Architecture Guide” at

http://msdn.microsoft.com/en-us/library/ms978510.aspx.
l	 “Concurrency Control” at

http://msdn.microsoft.com/en-us/library/ms978457.aspx.
l	 “Data Patterns” at http://msdn.microsoft.com/en-us/library/ms998446.aspx.
l	 “Designing Data Tier Components and Passing Data Through Tiers” at

http://msdn.microsoft.com/en-us/library/ms978496.aspx.
l	 “Typing, storage, reading, and writing BLOBs” at

http://msdn.microsoft.com/en-us/library/ms978510.aspx#daag_handlingblobs.
l	 “Using stored procedures instead of SQL statements” at

http://msdn.microsoft.com/en-us/library/ms978510.aspx.
l	 “NHibernate Forge” community site at http://nhforge.org/Default.aspx.

http://martinfowler.com/eaaCatalog/
http://msdn.microsoft.com/en-us/library/ms998446.aspx
http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/ms978510.aspx
http://msdn.microsoft.com/en-us/library/ms978457.aspx
http://msdn.microsoft.com/en-us/library/ms998446.aspx
http://msdn.microsoft.com/en-us/library/ms978496.aspx
http://msdn.microsoft.com/en-us/library/ms978510.aspx#daag_handlingblobs
http://msdn.microsoft.com/en-us/library/ms978510.aspx
http://nhforge.org/Default.aspx

9
Service Layer Guidelines

Overview
When providing application functionality through services, it is important to separate
the service functionality into a separate service layer. This chapter will help you to
understand how the service layer fits into the application architecture, and learn the
steps for designing the service layer. This includes guidance on the common issues
you face when designing the service layer, and the key patterns and technology con-
siderations for the service layer.

Within the service layer, you define and implement the service interface and the
data contracts (or message types). One of the more important concepts to keep in
mind is that a service should never expose details of the internal processes or the
business entities used within the application. In particular, you should ensure that
your business layer entities do not unduly influence your data contracts. The service
layer should provide translator components that translate data formats between the
business layer entities and the data contracts.

Figure 1 shows how a service layer fits into the overall design of your application.

	 Contents

9	115

Service Layer Guidelines	 115
Overview. 115
Design Considerations. 117
Specific Design Issues. 118

Authentication. 119
Authorization. 119
Communication. 120
Exception Management . 120
Messaging Channels. 121
Message Construction . 121
Message Endpoint . 122
Message Protection . 122
Message Routing. 123
Message Transformation . 123
Service Interface. 124
Validation. 124

REST and SOAP . 125
Design Considerations for REST. 126
Design Considerations for SOAP . 127

Technology Considerations. 127
Deployment Considerations . 128
Design Steps for the Service Layer. 129
Relevant Design Patterns . 130
Additional Resources. 133

.NET Application Architecture Guide, 2nd Edition116

Figure 1
Overall view of a typical application showing the service layer

The services layer will usually include the following:
l	 Service interfaces.  Services expose a service interface to which all inbound

messages are sent. You can think of a service interface as a façade that exposes
the business logic implemented in the application (typically, logic in the busi-
ness layer) to potential consumers.

Chapter 9:  Service Layer Guidelines 117

l	 Message types.  When exchanging data across the service layer, data structures
are wrapped by message structures that support different types of operations. The
services layer will also usually include data types and contracts that define the data
types used in messages.

For more information about the components commonly used in the services layer, see
Chapter 10, “Component Guidelines.” For more information about designing service
interfaces, see Chapter 18, “Communication and Messaging.”

Design Considerations
There are many factors that you should consider when designing the service layer.
Many of these design considerations relate to proven practices concerned with
layered architectures. However, with a service, you must take into account message-
related factors. The main thing to consider is that a service uses message-based
interaction, typically over a network, which is inherently slower than direct in-
process interaction, and that interaction between the service and its consumers
will typically be asynchronous. In addition, messages passed between a service
and a consumer can be routed, modified, delivered in a different order to which
they were sent, or even lost if a guaranteed delivery mechanism is not in use.
These considerations require a design that will account for the nondeterministic
behavior of messaging. Consider the following guidelines when designing the
service layer:
l	 Design services to be application-scoped and not component-scoped.  Service

operations should be coarse grained and focused on application operations.
Defining service operations that are too fine grained can result in performance
or scalability problems. However, you should ensure that the service does not
return very large unbounded volumes of data. For example, for a service that
may return a large amount of demographic data, you should provide an opera-
tion that returns an appropriately sized subset of the data rather than returning
all of the data in one call. You should ensure that the size of the subset is appro-
priate for your service and its consumers.

l	 Design services and data contracts for extensibility and without the assumption
that you know who the client is.  In other words, data contracts should be designed
so that, if possible, you can extend them without affecting consumers of the service.
However, to avoid excessive complexity or to manage changes that are not back-
wards compatible, you may have to create new versions of the service interface that
operate alongside existing versions instead. You should not make assumptions about
the client, or about how they plan to use the service that you provide.

.NET Application Architecture Guide, 2nd Edition118

l	 Design only for the service contract.  The service layer should implement and
provide only the functionality detailed in the service contract, and the internal
implementation and details of a service should never be exposed to external
consumers. Also, if you need to change the service contract to include new
functionality implemented by a service, and the new operations and types are
not backward compatible with the existing contracts, consider versioning your
contracts. Define new operations exposed by the service in a new version of a
service contract, and define and new schema types in a new version of the data
contract. For information about designing message contracts, see Chapter 18,
“Communication and Messaging.”

l	 Separate service layer concerns from infrastructure concerns.  Code to manage
crosscutting concerns should not be combined with service logic code within the
service layer. Doing so can lead to implementations that are difficult to extend and
maintain. Generally, you should implement code to manage crosscutting concerns
in separate components, and access these components from your business layer
components.

l	 Compose entities from standard elements.  When possible, use standard elements
to compose the complex types and data transfer objects used by your service.

l	 Design to assume the possibility of invalid requests.  You should never assume
that all messages received by the service are valid. Implement validation logic to
check all input based on value, range, and type; and reject or sanitize all invalid data.
For more information about validation, see Chapter 17, “Crosscutting Concerns.”

l	 Ensure that the service can detect and manage repeated messages (idempotency). 
When designing the service, implement well-known patterns such as Idempotent
Receiver and Replay Protection to ensure that duplicate messages are not processed,
or that repeated processing has no effect on the result.

l	 Ensure that the service can manage messages arriving out of order (commutativity). 
If it is possible that messages will arrive out of order, implement a design that will
store messages and then process them in the correct order.

Specific Design Issues
You must consider several common issues as you develop your service layer design.
These issues can be categorized into specific areas of the design. The following sections
provide guidelines for each category where mistakes are most often made:
l	 Authentication
l	 Authorization
l	 Communication
l	 Exception Management
l	 Messaging Channels

Chapter 9:  Service Layer Guidelines 119

l	 Message Construction
l	 Message Endpoint
l	 Message Protection
l	 Message Routing
l	 Message Transformation
l	 Service Interface
l	 Validation

For more information about message protocols, asynchronous communication, inter-
operability, performance, and technology options, see Chapter 18, “Communication
and Messaging.”

Authentication
Authentication is used to determine the identity of the service consumer. Designing an
effective authentication strategy for your service layer is important for the security
and reliability of your application. Failure to design a good authentication strategy
can leave your application vulnerable to spoofing attacks, dictionary attacks, session
hijacking, and other types of attacks. Consider the following guidelines when
designing an authentication strategy:
l	 Identify a suitable mechanism for securely authenticating users, taking advantage

of the features of the underlying platform where possible, and determine the trust
boundaries at which authentication must be applied.

l	 Consider the implications of using different trust settings for executing service code.
l	 Ensure that secure protocols such as Secure Sockets Layer (SSL) are used when

you use Basic authentication, or when credentials are passed as plain text. Con-
sider using message-level security mechanisms supported by the WS* standards
(Web Services Security, Web Services Trust, and Web Services SecureConversation)
with SOAP messages.

Authorization
Authorization is used to determine which resources or actions can be accessed by
an authenticated service consumer. Designing an effective authorization strategy
for your service layer is important for the security and reliability of your applica-
tion. Failure to design a good authorization strategy can leave your application
vulnerable to information disclosure, data tampering, and elevation of privileges.
Your authorization strategy should typically represent coarse grained actions or
activities rather than the resources needed to carry them out. Consider the follow-
ing guidelines when designing an authorization strategy:
l	 Set appropriate access permissions on resources for users, groups, and roles.

Execute services under the most restrictive account that is appropriate.

.NET Application Architecture Guide, 2nd Edition120

l	 Avoid highly granular authorization if possible in order to maintain the effective-
ness and manageability of your authorization strategy.

l	 Use URL authorization and/or file authorization when using Windows authen-
tication.

l	 Where appropriate, restrict access to publicly accessible Web methods by using
declarative principle permission demands.

Communication
When designing the communication strategy for your service, the protocol you
choose should be based on the deployment scenario your service must support.
Consider the following guidelines when designing a communication strategy:
l	 Analyze your communication requirements and determine if you need request-

response or duplex communication, and if message communication must be one
way or two way. Also, determine whether you need to make asynchronous calls.

l	 Determine how to handle unreliable or intermittent communication, perhaps by
implementing a service agent or using a reliable message queuing system such as
Message Queuing.

l	 If the service will be deployed within a closed network, consider using Transmis-
sion Control Protocol (TCP) to maximize communication efficiency. If the service
will be deployed into a public facing network, consider using the Hypertext
Transfer Protocol (HTTP).

l	 Consider using dynamic URL behavior with configured endpoints for maximum
flexibility. For example, use configuration or a directory service such as Universal
Discovery Description and Integration (UDDI) where practical rather than hard
coding endpoint URLs.

l	 Validate endpoint addresses in messages, and ensure you protect sensitive data in
messages.

Exception Management
Designing an effective exception management strategy for your service layer is impor-
tant for the security and reliability of your application. Failure to do so can make your
application vulnerable to denial of service (DoS) attacks, and can also allow it to reveal
sensitive and critical information. Raising and handling exceptions is an expensive
operation, so it is important for the design to take into account the potential impact on
performance. A good approach is to design a centralized exception management and
logging mechanism, and consider providing access points that support instrumenta-
tion and centralized monitoring in order to assist system administrators. Consider the
following guidelines when designing an exception management strategy:
l	 Catch only exceptions that you can handle, and consider how you will manage

message integrity when an exception occurs. Ensure that you correctly handle
unhandled exceptions, and avoid using exceptions to control business logic.

Chapter 9:  Service Layer Guidelines 121

l	 Use SOAP Fault elements or custom extensions to return exception details to
the caller.

l	 Ensure that you log exceptions, and that you do not reveal sensitive information
in exception messages or log files.

For more information on exception management techniques, see Chapter 17,
“Crosscutting Concerns.”

Messaging Channels
Communication between a service and its consumers consists of sending data through
a channel. In most cases, you will use channels provided by your chosen service infra-
structure, such as Windows Communication Foundation (WCF). You must understand
which patterns your chosen infrastructure supports, and determine the appropriate
channel for interaction with consumers of the service. Consider the following guide-
lines when designing message channels:
l	 Determine appropriate patterns for messaging channels, such as Channel Adapter,

Messaging Bus, and Messaging Bridge and choose those appropriate for your
scenario. Ensure that you also choose an appropriate service infrastructure com-
patible with requirements.

l	 Determine how you will intercept and inspect the data between endpoints if
necessary.

l	 Ensure that you handle exception conditions on the channel.
l	 Consider how you will provide access to clients that do not support messaging.

Message Construction
When data is exchanged between a service and consumer, it must be wrapped inside
a message. The format of that message is based on the types of operations you must
support. For example, you may be exchanging documents, executing commands, or
raising events. Consider the following guidelines when designing a message con-
struction strategy:
l	 Determine the appropriate patterns for message constructions, such as

Command, Document, Event, and Request-Reply and choose those appropriate
for your scenario.

l	 Divide very large quantities of data into smaller chunks, and send them in
sequence.

l	 When using slow message delivery channels, consider including expiration
information in messages that are time sensitive. The service should ignore
expired messages.

.NET Application Architecture Guide, 2nd Edition122

Message Endpoint
The message endpoint represents the connection that applications use to interact with
your service. The implementation of your service interface represents the message end-
point. When designing the service implementation, you must consider the possibility
that duplicate or invalid messages can be sent to your service. Consider the following
guidelines when designing message endpoints:
l	 Determine relevant patterns for message endpoints, such as Gateway, Mapper,

Competing Consumers, and Message Dispatcher and choose those appropriate
for your scenario.

l	 Determine if you should accept all messages, or whether you need to implement
a filter to handle specific messages.

l	 Design for idempotency in your message interface. Idempotency is the situation
where you could receive duplicate messages from the same consumer, but should
handle only one. In other words, an idempotent endpoint will guarantee that only
one message will be handled, and all duplicate messages will be ignored.

l	 Design for commutativity in your message interface. Commutativity is related to
the order in which messages are received. In some cases, you may need to store
inbound messages so that they can be processed in the correct order.

l	 Design for disconnected scenarios. For example, you might need to support guar-
anteed delivery by caching or storing messages for later delivery. Ensure you do
not attempt to subscribe to endpoints while disconnected.

Message Protection
When transmitting sensitive data between a service and its consumer, you should
design for message protection. You can use transport layer protection (such as IPSec
or SSL) or message-based protection (such as encryption and digital signatures).
Consider the following guidelines when designing message protection:
l	 In most cases, you should consider using message-based security techniques to

protect message content. Message-based security helps to protect sensitive data
in messages by encrypting it, and a digital signature will help to protect against
repudiation and tampering of the messages. However, keep in mind that each
layer of security will affect performance.

l	 If interactions between the service and the consumer are not routed through inter-
mediaries, such as other servers and routers, you can use transport layer security
such as IPSec or SSL. However, if the message passes through one or more inter-
mediaries, always use message-based security. With transport layer security, the
message is decrypted and then encrypted at each intermediary through which it
passes—which represents a security risk.

Chapter 9:  Service Layer Guidelines 123

l	 For maximum security, consider using both transport layer and message-based
security in your design. Transport layer security will help to protect the headers
information that cannot be encrypted using message based security.

Message Routing
A message router is used to decouple a service consumer from the service implemen-
tation. There are three main types of routers that you might use: simple, composed,
and pattern-based. Simple routers use a single router to determine the final destina-
tion of a message. Composed routers combine multiple simple routers to handle
more complex message flows. Architectural patterns are used to describe different
routing styles based on simple message routers. Consider the following guidelines
when designing message routing:
l	 Determine relevant patterns for message routing, such as Aggregator, Content-

Based Router, Dynamic Router, and Message Filter and choose those appropriate
for your scenario.

l	 If sequential messages are sent from a consumer, the router must ensure that they
are all delivered to the same endpoint in the required order (commutativity).

l	 A message router may inspect information in the message to determine how to
route the message. As a result, you must ensure that the router can access that in-
formation. You may need to add routing information to the header. If you encrypt
the message you must ensure that the unencrypted header contains the informa-
tion required to route the message.

Message Transformation
When passing messages between a service and consumer, there are many cases
where the message must be transformed into a format that the consumer can under-
stand. You can use adapters to provide access to the message channel for clients that
do not support messaging, and translators to convert the message data into a format
that each consumer understands. Consider the following guidelines when designing
message transformation:
l	 Determine the requirements and locations for performing transformations. Take

into account the performance overhead of transformation, and try to minimize
the number of transformations you execute.

l	 Determine relevant patterns for message transformation, such as Canonical Data
Mapper, Envelope Wrapper, and Normalizer. However, use the Canonical Data Map-
per model only when this is necessary.

l	 Use metadata to define the message format.
l	 Consider using an external repository to store the metadata.

.NET Application Architecture Guide, 2nd Edition124

Service Interface
The service interface represents the contract exposed by your service. The contract
defines the operations that your service supports and their associated parameters
and data transfer objects. When designing a service interface, you should consider
boundaries that must be crossed and the type of consumers that will access your
service. For example, service operations should be coarse grained and application
scoped. One of the biggest mistakes with service interface design is to treat the
service as a component with fine-grained operations. This results in a design that
requires multiple calls across physical or process boundaries, which can decrease
performance and increase latency. Consider the following guidelines when
designing a service interface:
l	 Consider using a coarse-grained interface to batch requests and minimize the

number of calls over the network.
l	 Avoid designing service interfaces in such a way that changes to the business

logic will affect the interface. However, if business requirement change, there
may be no other options.

l	 Do not implement business rules in a service interface.
l	 Consider using standard formats for parameters to provide maximum compat-

ibility with different types of clients. Do not make assumptions in your interface
design about the way that clients will use the service.

l	 Do not use object inheritance to implement versioning for the service interface.
l	 Disable tracing and debug-mode compilation for all services, except during

development and testing.

Validation
To protect the service layer, you should validate all requests received by it. Failure to do
so can leave your application vulnerable to both malicious attacks and errors caused by
invalid input. There is no comprehensive definition of what constitutes a valid input or
malicious input. In addition, how your application uses input influences the risk of the
exploit. Consider the following guidelines when designing a validation strategy:
l	 Consider centralizing your validation approach to maximize testability and reuse.
l	 Constrain, reject, and sanitize all message content, including parameters. Validate

for length, range, format, and type.
l	 Consider using schemas to validate messages. For information about validation

using schemas, see "Message Validation" at
http://msdn.microsoft.com/en-us/library/cc949065.aspx and "Input/Data
Validation" at http://msdn.microsoft.com/en-us/library/cc949061.aspx.

http://msdn.microsoft.com/en-us/library/cc949065.aspx
http://msdn.microsoft.com/en-us/library/cc949061.aspx

Chapter 9:  Service Layer Guidelines 125

REST and SOAP
Representational State Transfer (REST) and SOAP represent two different styles
for implementing services. Technically, REST is an architectural pattern built with
simple verbs that overlay well on HTTP. While REST architectural principles could
be applied with protocols other than HTTP, in practice REST implementations are
used in conjunction with HTTP. SOAP is an XML-based messaging protocol that
can be used with any communication protocol, including HTTP.

The main difference between these two approaches is the way that the service state
is maintained. Do not think of the service state as the application or session state;
instead, think of it as the different states that an application passes through during
its lifetime. With SOAP, movement through different states can be accomplished
through interaction with a single service endpoint, which may encapsulate and
provide access to many operations and message types.

With REST, a limited set of operations is allowed, and these operations are applied
to resources represented and addressable by URIs (HTTP addresses). The messages
capture the current or required state of the resource. REST works well with Web
applications, so you can take advantage of HTTP support for non-XML MIME
types or streaming content from a service request. Service consumers navigating
through REST resources interact with URIs in the same way as a human user might
navigate through and interact with Web pages.

While both REST and SOAP can be used with most service implementations, the REST
approach is often better suited for publicly accessible services or cases where a service
can be accessed by unknown consumers. SOAP is much better suited to implementing
a range of procedural interactions, such as an interface between layers of an application.
With SOAP, you are not restricted to HTTP. The WS-* standards, which can be utilized
in SOAP, provide a standard and therefore interoperable method of dealing with com-
mon messaging issues such as security, transactions, addressing, and reliability. REST
can also provide the same type of functionality, but you must often create a custom
mechanism because only a few standards currently exist for these areas.

In general, you can use the same principles when designing SOAP based interactions
as you do for stateless REST interactions. Both approaches exchange data (the payload)
using verbs. In the case of SOAP, the set of verbs is open ended and is defined by the
service endpoint. In the case of REST, the set of verbs is constrained to preset verbs that
mirror the HTTP protocol. Consider the following guidelines when choosing between
REST and SOAP:
l	 SOAP is a protocol that provides a basic messaging framework upon which abstract

layers can be built, and is commonly used as an RPC framework that passes calls
and responses over networks using XML-formatted messages.

.NET Application Architecture Guide, 2nd Edition126

l	 SOAP handles issues such as security and addressing through its internal protocol
implementation, but requires a SOAP stack to be available.

l	 REST is a technique that can utilize other protocols, such as JavaScript Object
Notation (JSON), the Atom publishing protocol, and custom Plain Old XML (POX)
formats.

l	 REST exposes an application and data as a state machine, not just a service end-
point. It allows standard HTTP calls such as GET and PUT to be used to query
and modify the state of the system. REST is stateless by nature, meaning that
each individual request sent from the client to the server must contain all of the
information necessary to understand the request since the server does not store
the session state data.

Design Considerations for REST
REST represents an architecture style for distributed systems, and is designed to reduce
complexity by dividing a system into resources. The resources and the operations
supported by a resource are represented and exposed as a set of URIs over the HTTP
protocol. Consider the following guidelines when designing REST resources:
l	 Identify and categorize resources that will be available to clients.
l	 Choose an approach for resource representation. A good practice would be to use

meaningful names for REST starting points and unique identifiers for specific
resource instances. For example, http://www.contoso.com/employee/ represents
an employee starting point. http://www.contoso.com/employee/smithah01 uses
an employee ID to indicate a specific employee.

l	 Decide if multiple representations should be supported for different resources.
For example, you can decide if the resource should support an XML, Atom,
or JSON format and make it part of the resource request. A resource could be
exposed as both (for example, http://www.contoso.com/example.atom and
http://www.contoso.com/example.json).

l	 Decide if multiple views should be supported for different resources. For
example, decide if the resource should support GET and POST operations,
or only GET operations. Avoid overuse of POST operations if possible, and
avoid putting actions in the URI.

l	 Do not implement the maintenance of user session state within a service, and do
not attempt to use hypertext (such as hidden controls in Web pages) to manage
state. For example, when users submit requests such as adding an item to a
shopping cart, store the data in a persistent state store such as a database.

http://www.contoso.com/employee/
http://www.contoso.com/employee/smithah01
http://www.contoso.com/example.atom
http://www.contoso.com/example.json

Chapter 9:  Service Layer Guidelines 127

Design Considerations for SOAP
SOAP is a message-based protocol that is used to implement the message layer of a
service. The message is composed of an envelope that contains a header and body.
The header can be used to provide information that is external to the operation being
performed by the service. For example, a header may contain security, transaction,
or routing information. The body contains contracts, in the form of XML schemas,
which are used to implement the service. Consider the following guidelines when
designing SOAP messages:
l	 Determine how you will handle faults and errors, and how you will return

appropriate error information to clients. For more information, see “Exception
Handling in Service Oriented Applications” at http://msdn.microsoft.com/en-us/
library/cc304819.aspx.

l	 Define the schemas for the operations that can be performed by a service, the
data structures passed with a service request, and the errors or faults that can be
returned from a service request.

l	 Choose the appropriate security model for your services. For more information,
see “Improving Web Services Security: Scenarios and Implementation Guidance for
WCF” at http://msdn.microsoft.com/en-us/library/cc949034.aspx.

l	 Avoid using complex types in message schemas. Try to use only simple types to
maximize interoperability.

For more information about REST and SOAP, see Chapter 25, “Designing Service
Applications.”

Technology Considerations
The following guidelines will help you to choose an appropriate implementation
technology for your service layer:
l	 Consider using ASP.NET Web services (ASMX) for simplicity, but only when a

Web server running Microsoft Internet Information Services (IIS) is available.
l	 Consider using WCF services if you require advanced features such as reliable

sessions and transactions, activity tracing, message logging, performance
counters, and support for multiple transport protocols.

l	 If you decide to use ASMX for your service, and you require message-based
security and binary data transfer, you may consider using Web Service
Extensions (WSE). However, in general, you should consider moving to
WCF if you require WSE functionality.

http://msdn.microsoft.com/en-us/
http://msdn.microsoft.com/en-us/library/cc949034.aspx

.NET Application Architecture Guide, 2nd Edition128

l	 If you decide to use WCF for your service:
l	 Consider using HTTP transport based on SOAP specifications if you want

interoperability with non-WCF or non-Windows clients.
l	 Consider using the TCP protocol and binary message encoding with

transport security and Windows authentication if you want to support
clients within an intranet.

l	 Consider using the named pipes protocol and binary message encoding if
you want to support WCF clients on the same machine.

l	 Consider defining service contracts that use an explicit message wrapper
instead of an implicit one. This allows you to define message contracts as
inputs and outputs for your operations, which means that you can extend
the data contracts included in the message contract without affecting the
service contract.

For more information about messaging technology options, see Chapter 18,
“Communication and Messaging.”

Deployment Considerations
The service layer can be deployed on the same tier as other layers of the application, or
on a separate tier in cases where performance and isolation requirements demand this.
However, in most cases the service layer will reside on the same physical tier as the
business layer in order to minimize the performance impact when exposing business
functionality. Consider the following guidelines when deploying the service layer:
l	 Deploy the service layer to the same tier as the business layer to improve appli-

cation performance, unless performance and security issues inherent within the
production environment prevent this.

l	 If the service is located on the same physical tier as the service consumer, consider
using the named pipes or shared memory protocols.

l	 If the service is accessed only by other applications within a local network, consider
using TCP for communications.

l	 If the service is publicly accessible from the Internet, use HTTP for your transport
protocol.

For more information on deployment patterns, see Chapter 19, “Physical Tiers and
Deployment.”

Chapter 9:  Service Layer Guidelines 129

Design Steps for the Service Layer
The approach used to design a service layer starts by defining the service interface,
which consists of the contracts that you plan to expose from your service. This
is commonly referred to as Contract First Design. Once the service interface has
been defined, the next step is to design the service implementation; which is used
to translate data contracts into business entities and to interact with the business
layer. The following basic steps can be used when designing a service layer:

	 1.	 Define the data and message contracts that represent the schema used for
messages.

	 2.	 Define the service contracts that represent operations supported by your service.
	 3.	 Define the fault contracts that return error information to consumers of the

service.
	 4.	 Design transformation objects that translate between business entities and data

contracts.
	 5.	 Design the abstraction approach used to interact with the business layer.

You can use design tools such as the patterns & practices Web Service Software
Factory: Modeling Edition (also known as the Service Factory) to generate Web
services. This is an integrated collection of resources designed to help you quickly
and consistently build Web services that adhere to well-known architecture and
design patterns. For more information, see “Web Service Software Factory: Modeling
Edition” at http://msdn.microsoft.com/en-us/library/cc487895.aspx.

For information about designing message contracts and Contract-First Design, see
Chapter 18, “Communication and Messaging.” For information about abstraction in
layered architectures, see Chapter 5, “Layered Application Guidelines.”

http://msdn.microsoft.com/en-us/library/cc487895.aspx

.NET Application Architecture Guide, 2nd Edition130

Relevant Design Patterns
Key patterns are organized by categories as shown in the following table. Consider
using these patterns when making design decisions for each category.

Category Relevant patterns
Communication Duplex. Two-way message communication where both the service and the cli-

ent send messages to each other independently, irrespective of the use of the
One-Way or the Request-Reply pattern.
Fire and Forget. A one-way message communication mechanism used when no
response is expected.
Reliable Sessions. End to end reliable transfer of messages between a source
and a destination, regardless of the number or type of intermediaries that sepa-
rate the endpoints.
Request Response. A two-way message communication mechanism where the
client expects to receive a response for every message sent.

Messaging
Channels

Channel Adapter. A component that can access the application’s API or data
and publish messages on a channel based on this data, and can receive mes-
sages and invoke functionality inside the application.
Message Bus. Structure the connecting middleware between applications as a
communication bus that enables the applications to work together using mes-
saging.
Messaging Bridge. A component that connects messaging systems and repli-
cates messages between these systems.
Point-to-Point Channel. Send a message on a Point-to-Point Channel to ensure
that only one receiver will receive a particular message.
Publish-Subscribe Channel. Create a mechanism to send messages only
to the applications that are interested in receiving the messages, without
knowing the identity of the receivers.

Message
Construction

Command Message. A message structure used to support commands.
Document Message. A structure used to transfer documents or a data
structure reliably between applications.
Event Message. A structure that provides reliable asynchronous event
notification between applications.
Request-Reply. Use separate channels to send the request and the reply.

Chapter 9:  Service Layer Guidelines 131

Category Relevant patterns
Message
Endpoint

Competing Consumer. Set multiple consumers on a single message queue and
have them compete for the right to process the messages, which allows the mes-
saging client to process multiple messages concurrently.
Durable Subscriber. In a disconnected scenario, messages are saved and then
made accessible to the client when connecting to the message channel in order
to provide guaranteed delivery.
Idempotent Receiver. Ensure that a service will only handle a message once.
Message Dispatcher. A component that sends messages to multiple consumers.
Messaging Gateway. Encapsulate message-based calls into a single interface in
order to separate it from the rest of the application code.
Messaging Mapper. Transform requests into business objects for
incoming messages, and reverse the process to convert business objects
into response messages.
Polling Consumer. A service consumer that checks the channel for messages at
regular intervals.
Selective Consumer. The service consumer uses filters to receive messages that
match specific criteria.
Service Activator. A service that receives asynchronous requests to invoke
operations in business components.
Transactional Client. A client that can implement transactions when interacting
with a service.

Message
Protection

Data Confidentiality. Use message-based encryption to protect sensitive data in
a message.
Data Integrity. Ensure that messages have not been tampered with in transit.
Data Origin Authentication. Validate the origin of a message as an advanced
form of data integrity.
Exception Shielding. Prevent a service from exposing information about its inter-
nal implementation when an exception occurs.
Federation. An integrated view of information distributed across multiple ser-
vices and consumers.
Replay Protection. Enforce message idempotency by preventing an attacker
from intercepting a message and executing it multiple times.
Validation. Check the content and values in messages to protect a service from
malformed or malicious content.

(continued)

.NET Application Architecture Guide, 2nd Edition132

Category Relevant patterns
Message
Routing

Aggregator. A filter that collects and stores individual related messages, com-
bines these messages, and publishes a single aggregated message to the output
channel for further processing.
Content-Based Router. Route each message to the correct consumer based on
the contents of the message; such as existence of fields, specified field values,
and so on.
Dynamic Router. A component that dynamically routes the message to a con-
sumer after evaluating the conditions/rules specified by the consumer.
Message Broker (Hub and Spoke). A central component that communicates
with multiple applications to receive messages from multiple sources, deter-
mines the correct destination, and route the message to the correct channel.
Message Filter. Prevent undesired messages, based on a set of criteria, from
being transmitted over a channel to a consumer.
Process Manager. A component that enables routing of messages through mul-
tiple steps in a workflow.

Message
Transformation

Canonical Data Mapper. Use a common data format to perform translations
between two disparate data formats.
Claim Check. Retrieve data from a persistent store when required.
Content Enricher. Enrich messages with missing information obtained from an
external data source.
Content Filter. Remove sensitive data from a message and minimize network
traffic by removing unnecessary data from a message.
Envelope Wrapper. A wrapper for messages that contains header information
used, for example, to protect, route, or authenticate a message.
Normalizer. Convert or transform data into a common interchange format when
organizations use different formats.

REST Behavior. Applies to resources that carry out operations. These resources gen-
erally contain no state of their own, and only support the POST operation.
Container. Builds on the entity pattern by providing the means to dynamically
add and/or update nested resources.
Entity. Resources that can be read with a GET operation, but can only be
changed by PUT and DELETE operations.
Store. Allows entries to be created and updated with the PUT operation.
Transaction. Resources that support transactional operations.

Service
Interface

Façade. Implement a unified interface to a set of operations in order to provide a
simplified interface and reduce coupling between systems.
Remote Façade. Create a high level unified interface to a set of operations or
processes in a remote subsystem by providing a coarse-grained interface over
fine-grained operations in order to make that subsystem easier to use, and to
minimize calls across the network.
Service Interface. A programmatic interface that other systems can use to inter-
act with the service.

SOAP Data Contract. A schema that defines data structures passed with a service
request.
Fault Contracts. A schema that defines errors or faults that can be returned
from a service request.
Service Contract. A schema that defines operations that the service can perform.

Chapter 9:  Service Layer Guidelines 133

For more information on the Duplex and Request Response patterns, see “Designing
Service Contracts” at http://msdn.microsoft.com/en-us/library/ms733070.aspx.

For more information on the Request-Reply pattern, see “Request-Reply” at
http://www.eaipatterns.com/RequestReply.html.

For more information on the Command, Document Message, Event Message,
Durable Subscriber, Idempotent Receiver, Polling Consumer, and Transactional
Client patterns, see “Messaging Patterns in Service-Oriented Architecture, Part I” at
http://msdn.microsoft.com/en-us/library/aa480027.aspx.

For more information on the Data Confidentiality and Data Origin
Authentication patterns, see “Chapter 2: Message Protection Patterns” at
http://msdn.microsoft.com/en-us/library/aa480573.aspx.

For more information on the Replay Detection, Exception Shielding, and
Validation patterns, see “Chapter 5: Service Boundary Protection Patterns” at
http://msdn.microsoft.com/en-us/library/aa480597.aspx.

For more information on the Claim Check, Content Enricher, Content Filter,
and Envelope Wrapper patterns, see “Messaging Patterns in Service Oriented
Architecture, Part 2” at http://msdn.microsoft.com/en-us/library/aa480061.aspx.

For more information on the Remote Façade pattern, see “P of EAA: Remote Façade” at
http://martinfowler.com/eaaCatalog/remoteFacade.html.

For more information on REST patterns such as Behavior, Container, and Entity, see
“REST Patterns” at http://wiki.developer.mindtouch.com/REST/REST_Patterns.

For more information on the Aggregator, Content-Based Router, Publish-Subscribe,
Message Bus, and Point-to-Point patterns, see “Messaging patterns in Service-Oriented
Architecture, Part I” at http://msdn.microsoft.com/en-us/library/aa480027.aspx.

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 “Enterprise Solution Patterns Using Microsoft .NET” at

http://msdn.microsoft.com/en-us/library/ms998469.aspx.
l	 "Web Service Security Guidance” at

http://msdn.microsoft.com/en-us/library/aa480545.aspx.
l	 "Improving Web Services Security: Scenarios and Implementation Guidance for WCF” at

http://www.codeplex.com/WCFSecurityGuide.
l	 "WS-* Specifications” at http://www.ws-standards.com/ws-atomictransaction.asp.

http://msdn.microsoft.com/en-us/library/ms733070.aspx
http://www.eaipatterns.com/RequestReply.html
http://msdn.microsoft.com/en-us/library/aa480027.aspx
http://msdn.microsoft.com/en-us/library/aa480573.aspx
http://msdn.microsoft.com/en-us/library/aa480597.aspx
http://msdn.microsoft.com/en-us/library/aa480061.aspx
http://martinfowler.com/eaaCatalog/remoteFacade.html
http://wiki.developer.mindtouch.com/REST/REST_Patterns
http://msdn.microsoft.com/en-us/library/aa480027.aspx
http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/ms998469.aspx
http://msdn.microsoft.com/en-us/library/aa480545.aspx
http://www.codeplex.com/WCFSecurityGuide
http://www.ws-standards.com/ws-atomictransaction.asp

10
Component Guidelines

Overview
Components provide a way to isolate specific sets of functionality within units that
you can distribute and install separately from other functionality. This chapter con-
tains some general guidelines for creating components, and describes the types of
components commonly found in each layer of applications that are designed using
the layered approach described elsewhere in this guide. However, the techniques for
building components are generally applicable irrespective of the application structure.

General Guidelines for Component Design
When designing components for use in your applications, consider the following
general guidelines:
l	 Apply the SOLID design principles to the classes within your component. 

The SOLID principles are, briefly, the following:

l	 Single responsibility principle.  A class should have only responsibility.

l	 Open/closed principle.  Classes should be extensible without requiring
modification.

l	 Liskov substitution principle.  Subtypes must be substitutable for their
base types.

l	 Interface segregation principle.  Class interfaces should be client specific
and fine grained. Classes should expose separate interfaces for different
clients where the interface requirements differ.

l	 Dependency inversion principle.  Dependencies between classes should
be replaced by abstractions to allow top down design without requiring
design of low level modules first. Abstractions should not depend upon
details—details should depend upon abstractions.

	 Contents

10	 135

Component Guidelines	 135
Overview. 135
General Guidelines for Component Design. 135
Layered Component Distribution . 136
Presentation Layer Components. 138
Services Layer Components. 139
Business Layer Components. 139
Data Layer Components . 141
Crosscutting Components. 142
Relevant Design Patterns . 142
patterns & practices Offerings . 144
Additional Resources. 144

.NET Application Architecture Guide, 2nd Edition136

l	 Design components to be highly cohesive.  Do not overload components by
adding unrelated or mixed functionality. For example, always avoid mixing
data access logic and business logic within your business components. Where
functionality is cohesive, you can create assemblies that contain more than one
component and install components in the appropriate layers of your application—
even when the layers are physically separated.

l	 A component should not rely on internal details of other components.  Each
component or object should call a method of another object or component, and
that method should have information about how to process the request and, if
appropriate, how to route it to appropriate subcomponents or other components.
This helps to create an application that is more maintainable and adaptable.

l	 Understand how components will communicate with each other.  This requires
an understanding of the deployment scenarios your application must support.
You must determine if communication across physical boundaries or process
boundaries should be supported, or if all components will run within the same
process.

l	 Keep crosscutting code abstracted from the application-specific logic. 
Crosscutting code refers to code related to security, communications, or opera-
tional management such as logging and instrumentation. Mixing the code that
implements these functions with the component logic can lead to a design
that is difficult to extend and maintain.

l	 Apply the key principles of the component-based architectural style.  These
principles are that components should be reusable, replaceable, extensible,
encapsulated, independent, and not context specific. For information about
the component-based architectural style, see Chapter 3, “Architectural Patterns
and Styles.”

Layered Component Distribution
Each layer of an application will contain a series of components that implement the
functionality for that layer. These components should be cohesive and loosely coupled
to simplify reuse and maintenance. Figure 1 shows the types of components com-
monly found in each layer.

Chapter 10:  Component Guidelines 137

Figure 1
Types of components commonly found in each layer

The following sections describe the components shown in Figure 1.

.NET Application Architecture Guide, 2nd Edition138

Presentation Layer Components
Presentation layer components implement the functionality required to allow users
to interact with the application. The following types of components are commonly
found in the presentation layer:
l	 User Interface Components.  The specific user interface for the application is en-

capsulated into user interface (UI) components. These are the application’s visual
elements used to display information to the user and accept user input. UI com-
ponents designed to work in a Separated Presentation pattern implementation are
sometimes called Views. In most cases, their specific role is to present the user with
an interface that represents the application’s underlying data and logic in the most
appropriate way, and to interpret user input gestures and forward them to pre-
sentation logic components that define how the input affects the underlying data
and application state. In some cases, the user interface components may contain
logic that is specific to the user interface implementation. In general, however, they
should contain as little application logic as possible as this can affect maintainability
and reuse, and make them hard to unit test.

l	 Presentation Logic Components.  Presentation logic is the application code
that defines the logical behavior and structure of the application in a way that
is independent of any specific user interface implementation. Presentation logic
components are primarily concerned with implementing the application's use
cases (or user stories), and orchestrating the user’s interactions with the under-
lying logic and state of the application in a UI independent way. They are also
responsible for organizing data from the business layer in a consumable format
for the UI components; for example, they may aggregate data from multiple
sources, and transform data for display more easily. Presentation logic compo-
nents can be further subdivided into the following two categories:

l	 Presenter, Controller, Presentation Model, and ViewModel Components. 
Used when implementing the Separated Presentation pattern, these kinds
of components often encapsulate presentation logic within the presentation
layer. To maximize reuse opportunities and testability, these components
are not specific to any specific UI classes, elements, or controls.

l	 Presentation Entity Components.  These components encapsulate business
logic and data and make it easy for the UI and presentation logic compo-
nents in the presentation layer to consume; for example, by performing
data type conversion or by aggregating data from several sources. In some
cases, these are the business entities from the business layer consumed
directly by the presentation tier. In other cases, they may represent a subset
of the business entity components and be specifically designed to support
the presentation layer of the application. Presentation entities help to ensure
data consistency and validity in the presentation layer. In some separated
presentation patterns these components are sometimes referred to as models.

Chapter 10:  Component Guidelines 139

For more information about designing your presentation layer, see Chapter 6,
“Presentation Layer Guidelines.” For more information about designing presenta-
tion components, see Chapter 11, “Designing Presentation Components.”

Services Layer Components
Your application may expose a service layer to interact with clients or other systems
using. Services layer components provide other clients and applications with a way
to access business logic in the application, and make use of the functionality of the
application by passing messages to and from it over a communication channel. The
following types of components are commonly found in the services layer:
l	 Service Interfaces.  Services expose a service interface to which all inbound

messages are sent. The definition of the set of messages that must be exchanged
with a service in order for the service to perform a specific business task consti-
tutes a contract. You can think of a service interface as a façade that exposes the
business logic implemented in the application (typically, logic in the business
layer) to potential consumers.

l	 Message Types.  When exchanging data across the service layer, data structures
are wrapped by message structures that support different types of operations. For
example, you might have a Command message, a Document message, or another
type of message. These message types are the message contracts for communica-
tion between service consumers and providers. The services layer will usually also
expose data types and contracts that define the data types used in messages, and
isolate the internal data types from those contained in the message type. This
avoids exposure of internal data types to external consumers, which would cause
issues in terms of versioning the interface.

For more information about communication and messaging, see Chapter 18,
“Communication and Messaging.”

Business Layer Components
Business layer components implement the core functionality of the system, and
encapsulate the relevant business logic. The following types of components are
commonly found in the business layer:
l	 Application Façade.  This optional component typically provides a simplified

interface to the business logic components, often by combining multiple business
operations into a single operation that makes it easier to use the business logic,
and reduces dependencies because external callers do not need to know details
of the business components and relationships between them.

.NET Application Architecture Guide, 2nd Edition140

l	 Business Logic Components.  Business logic is defined as any application logic
that is concerned with the retrieval, processing, transformation, and management
of application data; application of business rules and policies; and ensuring data
consistency and validity. To maximize reuse opportunities, business logic compo-
nents should not contain any behavior or application logic that is specific to a use
case or user story. Business logic components can be further subdivided into the
following two categories:

l	 Business Workflow Components.  After the UI components collect input
from the user and pass it to the business layer, the application can use this
input to perform a business process. Many business processes involve mul-
tiple steps that must be performed in the correct order, and may interact
with each other through an orchestration. Business workflow components
define and coordinate long-running, multistep business processes, and can
be implemented using business process management tools. Business work-
flow components work with business process components that instantiate
and perform operations on workflow components. For more information
on business workflow components, see Chapter 14, “Designing Workflow
Components.”

l	 Business Entity Components.  Business entities, or—more generally—
business objects, encapsulate the business logic and data necessary to
represent real world elements, such as Customers or Orders, within your
application. They store data values and expose them through properties;
contain and manage business data used by the application; and provide
stateful programmatic access to the business data and related functional-
ity. Business entities also validate the data contained within the entity
and encapsulate business logic to ensure consistency and to implement
business rules and behavior. For more information about business entity
components, see Chapter 13, “Designing Business Entities.”

There are many cases where business entities must be accessible to components and
services in both the business layer and the data layer. For example, business entities
can be mapped to the data source and accessed by business components. If the layers
are located on the same physical tier, the business entities can be shared directly
through references. However, you should still separate business logic from data access
logic. You can achieve this by moving business entities into a separate assembly that
can be shared by both the business services and data services assemblies. This is similar
to using a dependency inversion pattern, where business entities are decoupled from
the business and data layer so that both business and data layers are dependent on
business entities as a shared contract.

Chapter 10:  Component Guidelines 141

For more information about designing your business layer, see Chapter 7, “Business
Layer Guidelines.” For more information about designing business components, see
Chapter 12, “Designing Business Components.” For more information about designing
business entity components, see Chapter 13, “Designing Business Entities.” For more
information about designing workflow components, see Chapter 14, “Designing
Workflow Components.”

Data Layer Components
Data layer components provide access to data that is hosted within the boundaries of
the system, and to data exposed by other networked systems. The following types
of components are commonly found in the data layer:
l	 Data Access Components.  These components abstract the logic required to access

the underlying data stores. Most data access tasks require common logic that can
be extracted and implemented in separate reusable helper components or a suitable
support framework. This can reduce the complexity of the data access components
and centralize the logic, which simplifies maintenance. Other tasks that are common
across data layer components, and not specific to any set of components, may be
implemented as separate utility components. Helper and utility components are
often encapsulated in a library or framework so that they can easily be reused in
other applications.

l	 Service Agents.  When a business component must use functionality provided by
an external service, you might need to implement code to manage the semantics of
communicating with that particular service. Service agents isolate the idiosyncra-
sies of calling diverse services from your application, and can provide additional
services such as caching, offline support, and basic mapping between the format
of the data exposed by the service and the format your application requires.

For more information about designing your data layer, see Chapter 8, “Data Layer
Guidelines.” For more information about designing data components, see Chapter 15,
“Designing Data Components.”

.NET Application Architecture Guide, 2nd Edition142

Crosscutting Components
Many tasks carried out by the code of an application are required in more than
one layer. Crosscutting components implement specific types of functionality that
can be accessed from components in any layer. The following are common types of
crosscutting components:
l	 Components for implementing security.  These may include components that

perform authentication, authorization, and validation.
l	 Components for implementing operational management tasks.  These may

include components that implement exception handling policies, logging, perfor-
mance counters, configuration, and tracing.

l	 Components for implementing communication.  These may include components
that communicate with other services and applications.

For more information about managing crosscutting concerns, see Chapter 17,
“Crosscutting Concerns.”

Relevant Design Patterns
Key patterns for components are organized by categories as detailed in the following
table. Consider using these patterns when making design decisions for each category.

Category Relevant patterns
Business
Components

Application Façade. Centralize and aggregate behavior to provide a uniform service
layer.
Chain of Responsibility. Avoid coupling the sender of a request to its receiver by al-
lowing more than one object to handle the request.
Command. Encapsulate request processing in a separate command object with a
common execution interface.

Business
Entities

Domain Model. A set of business objects that represents the entities in a domain
and the relationships between them.
Entity Translator. An object that transforms message data types to business types
for requests, and reverses the transformation for responses.
Table Module. A single component that handles the business logic for all rows in a
database table or view.

Presentation
Entities

Entity Translator. An object that transforms message data types into business types
for requests, and reverses the transformation for responses.

Chapter 10:  Component Guidelines 143

Category Relevant patterns
Presentation
Logic

Application Controller. Implement a centralized point for handling screen navigation
and the flow of an application.
Model-View-Controller. Separate the UI code into three separate units: Model
(data), View (interface), and Controller (processing logic), with a focus on the View.
Two variations on this pattern include Passive View and Supervising Presenter, which
define how the View interacts with the Model.
Model-View-ViewModel. A variation on the presentation model pattern that uses the
Command pattern to communicate from the View to the ViewModel.
Model-View-Presenter. Separate request processing into three separate roles,
with the View being responsible for handling user input and passing control to a
Presenter object.
Passive View. Reduce the view to the absolute minimum by allowing the controller to
process user input and maintain the responsibility for updating the view.
Presentation Model. Move all view logic and state out of the view, and render the
view through data bind3ing and templates.
Supervising Presenter (or Supervising Controller). A variation of the MVC pattern in
which the controller handles complex logic, in particular coordinating between views,
but the view is responsible for simple view-specific logic.

Service
Interface

Façade. Implement a unified interface to a set of operations in order to provide a
simplified interface and reduce coupling between systems.
Remote Façade. Create a high level unified interface to a set of operations or
processes in a remote subsystem by providing a course-grained interface over fine-
grained operations in order to make that subsystem easier to use, and to minimize
calls across the network.
Service Interface. A programmatic interface that other systems can use to interact
with the service.

Workflows Data-Driven Workflow. A workflow that contains tasks whose sequence is deter-
mined by the values of data in the workflow or the system.
Human Workflow. A workflow that involves tasks performed manually by humans.
Sequential Workflow. A workflow that contains tasks that follow a sequence, where
one task is initiated after completion of the preceding task.
State-Driven Workflow. A workflow that contains tasks whose sequence is deter-
mined by the state of the system.

For more information on the Façade pattern, see Chapter 4, “Structural Patterns” in
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley Professional, 1995.

For more information on the Chain of Responsibility pattern, see “Patterns in Practice”
at http://msdn.microsoft.com/en-us/magazine/cc546578.aspx.

For more information on the Command pattern, see 5, “Behavioral Patterns” in
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley Professional, 1995.

For more information on the Entity Translator pattern, see “Useful Patterns for Services”
at http://msdn.microsoft.com/en-us/library/cc304800.aspx.

http://msdn.microsoft.com/en-us/magazine/cc546578.aspx
http://msdn.microsoft.com/en-us/library/cc304800.aspx

.NET Application Architecture Guide, 2nd Edition144

For more information on the Data-Driven Workflow, Human Workflow, Sequential
Workflow, and State-Driven Workflow, see “Windows Workflow Foundation Overview”
at http://msdn.microsoft.com/en-us/library/ms734631.aspx and “Workflow Patterns”
at http://www.workflowpatterns.com/.

For more information on the Application Controller and Model-View-Controller
(MVC) patterns, see Fowler, Martin. Patterns of Enterprise Application Architecture.
Addison-Wesley, 2002. Or at http://martinfowler.com/eaaCatalog.

For more information on the Supervising Presenter and Presentation Model
patterns, see “Patterns in the Composite Application Library” at
http://msdn.microsoft.com/en-us/library/dd458924.aspx.

For more information on the Remote Façade pattern, see “P of EAA: Remote Façade” at
http://martinfowler.com/eaaCatalog/remoteFacade.html.

patterns & practices Offerings
For more information on relevant offerings available from the Microsoft patterns &
practices group, see the following resources:
l	 “Composite Client Application Guidance” at

http://msdn.microsoft.com/en-us/library/cc707819.aspx.
l	 "Enterprise Library” at http://msdn.microsoft.com/en-us/library/cc467894.aspx.
l	 "Smart Client Software Factory” at

http://msdn.microsoft.com/en-us/library/aa480482.aspx.
l	 "Unity” (dependency injection mechanism) at

http://msdn.microsoft.com/en-us/library/dd203101.aspx.
l	 "Web Client Software Factory” at

http://msdn.microsoft.com/en-us/library/bb264518.aspx.

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 “Integration Patterns” at http://msdn.microsoft.com/en-us/library/ms978729.aspx.
l	 Martin, Robert C. and Micah Martin. Agile Principles, Patterns, and Practices in C#.

Prentice Hall, 2006.
l	 "User Interface Control Guidelines” at

http://msdn.microsoft.com/en-us/library/bb158625.aspx.

http://msdn.microsoft.com/en-us/library/ms734631.aspx
http://www.workflowpatterns.com/
http://martinfowler.com/eaaCatalog
http://msdn.microsoft.com/en-us/library/dd458924.aspx
http://martinfowler.com/eaaCatalog/remoteFacade.html
http://msdn.microsoft.com/en-us/library/cc707819.aspx
http://msdn.microsoft.com/en-us/library/cc467894.aspx
http://msdn.microsoft.com/en-us/library/aa480482.aspx
http://msdn.microsoft.com/en-us/library/dd203101.aspx
http://msdn.microsoft.com/en-us/library/bb264518.aspx
http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/ms978729.aspx
http://msdn.microsoft.com/en-us/library/bb158625.aspx

11
Designing Presentation
Components

Overview
This chapter describes the steps you should follow when designing the user interface
components and presentation logic components that are part of your presentation
layer. Some of the stages are related to the design of the presentation layer itself,
while others focus more closely on the individual types of components you may
choose to build.

You should first understand the requirements for the UI, and be able to select the
appropriate technology. Then you can decide how to bind your presentation logic
and data to the UI controls. You must also ensure that you understand the require-
ments for error handling and validation within the UI. The following sections of this
chapter describe in more detail the steps for designing presentation components.

Step 1 – Understand the UI Requirements
Understanding UI requirements is the key for making decisions on the UI type, and the
technology and type of controls used to implement it. Your UI requirements are driven
by the functionality to be supported by the application and by user expectations.

Start by identifying the users of application, and understanding the goals and tasks
these users wish to accomplish when using the application. Pay particular attention
to the sequencing of tasks or operations; and determine whether the user expects a
structured step-by-step user experience, or an ad-hoc unstructured experience where
they can initiate multiple tasks simultaneously. As part of this process, also determine
the information required by the user and the format in which it is expected. You may
decide to conduct a field study to help you understand the environment in which the
user will interact with the application. In addition, consider the current levels of user
experience, and compare this to the user experience required for your UI to ensure that
it is logical and intuitive. These factors will help you to create a user centered design.

	 Contents

11	 145

Designing Presentation
Components	 145
Overview. 145
Step 1 – Understand the UI Requirements . 145
Step 2 – Determine the UI Type Required. 146
Step 3 – Choose the UI Technology . 147
Step 4 – Design the Presentation Components . 150

User Interface Components. 150
Presentation Logic Components . 151
Presentation Model Components . 152

Step 5 – Determine the Binding Requirements. 155
Step 6 – Determine the Error Handling Strategy. 156
Step 7 – Determine the Validation Strategy. 157
patterns & practices Offerings . 158
Additional Resources. 158

.NET Application Architecture Guide, 2nd Edition146

One factor that has a large impact on your choice of technology is the functionality
required in the UI. Identify if the UI must expose rich functionality or user interaction,
must be highly responsive, or requires graphical or animation support. Also consider
the data types, formats and presentation formatting requirements for data such as
dates, times, and currency from a localization perspective. In addition, identify the
personalization requirements of the application, such as allowing the user to change
the layout or styles at run time.

To make the UI intuitive and easy to use, consider how you will lay out or compose
the interface; and how the user will navigate through the application’s UI. This will
help you to choose the appropriate controls and UI technologies. Understand the
physical display requirements (such as screen size and resolution) that you must
support, and determine accessibility requirements (such as large text or buttons, ink
input, or other specialized features). Decide how you will group related information
within sections of the UI, avoid interface conflicts or ambiguity, and emphasize the
important elements. Identify ways to allow users to find information quickly and
easily in the application through the use of navigational controls, search functions,
clearly labeled sections, site maps, and other features as appropriate.

Step 2 – Determine the UI Type Required
Based on your UI requirements, you can make a decision on the type of UI for your
application. There are a number of different UI types, each with their own strengths
and weaknesses. Often, you will find that your UI requirements can be fulfilled with
more than one UI type. It is also possible that no single UI type completely covers all
of your UI requirements. In this case, consider creating different UI types on top of
a shared set of business logic. An example is creating a call center application where
you want to expose some of the capabilities for customer self help on the Web and on
mobile devices.

Mobile applications can be developed as thin client or rich client applications. Rich
client mobile applications can support disconnected or occasionally connected scenarios.
Web or thin client mobile applications support connected scenarios only. Device
resources may also prove to be a constraint when designing mobile applications.

Rich client applications are usually stand-alone or networked applications with a
graphical user interface that display data using a range of controls, and are deployed
to a desktop or laptop computer for use by a local user. They are suitable for discon-
nected and occasionally connected scenarios because the application runs on the client
machine. A rich client UI is a good choice when the UI must support rich functionality
and rich user interaction or provide a highly dynamic and responsive user experience;
or when the application must work in both connected and disconnected scenarios,
take advantage of local system resources on the client machine, or integrate with
other applications on that machine.

Chapter 11:  Designing Presentation Components 147

Rich Internet applications (RIAs) are usually Web applications with a rich graphical
user interface that run inside a browser. RIAs are typically used for connected scenarios.
A RIA is a good choice when your UI must support a dynamic and responsive user
experience or use streaming media, and be widely accessible on a range of devices and
platforms. They can take advantage of the processing power of the client computer, but
cannot easily interact with other local system resources such as webcams, or with other
client applications such as Microsoft Office.

Web applications support connected scenarios and can support many different
browsers running on a range of operating systems and platforms. A Web UI is a
good choice when your UI must be standards-based, accessible on the widest range
of devices and platforms, and work only in a connected scenario. Web applications
are also well suited to applications whose content is to searchable by Web search
engines.

Console-based applications offer an alternative text only user experience, and typically
run within command shells such as a Command window or Power Shell. They are
most suitable for administrative or development tasks, and are unlikely to be part
of a layered application design.

Step 3 – Choose the UI Technology
After you have identified the UI type for your UI components, you must choose
an appropriate technology. In general, your choices depend on the UI type you
have chosen. The following sections describe some appropriate technologies for
each UI type:

Mobile client user interfaces can be implemented using the following presentation
technologies:
l	 Microsoft .NET Compact Framework.  This is a subset of the Microsoft .NET

Framework designed specifically for mobile devices. Use this technology for
mobile applications that must run on the device without guaranteed network
connectivity.

l	 ASP.NET for Mobile.  This is a subset of ASP.NET, designed specifically for
mobile devices. ASP.NET for Mobile applications can be hosted on an Internet
Information Services (IIS) server. Use this technology for mobile Web applications
when you must support a wide range of mobile devices and browsers, and can
rely on a permanent network connection.

l	 Silverlight for Mobile.  This subset of the Silverlight client requires the Silverlight
plug-in to be installed on the mobile device. Use this technology to port existing
Silverlight applications to mobile devices, or if you want to create a richer UI than
is possible using other technologies. (At the time of writing, this technology is
announced but has not yet been released).

.NET Application Architecture Guide, 2nd Edition148

Rich client user interfaces can be implemented using the following presentation
technologies:
l	 Windows Presentation Foundation (WPF).  WPF applications support more

advanced graphics capabilities, such as 2-D and 3-D graphics, display resolution
independence, advanced document and typography support, animation with
timelines, streaming audio and video, and vector-based graphics. WPF uses
Extensible Application Markup Language (XAML) to define the UI, data binding,
and events. WPF also includes advanced data binding and templating capabilities.
WPF applications support developer/designer interaction—allowing developers
to focus on the business logic, while designers focus on the look and feel—by
separating the visual aspects of the UI from the underlying control logic. Use
this technology when you want to create rich media-based and interactive user
interfaces.

l	 Windows Forms.  Windows Forms has been part of the .NET Framework since
its release, and is ideally suited to line-of-business style applications. Even with
the availability of Windows Presentation Foundation (WPF), Windows Forms is
still a good choice for UI design if your team already has technical expertise with
Windows Forms, or if the application does not have any specific rich media or
interaction requirements.

l	 Windows Forms with WPF User Controls.  This approach allows you to take
advantage of the more powerful UI capabilities provided by WPF controls. You
can add WPF to an existing Windows Forms application, perhaps as a path for
gradual adaption to a fully WPF implementation. Use this approach to add rich
media and interactive capabilities to existing applications, but keep in mind that
WPF controls tend to work best on higher powered client machines.

l	 WPF with Windows Forms User Controls.  This approach allows you to
supplement WPF with Windows Forms controls that provide functionality
not provided by WPF. You can use the WindowsFormsHost control provided
in the WindowsFormsIntegration assembly to add Windows Forms controls to
the UI. Use this approach if you must use Windows Forms controls in a WPF
UI, but keep in mind that there are some restrictions and issues relating to
overlapping controls, interface focus, and the rendering techniques used by
the different technologies.

l	 XAML Browser Application (XBAP) using WPF.  This technology hosts a
sandboxed WPF application in Microsoft Internet Explorer or Mozilla Firefox
on Windows. Unlike Silverlight, you can leverage the full WPF framework, but
there are some limitations related to accessing system resources from the partial
trust sandbox. XBAP requires Windows Vista, or both the .NET Framework 3.5
and the XBAP browser plug-in on the client desktop. XBAP is a good choice if
you have an existing WPF application that you want to deploy to the Web, or you
want to leverage the rich visualization and UI capabilities of WPF that are not
available in Silverlight.

Chapter 11:  Designing Presentation Components 149

Rich Internet application user interfaces can be implemented using the following
presentation technologies:
l	 Silverlight.  This is a browser-optimized subset of WPF that works cross platform

and cross browser. Compared to XBAP, Silverlight is a smaller, faster install. Due
to its small footprint and cross-platform support, Silverlight is a good choice for
graphical applications that do not require premium WPF graphics support, or that
do not require installation of the application on the client.

l	 Silverlight with AJAX.  Silverlight natively supports Asynchronous JavaScript
and XML (AJAX) and exposes its object model to JavaScript located in the Web
page. You can use this capability to allow interaction between your Web page
components and the Silverlight application.

Web application user interfaces can be implemented using the following presentation
technologies:
l	 ASP.NET Web Forms.  This is the fundamental UI design and implementation

technology for .NET Web applications. An ASP.NET Web Forms application
needs only to be installed on the Web server, with no components required on
the client desktop. Use this technology for Web applications that do not require the
additional features provided by AJAX, Silverlight, MVC, or Dynamic Data
described in this section.

l	 ASP.NET Web Forms with AJAX.  Use AJAX with ASP.NET Web Forms to process
requests between the server and client asynchronously to improve responsiveness,
provide a richer user experience, and reduce the number of post backs to the server.
AJAX is an integral part of ASP.NET in the .NET Framework version 3.5 and later.

l	 ASP.NET Web Forms with Silverlight Controls.  If you have an existing ASP.NET
application, you can use Silverlight controls to provide a user experience with rich
visualization and UI capabilities, while avoiding the requirement to write a com-
pletely new Silverlight application. This is a good approach for adding Silverlight
rich media content to an existing Web application. The Silverlight controls and the
containing Web page can interact on the client using JavaScript.

l	 ASP.NET MVC.  This technology allows you to use ASP.NET to build applica-
tions based on the Model-View-Controller (MVC) pattern. Use this technology
if you need to support test-driven development, and achieve a clear separation
of concerns between UI processing and UI rendering. This approach also helps
you to create clean HTML and avoids mixing presentation information with
logic code.

l	 ASP.NET Dynamic Data.  This technology allows you to create data-driven ASP.NET
applications that leverage a Language-Integrated Query (LINQ) to Entities data
model. It is a good choice if you require a rapid development model for line-of-
business (LOB) style data-driven applications based on simple scaffolding, while
still supporting full customization.

.NET Application Architecture Guide, 2nd Edition150

Console-based user interfaces can be implemented using the following presentation
technologies:
l	 Console Applications are text only applications that can be run from Command

shells and produce output to the standard output console and error console. These
applications often are built to take all input at time of invocation and run unattended.

l	 Power Shell Commandlets. Power Shell is a command-line shell and scripting
environment to provide comprehensive control and automation of system and
application administrative tasks. Commandlets are application-specific extensions
to the Power Shell environment that provide a more deeply integrated experience
into the Power Shell language.

For more information about the technologies listed in the previous sections, see
Appendix B, “Presentation Technology Matrix.”

Step 4 – Design the Presentation Components
After you choose the implementation technology for your UI, the next step is to
design your UI components and your presentation logic components. The types of
presentation components you may decide to use are the following:
l	 User Interface Components
l	 Presentation Logic Components
l	 Presentation Model Components

These components support a separation of concerns in the presentation layer, and
are often used to implement a separated presentation pattern such as MVP (Model-
View-Presenter) or MVC (Model-View-Controller) by dividing UI processing into
three distinct roles: Model, View, and Controller/Presenter. Separating the concerns
in the presentation layer in this way increases maintainability, testability, and oppor-
tunities for reuse. The use of abstraction patterns such as dependency injection also
makes it easier to test your presentation logic.

For general component design considerations, and more information on the compo-
nents commonly found in all the layers of an application, see Chapter 10, “Component
Guidelines.”

User Interface Components
UI components are the visual elements that display information to the user and accept
user input. Within a separated presentation pattern, they are typically referred to as
Views. Consider the following guidelines when designing your UI components:
l	 Consider dividing your pages or windows into discrete user controls in order to

minimize complexity and to allow reuse of these user controls. Choose appropri-
ate UI components, and take advantage of the data-binding features of the controls
you use in the UI.

Chapter 11:  Designing Presentation Components 151

l	 Try to avoid inheritance hierarchies of user controls and pages to enable code reuse.
Favor composition over inheritance and consider creating reusable presentation
logic components instead.

l	 Try to avoid creating custom controls unless it is necessary for specialized dis-
play or data collection. If you find that your UI requirements cannot be achieved
with the standard controls, consider buying a control toolkit before deciding to
write your own custom controls. If you must create custom controls, extend exist-
ing controls if possible instead of creating a new control. Consider extending
existing controls by attaching behaviors to them, rather than inheriting from
them, and consider implementing designer support for custom controls to make
it easier for developers to use them.

Presentation Logic Components
Presentation logic components handle the nonvisualization aspects of the user inter-
face. This will often include validation, responding to user actions, communicating
between UI components, and orchestrating user interactions. Presentation logic com-
ponents are not always necessary; create them only if you will perform significant
processing in the presentation layer that must be separated from the UI components,
or to improve opportunities for unit testing your presentation logic. Consider the
following guidelines when designing presentation logic components:
l	 If the UI requires complex processing or must communicate with other layers,

consider using presentation logic components to decouple this processing from
the UI components.

l	 Use presentation logic components to store state related to (but not specific
to) the UI. Avoid implementing business logic and business rules, other than
input and data validation, within the presentation logic components. Also,
avoid implementing rendering or UI specific logic in the presentation logic
components.

l	 Use presentation logic components to help your application recover from a failure
or error by using them to make sure after recovery that the user interface is in a
consistent state.

l	 Where the UI requires complex workflow support, consider creating separate
workflow components that use a workflow system such as Windows Workflow
Foundation or a custom mechanism within the application’s business layer. For
more information, see Chapter 14, “Designing Workflow Components.”

.NET Application Architecture Guide, 2nd Edition152

Presentation Model Components
Presentation model components represent data from your business layer in a con-
sumable format for your UI and presentation logic components in the presentation
layer. Models typically represent data, and so they use the data access and possibly
the business layer components to collect that data. If the model also encapsulates
business logic, it is usually called a presentation entity. Presentation model compo-
nents may, for example, aggregate data from multiple sources, transform data for
the UI to display more easily, implement validation logic, and may help to repre-
sent business logic and state within the presentation layer. They are typically used
to implement separated presentation patterns, such as MVP or MVC. Consider the
following guidelines when designing presentation model components:
l	 Determine if you require presentation model components. Typically, you might

use presentation layer models if the data or the format to be displayed is specific
to the presentation layer, or if you are using a separated presentation pattern such
as MVP or MVC.

l	 If you are working with data-bound controls, design or choose appropriate presen-
tation model components that you can easily bind to UI controls. If using custom
objects, collections, or data sets as your presentation model component format,
ensure that they implement the correct interfaces and events to support data
binding.

l	 If you perform data validation in the presentation layer, consider adding the
code for this to your presentation model components. However, also consider
how you can take advantage of centralized validation code or code libraries.

l	 Consider the serialization requirements for the data you will pass to your presen-
tation model components if this data will be passed over the network or stored on
disk on the client.

You must also choose a suitable data type for your presentation model components
and presentation entities. This choice is driven by the application requirements, and
constrained by your infrastructure and development capabilities. You must first choose
a data format for your presentation layer data and decide if your components will also
encapsulate business logic and state. Next, you must decide how you will present the
data within the user interface. The common data formats for presentation data are
the following:
l	 Custom class.  Use a custom class if you want to represent your data as a complex

object that maps directly to your business entities. For example, you might create
a custom Order object to represent order data. You can also use a custom class to
encapsulate business logic and state and to perform presentation layer validation
or to implement custom properties.

l	 Array and Collection.  Use an array or a collection when you must bind data to
controls such as list boxes and drop-down lists that use single column values.

Chapter 11:  Designing Presentation Components 153

l	 DataSet and DataTable.  Use a DataSet or a DataTable when you are working
with simple table-based data with data-bound controls such as grids, list boxes,
and drop-down lists.

l	 Typed Dataset.  Use a Typed DataSet when you want tight coupling with your
business entities to avoid discrepancies due to database changes.

l	 XML.  This format is useful when working with a Web client, where the data can
be embedded in a Web page or retrieved via a Web service or HTTP request. XML
is a good choice when you are using controls such as a tree view or grid. XML is
also easy to store, serialize, and pass over communication channels.

l	 DataReader.  Use a DataReader to retrieve data when fully connected and the
data is to be accessed in a read-only, forward-only manner. The DataReader
provides an efficient way to process data from your database sequentially, or
to retrieve large volumes of data. However, it ties your logic very closely to the
schema of your database and is not generally recommended.

Presentation Entities
Presentation model components should, where possible, encapsulate both the data
from your business layer, and business logic and behavior. This helps to ensure
data consistency and validity in the presentation layer, and helps to improve the
user’s experience.

In some cases, your presentation model components may be the business entities
from your business layer, directly consumed by the presentation layer. In other
cases, your presentation model components may represent a subset of your business
entity components, specifically designed to support the presentation layer of your
application. For example, they may store the data in a format that is more easily
consumable by your UI and presentation logic components. Such components are
sometimes referred to as presentation entities.

When the business layer and presentation layer are both located on the client,
a typical scenario for rich client applications, you will usually consume the busi-
ness entities directly from the business layer. However, you may consider using
presentation entities if you must store or manipulate the business data in a way
that is distinct from the format or behavior of the business entities exposed by the
business layer.

When the business layer is located on a separate tier from the presentation layer, you
may be able to consume the business entities in the presentation tier by serializing
them across the network using data transfer objects, and then resurrecting them as
business entity instances on the presentation tier. Alternatively, you can resurrect the
data as presentation entities if the required format and behavior differs from that of
the business entities. Figure 1 shows this scenario.

.NET Application Architecture Guide, 2nd Edition154

Figure 1
Presentation model components and presentation entities may be useful when the
presentation layer and business layer are on separate physical tiers

Chapter 11:  Designing Presentation Components 155

Step 5 – Determine the Binding Requirements
Data binding provides a way to create a link between the controls in the user inter-
face and the data or logic components in your application. Data binding allows you
to display and interact with data from databases as well as data in other structures,
such as arrays and collections. Data binding is the bridge between a binding target
(typically a user interface control) and a binding source (typically a data structure,
model, or presentation logic component).

Figure 2
Objects used in data binding

As shown in Figure 2, data binding normally involves four elements that interact
to update the properties of the bound control with values exposed by the binding
source. Data-bound controls are controls that are bound to data sources; for example,
a DataGrid control bound to a collection of objects. Data binding is often used with
separated presentation patterns to bind the UI components (the Views) to the pre-
senters or controllers (the presentation logic components) or to the presentation
layer model or entity components.

Support for data binding, and its implementation, varies for each UI technology.
In general, most UI technologies allow you to bind controls to objects and lists of
objects. However, specific data binding technologies may require certain interfaces or
events to be implemented on the data sources in order to fully support data binding,
such as INotifyPropertyChanged in WPF or IBindingList in Windows Forms. If you
are using a separated presentation pattern, you must ensure that your presentation
logic and data components support the required interfaces or events to allow UI
controls to be easily data bound to them.

.NET Application Architecture Guide, 2nd Edition156

There are typically two common types of binding you can use, described in the
following list:
l	 One-way binding.  Changes to the source property automatically update the

target property, but changes to the target property are not propagated back
to the source property. This type of binding is appropriate if the control being
bound is implicitly read-only. An example of a one-way binding is a stock ticker.
If there is no need to monitor changes to the target property, using one-way
binding avoids unnecessary overhead.

l	 Two-way binding.  Changes to either the source property or the target property
automatically update the other. This type of binding is appropriate for editable
forms or other fully interactive UI scenarios. Many editable controls in Windows
Forms, ASP.NET, and WPF support two-way binding so that changes in the data
source are reflected in the UI control and changes in the UI control are reflected in
the data source.

Step 6 – Determine the Error Handling Strategy
UI components are the external boundary of your application, and so you should
design an appropriate error handling strategy to maximize application stability and
provide a positive user experience. Consider the following options when designing
an error handling strategy:
l	 Design a centralized exception handling strategy.  Exception and error handling

is a crosscutting concern, and should be implemented using separate components
that centralize the functionality and make it accessible across the layers of the
application. This also eases maintenance and promotes reusability.

l	 Log exceptions.  It is vital to log errors at system boundaries so that your support
organization can detect and diagnose errors. This is important for presentation
components, but can be challenging for code that is running on client machines.
Be careful how you log Personally Identifiable Information (PII) or security sensi-
tive information, and be aware of log size and location.

l	 Display user friendly messages.  In this strategy, you display a user friendly
message that shows the reason for the error and explains how the user can rectify
it. For example, data validation errors should be displayed in a way that makes it
clear which data is in error and why it is invalid. The message may also indicate
how the user can fix the data or enter valid data.

l	 Allow retry.  In this strategy, you display a user-friendly message that explains
the reason for the error and asks the user to retry the operation. This strategy is
useful when errors are due to a temporary exception situation such as resource
unavailability or a network timeout.

l	 Display generic messages.  If your application encounters an unexpected error,
you should log details of the error but display only a generic message to the user.

Chapter 11:  Designing Presentation Components 157

Consider providing the user with a unique error code that they can present when
contacting your support organization. This strategy is useful when dealing with
unexpected exceptions. It is generally recommended that you close the application if
an unhandled exception occurs in order to prevent data corruption or security risks.

For more information about exception handling techniques, see Chapter 17,
“Crosscutting Concerns.” For information about Enterprise Library, which provides
useful features for implementing exception handling strategies, see Appendix F,
“patterns & practices Enterprise Library.”

Step 7 – Determine the Validation Strategy
An effective input validation strategy will help to filter unwanted and malicious
data and protect your application from vulnerabilities. Typically, input validation
|is performed by the presentation layer, whereas business rule validation is carries
out by components in the business layer. When designing a validation strategy,
first identify all data inputs that must be validated. For example, inputs from a
Web client in Form fields, parameters (such as GET and POST data and query
strings), hidden fields, and view state should all be validated. In general, you
should validate all data received from untrusted sources.

For applications that have both a client-side and a server-side component, such as
RIAs or rich client applications that call services on an application server, you must
perform validation on the server in addition to any validation you carry out on the
client. However, you can duplicate some of the validation on the client for usability
and performance reasons. Performing validation on the client is useful to give users
feedback quickly if they have entered invalid data. It can save time and bandwidth,
but be aware that a malicious attacker can bypass any validation you have imple-
mented on a client.

After you have identified the data to validate, decide on your validation techniques
for each item. The most common validation techniques are:
l	 Accept known good  (Allow list, or positive validation). Accept only data that

satisfies the matching criteria, and reject all other.
l	 Reject known bad  (Block list, or negative validation). Accept data that does not

contain a known set of characters or values.
l	 Sanitize.  Eliminate or translate known bad characters or values in an effort to

make the input safe.

In general, you should accept known good values (Allow list) rather than try to
determine all the possible invalid or malicious values that must be rejected. If you
are not able to define fully the list of known good values, then you can supplement
the validation with a partial list of known bad values and/or sanitization as a second
line of defense.

.NET Application Architecture Guide, 2nd Edition158

Different presentation technologies use different approaches to validating and reporting
validation problems to the user. WPF, for example, uses converters and validation
rule objects that are often connected using XAML, while Windows Forms provides
validating and binding events.

For more information about validation techniques, see Chapter 17, “Crosscutting
Concerns.” For information about Enterprise Library, which provides useful features
for validating objects and data both server-side and client-side, see Appendix F,
“patterns & practices Enterprise Library.”

patterns & practices Offerings
For more information on related offerings available from the Microsoft patterns &
practices group, see the following resources:
l	 Composite Client Application Guidance for WPF for both desktop and

Silverlight make it easier to create modular applications. For more information,
see “Composite Client Application Guidance” at
http://msdn.microsoft.com/en-us/library/cc707819.aspx.

l	 Enterprise Library contains a series of application blocks that address
crosscutting concerns. For more information, see “Enterprise Library” at
http://msdn.microsoft.com/en-us/library/cc467894.aspx.

l	 Software Factories speed development of specific types of application
such as Smart Clients, WPF applications, and Web Services. For more
information, see “patterns & practices: by Application Type” at
http://msdn.microsoft.com/en-gb/practices/bb969054.aspx.

l	 Unity Application Block for both enterprise and Silverlight scenarios
provides features for implementing dependency injection, service location,
and inversion of control. For more information, see “Unity Application Block”
at http://msdn.microsoft.com/en-us/library/dd203101.aspx.

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 “Design Guidelines for Web Applications” at

http://msdn.microsoft.com/en-us/library/ms978618.aspx.
l	 “Data Binding Overview” at

http://msdn.microsoft.com/en-us/library/ms752347.aspx.
l	 “Design Guidelines for Exceptions” at

http://msdn.microsoft.com/en-us/library/ms229014%28VS.80%29.aspx.

http://msdn.microsoft.com/en-us/library/cc707819.aspx
http://msdn.microsoft.com/en-us/library/cc467894.aspx
http://msdn.microsoft.com/en-gb/practices/bb969054.aspx
http://msdn.microsoft.com/en-us/library/dd203101.aspx
http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/ms978618.aspx
http://msdn.microsoft.com/en-us/library/ms752347.aspx
http://msdn.microsoft.com/en-us/library/ms229014%28VS.80%29.aspx

12
Designing Business Components

Overview
Designing business components is an important task; if you fail to design your
business components correctly, the result is likely to be code that is difficult to
maintain or extend. There are several types of business components you may use
when designing and implementing an application. Examples of these components
include business logic components, business entities, business process or workflow
components, and utility or helper components. This chapter starts with an overview
of the different types of business components you will find in most application
designs, with the primary focus on business logic components. It shows how dif-
ferent aspects of your application design, transactional requirements, and processing
rules affect the design you choose. Once you have an understanding of the require-
ments, the final step focuses on design patterns that support those requirements.

Step 1 – Identify Business Components Your Application
Will Use

Within the business layer, there are different types of components that you may need
to create or use to handle business logic. The goal of this step is to understand how you
identify these components, and discover which components your application requires.
The following guidelines will help you to decide which types of components you
require:
l	 Consider using business logic components to encapsulate the business logic and

state of your application. Business logic is application logic that is concerned with
the implementation of the business rules and behavior of your application, and
with maintaining overall consistency through processes such as data validation.
Business logic components should be designed to be easily testable and indepen-
dent of the presentation and the data access layers of your application.

	 Contents

12	 159

Designing Business Components	 159
Overview. 159
Step 1 – Identify Business Components Your Application

Will Use . 159
Step 2 – Make Key Decisions for Business Components. 160
Step 3 – Choose Appropriate Transaction Support. 162
Step 4 – Identify How Business Rules Are Handled . 163
Step 5 – Identify Patterns That Fit the Requirements. 164
Additional Resources. 166

.NET Application Architecture Guide, 2nd Edition160

l	 Consider using business entities as part of a domain modeling approach to
encapsulate business logic and state into components that represent the real
world business entities from your business domain, such as products and
orders, which your application has to work with. For more information about
business entities, see Chapter 13, “Designing Business Entities.”

l	 Consider using business workflow components if your application must sup-
port multistep processes executed in a specific order; uses business rules that
require the interaction between multiple business logic components; or you want
to change the behavior of the application by updating the workflow as the appli-
cation evolves or requirements change. Also consider using business workflow
components if your application must implement dynamic behavior based on
business rules. In this case, consider storing the rules in a rules engine. Consider
using Windows Workflow Foundation to implement your workflow components.
Alternatively, consider an integration server environment such as BizTalk Server
if your application must process multiple steps that depend on external resources,
or has a process that must be executed as a long-running transaction. For more
information about workflow components, see Chapter, 14 “Designing Workflow
Components.” For more information about integration services, see Appendix D,
“Integration Technology Matrix.”

Step 2 – Make Key Decisions for Business Components
The overall design and type of application you are creating plays a role in the business
components that it will use to handle requests. For example, business components for
a Web application usually deal with message-based requests, while a Windows Forms
application will typically use event-based requests to interact directly with business
components. In addition, there are other factors to consider when working with dif-
ferent application types. Some of these factors are common across types, while some
are unique to an application type. Key decisions you must make with business compo-
nents include:
l	 Location.  Will your business components be located on the client, on an applica-

tion server, or on both? Consider locating some or all business components on the
client if you have a stand-alone rich client or a Rich Internet Application (RIA), if
you want to improve performance, or if you are using a domain model design for
business entities. Consider locating some or all business components on an applica-
tion server if you must support multiple client types with common business logic,
if business components require access to resources not accessible from the client,
or for security reasons to protect the components within a managed and secured
server environment.

Chapter 12:  Designing Business Components 161

l	 Coupling.  How will your presentation components interact with your business
components? Should you use tight coupling where the presentation components
have direct knowledge of the business components, or loose coupling where an
abstraction is used to hide details of the business components? For simplicity, if
you have a rich client application or RIA with both sets of components located on
the client, you may consider tight coupling between presentation and business
components. However, loose coupling between presentation and business compo-
nents will improve testability and flexibility. If you have a rich client application
or RIA with business components located on an application server or Web server,
design the service interface to enable their interaction to be as loosely coupled as
possible.

l	 Interaction.  If your business components are located on the same tier as your
presentation components, consider using component-based interactions through
events and methods, which maximizes performance. However, consider imple-
menting a service interface and using message-based interactions between the
presentation layer and business components if the business components are
located on a separate physical tier from your Web server; if you are designing a
Web application with loose coupling between the presentation and business
layers; or if you have a rich client or RIA application. If you have a rich client
application or RIA that is occasionally connected to an application server or
Web server, you must carefully design the service interface to allow your
client to resynchronize when connected.

When you use message-based interaction, consider how you will manage duplicate
requests and guarantee message delivery. Idempotency (the ability to ignore du-
plicate requests) is important if you are designing a service application, a message-
based application that uses a messaging system such as Microsoft Message Queuing,
or a Web application where a long running process may cause the user to attempt
the same action multiple times. Guaranteed delivery is important if you are design-
ing a message-based application that uses a messaging system such as Microsoft
Message Queuing, a service that uses message routers between the client and service,
or a service that supports fire and forget operations where the client sends a message
without waiting for a response. Also, consider that cached messages, which may be
stored awaiting processing, can become stale.

.NET Application Architecture Guide, 2nd Edition162

Step 3 – Choose Appropriate Transaction Support
Business components are responsible for coordinating and managing any transactions
that may be required in your business layer. However, the first step is to determine if
transaction support is required. Transactions are used to ensure that a series of actions
executed against one or more resource managers, such as databases or message queues,
is completed as a single unit independent of other transactions. If any single action in a
series fails, all other actions must be rolled back to ensure the system is left in a consis-
tent state. For example, you might have an operation that updates three different tables
using multiple business logic components. If one of those updates fails, but two succeed,
the data source will be in an inconsistent state; which means that you now have invalid
data on which other operations may depend. The following options are available for
implementing transactions:
l	 System.Transactions uses business logic components to initiate and manage

transactions. Introduced in version 2.0 of the .NET Framework along with the
Lightweight Transaction Manager (LTM), it deals with nondurable resource
managers or one durable resource manager. This approach requires explicit
programming against the TransactionScope type, and can escalate the trans-
action scope and delegate to a Distributed Transaction Coordinator (DTC) if
more than one durable resource manager is enlisted in the transaction. Consider
using System.Transactions if you are developing a new application that requires
transaction support, and you have transactions that span multiple nondurable
resource managers.

l	 WCF Transactions were introduced in version 3.0 of the .NET Framework and
are built on top of the System.Transactions functionality. They provide a declara-
tive approach to transaction management implemented using a range of attributes
and properties, such as TransactionScopeRequired, TransactionAutoComplete, and
TransactionFlow. Consider using WCF Transactions if you must support transac-
tions when interacting with WCF services. However, consider whether a declarative
transaction definition is a requirement, rather than using code to manage transactions.

l	 ADO.NET Transactions, available since version 1.0 of the .NET Framework, require
the use of business logic components to initiate and manage transactions. They use
an explicit programming model where developers are required to manage non-
distributed transactions in code. Consider using ADO.NET Transactions if you are
extending an application that already uses ADO.NET Transactions, or if you are
using ADO.NET providers for database access and the transactions are limited to
a single resource. ADO.NET 2.0 and later additionally support distributed trans-
actions using the System.Transactions features described earlier in this list.

Chapter 12:  Designing Business Components 163

l	 Database transactions are used for transaction management that can be incor-
porated into stored procedures, which may also simplify your business process
design. If transactions are initiated by business logic components, the database
transaction will be enlisted in the transaction created by the business component.
Consider using database transactions if you are developing stored procedures
that encapsulate all of the changes that must be managed by a transaction, or
you have multiple applications that use the same stored procedure and trans-
action requirements can be encapsulated within that stored procedures.

Be aware that systems that use distributed transactions can increase coupling between
sub-systems. Transactions that include remote systems are likely to affect performance
due to increased network traffic. Transactions are expensive and should execute quickly,
otherwise resources could be locked for excessive amounts of time which can lead to
time outs, or deadlocks.

Allow only highly trusted services to participate in transactions because external
services can to lock your internal resources through participation in the transaction.
If you are calling services to perform business processes, avoid creating atomic
transactions that span these calls unless you cannot avoid this.

Step 4 – Identify How Business Rules Are Handled
Managing business rules can be one of the more challenging aspects of application
design. Generally, you should always keep business rules within the business layer.
However, exactly where in the business layer should they go? You can use business
logic or workflow components, a business rule engine, or use a domain model design
with rules encapsulated in the model. Consider the following options for handling
business rules:
l	 Business Logic Components can be used to handle simple rules or very complex

rules, depending on the design pattern used to implement the business logic com-
ponents. Consider using business logic components for tasks or document-oriented
operations in Web applications or within services, if you are not implementing a
domain model design for business entities, or you are using an external source
that contains the business rules.

l	 Workflow Components are used when you want to decouple business rules from
business entities, or the business entities you are using do not support the encap-
sulation of business rules, or when you have to encapsulate business logic that
coordinates the interaction between multiple business entities.

.NET Application Architecture Guide, 2nd Edition164

l	 Business Rules Engines provides a way for non developers to establish and
modify rules, but they also add complexity and overhead to an application and
should only be used where appropriate. In other words, you would only use a
rules engine if you have rules that must be adjusted based on different factors
associated with the application. Consider using a business rules engine if you
have volatile business rules that must be modified on a regular basis; to support
customization and offer flexibility; or you want to allow business users to man-
age and update rules. Ensure that only the rules users should be able to modify
are exposed, and that unauthorized users cannot modify rules that are critical to
correct business logic behavior.

l	 Domain Model Design can be used to encapsulate business rules within business
entities. However, a domain model design can be difficult to get right, and tends
to focus on a specific viewpoint or context. Consider encapsulating rules in a
domain model if you have a rich client application or RIA where parts of the busi-
ness logic are deployed on the client and the domain model entities are initialized
and persisted in memory, or you have a domain model that can be maintained
within the session state associated with Web or service applications. If you locate
parts of the domain model on the client, you should mirror the model on the
server to apply rules and behavior, and to ensure security and maintainability.

Step 5 – Identify Patterns That Fit the Requirements
Behavioral patterns are based on observing the behavior of a system in action and
looking for repeatable processes. With business components, the patterns you might
use are usually behavioral design patterns. In other words, patterns that are focused
on the behavior of an application at the design level. Much work has been done identi-
fying and defining patterns that occur in different types of applications and in different
layers of an application design. It is not feasible to try to learn all of the patterns that
have been defined; however, you should have a good understanding of different
pattern types and be able to examine your scenario to identify behavior that could
be expressed as a pattern. The following table describes patterns that are commonly
used with business components.

Chapter 12:  Designing Business Components 165

Pattern Recommendation
Adapter Allow classes that have incompatible interfaces to work together, allowing developers

to implement sets of polymorphic classes that provide alternative implementations
for an existing class.

Command Recommended for rich client applications with menus, toolbars, and keyboard
shortcut interactions that are used to execute the same commands against
different components. Can also be used with the Supervising Presenter pattern
to implement commands.

Chain of
Responsibility

Chain request handlers together so that each handler can examine the request
and either handle it or pass it on to the next handler in the chain. An alternative to
“if, then, else” statements, with the ability to handle complex business rules.

Decorator Extend the behavior of an object at run time to add or modify operations that will
be performed when executing a request. Requires a common interface that will be
implemented by decorator classes, which can be chained together to handle com-
plex business rules.

Dependency
Injection

Create and populate members (fields and properties) of objects using a separate
class, which usually creates these dependencies at run time based on configuration
files. Configuration files define containers that specify the mapping or registra-
tions of object types. Application code can also define the mapping or registration
of objects. Provides a flexible approach to modifying behavior and implementing
complex business rule.

Façade Provide coarse-grained operations that unify the results from multiple business
logic components. Typically implemented as a remote façade for message-based
interfaces into the business layer, and used to provide loose coupling between
presentation and business layers.

Factory Create object instances without specifying the concrete type. Requires objects that
implement a common interface or extend a common base class.

Transaction
Script

Recommended for basic CRUD operations with minimal business rules. Trans-
action script components also initiate transactions, which means all operations
performed by the component should represent an atomic unit of work. With this
pattern, the business logic components interact with other business components
and data components to complete the operation.

Although this list represents many of the common patterns you might use with busi-
ness components, there are many other patterns associated with business components.
The main goal when choosing a pattern is to ensure that it fits the scenario and does
not add more complexity than necessary.

.NET Application Architecture Guide, 2nd Edition166

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 For more information on business component design, see “Application

Architecture for .NET: Designing Applications and Services”
http://msdn.microsoft.com/en-us/library/ms954595.aspx.

l	 For more information on performance in business layers and components, see the
following resources:
l	 “Architecture and Design Review of a .NET Application for Performance and Scalabil-

ity” at http://msdn.microsoft.com/en-us/library/ms998544.aspx.
l	 “Design Guidelines for Application Performance” at

http://msdn.microsoft.com/en-us/library/ms998541.aspx.
l	 For more information on implementing transactions in business components, see

the following resources:
l	 “Introducing System.Transactions in the .NET Framework 2.0” at

http://msdn.microsoft.com/en-us/library/ms973865.aspx.
l	 “Transactions in WCF” at

http://msdn.microsoft.com/en-us/library/ms730266.aspx.
l	 “Transaction Processing in .NET 3.5” at

http://msdn.microsoft.com/en-us/library/w97s6fw4.aspx.
l	 For more information on implementing workflow in business components, see

the following resources:
l	 “Introduction to the Windows Workflow Foundation Rules Engine” at

http://msdn.microsoft.com/en-us/library/aa480193.aspx.
l	 “Windows Workflow Foundation” at

http://msdn.microsoft.com/en-us/library/ms735967.aspx.

http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/ms954595.aspx
http://msdn.microsoft.com/en-us/library/ms998544.aspx
http://msdn.microsoft.com/en-us/library/ms998541.aspx
http://msdn.microsoft.com/en-us/library/ms973865.aspx
http://msdn.microsoft.com/en-us/library/ms730266.aspx
http://msdn.microsoft.com/en-us/library/w97s6fw4.aspx
http://msdn.microsoft.com/en-us/library/aa480193.aspx
http://msdn.microsoft.com/en-us/library/ms735967.aspx

13
Designing Business Entities

Overview
Business entities store data values and expose them through properties; they contain
and manage business data used by an application and provide stateful programmatic
access to the business data and related functionality. Business entities should also
validate the data contained within the entity and encapsulate business logic to ensure
consistency and to implement business rules and behavior. Therefore, designing or
choosing appropriate business entities is vitally important for maximizing the per-
formance and efficiency of your business layer.

This chapter will help you to understand the design of business entity components.
It starts by looking at different data formats and how data will be used in your appli-
cation. Next, you will learn how the data format you choose determines the way
that business rules can be implemented in your design. Finally, you will learn about
design options for custom objects, and how to support serialization with different
data formats.

For general component design considerations, and more information on the compo-
nents commonly found in the layers of an application, see Chapter 10, “Component
Guidelines.”

	 Contents

13	 167

Designing Business Entities	 167
Overview. 167
Step 1 – Choose the Representation. 168
Step 2 – Choose a Design for Business Entities. 168
Step 3 – Determine Serialization Support. 170
Domain Driven Design. 170
Additional Resources. 172

.NET Application Architecture Guide, 2nd Edition168

Step 1 – Choose the Representation
In this step, you will learn about the different ways of representing business entities,
and see the benefits and liabilities of each, to help you choose the correct representa-
tion for your scenario. The following list describes the most common format options:
l	 Custom Business Objects.  These are common language runtime (CLR) objects

that describe entities in your system. An object/relational mapping (O/RM) tech-
nology such as the ADO.NET Entity Framework (EF) or NHibernate can be used
to create these objects (for more information, see Additional Resources at the end
of this chapter). Alternatively, you can create them manually. Custom business
objects are appropriate if you must encapsulate complex business rules or behavior
along with the related data. If you need to access your custom business objects
across AppDomain, process, or physical boundaries, you can implement a service
layer that provides access via Data Transfer Objects (DTO) and operations that
update or edit your custom business objects.

l	 DataSet or DataTable.  DataSets are a form of in-memory database that usually
maps closely to an actual database schema. DataSets are typically used only if
you are not using an O/RM mapping mechanism and you are building a data-
oriented application where the data in your application logic maps very closely
to the database schema. DataSets cannot be extended to encapsulate business
logic or business rules. Although DataSets can be serialized to XML, they
should not be exposed across process or service boundaries.

l	 XML.  This is a standards-based format that contains structured data. XML
is typically used to represent business entities only if your presentation layer
requires it or if your logic must work with the content based on its schema; for
example, a message routing system where the logic routes messages based on
some well-known nodes in the XML document. Be aware that using and manip-
ulating XML can use large amounts of memory.

Step 2 – Choose a Design for Business Entities
If you have determined that custom objects provide the best representation for
business entities, the next step is to design those objects. The design approach used
for custom objects is based on the sort of object that you plan to use. For example,
domain model entities require in-depth analysis of a business domain, while table
module entities require an understanding of the database schema. The following
is a list of common design approaches when using business objects:

Chapter 13:  Designing Business Entities 169

l	 Domain Model is an object-oriented design pattern. The goal in a domain model
design is to define business objects that represent real world entities within the
business domain. When using a domain model design, the business or domain
entities contain both behavior and structure. In other words, business rules and
relationships are encapsulated within the domain model. The domain model
design requires in-depth analysis of the business domain and typically does
not map to the relational models used by most databases. Consider using the
domain model design if you have complex business rules that relate to the bus-
iness domain, you are designing a rich client and the domain model can be
initialized and held in memory, or you are not working with a stateless business
layer that requires initialization of the domain model with every request. For
more information on the Domain Model and Domain-Driven Design, see the
 section “Domain-Driven Design” later in this chapter.

l	 Table Module is an object-oriented design pattern. The objective of a table module
design is to define entities based on tables or views within a database. Operations
used to access the database and populate the table module entities are usually
encapsulated within the entity. However, you can also use data access components
to perform database operations and populate table module entities. Consider
using the table module approach if the tables or views within the database closely
represent the business entities used by your application, or if your business logic
and operations relate to a single table or view.

l	 Custom XML objects represent deserialized XML data that can be manipulated
within your application code. The objects are instantiated from classes defined with
attributes that map properties within the class to elements and attributes within
the XML structure. The Microsoft .NET Framework provides components that
can be used to deserialize XML data into objects and serialize objects into XML.
Consider using custom XML objects if the data you are consuming is already in
XML format (for example, XML files or database operations that return XML as
the result set); you need to generate XML data from non-XML data sources; or
you are working with read-only document-based data.

When using custom objects, your business entities are not all required to follow the
same design. For example, one aspect of the application with complex rules may require
a Domain Model design. However, the remainder of the application may use XML
objects, a Table Module design, or domain objects as appropriate.

.NET Application Architecture Guide, 2nd Edition170

Step 3 – Determine Serialization Support
You must determine how you will transfer business entities across boundaries. In
most cases, to pass data across physical boundaries such as AppDomain, process,
and service interface boundaries, you must serialize the data. You may also decide
to serialize the data when crossing logical boundaries; however, keep in mind the
performance impact in this case. Consider the following options for transferring
business entities:
l	 Expose serializable business entities directly only if required.  If another layer in

your application, on the same physical tier, is consuming your business entities,
the most straightforward approach is to expose your business entities directly
through serialization. However, the disadvantage of this approach is that you
create a dependency between the consumers of your business entities and their
implementation. Therefore, this approach is not generally recommended unless
you can maintain direct control over the consumers of your business entities and
remote access to your business entities between physical tiers is not required.

l	 Convert business entities into serializable data transfer objects.  To decouple the
consumers of your data from the internal implementation of your business layer,
consider translating business entities into special serializable data transfer objects.
Data Transfer Object (DTO) is a design pattern used to package multiple data struc-
tures into a single structure for transfer across boundaries. Data transfer objects are
also useful when the consumers of your business entities have a different data rep-
resentation or model, for example a presentation tier. This approach makes it possible
to change the internal implementation of the business layer without affecting any
consumers of the data, and allows you to version your interfaces more easily. This
approach is recommended when having external clients consuming data.

l	 Expose XML directly.  In some cases, you may serialize and expose your business
entities as XML. The .NET Framework provides extensive serialization support for
XML data. In most cases, attributes on your business entities are used to control
serialization into XML.

For more information about data schemas for service interfaces, see Chapter 9,
“Service Layer Guidelines.” For more information about communicating between
layers and tiers, see Chapter 18, “Communication and Messaging.”

Domain Driven Design
Domain Driven Design (DDD) is an object-oriented approach to designing software
based on the business domain, its elements and behaviors, and the relationships
between them. It aims to enable software systems that are a realization of an under-
lying business domain by defining a domain model expressed in the language of
business domain experts. The domain model can be viewed as a framework from
which solutions can then be rationalized.

Chapter 13:  Designing Business Entities 171

To apply Domain Driven Design, you must have a good understanding of the
business domain you want to model, or be skilled in acquiring such business
knowledge. The development team will often work with business domain experts
to model the domain. Architects, developers, and subject matter experts have
diverse backgrounds, and in many environments will use different languages to
describe their goals, designs and requirements. However, within Domain Driven
Design, the whole team agrees to only use a single language that is focused on the
business domain, and which excludes any technical jargon.

As the core of the software is the domain model, which is a direct projection of this
shared language, it allows the team to quickly find gaps in the software by analyzing
the language around it. The creation of a common language is not merely an exercise
in accepting information from the domain experts and applying it. Quite often,
communication problems within development teams are due not only to misun-
derstanding the language of the domain, but also due to the fact that the domain’s
language is itself ambiguous. The Domain Driven Design process holds the goal
not only of implementing the language being used, but also improving and refining
the language of the domain. This in turn benefits the software being built, since the
model is a direct projection of the domain language.

The domain model is expressed using entities, value objects, aggregate roots, reposi-
tories, and domain services; organized into coarse areas of responsibility known as
Bounded Contexts.

Entities are objects in the domain model that have a unique identity that does not
change throughout the state changes of the software. Entities encapsulate both state
and behavior. An example of entity could be a Customer object that represents and
maintains state about a specific customer, and implements operations that can be
carried out on that customer.

Value objects are objects in the domain model that are used to describe certain aspects
of a domain. They do not have a unique identity and are immutable. An example of
value object could be a Transaction Amount or a Customer Address.

Aggregate Roots are entities that group logically related child entities or value objects
together, control access to them, and coordinate interactions between them.

Repositories are responsible for retrieving and storing aggregate roots, typically
using an Object/Relational Mapping (O/RM) framework.

Domain services represent operations, actions, or business processes; and provide
functionality that refers to other objects in the domain model. At times, certain func-
tionality or an aspect of the domain cannot be mapped to any objects with a specific
lifecycle or identity; such functionality can be declared as a domain service. An example
of a domain service could be catalog pricing service within the e-commerce domain.

.NET Application Architecture Guide, 2nd Edition172

In order to help maintain the model as a pure and helpful language construct, you must
typically implement a great deal of isolation and encapsulation within the domain
model. Consequently, a system based on Domain Driven Design can come at a relatively
high cost. While Domain Driven Design provides many technical benefits, such as
maintainability, it should be applied only to complex domains where the model and the
linguistic processes provide clear benefits in the communication of complex informa-
tion, and in the formulation of a common understanding of the domain.

For a summary of domain driven design techniques, see “Domain Driven Design
Quickly” at http://www.infoq.com/minibooks/domain-driven-design-quickly.
Alternatively, see “Domain-Driven Design: Tackling Complexity in the Heart of Software”
by Eric Evans (Addison-Wesley, ISBN: 0-321-12521-5) and “Applying Domain-Driven
Design and Patterns” by Jimmy Nilsson (Addison-Wesley, ISBN: 0-321-26820-2).

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 For more information on design patterns for business entities, see

“Enterprise Solution Patterns Using Microsoft .NET” at
http://msdn.microsoft.com/en-us/library/ms998469.aspx.

l	 For more information on designing business entities, see “Integration Patterns” at
http://msdn.microsoft.com/en-us/library/ms978729.aspx.

l	 For more information on domain-driven design, see the following resources:
l	 “An Introduction To Domain-Driven Design” at

http://msdn.microsoft.com/en-us/magazine/dd419654.aspx.
l	 “Domain Driven Design and Development in Practice” at

http://www.infoq.com/articles/ddd-in-practice.
l	 For more information on design patterns for the business layer, see “Service

Orientation Patterns” at http://msdn.microsoft.com/en-us/library/aa532436.aspx.
l	 For more information on the ADO.NET Entity Framework, see “The ADO.NET

Entity Framework Overview” at http://msdn.microsoft.com/en-us/library/
aa697427(VS.80).aspx.

l	 For information on business entity design with Microsoft Dynamics, see “Business
Entities” at http://msdn.microsoft.com/en-us/library/ms940455.aspx.

l	 For information on business entity modeling with Microsoft Dynamics, see
“Modeling Entities” at http://msdn.microsoft.com/en-us/library/aa475207.aspx.

l	 For information on using business entities with Office Business
Applications (OBA), see “Building Office Business Applications” at
http://msdn.microsoft.com/en-us/library/bb266337.aspx.

l	 For more information on the open source NHibernate framework, see “NHibernate
Forge” at http://nhforge.org/Default.aspx.

http://www.infoq.com/minibooks/domain-driven-design-quickly
http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/ms998469.aspx
http://msdn.microsoft.com/en-us/library/ms978729.aspx
http://msdn.microsoft.com/en-us/magazine/dd419654.aspx
http://www.infoq.com/articles/ddd-in-practice
http://msdn.microsoft.com/en-us/library/aa532436.aspx
http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/ms940455.aspx
http://msdn.microsoft.com/en-us/library/aa475207.aspx
http://msdn.microsoft.com/en-us/library/bb266337.aspx
http://nhforge.org/Default.aspx

14
Designing Workflow Components

Overview
There are many scenarios where a user’s tasks must be completed in an ordered way
based on the completion of specific steps, or to satisfy a set of underlying business rules.
Workflow components can be used to encapsulate the tasks and to coordinate the steps
required to complete them. Workflow components can also support tasks that are
dependent on the information being processed, such as the data entered by the user
or by dynamic business rules that define a business process.

This chapter examines different scenarios and provides guidance on how to design
workflow components. It starts with a look at how real world scenarios map to
key workflow scenarios to help you to identify the appropriate workflow style
for your application. Next, it examines how requirements and rules affect the
options you have for implementing workflow components. The final step provides
guidance on designing workflow components to support the different options that
are available.

For general component design considerations, and more information on the compo-
nents commonly found in the layers of an application, see Chapter 10, “Component
Guidelines.”

	 Contents

14	 173

Designing Workflow Components	 173
Overview. 173
Step 1 – Identify the Workflow Style Using Scenarios. 174
Step 2 – Choose an Authoring Mode. 174
Step 3 – Determine How Rules Will Be Handled. 175
Step 4 – Choose a Workflow Solution. 175
Step 5 – Design Business Components to Support Workflow . 176

Windows Workflow Foundation. 177
BizTalk Server . 177
BizTalk with ESB . 179
Using Windows Workflow Foundation and BizTalk Together. 180

Additional Resources. 180

.NET Application Architecture Guide, 2nd Edition174

Step 1 – Identify the Workflow Style Using Scenarios
There are three basic types of workflow style: sequential, state machine, and data
driven. With sequential workflow, a task moves through a specific set of steps until it
is completed. With a state machine workflow, activities are defined as a set of states
and events that cause transitions from one state to another. With data driven work-
flow, activities are executed based on information associated with data. As a result,
the first step in designing workflow components is to understand the style of work-
flow you must support. The following list provides guidance on when to use each of
the three basic workflow styles:
l	 Sequential workflow style.  In this style, the workflow controls the sequence of

activities and decides which of the steps will execute next. Although a sequen-
tial workflow can include conditional branching and looping, the path it follows
is predictable. Consider sequential workflows if you must execute a series of
predefined steps to accomplish a certain task; or for scenarios such as systems
management, business to business orchestration, and business rule processing.

l	 State machine workflow style.  In this style, the workflow acquires a given state
and waits for events to occur before moving into another state. Consider the state-
machine style if you require workflows designed for event driven scenarios, user
interface page flows such as a wizard interface, or order processing systems where
the steps and processes applied depend on data within the order.

l	 Data driven workflow style.  In this style, information in the document deter-
mines which activities the workflow will execute. It is appropriate for tasks such
as a document approval process.

Step 2 – Choose an Authoring Mode
You can use code, markup languages, or a combination of both code and markup to
author workflows. The approach you take depends on the authoring mode require-
ments for your solution. The authoring mode you choose will also influence how you
will package and distribute the application. The choices available are the following:
l	 Code-only.  Choose this option if the workflow will not change much over time,

if you have complex business rules that cannot be easily expressed using markup,
if your development team is more familiar with authoring managed code rather
than creating markup using a visual designer, or if you want to create new work-
flow types that are not possible using the markup option. Code-only workflows
are also easy to integrate into your source code control system.

l	 Code-separation.  Choose this option if you have complex business rules that are
encapsulated by business components, or you want to provide users or adminis-
trators with the ability to modify some aspects of the workflows using workflow
designers.

Chapter 14:  Designing Workflow Components 175

l	 Markup.  Choose this option if the workflow will change more frequently over
time, if your business rules associated with the workflow can be easily expressed
using markup languages, you do not need to create new workflow types, and you
need the flexibility to update the workflow model without rebuilding the work-
flow types referenced by the model.

Step 3 – Determine How Rules Will Be Handled
At this point, you should have identified the workflow style and determined an
authoring mode for creating workflows. The next step is to determine how your
workflow will handle the business rules. The option you choose is based on the
complexity, durability, and management requirements associated with the business
rules. Consider the following factors for handling business rules in workflow
components:
l	 If rules are complex,  you should consider a code-only or code-separation

authoring mode. Business components can be used to implement and encap-
sulate the rules, allowing the workflow to coordinate their execution.

l	 If rules are not durable,  you should consider a markup authoring mode for
simple or data-driven rules. However, if the rules are managed by an external
system such as a business rules engine, consider a code-only or code-separation
authoring mode.

l	 If business users, administrators, or analysts will manage rules,  you should
consider a solution that uses a markup authoring mode that provides a visual
designer or other rule editing facility, or supports a Domain Specific Language
(DSL). However, if the rules are managed by an external system such as a
business rules engine, consider a code-separation authoring mode.

Step 4 – Choose a Workflow Solution
Now that you have an understanding of the workflow style, authoring mode, and
rule handling requirements for your workflow, the next step is to choose a workflow
solution. The choice you make is based on capabilities that each solution provides.
The following technologies are available on the Microsoft platform:
l	 Windows Workflow Foundation (WF).  WF provides a developer centric solution

for creating sequential, state-machine, and data driven workflows. It supports
code-only, code-separation, and markup authoring modes. Designer support is
available through Visual Studio 2005 with extensions and directly in Visual Studio
2008 and higher. WF includes protocol facilities for secure, reliable, transacted
data exchange, activity tracking, a broad choice of transport and encoding options,
and provides support for long running workflows that can persist across system
shutdowns and restarts.

.NET Application Architecture Guide, 2nd Edition176

l	 Workflow Services.  Workflow Services provides integration between Windows
Communication Foundation (WCF) and Windows Workflow Foundation (WF)
to provide WCF-based services for workflow. Starting with Microsoft .NET
Framework 3.5, WCF has been extended to provide support for workflows
exposed as services and the ability to call services from within workflows. In
addition, Microsoft Visual Studio 2008 includes new templates and tools that
support workflow services.

l	 Microsoft Office SharePoint Services (MOSS).  MOSS is a content management
and collaboration platform that provides workflow support based on WF. MOSS
provides a solution for human workflow and collaboration in the context of a
Microsoft Office SharePoint® server. You can define approval-based workflows
related to SharePoint list items using the Web interface, and define conditional
and data driven workflows using the SharePoint designer or the Windows
Workflow Designer in Visual Studio. For workflow customization, you can
use the WF object model within Visual Studio. However, MOSS is suitable
only if your business layer is confined to a single SharePoint site and does
not require access to information in other sites.

l	 BizTalk Server.  BizTalk supports sequential, state-machine, and data driven work-
flows; and code-separation, and markup authoring modes. It enables electronic
document exchange relationships between companies using Electronic Data
Interchange (EDI) and/or XML formats; and contains powerful orchestration
capabilities for designing and executing long running, loosely coupled business
processes and workflows with reliable store and forward messaging capabilities.
BizTalk integrates with heterogeneous applications and systems through adapters,
and provides a business rules engine and Business Activity Monitoring. If you
must interact with non-Microsoft systems, perform EDI operations, or imple-
ment Enterprise Service Bus (ESB) patterns, consider using the ESB Toolkit for
BizTalk Server.

Step 5 – Design Business Components to Support Workflow
In general, you should implement workflows that involve a multistep or long
running process within separate components, and ensure that you handle all fault
conditions within the workflows by exposing suitable exceptions. When designing
business workflows, you must consider method invocations that require no reply,
or have long response times. If the component must execute a specified set of steps
sequentially and synchronously, consider using the pipeline pattern. Alternatively,
if the process steps can be executed asynchronously in any order, consider using the
event pattern.

Use the following sections to understand how you design workflows using the
technologies available on the Microsoft platform.

Chapter 14:  Designing Workflow Components 177

Windows Workflow Foundation
The business components you might design to use Windows Workflow Foundation
(WF) include custom workflow, activity, and state objects; as well as custom services.
The components you require depend on the workflow style and authoring mode. The
following list describes the process for creating the three basic types of workflows,
custom services, and workflow markup using WF:
l	 When designing sequential workflows, you define or use existing Activity classes

(code-only and code-separation), define custom workflow classes (code-only),
and define business process components that interact with workflow components
(code-only).

l	 When designing state machine workflows, you define state classes used to repre-
sent different states of the process (code-only and code-separation), define or use
existing events that trigger state changes (code-only and code-separation), define
or use existing Activity classes that manage state transitions (code-only and code-
separation), define custom workflow classes (code-only), and define business
process components that interact with workflow components (code-only).

l	 When designing data driven workflows, you define or use existing Activity
classes (code-only and code-separation), define or use existing Condition classes
to interact with data providers (code-only and code-separation), define custom
workflow classes (code-only), and define business process components that
interact with workflow components (code-only).

l	 When designing custom services, you define or use existing Activity classes to
interact with the service, define a service interface that supports the required
operations, design the service using proven practices, and choose the appro-
priate host for your service (IIS, Workflow Appliance Software (WAS), or
WorkflowServiceHost).

l	 When designing workflow markup, you can use the Visual Studio designer
(available as an extension to Visual Studio 2005 and included in Visual Studio
2008 and higher) or the SharePoint Designer to build workflows based on
SharePoint lists. Alternatively, you can use a third party designer to create
markup associated with the third party product, or hand-code the markup
using appropriate XAML syntax.

BizTalk Server
BizTalk can support either a code-separation or a markup authoring mode. With BizTalk,
you may need to design workflow components that are used within a BizTalk orches-
tration. Examples of workflow components include adapters and connectors. You
may also need to create services that provide operations required by the workflow,
or design business components that handle requests from BizTalk workflows.

.NET Application Architecture Guide, 2nd Edition178

You can also use BizTalk without writing custom components, which represents a
markup authoring mode. In other words, if only simple operations are required, you
can take advantage of the message transformation and function definition features
of BizTalk Server. The following list describes the process for creating workflows
using BizTalk:
l	 When designing workflow components for BizTalk, you define a class that

implements the appropriate interface and then register the class with COM.
l	 When designing business components for BizTalk, you define classes that sup-

port the required operations. You can initiate atomic transactions within business
components that are called by an orchestration if required, and you should design
the business layer to support the required operations using proven practices.

l	 When designing custom services, you define or use existing BizTalk classes to
interact with the service, define a service interface that supports required opera-
tions, design the service using proven practices, and choose the appropriate host
for your service (IIS or WAS).

Figure 1 shows how all of these components can work together to support a BizTalk
workflow.

Figure 1
Components working together to support a BizTalk workflow

Chapter 14:  Designing Workflow Components 179

BizTalk with ESB
The Microsoft Enterprise Service Bus (ESB) Toolkit extends BizTalk with capabilities
focused on building connected, service oriented applications. The ESB Toolkit consists
of components that support and implement a messaging environment, making it easier
to build message-based enterprise applications. Components provided by the toolkit
include:
l	 ESB Web Services.  These provide key Microsoft ESB Toolkit capabilities. The

services provided include the following:
l	 Itinerary on-ramp Web services that accept external messages and submits

them for processing.
l	 Resolver Web service that allows external applications to call the Resolver

Framework to look up ESB endpoints based on resolution mechanisms sup-
ported by the Resolver Framework, such as business rules policies, UDDI
registrations, static invocation, WS-MetadataExchange interface, and the
content of the message.

l	 Transformation Web service that provides features to transform message
content and fulfill business requirements. Transformations can take place
directly on an incoming message or on messages retrieved from the BizTalk
MessageBox database.

l	 Exception Handling Web service that accepts exception messages from external
sources and publishes them to the ESB Exception Management Framework.
From there, the fault processor pipeline will normalize, track, and publish the
exception message to the ESB Management Portal.

l	 UDDI Web service that allows applications and users to look up endpoints based
on the service name, business provider, or business category; it also allows appli-
cations and users to manipulate the business providers, services, and categories
stored in a UDDI repository.

l	 BizTalk Operations Web service that exposes information about BizTalk hosts,
orchestration, applications, and status.

l	 ESB Management Portal.  This provides features such as exception and fault
tracking, message resubmission, alerts and notifications, UDDI integration,
reporting and analytics, and configuration capabilities.

l	 ESB Pipeline Interop Components.  These include Java Messaging Service (JMS)
and namespace components for use in BizTalk pipelines.

l	 Exception Management Framework.  This can capture exceptions from both
BizTalk messaging and orchestration subsystems and generate fault messages.

l	 ESB Resolver and Adapter Provider Framework.  This implements a pluggable
and configurable architecture for dynamically resolving endpoints and transform
requirements, and for routing messages.

.NET Application Architecture Guide, 2nd Edition180

l	 Itinerary Processing.  This mechanism provides a lightweight capability for
dynamically describing, submitting, and executing multiple service invocations
or routing/transformation requests.

l	 ESB Sample Applications.  These demonstrate usage of the Microsoft ESB
Toolkit, demonstrating how you can take advantage of the features it provides
in your own SOA and ESB applications.

Using Windows Workflow Foundation and BizTalk Together
There are many cases where Windows Workflow Foundation (WF) or BizTalk may
not individually provide full support for the workflows you must implement. When
faced with this situation you can often take advantage of the appropriate features
from both workflow solutions within the same application. Consider using WF and
BizTalk together when you want to implement business rule workflow using WF
components in a code-only authoring mode that interacts with the BizTalk rules
engine, when you have existing WF workflows that must be invoked from a BizTalk
orchestration, when you are writing a SharePoint workflow that must execute a
BizTalk orchestration, or when a WF workflow must integrate with heterogeneous
or legacy systems.

Additional Resources
To more easily access Web resources on workflow technologies, see the online version
of the bibliography at: http://www.microsoft.com/architectureguide.
l	 “Introduction to Programming Windows Workflow Foundation” at

http://msdn.microsoft.com/en-us/library/ms734696.aspx.
l	 “Microsoft BizTalk ESB Toolkit” at

http://msdn.microsoft.com/en-us/library/dd897973.aspx.

http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/ms734696.aspx
http://msdn.microsoft.com/en-us/library/dd897973.aspx

15
Designing Data Components

Overview
Data layer components provide access to data that is hosted within the boundaries of
the system, and data exposed by other networked systems. It contains components
such as data access components that provide functionality for accessing the data
hosted within the system boundaries, and service agent components that provide
functionality for accessing data exposed by other back-end systems through Web
services. Additionally it may also contain components that provide helper functions
and utilities.

This chapter will help you to understand the basic steps for designing your data com-
ponents. The first step is to identify the constraints associated with the data to be
accessed, which will help you to choose an appropriate data access technology. The
next step is to choose a mapping strategy and then determine your data access
approach, which includes identifying the business entities to be used and the format
of entities. Then you can determine how the data access components will connect
to the data source. Finally, you determine the error handling strategy to manage the
data source exceptions.

	 Contents

15	 181

Designing Data Components	 181
Overview. 181
Step 1 – Choose a Data Access Technology . 182
Step 2 – Choose How to Retrieve and Persist Business Objects from the Data Store. 183
Step 3 – Determine How to Connect to the Data Source. 184

Connections. 184
Connection Pooling. 185
Transactions and Concurrency. 186

Step 4 – Determine Strategies for Handling Data Source Errors. 187
Exceptions. 188
Retry Logic. 188
Timeouts . 189

Step 5 – Design Service Agent Objects (Optional). 189
Additional Resources. 189

.NET Application Architecture Guide, 2nd Edition182

Step 1 – Choose a Data Access Technology
The choice of an appropriate data access technology must take into account the type
of data you are dealing with and how you want to manipulate that data within the
application. Certain technologies are better suited to specific scenarios. Use the
following guidelines to map your application scenarios to the available data access
technology solutions:
l	 ADO.NET Entity Framework.  Consider using the ADO.NET Entity Framework

(EF) if you want to create a data model and map it to a relational database; map
a single class to multiple tables using inheritance; or query relational stores other
than the Microsoft SQL Server family of products. EF is appropriate when you
have an object model that you must map to a relational model using a flexible
schema, and you need the flexibility of separating the mapping schema from the
object model. If you use EF, also consider using:

l	 LINQ to Entities.  Consider using LINQ to Entities if you must execute
queries over strongly typed entities, or must execute queries against rela-
tional data using LINQ syntax.

l	 ADO.NET Data Services Framework.  ADO.NET Data Services is built on top of
EF and allows you to expose parts of your Entity Model through a REST interface.
Consider using the ADO.NET Data Services Framework if you are developing
a RIA or an n-tier rich client application, and you want to access data through a
resource-centric service interface.

l	 ADO.NET Core.  Consider using ADO.NET Core if you need to use a low level
API for full control over data access your application, you want to leverage the
existing investment made into ADO.NET providers, or you are using traditional
data access logic against the database. ADO.NET Core is appropriate if do not
need the additional functionality offered by the other data access technologies,
or you are building an application that must support a disconnected data access
experience.

l	 ADO.NET Sync Services.  Consider using ADO.NET Sync Services if you are
designing an application that must support occasionally connected scenarios, or
requires collaboration between databases.

l	 LINQ to XML.  Consider using LINQ to XML if you are using XML data in your
application, and you want to execute queries using the LINQ syntax.

For more information on data access technologies on the Microsoft platform, see
Appendix C, “Data Access Technology Matrix.”

Chapter 15:  Designing Data Components 183

Step 2 – Choose How to Retrieve and Persist Business Objects
from the Data Store

After you have identified your data source requirements, the next step is to choose
a strategy for populating your business objects or business entities from the data
store and for persisting them back to the data store. An impedance mismatch typi-
cally exists between an object-oriented data model and the relational data store
that sometimes makes it difficult to translate between them. There are a number of
approaches to handling this mismatch, but these approaches differ in terms of the
data types, structure, transactional techniques, and in how the data is manipulated.
The most common approaches use Object/Relational Mapping (O/RM) tools and
frameworks. The type of entity you use in your application is the main factor in
deciding how to map those entities to data source structures. Use the following
guidelines to help you choose how to retrieve and persist business objects from
the data store:
l	 Consider using an O/RM framework that translates between domain entities

and the database. If you are working in a greenfield environment, where you
have full control over the database schema, you can use an O/RM tool to gener-
ate a schema to support the object model and provide a mapping between the
database and domain entities. If you are working in a brownfield environment,
where you must work with an existing database schema, you can use an O/RM
tool to help you to map between the domain model and relational model.

l	 A common pattern associated with OO design is domain model, which is based
on modeling entities on objects within a domain. See the Chapter 13, “Designing
Business Entities” later in this chapter for information on domain driven design
techniques.

l	 Ensure you group your entities correctly to achieve a high level of cohesion. This
may mean that you require additional objects within your domain model, and that
related entities are grouped into aggregate roots.

l	 When working with Web applications or services, group entities and provide
options for partially loading domain entities with only the required data. This
minimizes the use of resources by avoiding holding initialized domain models
for each user in memory, and allows applications to handle higher user load.

.NET Application Architecture Guide, 2nd Edition184

Step 3 – Determine How to Connect to the Data Source
Now that you know how the data access components map to the data source, you
should identify how to connect to the data source, protect user credentials, and
perform transactions. Use the guidelines in the following sections to help you
choose an appropriate approach:
l	 Connections
l	 Connection Pooling
l	 Transactions and Concurrency

Connections
Connections to data sources are a fundamental part of the data layer. The data layer
should coordinate all data source connections, making use of the data access infrastruc-
ture. Creating and managing connections uses valuable resources in both the data layer
and the data source. Use the following guidelines to ensure that you design an appro-
priate technique for connecting to data sources:
l	 Ensure that you open connections to the data source as late as possible and close

them as early as possible. This will ensure that the resources are locked for as short
a duration as possible, and are more freely available to other processes. If you have
nonvolatile data, use optimistic concurrency to mitigate the cost of locking data
in the database. This avoids the overhead of locking database rows, including the
connection that must be kept open during a lock.

l	 Perform transactions through a single connection where possible. This allows you
to use the transaction features of ADO.NET without requiring the services of a
distributed transaction coordinator.

l	 Use connection pooling and tune performance based on results obtained by running
simulated load scenarios. Consider tuning connection isolation levels for data
queries. If you are building an application with high-throughput requirements,
special data operations may be performed at lower isolation levels than the rest
of the transaction. Combining isolation levels can have a negative impact on data
consistency, so you must carefully analyze this option on a case by case basis.

l	 For security reasons, avoid using a System or User Data Source Name (DSN) to
store connection information.

l	 Design retry logic to manage the situation where the connection to the data source
is lost or times out.

l	 Batch commands and execute them against the database where possible to reduce
round trips to the database server.

Another important aspect that you must consider is the security requirements associ-
ated with accessing your data source. In other words, how will data access components
authenticate with a data source, and what are the authorization requirements? Use the

Chapter 15:  Designing Data Components 185

following guidelines to ensure that you design a secure approach for connecting to
data sources:
l	 Prefer Windows authentication to SQL Server authentication. If you are using

Microsoft SQL Server, consider using Windows authentication with a trusted
subsystem.

l	 If you do use SQL authentication, ensure that you use custom accounts with
strong passwords, limit the permissions of each account within SQL Server
using database roles, add ACLs to any files used to store connection strings,
and encrypt connection strings in configuration files.

l	 Use accounts with least privilege in the database, and require callers to send
identity information to the data layer for auditing purposes.

l	 Do not store passwords for user validation in a database; either plaintext or
encrypted. Instead, store password hashes that use a salt value (random bits
used as one of the inputs to the hashing function).

l	 If you are using SQL statements to access the data source, understand your
trust boundaries and use the parameterized approach to create queries instead
of string concatenation to protect against SQL injection attacks.

l	 Protect sensitive data sent over the network to and from SQL Server. Be aware
that Windows authentication protects credentials, but not application data. Use
IPSec or SSL to protect the data in the channel.

Connection Pooling
Connection pooling allows applications to reuse a connection from the pool, or
create new connection and add it to the pool if no suitable connection is available.
When applications close a connection, it is released back into the pool and the
underlying connection remains open. This means that ADO.NET is not required to
create a new connection and open it against the data source every time. Although
pooling open connections does consume resources, it reduces data access delays
and makes applications run more efficiently when suitable pooled connections are
available. Other issues that affect connection pooling are the following:
l	 To maximize the effectiveness of connection pooling, consider using a trusted

subsystem security model and avoid impersonation if possible. By using the
minimum number of credential sets, you increase the likelihood that an existing
pooled connection can be reused and reduce the change of a connection pool
overflow. If every call uses different credentials, ADO.NET must create a new
connection every time.

l	 Connections that remain open for long periods can hold on to resources on the serv-
er. A typical cause is opening connections early and closing them late (for example,
by not explicitly closing and disposing a connection until it goes out of scope).

l	 Connections can be held open for long periods when using DataReader objects,
which are only valid while the connection is open.

.NET Application Architecture Guide, 2nd Edition186

Transactions and Concurrency
If you have business critical operations in your application, consider wrapping them
in transactions. Transactions allow you to execute associated actions on a database
as an atomic unit, and ensure database integrity. A transaction is only considered
complete if all information and actions are complete, and the associated database
changes are made permanent. Transactions support undo (rollback) database actions
following an error, which helps to preserve the integrity of data in the database. Use
the following guidance to help you design transactions:
l	 If you are accessing a single data source, use connection-based transactions whenever

possible. If you are using manual or explicit transactions, consider implementing
the transaction within a stored procedure. If you cannot use transactions, imple-
ment compensating methods to revert the data store to its previous state.

l	 If you are using long-running atomic transactions, avoid holding locks for long
periods. In such scenarios, use compensating locks instead. If transactions take a
long time to complete, consider using asynchronous transactions that call back to
the client when complete. Also, consider the use of multiple active result sets in
transaction-heavy concurrent applications to avoid potential deadlock issues.

l	 If the chance of a data conflict from concurrent users is low (for example, when
users are generally adding data or editing different rows), consider using opti-
mistic locking during data access so that the last update applied is valid. If the
chance of a data conflict from concurrent users is high (for example, when users
are likely to be editing the same rows), consider using pessimistic locking during
data access so that updates can only be applied to the latest version. Also con-
sider concurrency issues when accessing static data within the application or
when using threads to perform asynchronous operations. Static data is not
inherently thread safe, which means that changes made in one thread will
affect other threads using the same data.

l	 Keep transactions as short as possible to minimize lock durations and improve
concurrency. However, consider that short and simple transactions may result in a
chatty interface if it requires multiple calls to achieve one operation.

l	 Use the appropriate isolation level. The tradeoff is data consistency versus conten-
tion. A high isolation level will offer higher data consistency at the price of overall
concurrency. A lower isolation level improves performance by lowering conten-
tion at the cost of consistency.

Chapter 15:  Designing Data Components 187

In general, you can choose from three types of transaction support, as described in
the following list:
l	 System.Transactions  namespace classes provides as part of the.NET Framework for

both implicit and explicit transaction support. Consider using System.Transactions
if you are developing a new application that requires transaction support, or if you
have transactions that span multiple nondurable resource managers. For most trans-
actions, the recommended approach is to use the implicit model provided by the
TransactionScope object in the System.Transactions namespace. Although implicit
transactions are not as fast as manual, or explicit, transactions, they are easier to
develop and lead to middle tier solutions that are flexible and easy to maintain.
If you do not want to use the implicit model for transactions, you can implement
manual transactions using the Transaction class in System.Transactions.

l	 ADO.NET Transactions  based on a single database connection. This is the most
efficient approach for client controlled transactions on a single data store. Consider
using ADO.NET Transactions if you are extending an application that already uses
ADO.NET Transactions, you are using ADO.NET providers for database access
and the transactions are limited to a single database, or you are deploying your
application into an environment that does not support version 2.0 of the .NET
Framework. You use ADO.NET commands to begin, commit, and roll back the
operations performed within the transaction.

l	 T-SQL (Database) Transactions  controlled by commands executed in the data-
base. These are most efficient for server controlled transactions on a single
data store, where the database manages all aspects of the transaction. Con-
sider using database transactions if you are developing stored procedures
that encapsulate all of the changes that must be managed by a transaction,
or you have multiple applications that use the same stored procedure and
transaction requirements can be encapsulated within that stored procedures.

Step 4 – Determine Strategies for Handling Data Source Errors
In this step, you should design an overall strategy to handle data source errors. All
exceptions associated with data sources should be caught by the data access layer.
Exceptions concerning the data itself, and data source access and timeout errors,
should be handled in this layer and passed to other layers only if the failures affect
application responsiveness or functionality. Use the guidelines in the following
sections to help you choose an appropriate approach:
l	 Exceptions
l	 Retry Logic
l	 Timeouts

.NET Application Architecture Guide, 2nd Edition188

Exceptions
A centralized exception management strategy will enable consistent handling of ex-
ceptions. Exception handling is a crosscutting concern, so consider implementing
the logic in separate components that you can share across layers. Pay particular
attention to exceptions that propagate through trust boundaries and to other layers
or tiers, and design for unhandled exceptions so they do not result in application
reliability issues or exposure of sensitive application information. The following
approach will help you in designing the exception management strategy:
l	 Determine exceptions that should be caught and handled in the data access layer.

Deadlocks, connection issues, and optimistic concurrency checks can often be
resolved within the data layer.

l	 Consider implementing a retry process for operations where data source errors or
timeouts occur, but only where it is safe to do so.

l	 Design an appropriate exception propagation strategy. For example, allow excep-
tions to bubble up to boundary layers where they can be logged and transformed
as necessary before passing them to the next layer.

l	 Design an appropriate logging and notification strategy for critical errors and
exceptions that does not reveal sensitive information.

l	 Consider using existing frameworks such as the patterns & practices Enterprise
Library to implement a consistent exception handling and management strategy.

Retry Logic
Design retry logic to handle errors, such as those that may occur during server
or database failover. Retry logic should catch any errors that occur while con-
necting to the database or executing commands (queries or transactions) against
the database. There may be multiple causes for the error. When an error occurs,
the data component should reestablish connectivity by closing any existing con-
nections and attempting to make a new connection, and then re-execute failed
commands if necessary. It should retry the process only a certain number of times,
and then finally give up and return a failure exception. Ensure that queries and
requests, and any subsequent retries, are executed asynchronously so that they
do not render the application unresponsive.

Chapter 15:  Designing Data Components 189

Timeouts
Identifying the appropriate value for connection and command timeouts is very
important. Setting a connection or command timeout value that is higher than the
client timeout (for example, in the case of a Web application, the browser or Web
server request timeout) can result in the client request timing out before the database
connection is opened. Setting a low value will cause the error handler to invoke the
retry logic. If a timeout occurs while executing a transaction, database resources may
remain locked after the connection is closed when connection pooling is enabled.
In such cases, when the connection is closed, it should be discarded so that is not
returned to the pool. This results in the transaction being rolled back, freeing the
database resources.

Step 5 – Design Service Agent Objects (Optional)
Service agents are objects that manage the semantics of communicating with external
services, isolate your application from the idiosyncrasies of calling diverse services,
and provide additional services such as basic mapping between the format of the
data exposed by the service and the format your application requires. They may also
implement caching, and offline or intermittent connection support. Follow the steps
below to design the service agent objects:

	 1.	 Use the appropriate tool to add a service reference. This will generate a proxy and
the data classes that represent the data contract from the service.

	 2.	 Determine how the service will be used in your application. For most applications,
the service agent acts as an abstraction layer between your business layer and the
remote service, and can provide a consistent interface regardless of the data format.
In smaller applications, the presentation layer, may access the service agent directly.

Additional Resources
To more easily access Web resources on general data access guidelines, see the online
version of the bibliography at: http://www.microsoft.com/architectureguide.
l	 “.NET Data Access Architecture Guide” at

http://msdn.microsoft.com/en-us/library/ms978510.aspx.
l	 “Data Patterns” at http://msdn.microsoft.com/en-us/library/ms998446.aspx.
l	 ”Designing Data Tier Components and Passing Data Through Tiers” at

http://msdn.microsoft.com/en-us/library/ms978496.aspx.

http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/ms978510.aspx
http://msdn.microsoft.com/en-us/library/ms998446.aspx
http://msdn.microsoft.com/en-us/library/ms978496.aspx

16
Quality Attributes

Overview
Quality attributes are the overall factors that affect run-time behavior, system design,
and user experience. They represent areas of concern that have the potential for
application wide impact across layers and tiers. Some of these attributes are related
to the overall system design, while others are specific to run time, design time, or
user centric issues. The extent to which the application possesses a desired combi-
nation of quality attributes such as usability, performance, reliability, and security
indicates the success of the design and the overall quality of the software application.

When designing applications to meet any of the quality attributes requirements, it is
necessary to consider the potential impact on other requirements. You must analyze
the tradeoffs between multiple quality attributes. The importance or priority of each
quality attribute differs from system to system; for example, interoperability will
often be less important in a single use packaged retail application than in a line of
business (LOB) system.

This chapter lists and describes the quality attributes that you should consider when
designing your application. To get the most out of this chapter, use the table on the
following pages to gain an understanding of how quality attributes map to system and
application quality factors, and read the description of each of the quality attributes.
Then use the sections containing key guidelines for each of the quality attributes to
understand how that attribute has an impact on your design, and to determine the
decisions you must make to addresses these issues. Keep in mind that the list of
quality attributes in this chapter is not exhaustive, but provides a good starting
point for asking appropriate questions about your architecture.

	 Contents

16	 191

Quality Attributes	 191
Overview. 191
Common Quality Attributes. 192

Availability . 194
Conceptual Integrity . 195
Interoperability . 196
Maintainability. 196
Manageability . 197
Performance. 198
Reliability. 199
Reusability. 200
Scalability. 200
Security . 201
Supportability . 202
Testability. 202
User Experience / Usability . 203

Additional Resources. 204

.NET Application Architecture Guide, 2nd Edition192

Common Quality Attributes
The following table describes the quality attributes covered in this chapter. It catego-
rizes the attributes in four specific areas linked to design, runtime, system, and user
qualities. Use this table to understand what each of the quality attributes means in
terms of your application design.

Category Quality attribute Description
Design  
Qualities

Conceptual
Integrity

Conceptual integrity defines the consistency and coherence
of the overall design. This includes the way that components
or modules are designed, as well as factors such as coding
style and variable naming.

Maintainability Maintainability is the ability of the system to undergo
changes with a degree of ease. These changes could impact
components, services, features, and interfaces when adding
or changing the functionality, fixing errors, and meeting new
business requirements.

Reusability Reusability defines the capability for components and
subsystems to be suitable for use in other applications and
in other scenarios. Reusability minimizes the duplication of
components and also the implementation time.

Chapter 16:  Quality Attributes 193

Category Quality attribute Description
Run-time  
Qualities

Availability Availability defines the proportion of time that the system is
functional and working. It can be measured as a percent-
age of the total system downtime over a predefined period.
Availability will be affected by system errors, infrastructure
problems, malicious attacks, and system load.

Interoperability Interoperability is the ability of a system or different systems
to operate successfully by communicating and exchanging
information with other external systems written and run by
external parties. An interoperable system makes it easier
to exchange and reuse information internally as well as
externally.

Manageability Manageability defines how easy it is for system administra-
tors to manage the application, usually through sufficient
and useful instrumentation exposed for use in monitoring
systems and for debugging and performance tuning.

Performance Performance is an indication of the responsiveness of a
system to execute any action within a given time interval. It
can be measured in terms of latency or throughput. Latency
is the time taken to respond to any event. Throughput is the
number of events that take place within a given amount of
time.

Reliability Reliability is the ability of a system to remain operational over
time. Reliability is measured as the probability that a system
will not fail to perform its intended functions over a specified
time interval.

Scalability Scalability is ability of a system to either handle increases in
load without impact on the performance of the system, or the
ability to be readily enlarged.

Security Security is the capability of a system to prevent malicious
or accidental actions outside of the designed usage, and to
prevent disclosure or loss of information. A secure system
aims to protect assets and prevent unauthorized modification
of information.

System  
Qualities

Supportability Supportability is the ability of the system to provide informa-
tion helpful for identifying and resolving issues when it fails
to work correctly.

Testability Testability is a measure of how easy it is to create test criteria
for the system and its components, and to execute these
tests in order to determine if the criteria are met. Good test-
ability makes it more likely that faults in a system can be
isolated in a timely and effective manner.

User  
Qualities

Usability Usability defines how well the application meets the require-
ments of the user and consumer by being intuitive, easy to
localize and globalize, providing good access for disabled
users, and resulting in a good overall user experience.

.NET Application Architecture Guide, 2nd Edition194

The following sections describe each of the quality attributes in more detail, and
provide guidance on the key issues and the decisions you must make for each one:
l	 Availability
l	 Conceptual Integrity
l	 Interoperability
l	 Maintainability
l	 Manageability
l	 Performance
l	 Reliability
l	 Reusability
l	 Scalability
l	 Security
l	 Supportability
l	 Testability
l	 User Experience / Usability

Availability
Availability defines the proportion of time that the system is functional and working.
It can be measured as a percentage of the total system downtime over a predefined
period. Availability will be affected by system errors, infrastructure problems,
malicious attacks, and system load. The key issues for availability are:
l	 A physical tier such as the database server or application server can fail or become

unresponsive, causing the entire system to fail. Consider how to design failover
support for the tiers in the system. For example, use Network Load Balancing for
Web servers to distribute the load and prevent requests being directed to a server
that is down. Also, consider using a RAID mechanism to mitigate system failure
in the event of a disk failure. Consider if there is a need for a geographically
separate redundant site to failover to in case of natural disasters such as earth-
quakes or tornados.

l	 Denial of Service (DoS) attacks, which prevent authorized users from accessing
the system, can interrupt operations if the system cannot handle massive loads in
a timely manner, often due to the processing time required, or network configura-
tion and congestion. To minimize interruption from DoS attacks, reduce the attack
surface area, identify malicious behavior, use application instrumentation to expose
unintended behavior, and implement comprehensive data validation. Consider
using the Circuit Breaker or Bulkhead patterns to increase system resiliency.

l	 Inappropriate use of resources can reduce availability. For example, resources
acquired too early and held for too long cause resource starvation and an inability
to handle additional concurrent user requests.

Chapter 16:  Quality Attributes 195

l	 Bugs or faults in the application can cause a system wide failure. Design for
proper exception handling in order to reduce application failures from which
it is difficult to recover.

l	 Frequent updates, such as security patches and user application upgrades, can
reduce the availability of the system. Identify how you will design for run-time
upgrades.

l	 A network fault can cause the application to be unavailable. Consider how you
will handle unreliable network connections; for example, by designing clients
with occasionally-connected capabilities.

l	 Consider the trust boundaries within your application and ensure that sub-
systems employ some form of access control or firewall, as well as extensive
data validation, to increase resiliency and availability.

Conceptual Integrity
Conceptual integrity defines the consistency and coherence of the overall design.
This includes the way that components or modules are designed, as well as factors
such as coding style and variable naming. A coherent system is easier to maintain
because you will know what is consistent with the overall design. Conversely, a
system without conceptual integrity will constantly be affected by changing inter-
faces, frequently deprecating modules, and lack of consistency in how tasks are
performed. The key issues for conceptual integrity are:
l	 Mixing different areas of concern within your design. Consider identifying

areas of concern and grouping them into logical presentation, business, data,
and service layers as appropriate.

l	 Inconsistent or poorly managed development processes. Consider performing an
Application Lifecycle Management (ALM) assessment, and make use of tried and
tested development tools and methodologies.

l	 Lack of collaboration and communication between different groups involved in
the application lifecycle. Consider establishing a development process integrated
with tools to facilitate process workflow, communication, and collaboration.

l	 Lack of design and coding standards. Consider establishing published guide-
lines for design and coding standards, and incorporating code reviews into
your development process to ensure guidelines are followed.

l	 Existing (legacy) system demands can prevent both refactoring and progression
toward a new platform or paradigm. Consider how you can create a migration
path away from legacy technologies, and how to isolate applications from external
dependencies. For example, implement the Gateway design pattern for integra-
tion with legacy systems.

.NET Application Architecture Guide, 2nd Edition196

Interoperability
Interoperability is the ability of a system or different systems to operate successfully
by communicating and exchanging information with other external systems written
and run by external parties. An interoperable system makes it easier to exchange and
reuse information internally as well as externally. Communication protocols, interfaces,
and data formats are the key considerations for interoperability. Standardization is
also an important aspect to be considered when designing an interoperable system.
The key issues for interoperability are:
l	 Interaction with external or legacy systems that use different data formats. Consider

how you can enable systems to interoperate, while evolving separately or even
being replaced. For example, use orchestration with adaptors to connect with
external or legacy systems and translate data between systems; or use a canonical
data model to handle interaction with a large number of different data formats.

l	 Boundary blurring, which allows artifacts from one system to defuse into another.
Consider how you can isolate systems by using service interfaces and/or mapping
layers. For example, expose services using interfaces based on XML or standard
types in order to support interoperability with other systems. Design components
to be cohesive and have low coupling in order to maximize flexibility and facili-
tate replacement and reusability.

l	 Lack of adherence to standards. Be aware of the formal and de facto standards for
the domain you are working within, and consider using one of them rather than
creating something new and proprietary.

Maintainability
Maintainability is the ability of the system to undergo changes with a degree of ease.
These changes could impact components, services, features, and interfaces when
adding or changing the application’s functionality in order to fix errors, or to meet
new business requirements. Maintainability can also affect the time it takes to restore
the system to its operational status following a failure or removal from operation for
an upgrade. Improving system maintainability can increase availability and reduce
the effects of run-time defects. An application’s maintainability is often a function of
its overall quality attributes but there a number of key issues that can directly affect
maintainability:
l	 Excessive dependencies between components and layers, and inappropriate cou-

pling to concrete classes, prevents easy replacement, updates, and changes; and
can cause changes to concrete classes to ripple through the entire system. Consider
designing systems as well-defined layers, or areas of concern, that clearly delineate
the system’s UI, business processes, and data access functionality. Consider imple-
menting cross-layer dependencies by using abstractions (such as abstract classes
or interfaces) rather than concrete classes, and minimize dependencies between
components and layers.

Chapter 16:  Quality Attributes 197

l	 The use of direct communication prevents changes to the physical deployment of
components and layers. Choose an appropriate communication model, format, and
protocol. Consider designing a pluggable architecture that allows easy upgrades and
maintenance, and improves testing opportunities, by designing interfaces that allow
the use of plug-in modules or adapters to maximize flexibility and extensibility.

l	 Reliance on custom implementations of features such as authentication and autho-
rization prevents reuse and hampers maintenance. To avoid this, use the built-in
platform functions and features wherever possible.

l	 The logic code of components and segments is not cohesive, which makes them
difficult to maintain and replace, and causes unnecessary dependencies on other
components. Design components to be cohesive and have low coupling in order
to maximize flexibility and facilitate replacement and reusability.

l	 The code base is large, unmanageable, fragile, or over complex; and refactoring
is burdensome due to regression requirements. Consider designing systems as
well defined layers, or areas of concern, that clearly delineate the system’s UI,
business processes, and data access functionality. Consider how you will manage
changes to business processes and dynamic business rules, perhaps by using a
business workflow engine if the business process tends to change. Consider
using business components to implement the rules if only the business rule
values tend to change; or an external source such as a business rules engine
if the business decision rules do tend to change.

l	 The existing code does not have an automated regression test suite. Invest in test
automation as you build the system. This will pay off as a validation of the system’s
functionality, and as documentation on what the various parts of the system do and
how they work together.

l	 Lack of documentation may hinder usage, management, and future upgrades.
Ensure that you provide documentation that, at minimum, explains the overall
structure of the application.

Manageability
Manageability defines how easy it is for system administrators to manage the
application, usually through sufficient and useful instrumentation exposed for
use in monitoring systems and for debugging and performance tuning. Design
your application to be easy to manage, by exposing sufficient and useful instru-
mentation for use in monitoring systems and for debugging and performance
tuning. The key issues for manageability are:
l	 Lack of health monitoring, tracing, and diagnostic information. Consider creating

a health model that defines the significant state changes that can affect application
performance, and use this model to specify management instrumentation require-
ments. Implement instrumentation, such as events and performance counters, that
detects state changes, and expose these changes through standard systems such as

.NET Application Architecture Guide, 2nd Edition198

Event Logs, Trace files, or Windows Management Instrumentation (WMI). Capture
and report sufficient information about errors and state changes in order to enable
accurate monitoring, debugging, and management. Also, consider creating manage-
ment packs that administrators can use in their monitoring environments to
manage the application.

l	 Lack of runtime configurability. Consider how you can enable the system behavior
to change based on operational environment requirements, such as infrastructure
or deployment changes.

l	 Lack of troubleshooting tools. Consider including code to create a snapshot of the
system’s state to use for troubleshooting, and including custom instrumentation
that can be enabled to provide detailed operational and functional reports. Con-
sider logging and auditing information that may be useful for maintenance and
debugging, such as request details or module outputs and calls to other systems
and services.

Performance
Performance is an indication of the responsiveness of a system to execute specific
actions in a given time interval. It can be measured in terms of latency or through-
put. Latency is the time taken to respond to any event. Throughput is the number of
events that take place in a given amount of time. An application’s performance can
directly affect its scalability, and lack of scalability can affect performance. Improving
an application’s performance often improves its scalability by reducing the likelihood
of contention for shared resources. Factors affecting system performance include the
demand for a specific action and the system’s response to the demand. The key issues
for performance are:
l	 Increased client response time, reduced throughput, and server resource over

utilization. Ensure that you structure the application in an appropriate way and
deploy it onto a system or systems that provide sufficient resources. When com-
munication must cross process or tier boundaries, consider using coarse-grained
interfaces that require the minimum number of calls (preferably just one) to
execute a specific task, and consider using asynchronous communication.

l	 Increased memory consumption, resulting in reduced performance, excessive
cache misses (the inability to find the required data in the cache), and increased
data store access. Ensure that you design an efficient and appropriate caching
strategy.

Chapter 16:  Quality Attributes 199

l	 Increased database server processing, resulting in reduced throughput. Ensure
that you choose effective types of transactions, locks, threading, and queuing
approaches. Use efficient queries to minimize performance impact, and avoid
fetching all of the data when only a portion is displayed. Failure to design for
efficient database processing may incur unnecessary load on the database server,
failure to meet performance objectives, and costs in excess of budget allocations.

l	 Increased network bandwidth consumption, resulting in delayed response times and
increased load for client and server systems. Design high performance communica-
tion between tiers using the appropriate remote communication mechanism. Try to
reduce the number of transitions across boundaries, and minimize the amount of
data sent over the network. Batch work to reduce calls over the network.

Reliability
Reliability is the ability of a system to continue operating in the expected way over
time. Reliability is measured as the probability that a system will not fail and that
it will perform its intended function for a specified time interval. The key issues for
reliability are:
l	 The system crashes or becomes unresponsive. Identify ways to detect failures

and automatically initiate a failover, or redirect load to a spare or backup system.
Also, consider implementing code that uses alternative systems when it detects a
specific number of failed requests to an existing system.

l	 Output is inconsistent. Implement instrumentation, such as events and performance
counters, that detects poor performance or failures of requests sent to external sys-
tems, and expose information through standard systems such as Event Logs, Trace
files, or WMI. Log performance and auditing information about calls made to other
systems and services.

l	 The system fails due to unavailability of other externalities such as systems, net-
works, and databases. Identify ways to handle unreliable external systems, failed
communications, and failed transactions. Consider how you can take the system
offline but still queue pending requests. Implement store and forward or cached
message-based communication systems that allow requests to be stored when the
target system is unavailable, and replayed when it is online. Consider using Win-
dows Message Queuing or BizTalk Server to provide a reliable once-only delivery
mechanism for asynchronous requests.

.NET Application Architecture Guide, 2nd Edition200

Reusability
Reusability is the probability that a component will be used in other components or
scenarios to add new functionality with little or no change. Reusability minimizes the
duplication of components and the implementation time. Identifying the common
attributes between various components is the first step in building small reusable
components for use in a larger system. The key issues for reusability are:
l	 The use of different code or components to achieve the same result in different places;

for example, duplication of similar logic in multiple components, and duplication
of similar logic in multiple layers or subsystems. Examine the application design
to identify common functionality, and implement this functionality in separate
components that you can reuse. Examine the application design to identify cross-
cutting concerns such as validation, logging, and authentication, and implement
these functions as separate components.

l	 The use of multiple similar methods to implement tasks that have only slight
variation. Instead, use parameters to vary the behavior of a single method.

l	 Using several systems to implement the same feature or function instead of
sharing or reusing functionality in another system, across multiple systems, or
across different subsystems within an application. Consider exposing function-
ality from components, layers, and subsystems through service interfaces that
other layers and systems can use. Use platform agnostic data types and struc-
tures that can be accessed and understood on different platforms.

Scalability
Scalability is ability of a system to either handle increases in load without impact on
the performance of the system, or the ability to be readily enlarged. There are two
methods for improving scalability: scaling vertically (scale up), and scaling horizon-
tally (scale out). To scale vertically, you add more resources such as CPU, memory,
and disk to a single system. To scale horizontally, you add more machines to a farm
that runs the application and shares the load. The key issues for scalability are:
l	 Applications cannot handle increasing load. Consider how you can design layers

and tiers for scalability, and how this affects the capability to scale up or scale out
the application and the database when required. You may decide to locate logical
layers on the same physical tier to reduce the number of servers required while
maximizing load sharing and failover capabilities. Consider partitioning data
across more than one database server to maximize scale-up opportunities and
allow flexible location of data subsets. Avoid stateful components and subsystems
where possible to reduce server affinity.

Chapter 16:  Quality Attributes 201

l	 Users incur delays in response and longer completion times. Consider how you
will handle spikes in traffic and load. Consider implementing code that uses addi-
tional or alternative systems when it detects a predefined service load or a number
of pending requests to an existing system.

l	 The system cannot queue excess work and process it during periods of reduced
load. Implement store-and-forward or cached message-based communication
systems that allow requests to be stored when the target system is unavailable,
and replayed when it is online.

Security
Security is the capability of a system to reduce the chance of malicious or accidental
actions outside of the designed usage affecting the system, and prevent disclosure or
loss of information. Improving security can also increase the reliability of the system by
reducing the chances of an attack succeeding and impairing system operation. Securing
a system should protect assets and prevent unauthorized access to or modification
of information. The factors affecting system security are confidentiality, integrity,
and availability. The features used to secure systems are authentication, encryption,
auditing, and logging. The key issues for security are:
l	 Spoofing of user identity. Use authentication and authorization to prevent spoofing

of user identity. Identify trust boundaries, and authenticate and authorize users
crossing a trust boundary.

l	 Damage caused by malicious input such as SQL injection and cross-site scripting.
Protect against such damage by ensuring that you validate all input for length,
range, format, and type using the constrain, reject, and sanitize principles. Encode
all output you display to users.

l	 Data tampering. Partition the site into anonymous, identified, and authenticated
users and use application instrumentation to log and expose behavior that can be
monitored. Also use secured transport channels, and encrypt and sign sensitive
data sent across the network

l	 Repudiation of user actions. Use instrumentation to audit and log all user inter-
action for application critical operations.

l	 Information disclosure and loss of sensitive data. Design all aspects of the
application to prevent access to or exposure of sensitive system and application
information.

l	 Interruption of service due to Denial of service (DoS) attacks. Consider reducing
session timeouts and implementing code or hardware to detect and mitigate
such attacks.

.NET Application Architecture Guide, 2nd Edition202

Supportability
Supportability is the ability of the system to provide information helpful for iden-
tifying and resolving issues when it fails to work correctly. The key issues for
supportability are:
l	 Lack of diagnostic information. Identify how you will monitor system activity

and performance. Consider a system monitoring application, such as Microsoft
System Center.

l	 Lack of troubleshooting tools. Consider including code to create a snapshot of the
system’s state to use for troubleshooting, and including custom instrumentation
that can be enabled to provide detailed operational and functional reports. Con-
sider logging and auditing information that may be useful for maintenance and
debugging, such as request details or module outputs and calls to other systems
and services.

l	 Lack of tracing ability. Use common components to provide tracing support
in code, perhaps though Aspect Oriented Programming (AOP) techniques or
dependency injection. Enable tracing in Web applications in order to trouble-
shoot errors.

l	 Lack of health monitoring. Consider creating a health model that defines the
significant state changes that can affect application performance, and use this
model to specify management instrumentation requirements. Implement instru-
mentation, such as events and performance counters, that detects state changes,
and expose these changes through standard systems such as Event Logs, Trace
files, or Windows Management Instrumentation (WMI). Capture and report
sufficient information about errors and state changes in order to enable accurate
monitoring, debugging, and management. Also, consider creating management
packs that administrators can use in their monitoring environments to manage
the application.

Testability
Testability is a measure of how well system or components allow you to create test
criteria and execute tests to determine if the criteria are met. Testability allows faults
|in a system to be isolated in a timely and effective manner. The key issues for test-
ability are:
l	 Complex applications with many processing permutations are not tested consis-

tently, perhaps because automated or granular testing cannot be performed if the
application has a monolithic design. Design systems to be modular to support
testing. Provide instrumentation or implement probes for testing, mechanisms to
debug output, and ways to specify inputs easily. Design components that have
high cohesion and low coupling to allow testability of components in isolation
from the rest of the system.

Chapter 16:  Quality Attributes 203

l	 Lack of test planning. Start testing early during the development life cycle. Use
mock objects during testing, and construct simple, structured test solutions.

l	 Poor test coverage, for both manual and automated tests. Consider how you
can automate user interaction tests, and how you can maximize test and code
coverage.

l	 Input and output inconsistencies; for the same input, the output is not the
same and the output does not fully cover the output domain even when all
known variations of input are provided. Consider how to make it easy to
specify and understand system inputs and outputs to facilitate the construc-
tion of test cases.

User Experience / Usability
The application interfaces must be designed with the user and consumer in mind
so that they are intuitive to use, can be localized and globalized, provide access for
disabled users, and provide a good overall user experience. The key issues for user
experience and usability are:
l	 Too much interaction (an excessive number of clicks) required for a task. Ensure

you design the screen and input flows and user interaction patterns to maximize
ease of use.

l	 Incorrect flow of steps in multistep interfaces. Consider incorporating workflows
where appropriate to simplify multistep operations.

l	 Data elements and controls are poorly grouped. Choose appropriate control types
(such as option groups and check boxes) and lay out controls and content using
the accepted UI design patterns.

l	 Feedback to the user is poor, especially for errors and exceptions, and the appli-
cation is unresponsive. Consider implementing technologies and techniques
that provide maximum user interactivity, such as Asynchronous JavaScript and
XML (AJAX) in Web pages and client-side input validation. Use asynchronous
techniques for background tasks, and tasks such as populating controls or per-
forming long-running tasks.

.NET Application Architecture Guide, 2nd Edition204

Additional Resources
To more easily access Web resources on implementing and auditing quality
attributes, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 “Implementing System-Quality Attributes” at

http://msdn.microsoft.com/en-us/library/bb402962.aspx.
l	 "Software Architecture in the New Economy” at

http://msdn.microsoft.com/en-us/library/cc168642.aspx.
l	 "Quality-Attribute Auditing: The What, Why, and How” at

http://msdn.microsoft.com/en-us/library/bb508961.aspx.
l	 Feathers, Michael. Working Effectively With Legacy Code. Prentice Hall, 2004.
l	 Baley, Kyle and Donald Belcham. Brownfield Application Development in .NET.

Manning Publications Co, 2008.
l	 Nygard, Michael. Release It!: Design and Deploy Production-Ready Software. Pragmatic

Bookshelf, 2007.
.

http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/bb402962.aspx
http://msdn.microsoft.com/en-us/library/cc168642.aspx
http://msdn.microsoft.com/en-us/library/bb508961.aspx

17
Crosscutting Concerns

Overview
The majority of applications you design will contain common functionality that
spans layers and tiers. This functionality typically supports operations such authen-
tication, authorization, caching, communication, exception management, logging
and instrumentation, and validation. Such functionality is generally described as
crosscutting concerns because it affects the entire application, and should be central-
ized in one location in the code where possible. For example, if code that generates
log entries and writes to the application logs is scattered throughout your layers
and tiers, and the requirements related to these concerns change (such as logging
to a different location), you may have to update the relevant code throughout the
entire system. Instead, if you centralize the logging code, you can change the be-
havior by changing the code in just one location.

This chapter will help you to understand the role that crosscutting concerns play
in applications, identify the areas where they occur in your applications, and learn
about the common issues faced when designing for crosscutting concerns. There are
several different approaches to handling this functionality, from common libraries
such as the patterns & practices Enterprise Library, to Aspect Oriented Programming
(AOP) methods where metadata is used to insert crosscutting code directly into the
compiled output or during run time execution.

	 Contents

17	 205

Crosscutting Concerns	 205
Overview. 205
General Design Considerations . 206
Specific Design Issues. 207

Authentication. 207
Authorization. 208
Caching . 209
Communication. 210
Configuration Management. 210
Exception Management . 211
Logging and Instrumentation. 212
State Management. 213
Validation. 213

Design Steps for Caching . 214
Step 1 – Determine the Data to Cache. 214
Step 2 – Determine Where to Cache Data . 214
Step 3 – Determine the Format of Your Data to Cache . 216
Step 4 – Determine a Suitable Cache Management Strategy . 216
Step 5 – Determine How to Load the Cache Data . 217

Design Steps for Exception Management . 218
Step 1 – Identify Exceptions That You Want to Handle. 218
Step 2 – Determine Your Exception Detection Strategy. 218
Step 3 – Determine Your Exception Propagation Strategy. 219
Step 4 – Determine Your Custom Exception Strategy. 219
Step 5 – Determine Appropriate Information to Gather. 220
Step 6 – Determine Your Exception Logging Strategy . 221
Step 7 – Determine Your Exception Notification Strategy . 221
Step 8 – Determine How to Handle Unhandled Exceptions. 222

Design Steps for Validating Input and Data. 222
Step 1 – Identify your Trust Boundaries . 222
Step 2 – Identify Key Scenarios. 223
Step 3 – Determine Where to Validate . 223
Step 4 – Identify Validation Strategies . 224

Relevant Design Patterns . 224
patterns & practices Solution Assets. 225
Additional Resources. 225

.NET Application Architecture Guide, 2nd Edition206

General Design Considerations
The following guidelines will help you to understand the main factors for managing
crosscutting concerns:
l	 Examine the functions required in each layer, and look for cases where you can

abstract that functionality into common components, perhaps even general pur-
pose components that you configure depending on the specific requirements of
each layer of the application. It is likely that these kinds of components will be
reusable in other applications.

l	 Depending how you physically distribute the components and layers of your
application, you may need to install the crosscutting components on more than
one physical tier. However, you still benefit from reusability and reduced devel-
opment time and cost.

l	 Consider using the Dependency Injection pattern to inject instances of cross-
cutting components into your application based on configuration information.
This allows you to change the crosscutting components that each section uses
easily, without requiring recompilation and redeployment of your application.
The patterns & practices Unity library provides comprehensive support for the
Dependency Injection pattern. Other popular Dependency Injection libraries
include StructureMap, Ninject, and Castle Windsor (see Additional Resources
at the end of this chapter for more information).

l	 Consider using a third-party library of components that are highly configurable and
can reduce development time. An example is the patterns & practices Enterprise
Library, which contains application blocks designed to help you implement caching,
exception handling, authentication and authorization, logging, exception handling,
validation, and cryptography functions. It also contains mechanisms that imple-
ment policy injection and a dependency injection container that make it easier to
implement solutions for a range of crosscutting concerns. For more information
about Enterprise Library, see Appendix F, “patterns & practices Enterprise Library.”
Another common library is provided by the Castle Project (see Additional Resources
at the end of this chapter for more information).

l	 Consider using Aspect Oriented Programming (AOP) techniques to weave the
crosscutting concerns into your application, rather than having explicit calls in
the code. The patterns & practices Unity mechanism and the Enterprise Library
Policy Injection Application Block support this approach. Other examples include
Castle Windsor and PostSharp (see Additional Resources at the end of this chap-
ter for more information).

Chapter 17:  Crosscutting Concerns 207

Specific Design Issues
The following sections list the key areas to consider as you develop your architecture,
and contain guidelines to help you avoid the common issues in each area:
l	 Authentication
l	 Authorization
l	 Caching
l	 Communication
l	 Configuration Management
 l	 Exception Management
l	 Logging and Instrumentation
l	 State Management
l	 Validation

Authentication
Designing a good authentication strategy is important for the security and reliability
of your application. Failure to design and implement a good authentication strategy
can leave your application vulnerable to spoofing attacks, dictionary attacks, session
hijacking, and other types of attacks. Consider the following guidelines when
designing an authentication strategy:
l	 Identify your trust boundaries and authenticate users and calls across the trust

boundaries. Consider that calls might need to be authenticated from the client as
well as from the server (mutual authentication).

l	 Enforce the use of strong passwords or password phrases.
l	 If you have multiple systems within the application or users must be able

to access multiple applications with the same credentials, consider a single
sign-on strategy.

l	 Do not transmit passwords over the wire in plain text, and do not store passwords
in a database or data store as plain text. Instead, store a hash of the password.

For more information about designing an authentication strategy, and techniques for
implementing it, see “Additional Resources” at the end of this chapter.

.NET Application Architecture Guide, 2nd Edition208

Authorization
Designing a good authorization strategy is important for the security and reliability
of your application. Failure to design and implement a good authorization strategy
can make your application vulnerable to information disclosure, data tampering,
and elevation of privileges. Consider the following guidelines when designing an
authorization strategy:
l	 Identify your trust boundaries and authorize users and callers across the trust

boundary.
l	 Protect resources by applying authorization to callers based on their identity,

groups, or roles. Minimize granularity by limiting the number of roles you use
where possible.

l	 Consider using role-based authorization for business decisions. Role-based
authorization is used to subdivide users into groups (roles) and then set permis-
sions on each role rather than on individual users. This eases management by
allowing you to administer a smaller set of roles rather than a larger set of users.

l	 Consider using resource-based authorization for system auditing. Resource-based
authorization sets permissions on the resource itself; for example, an access control
list (ACL) on a Windows resource uses the identity of the original caller to deter-
mine access rights to the resource. If you use resource-based authorization in WCF,
you must to impersonate the original caller through the client or presentation layer,
through the WCF service layer, and to the business logic code that accesses the
resource.

l	 Consider using claims-based authorization when you must support federated
authorization based on a mixture of information such as identity, role, permis-
sions, rights, and other factors. Claims-based authorization provides additional
layers of abstraction that make it easier to separate authorization rules from the
authorization and authentication mechanism. For example, you can authenticate
a user with a certificate or with username/password credentials and then pass
that claim-set to the service to determine access to resources.

For more information about designing an authorization strategy, and techniques for
implementing it, see “Additional Resources” at the end of this chapter.

Chapter 17:  Crosscutting Concerns 209

Caching
Caching can improve the performance and responsiveness of your application.
However, a poorly designed caching strategy can degrade performance and respon-
siveness. You should use caching to optimize reference data lookups, avoid network
round trips, and avoid unnecessary and duplicate processing. When you implement
caching, you must decide when to load the cache data and how and when to remove
expired cached data. Try to preload frequently used data into the cache asynchro-
nously or by using a batch process to avoid client delays. Consider the following
guidelines when designing a caching strategy:
l	 Choose an appropriate location for the cache. If your application is deployed in Web

farm, avoid using local caches that must be synchronized; instead consider using a
transactional resource manager such as Microsoft® SQL Server® or a product that
supports distributed caching, such as “Memcached” from Danga Interactive or the
Microsoft project code named “Velocity” (see Additional Resources at the end of this
chapter for more information).

l	 Consider caching data in a ready-to-use format when working with an in-memory
cache. For example, use a specific object instead of caching raw database data.
Consider using Microsoft Velocity to implement in-memory caching.

l	 Do not cache volatile data, and do not cache sensitive data unless you encrypt it.
l	 Do not depend on data still being in your cache; it may have been removed.

Implement a mechanism to handle cache failures, perhaps by reloading the item
from the source.

l	 Be especially careful when accessing the cache from multiple threads. If you are
using multiple threads, ensure that all access to the cache is thread-safe to main-
tain consistency.

For more information about designing a caching strategy, see “Design Steps for
Caching” later in this chapter.

.NET Application Architecture Guide, 2nd Edition210

Communication
Communication is concerned with the interaction between components across layers
and tiers. The mechanism you choose depends on the deployment scenarios your
application must support. Consider the following guidelines when designing com-
munication mechanisms:
l	 Consider using message-based communication when crossing physical or process

boundaries; and object-based communication when in process (when crossing
only logical boundaries). To reduce round trips and improve communication per-
formance across physical and process boundaries, design coarse-grained (chunky)
interfaces that communicate less often but with more information in each commu-
nication. However, where appropriate, consider exposing a fine-grained (chatty)
interface for use by in process calls and wrapping these calls in a coarse-grained
façade for use by processes that access it across physical or process boundaries.

l	 If your messages do not need to be received in a specific order and do not have
dependencies on each other, consider using asynchronous communication to
avoid blocking processing or UI threads.

l	 Consider using Microsoft Message Queuing to queue messages for later delivery
in case of system or network interruption or failure. Message Queuing can per-
form transacted message delivery and supports reliable once-only delivery.

l	 Choose an appropriate transport protocol, such as HTTP for Internet communi-
cation and TCP for intranet communication. Consider how you will determine
the appropriate message exchange patterns, connection based or connectionless
communication, reliability guarantees (such as service level agreements), and
authentication mechanism.

l	 Ensure that you protect messages and sensitive data during communication by
using encryption, digital certificates, and channel security features.

For more information about designing a communication strategy, see Chapter 18,
“Communication and Messaging.”

Configuration Management
Designing a good configuration management mechanism is important for the secu-
rity and flexibility of your application. Failure to do so can make your application
vulnerable to a variety of attacks, and also leads to an administrative overhead for
your application. Consider the following guidelines when designing for configura-
tion management:
l	 Carefully consider which settings must be externally configurable. Verify that there

is an actual business need for each configurable setting, and provide the minimal
configuration options necessary to meet these requirements. Excessive configu-
rability can result in systems that are more complicated, and may leave the system
vulnerable to security breaches and malfunctions due to incorrect configuration.

Chapter 17:  Crosscutting Concerns 211

l	 Decide if you will store configuration information centrally and have it down-
loaded or applied to users at startup (for example, though Active Directory Group
Policy). Consider how you will restrict access to your configuration information.
Consider using least privileged process and service accounts, and encrypt sensi-
tive information in your configuration store.

l	 Categorize the configuration items into logical sections based on whether they
apply to users, application settings, or environmental settings. This makes it
easier to divide configuration when you must support different settings for
different sets of users, or multiple environments.

l	 Categorize the configuration items into logical sections if your application has
multiple tiers. If your server application runs in a Web farm, decide which parts
of the configuration are shared and which parts are specific to the machine on
which the application is running. Then choose an appropriate configuration store
for each section.

l	 Provide a separate administrative UI for editing configuration information.

Exception Management
Designing a good exception management strategy is important for the security and
reliability of your application. Failure to do so can make it very difficult to diagnose
and solve problems with your application. It can also leave your application vulnerable
to Denial of Service (DoS) attacks, and it may reveal sensitive and critical information.
Raising and handling exceptions is an expensive process, so it is important that the
design also takes into account performance issues. A good approach is to design a
centralized exception management mechanism for your application, and to consider
providing access points within your exception management system (such as WMI
events) to support enterprise level monitoring systems such as Microsoft System
Center. Consider the following guidelines when designing an exception manage-
ment strategy:
l	 Design an appropriate exception propagation strategy that wraps or replaces excep-

tions, or adds extra information as required. For example, allow exceptions to bubble
up to boundary layers where they can be logged and transformed as necessary
before passing them to the next layer. Consider including a context identifier so that
related exceptions can be associated across layers to assist in performing root cause
analysis of errors and faults. Also ensure that the design deals with unhandled excep-
tions. Do not catch internal exceptions unless you can handle them or you must add
more information, and do not use exceptions to control application flow.

l	 Ensure that a failure does not leave the application in an unstable state, and that
exceptions do not allow the application to reveal sensitive information or process
details. If you cannot guarantee correct recovery, allow the application to halt with
an unhandled exception in preference to leaving it running in an unknown and
possibly corrupted state.

.NET Application Architecture Guide, 2nd Edition212

l	 Design an appropriate logging and notification strategy for critical errors and
exceptions that stores sufficient details about the exception to allow support staff
to recreate the scenario, but does not reveal sensitive information in exception
messages and log files.

For more information about designing an exception management strategy, see
“Design Steps for Exception Management” later in this chapter.

Logging and Instrumentation
Designing a good logging and instrumentation strategy is important for the security
and reliability of your application. Failure to do so can make your application vul-
nerable to repudiation threats, where users deny their actions, and log files may be
required for legal proceedings to prove wrongdoing. You should audit and log activ-
ity across the layers of your application, which can help to detect suspicious activity
and provide early indication of a serious attack. Auditing is usually considered most
authoritative if the audits are generated at the precise time of resource access, and
by the same routines that access the resource. Instrumentation can be implemented by
using performance counters and events to give administrators information about
the state, performance, and health of an application. Consider the following guide-
lines when designing a logging and instrumentation strategy:
l	 Design a centralized logging and instrumentation mechanism that captures system-

and business-critical events. Avoid logging and instrumentation that is too fine
grained, but consider additional logging and instrumentation that is configurable
at run time for obtaining extra information and to aid debugging.

l	 Create secure log file management policies. Do not store sensitive information in
the log files, and protect log files from unauthorized access. Consider how you
will access and pass auditing and logging data securely across application layers,
and ensure that you suppress but correctly handle logging failures.

l	 Consider allowing your log sinks, or trace listeners, to be configurable so that
they can be modified at run time to meet deployment environment requirements.
Libraries such as the patterns & practices Enterprise Library are useful for imple-
menting logging and instrumentation in your applications. Other popular libraries
include NLog and log4net (see Additional Resources at the end of this chapter for
more information).

For more information about logging and instrumentation, see “Design Steps for
Exception Management” later in this chapter.

Chapter 17:  Crosscutting Concerns 213

State Management
State management concerns the persistence of data that represents the state of a compo-
nent, operation, or step in a process. State data can be persisted using different formats
and stores. The design of a state management mechanism can affect the performance of
your application; maintaining even small volumes of state information can adversely
affect performance and the ability to scale out your application. You should only persist
data that is required, and you must understand the options that are available for man-
aging state. Consider the following guidelines when designing a state management
mechanism:
l	 Keep your state management as lean as possible; persist the minimum amount of

data required to maintain state.
l	 Make sure that your state data is serializable if it must be persisted or shared

across process and network boundaries.
l	 Choose an appropriate state store. Storing state in process and in memory is the

technique that can offer the best performance, but only if your state does not have
to survive process or system restarts. Persist your state to a local disk or local SQL
Server if you want it available after a process or system restart. Consider storing
state in a central location such as a central SQL Server if state is critical for your
application, or if you want to share state between several machines.

Validation
Designing an effective validation mechanism is important for the usability and reli-
ability of your application. Failure to do so can leave your application open to data
inconsistencies, business rule violations, and a poor user experience. In addition,
failing to adequately validate input may leave your application vulnerable to secu-
rity issues such as cross-site scripting attacks, SQL injection attacks, buffer overflows,
and other types of input attacks. Unfortunately there is no standard definition that
can differentiate valid input from malicious input. In addition, how your application
actually uses the input influences the risks associated with exploitation of the vulner-
ability. Consider the following guidelines when designing a validation mechanism:
l	 Whenever possible, design your validation system to use allow lists that define

specifically what is acceptable input, rather than trying to define what comprises
invalid input. It is much easier to widen the scope of an allow list later than it is to
narrow a block list.

l	 Do not rely on only client-side validation for security checks. Instead, use client-
side validation to give the user feedback and improve the user experience. Always
use server-side validation to check for incorrect or malicious input because client-
side validation can be easily bypassed.

.NET Application Architecture Guide, 2nd Edition214

l	 Centralize your validation approach in separate components if it can be reused,
or consider using a third-party library such as the patterns & practices Enterprise
Library Validation Block. Doing so will allow you to apply a consistent validation
mechanism across the layers and tiers of your application.

l	 Be sure to constrain, reject, and sanitize user input. In other words, assume that all
user input is malicious. Identify your trust boundaries and validate all input data
for length, format, type, and range as it crosses trust boundaries.

For more information about designing a validation strategy, see “Design Steps for
Validating Input and Data” later in this chapter.

Design Steps for Caching
Caching can play a vital role in maximizing performance. However, it is important
to design an appropriate strategy for caching, as you can reduce performance by
applying inappropriate techniques. The following steps will help you to design
an appropriate caching strategy for your application.

Step 1 – Determine the Data to Cache
It is important to determine, as part of your application design, the data that is suit-
able for caching. Create a list of the data to cache in each layer of your application.
Consider caching the following types of data:
l	 Application-wide data.  Consider caching relatively static data that applies to all

users of the application. Examples are product lists and product information.
l	 Relatively static data.  Consider caching data that is fully static, or which does

not change frequently. Examples are constants and fixed values read from con-
figuration or a database.

l	 Relatively static Web pages.  Consider caching the output of Web pages or sections
of Web pages that do not change frequently.

l	 Stored procedure parameters and query results.  Consider caching frequently
used query parameters and query results.

Step 2 – Determine Where to Cache Data
When deciding on where to cache data, there are typically two things you must
consider: the physical location of the cache, and the logical location of the cache.

The physical location will either be in-memory, or disk-based using files or a data-
base. In-memory caching may be performed using the ASP.NET cache mechanism,
Enterprise Library Caching Application Block, or a distributed in-memory caching
mechanism such as Microsoft project code named “Velocity” or the Danga Interactive

Chapter 17:  Crosscutting Concerns 215

“Memcached” technology. An in-memory cache is a good choice when the data is
used frequently by the application, the cached data is relatively volatile and must
be frequently reacquired, and the volume of cached data is relatively small. A file
system-based or database cache is a good choice when accessing data from the cache
store is more efficient when compared to acquiring the data from the original store,
the cached data is relatively less volatile, and the services for reacquiring the data
are not always available. The disk-based approach is also ideal when the volume
of cached data is relatively large, or the cached data must survive process and
machine restarts.

The logical location of the cache describes the location within the application logic.
It is important to cache the data as close as possible to the location where it will be
used to minimize processing and network round trips, and to maximize the per-
formance and responsiveness of the application. Consider the following guidelines
when deciding on the logical location of the cache data:
l	 Consider caching on the client when the data is page specific or user specific,

does not contain sensitive information, and is lightweight.
l	 Consider caching on a proxy server or Web server (for Web applications) when

you have relatively static pages that are requested frequently by clients, your
pages are updated with a known frequency, or the results are returned from Web
services. Also, consider this approach where you have pages that can generate
different output based on HTTP parameters, and those parameters do not often
change. This is particularly useful when the range of outputs is small.

l	 Consider caching data in the presentation layer when you have relatively static
page outputs, you have small volumes of data related to user preferences for a
small set of users, or you have UI controls that are expensive to create. Also con-
sider this approach when you have data that must be displayed to the user and is
expensive to create; for example, product lists and product information.

l	 Consider caching data in the business layer when you must maintain state for a
service, business process, or workflow; or when relatively static data is required to
process requests from the presentation layer and this data is expensive to create.

l	 Consider caching data in the data layer when you have input parameters for a
frequently called stored procedure in a collection, or you have small volumes of
raw data that are returned from frequently executed queries. Consider caching
schemas for typed datasets in the data layer.

l	 Consider caching in a separate table inside the database any data that requires con-
siderable query processing to obtain the result set. This may also be appropriate
when you have very large volumes of data to cache, where you implement a paging
mechanism to read sections of the data for display in order to improve performance.

.NET Application Architecture Guide, 2nd Edition216

Step 3 – Determine the Format of Your Data to Cache
After you have determined the data that you must cache and decided where to cache
it, the next important task is to identify the format for the cached data. When you are
caching data, store it in a format optimized for the intended use so that it does not
require additional or repeated processing or transformation. This type of cached data
is a good choice when you must cache data using an in-memory cache, you do not
need to share the cache across processes or computers, you do not need to transport
cached data between memory locations, and you must cache raw data such as
DataSets, DataTables, and Web pages.

If you must store or transport the cached data, consider serialization requirements.
Serializing the cached data is a good choice when you will cache data in a disk-based
cache, or you will store session state on a separate server or in a SQL Server database.
It is also a good approach when you must share the cache across process or computers,
transport the cached data between memory locations, or cache custom objects. You
can choose to serialize your data using an XML serializer or a binary serializer. An
XML serializer is a good choice when interoperability is your key concern. If perfor-
mance is your key concern, consider using a binary serializer.

Step 4 – Determine a Suitable Cache Management Strategy
You must determine an appropriate cache expiration and cache flushing policy.
Expiration and flushing relate to the removal of cached data from the cache store.
The difference is that flushing might remove valid cache items to make space for
more frequently used items, whereas expiration removes invalid and expired items.
Check the capabilities of your underlying cache system; not all of these options are
available in all cache implementations.

Design a cache expiration strategy that will maintain the validity of the data and
items in the cache. When deciding on the cache expiration policy, consider both
time-based expiration and notification-based expiration as follows:
l	 In a time-based expiration policy, the cached data is expired or invalidated based

on relative or absolute time intervals. This is a good choice when the cache data is
volatile, the cached data is regularly updated, or the cached data is valid for only
a specific time or interval. When choosing a time-based expiration policy, you can
choose an absolute time expiration policy or a sliding time expiration policy. An
absolute time expiration policy allows you to define the lifetime of cached data by
specifying the time at which it will expire. A sliding time expiration policy allows
you to define the lifetime of cached data by specifying the interval between the
last access and the time at which it will expire.

Chapter 17:  Crosscutting Concerns 217

l	 In a notification-based expiration policy, the cached data is expired or invalidated
based on notifications from internal or external sources. This is a good choice
when you are working with nonvolatile cache data, the cached data is updated
at irregular intervals, or the data is valid unless changed by external or inter-
nal systems. Common sources of notifications are disk file writes, WMI events,
SQL dependency notifications, and business logic operations. A notification will
expire or invalidate the dependent cache item(s).

Design a cache flushing strategy so that storage, memory, and other resources are
used efficiently. When deciding on the cache flushing strategy, you can choose explicit
flushing or scavenging as follows:
l	 Explicit flushing  requires you to determine when an item should be flushed

and then remove it. This is good choice when you must support the scenario of
removing damaged or obsolete cached data, you are working with custom stores
that do not support scavenging, or you are working with a disk-based cache.

l	 Scavenging  requires you to determine the conditions and heuristics in which
an item should be scavenged. This is good choice when you want to activate
scavenging automatically when system resources become scarce, you want to
remove seldom used or unimportant items from the cache automatically, or
you are working with a memory-based cache.

Common scavenging heuristics include the following:
l	 The Least Recently Used algorithm scavenges the items that have not been used

for the longest period of time.
l	 The Least Frequently Used algorithm scavenges the items that have been used

least frequently since they were loaded.
l	 The Priority algorithm instructs the cache to assign a priority to cached items and

attempt to preserve those with highest priority when it scavenges the cache.

Step 5 – Determine How to Load the Cache Data
Choosing the appropriate option for loading your cache helps to maximize the perfor-
mance and responsiveness of your application. When determining how to populate
the cache, consider how much of the data you want to be available when the applica-
tion starts or when you initially load the cache, and the implications on application
startup time and performance. For example, you may decide to pre-load data into the
cache when the application initializes, or to acquire and cache data only when it is
requested. Loading data into the cache at application startup can increase an applica-
tion’s responsiveness, but also increases its startup time. On the other hand, loading
data into the cache only when it is first accessed decreases startup time but can also
reduce initial responsiveness.

.NET Application Architecture Guide, 2nd Edition218

You can use either proactive or reactive loading when designing your cache population
strategy, as follows:
l	 Choose proactive loading to retrieve all of the data for the application when it starts

and then cache it for the lifetime of the application. Proactive loading is a good
choice if your cached data is relatively static or has a known update frequency, a
known lifetime, and a known size. If you do not know the size of the data, you
might exhaust system resources loading it all. It is also a good choice if the source
for your cached data is a slow database; or data is retrieved across a slow network
or from an unreliable Web service.

l	 Choose reactive loading to retrieve data as it is requested by the application and
cache it for future requests. Reactive loading is a good choice if your cached data
is relatively volatile, you are not sure of your cache data lifetime, your cached
data volume is large, and your cache data source is reliable and responsive.

Design Steps for Exception Management
A robust and well designed exception management strategy can simplify applica-
tion design, and improve security and manageability. It can also make it easier for
developers to create the application, and reduces development time and cost. The
following steps will help you to design an appropriate exception management
strategy for your application.

Step 1 – Identify Exceptions That You Want to Handle
When designing exception management for your application, it is important to iden-
tify the exceptions that you want to handle. You should handle system or application
exceptions such as those raised by users accessing system resources for which they
do not have permission; and system failures due to disk, CPU, or memory issues.
You must also identify the business exceptions that you want to handle. These are
exceptions caused by actions such as violations of business rules.

Step 2 – Determine Your Exception Detection Strategy
Your design should mandate that structured exception handling is used consistently
throughout the entire application. This creates a more robust application that is less
likely to be left in an inconsistent state. Structured exception handling provides a way
to manage exceptions using try, catch, and finally blocks to detect errors occurring
within your code, and react to them appropriately.

The key considerations when detecting exceptions are to only catch the exception when
you must gather exception details for logging, add relevant extra information to the ex-
ception, clean up any resources used in the code block, or retry the operation to recover
from the exception. Do not catch an exception and then allow it to propagate up the
call stack if you do not need to carry out any of these tasks.

Chapter 17:  Crosscutting Concerns 219

Step 3 – Determine Your Exception Propagation Strategy
Consider the following exception propagation strategies. Your application can (and
should) use a mixture of any or all of these strategies depending on the requirements
of each context:
l	 Allow exceptions to propagate.  This strategy is useful in that you do not need

to gather exception details for logging, add relevant extra information to the
exception, clean up any resources used in the code block, or retry the operation
to recover from the exception. You simply allow the exception to propagate up
through the code stack.

l	 Catch and rethrow exceptions.  In this strategy, you catch the exception, carry
out some other processing, and then rethrow it. Usually, in this approach, the
exception information remains unaltered. This strategy is useful when you have
to clean up resources, log exception information, or if you need to attempt to
recover from the error.

l	 Catch, wrap, and throw exceptions.  In this strategy, you catch generic exceptions
and react to them by cleaning up resources or performing any other relevant pro-
cessing. If you cannot recover from the error, you wrap the exception within another
exception that is more relevant to the caller and then throw the new exception so
that it can be handled by code higher in the code stack. This strategy is useful when
you want to keep the exception relevancy and/or provide additional information to
the code that will handle the exception.

l	 Catch and discard exceptions.  This is not the recommended strategy, but might
be suitable in some specific scenarios. You catch the exception and proceed with
normal application execution. If required, you can log the exception and perform
resource cleanup. This strategy may be useful for system exceptions that do not
affect user operations, such as an exception raised when a log is full.

Step 4 – Determine Your Custom Exception Strategy
Consider if you need to design custom exceptions or if you can use just the standard
.NET Framework exception types. Do not use a custom exception if a suitable excep-
tion is already available in your exception hierarchy or within the .NET Framework.
However, use a custom exceptions if your application must identify and handle
a specific exception in order to avoid using conditional logic or if it must include
additional information to suit a specific requirement.

If you do need to create custom exception classes, ensure that the class name ends
with “Exception,” and implement the standard constructors for your custom excep-
tion class—including the serialization constructor. This is important in order to
integrate with the standard exception mechanism. Implement a custom exception
by deriving from a suitable more general exception in order to specialize it to meet
your requirements.

.NET Application Architecture Guide, 2nd Edition220

In general, when designing your exception management strategy, you should create
an exception hierarchy and organize your custom exceptions within it. This helps
users to quickly analyze and trace problems. Your custom exceptions should indicate
the layer in which the exception occurred, the component in which the exception
might have occurred, and the type of exception that occurred (such as a security,
system, or business exception).

Consider storing your application’s exception hierarchy in a single assembly that can
be referenced throughout your application code. This helps to centralize the manage-
ment and deployment of your exception classes. Also, consider how you will marshal
exceptions across boundaries. The .NET Framework Exception classes support serial-
ization. When you are designing custom exception classes, ensure that they also
support serialization.

Step 5 – Determine Appropriate Information to Gather
When handling exceptions, one of the most important aspects is a sound strategy
for gathering exception information. The information captured should accurately
represent the exception condition. It should also be relevant and informative to the
audience. Audiences usually fall into one of the three categories: end users, applica-
tion developers, and operators. Analyze the audience you are addressing by looking
into the scenario and individual context.

End users require a meaningful and well presented description. When gathering
exception information for end users, consider providing user friendly message that
indicates the nature of the error, and information on how to recover from the error
if this is appropriate. Application developers require more detailed information in
order to assist with problem diagnosis.

When gathering exception information for application developers, make sure you
provide the precise location in the code where the exception occurred; and excep-
tion details such as the exception type and state of the system when the exception
occurred. Operators require relevant information that allows them to react appropri-
ately and take the necessary recovery steps. When gathering exception information
for operators, consider providing exception details and knowledge that will assist
operators to locate the people to notify and the information they will require to
solve the problem.

Irrespective of the audience that will receive the exception information, it is useful
to provide rich exception information. Store the information in a log file for later
examination, and analysis of exception frequency and details. By default, you should
capture at least the date and time, machine name, exception source and type, excep-
tion message, stack and call traces, application domain name, assembly name and
version, thread ID, and user details.

Chapter 17:  Crosscutting Concerns 221

Step 6 – Determine Your Exception Logging Strategy
There is a range of options available for logging exception information. The following
key considerations will help you to choose a logging option:
l	 Choose Windows Event Log or Windows Eventing 6.0 when your application is

deployed on a single machine, you need to leverage existing tools to view the log,
or reliability is a prime concern.

l	 Choose a SQL Database when your application is deployed in a farm or cluster,
you need to centralize your logging, or you need flexibility as to how the excep-
tion information is structured and logged.

l	 Choose a custom log file when your application is deployed on single machine,
you need complete flexibility for choosing the log format, or you want a simple
and easy to implement log store. Ensure that you limit the size of the log file by
trimming or consolidating the log periodically to prevent it becoming too large.

l	 Choose Message Queuing as a delivery mechanism to pass exception messages
to their final destination when reliability is your prime concern, your applications
are deployed in farm or cluster, or you must centralize logging.

For any application, you can choose a mix of these options depending upon your
scenario and exception policy. For example, security exceptions may be logged to
the Security Event Log and business exceptions may be logged to a database.

Step 7 – Determine Your Exception Notification Strategy
As part of your exception management design, you must also decide on your
notification strategy. Exception management and logging are often not sufficient
in enterprise applications. You should consider complementing them with notifica-
tions to ensure that administrators and operators are made aware of exceptions.
You can use technologies such as WMI events, SMTP e-mail, SMS text messages,
or other custom notification systems.

Consider using external notification mechanisms such as log monitoring systems
or a third-party environment that detects the error conditions in the log data and
raises appropriate notifications. This is a good choice when you want to decouple
your monitoring and notification system from your application code and have just
logging code inside your applications. Alternatively, consider adding custom noti-
fication mechanisms inside your application when you want to generate immediate
notifications without relying on external monitoring systems.

.NET Application Architecture Guide, 2nd Edition222

Step 8 – Determine How to Handle Unhandled Exceptions
When an exception is not handled until the last point or boundary, and there is no way
to recover from the exception before returning control to the user, your application
must handle this unhandled exception. For unhandled exceptions, you should gather
the required information, write it to a log or audit file, send any notifications required
for the exception, perform any cleanup required, and finally communicate the error
information to the user.

Do not expose all of the exception details. Instead, provide a user friendly generic
error message. In the case of clients that have no user interface, such as Web services,
you might choose to throw a generic exception in place of detailed exception. This
prevents system details from being exposed to the end-user.

Consider using the patterns & practices Exception Handling Application Block
and the patterns & practices Logging Application Block to implement a consistent
exception management, logging, and notification strategy for your applications.
The Exception Handling Application Block supports a range of exception handling
options, and the Logging Application Block can receive, format, and send log mes-
sages and notifications to a wide range of logs and other destinations. For more
information, see Appendix F, “patterns & practices Enterprise Library.”

Design Steps for Validating Input and Data
The following steps will help you to design an appropriate validation strategy for your
application. When designing input and data validation for your application, the first
task is to identify the trust boundaries and key scenarios when data should be validated.
Next, identify the data to be validated and the location where it should be validated. You
should also determine how to implement a reusable validation strategy. Finally, deter-
mine the validation strategy appropriate for your application.

Step 1 – Identify your Trust Boundaries
Trust boundaries define the separation between trusted and untrusted data. Data on
one side of the trust boundary is trusted and, on the other side, it is not trusted. You
should first identify data that is crossing trust boundaries to determine what you
must validate. Consider the use of input validation and data validation at every trust
boundary to mitigate security threats such as cross-site scripting and code injection.
Examples of trust boundaries are a perimeter firewall, the boundary between the
Web server and database server, and the boundary between your application and a
third-party service.

Chapter 17:  Crosscutting Concerns 223

Identify the systems and subsystems that your application communicates with, and
the outer system boundaries that are crossed when writing to files on a server, making
calls to the database server, or calling a Web service. Identify the entry points at the
trust boundaries and the exit points where you write data from client input or from
un-trusted sources such as shared databases.

Step 2 – Identify Key Scenarios
After you identify the trust boundaries within your application, you should define the
key scenarios where you must validate data. All user entered data should be considered
malicious until validated. For example, in a Web application, data in the presentation
layer that should be validated includes values in form fields, query strings, and hidden
fields; parameters sent in GET and POST requests; uploaded data (malicious users can
intercept HTTP requests and modify the contents); and cookies (which reside on the
client machine and could be modified).

In the business layer, business rules impose a constraint on the data. Any violation of
these rules is assumed to be a validation error, and the business layer should raise an
error to represent the violation. If you use a rules engine or workflow, ensure that it
validates the results for each rule based upon the information required for that rule
and the conclusions made from the evaluation of previous rules.

Step 3 – Determine Where to Validate
In this step, you determine where to perform validation—on the client, or on both
the server and the client. Never depend on client-side validation alone. Use client-
side validation to provide a more interactive UI, but always implement server-side
validation to validate the data securely within your trust boundary. Data and busi-
ness rules validation on the client can reduce round trips to the server and improve
user experience. In a Web application, the client browser should support DHTML
and JavaScript, ideally implemented in a separate .js file to provide reusability and
to allow the browser to cache it. The simplest approach in a Web application is to use
the ASP.NET validation controls. This is a set of server controls that can validate data
client side, and will automatically validate server side as well.

Server-side data and business rules validation can be implemented using ASP.NET
validation controls in a Web application. Alternatively, for both Web and other types
of applications, consider using the patterns & practices Validation Application Block
to create validation logic that can be reused across layers. The Validation Application
Block can be used in Windows Forms, ASP.NET, and WPF applications. For more
information about the Validation Application Block, see Appendix F, “patterns &
practices Enterprise Library.”

.NET Application Architecture Guide, 2nd Edition224

Step 4 – Identify Validation Strategies
The common strategies for data validation are:
l	 Accept known good  (allow list or positive validation): Accept only data that

satisfies specific criteria, and reject all other. Use this strategy where possible,
as it is the most secure approach.

l	 Reject known bad  (block list or negative validation): Accept data that does not
meet specific criteria (such as containing a specified set of characters). Use this
strategy cautiously and as a secondary line of defense as it is very difficult to
create a complete list of criteria for all known invalid input.

l	 Sanitize:  Eliminate or translate characters in an effort to make the input safe. As
with the block list (negative validation) approach, use this strategy cautiously
and as a secondary line of defense as it is very difficult to create a complete list
of criteria for all known invalid input.

Relevant Design Patterns
Key patterns connected with crosscutting concerns can be organized into categories,
as shown in the following table. Consider using these patterns when making design
decisions for each category.

Category Relevant patterns
Caching Cache Dependency. Use external information to determine the state of data

stored in a cache.
Page Cache. Improve the response time for dynamic Web pages that are ac-
cessed frequently, but that change less often and consume a large amount of
system resources to construct.

Communication Intercepting Filter. A chain of composable filters (independent modules) that
implement common pre-processing and post-processing tasks during a Web
page request.
Pipes and Filters. Route messages through pipes and filters that can modify or
examine the message as it passes through the pipe.
Service Interface. A programmatic interface that other systems can use to
interact with the service.

For more information on the Page Cache, Intercepting Filter, and Service
Interface patterns, see “Enterprise Solution Patterns Using Microsoft .NET” at
http://msdn.microsoft.com/en-us/library/ms998469.aspx.

For more information on the Pipes and Filters pattern, see “Integration Patterns” at
http://msdn.microsoft.com/en-us/library/ms978729.aspx.

http://msdn.microsoft.com/en-us/library/ms998469.aspx
http://msdn.microsoft.com/en-us/library/ms978729.aspx

Chapter 17:  Crosscutting Concerns 225

patterns & practices Solution Assets
For more information on related solution assets available from the Microsoft patterns &
practices group, see the following resources:
l	 Enterprise Library  provides a series of application blocks that simplify

common tasks such as caching, exception handling, validation, logging,
cryptography, credential management, and facilities for implementing
design patterns such as Inversion of Control and Dependency Injection.
For more information, see the “Microsoft Enterprise Library” at
http://msdn2.microsoft.com/en-us/library/cc467894.aspx.

l	 Unity Application Block  is a lightweight, extensible dependency
injection container that helps you to build loosely coupled
applications. For more information, see “Unity Application Block” at
http://msdn.microsoft.com/en-us/library/cc468366.aspx.

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.

For more information on authentication and authorization, see the following articles:
l	 “Authorization” at http://msdn.microsoft.com/en-us/library/cc949059.aspx.
l	 “Authorization In WCF-Based Services” at

http://msdn.microsoft.com/en-us/magazine/cc948343.aspx.
l	 “Designing Application-Managed Authorization” at

http://msdn.microsoft.com/en-us/library/ms954586.aspx.
l	 “Enterprise Authorization Strategy” at

http://msdn.microsoft.com/en-us/library/bb417064.aspx.
l	 “Federated Identity: Scenarios, Architecture, and Implementation” at

http://msdn.microsoft.com/en-us/library/aa479079.aspx.
l	 “Guidance on Patterns & Practices: Security” at

http://msdn.microsoft.com/en-us/library/ms954624.aspx.
l	 “Trusted Subsystem Design” at

http://msdn.microsoft.com/en-us/library/aa905320.aspx.

http://msdn2.microsoft.com/en-us/library/cc467894.aspx
http://msdn.microsoft.com/en-us/library/cc468366.aspx
http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/cc949059.aspx
http://msdn.microsoft.com/en-us/magazine/cc948343.aspx
http://msdn.microsoft.com/en-us/library/ms954586.aspx
http://msdn.microsoft.com/en-us/library/bb417064.aspx
http://msdn.microsoft.com/en-us/library/aa479079.aspx
http://msdn.microsoft.com/en-us/library/ms954624.aspx
http://msdn.microsoft.com/en-us/library/aa905320.aspx

.NET Application Architecture Guide, 2nd Edition226

For more information on the remaining topics covered in this chapter, see the
following articles:
l	 “Caching Architecture Guide for .NET Framework Applications” at

http://msdn.microsoft.com/en-us/library/ms978498.aspx.
l	 “Cohesion and Coupling” at

http://msdn.microsoft.com/en-us/magazine/cc947917.aspx.
l	 Duffy, Joe. Concurrent Programming on Windows. Addison-Wesley 2009.
l	 “Enterprise Solution Patterns Using Microsoft .NET” at

http://msdn.microsoft.com/en-us/library/ms998469.aspx.
l	 “Exception Management Architecture Guide” at

http://msdn.microsoft.com/en-us/library/ms954599.aspx.
l	 “Integration Patterns” at

http://msdn.microsoft.com/en-us/library/ms978729.aspx.
l	 “Microsoft Project Code Named Velocity” at

http://msdn.microsoft.com/en-us/data/cc655792.aspx.

For information on some of the popular third party libraries and frameworks
that you might find useful for managing crosscutting concerns, see the following
resources:
l	 Castle Project at http://www.castleproject.org/index.html.
l	 Ninject at http://ninject.org/.
l	 PostSharp at http://www.postsharp.org/.
l	 StructureMap at http://structuremap.sourceforge.net/Default.htm.
l	 memcached at http://www.danga.com/memcached/.
l	 NLog at http://www.nlog-project.org/.
l	 log4net at http://logging.apache.org/log4net/.

http://msdn.microsoft.com/en-us/library/ms978498.aspx
http://msdn.microsoft.com/en-us/magazine/cc947917.aspx
http://msdn.microsoft.com/en-us/library/ms998469.aspx
http://msdn.microsoft.com/en-us/library/ms954599.aspx
http://msdn.microsoft.com/en-us/library/ms978729.aspx
http://msdn.microsoft.com/en-us/data/cc655792.aspx
http://www.castleproject.org/index.html
http://ninject.org/
http://www.postsharp.org/
http://structuremap.sourceforge.net/Default.htm
http://www.danga.com/memcached/
http://www.nlog-project.org/
http://logging.apache.org/log4net/

18
Communication and Messaging

Overview
One of the key factors that affect the design of an application—particularly a distributed
application—is the way that you design the communication infrastructure for each
part of the application. Components must communicate with each other; for example,
to send user input to the business layer, and then to update the data store through the
data layer. When components are located on the same physical tier, you can often rely
on direct communication between these components. However, if you deploy com-
ponents and layers on physically separate servers and client machines—as is likely
in most scenarios—you must consider how the components in these layers will com-
municate with each other efficiently and reliably.

In general, you must choose between direct communication (such as method calls
between components) and message-based communication. There are many advan-
tages to using message-based communication, such as the ability to decouple your
components from each other. Decoupling components not only improves maintain-
ability but can also provide flexibility that makes it easier to change your deployment
strategy in the future. However, message-based communication raises issues that you
must consider, such as performance, reliability, and security.

This chapter presents design guidelines that will help you to choose the appropriate
communication approach, understand how to get the best results from your chosen
approach, and anticipate security and reliability issues that might arise. However, the
bulk of this chapter focuses on designing a suitable message-based communication
mechanism, together with guidelines for asynchronous and synchronous commu-
nication, data format, performance, security, interoperability, and choice of
implementation technology.

	 Contents

18	 227

Communication and Messaging	 227
Overview. 227
General Design Guidelines. 228
Message-Based Communication Guidelines. 229

Asynchronous vs. Synchronous Communication. 230
Coupling and Cohesion. 231
Data Formats. 231
Interoperability . 232
Performance. 233
State Management. 233

Contract First Design. 234
Security Considerations. 235

Transport Security. 235
Message Security . 235

Technology Options. 236
WCF Technology Options. 236
ASMX Technology Options . 237

Additional Resources. 237

.NET Application Architecture Guide, 2nd Edition228

General Design Guidelines
When designing a communication strategy for your application, consider the perfor-
mance impact of communicating between layers, as well as between tiers. Because
each communication across a logical or a physical boundary increases processing
overhead, design for efficient communication by reducing round trips and minimizing
the amount of data sent over the network. Consider the following guidelines when
deciding on a communication strategy:
l	 Consider communication strategies when crossing boundaries.  Understand

each of your boundaries and how they affect communication performance. For
example, the computer process, machine, and managed-to-unmanaged code tran-
sition all represent boundaries that that may be crossed when communicating with
components of the application or external services and applications.

l	 Consider using message-based communication when crossing process bound-
aries.  Use Windows Communication Foundation (WCF) with either the TCP or
named pipes protocol for maximum performance.

l	 Consider using message-based communication when crossing physical
boundaries.  Consider using WCF to communicate with remote machines
across physical boundaries. Consider using Microsoft Message Queuing for
once only reliable delivery of messages.

l	 Maximize performance and responsiveness when accessing remote layers. 
When communicating with remote layers, reduce communication requirements
by using coarse-grained message-based communication methods and use asyn-
chronous communication if possible to avoid blocking or freezing the UI.

l	 Consider the serialization capabilities of the data formats passed across
boundaries.  If you require interoperability with other systems, consider XML
serialization. Keep in mind that XML serialization imposes increased overhead.
If performance is critical, consider binary serialization because it is faster and
the resulting serialized data is smaller than the XML equivalent.

l	 Ensure that you protect messages and sensitive data during communication. 
Consider using encryption, digital certificates, and channel security features.

l	 Implement mechanisms to enforce idempotency and commutativity.  Ensure that
your application code can detect and manage messages that arrive more than once
(idempotency) and multiple messages that arrive out of order (commutativity).

Chapter 18:  Communication and Messaging 229

Message-Based Communication Guidelines
Message-based communication allows you to expose a service to your callers by
defining a service interface that clients call by passing XML-based messages over a
transport channel. Message-based calls are generally made from remote clients, but
message-based service interfaces can support local callers as well. A message-based
communication style is well suited to the following scenarios:
l	 You are implementing a business system that represents a medium to long term

investment; for example, when building a service that will be exposed to and
used by partners for a considerable time.

l	 You are implementing large scale systems that must offer high-availability, or
must operate over unreliable networks. In this case, a message store and forward
mechanism can provide improved reliability.

l	 You are building a service that you want to isolate from other services it uses,
and from services that consume it. The use of message-based service interfaces
that advertise interface details to clients makes it easy for any clients to use the
service without requiring specific implementations for individual clients.

l	 You are dealing with real world business processes that use the asynchronous
model.

Consider the following guidelines when using message-based communication:
l	 Be aware that a connection will not always be present, and that messages may

need to be stored and then sent when a connection becomes available.
l	 Consider how to handle the case when a message response is not received. To

manage the conversation state, your business logic can log the sent messages for
later processing in case a response is not received.

l	 Consider using acknowledgements to force the correct sequencing of messages.
l	 Use standard protocols, such as HTTP for Internet communication and TCP for

intranet communication. Do not implement a custom communication channel
unless there is no default combination of endpoint, protocol, and format that
suits your needs.

l	 If message response timing is critical for your communication, consider a synchro-
nous programming model in which your client waits for each response message.
Alternatively, where clients can continue to execute while waiting for a response,
consider an asynchronous model.

.NET Application Architecture Guide, 2nd Edition230

When designing your message-based communication strategy, you should also con-
sider specific topics that can affect the stability, reusability, performance, and overall
success of your design. The following sections describe these issues in more detail:
l	 Asynchronous vs. Synchronous Communication
l	 Coupling and Cohesion
l	 Data Formats
l	 Interoperability
l	 Performance
l	 State Management

Asynchronous vs. Synchronous Communication
Consider the key tradeoffs when choosing between synchronous and asynchronous
communication styles. Synchronous communication is best suited to scenarios in which
you must guarantee the order in which calls are received, or when you must wait for
the call to return. Asynchronous communication is best suited to scenarios in which
responsiveness is important or you cannot guarantee that the target will be available.
Consider the following guidelines when deciding whether to use synchronous or
asynchronous communication:
l	 For maximum performance, loose coupling, and minimized system overhead, con-

sider using an asynchronous communication model. If some clients can only make
synchronous calls, consider wrapping existing asynchronous service methods in a
component that performs synchronous communication with the client.

l	 In cases where you must guarantee the order in which operations take place, or
where you use operations that depend on the outcome of previous operations,
consider a synchronous model.

l	 For asynchronous in-process calls, use the platform features (such as Begin and
End versions of methods and callbacks) to implement asynchronous method
calls. For asynchronous out of process calls, such as calls across physical tiers and
boundaries, consider using messaging or asynchronous service requests.

If you choose asynchronous communication and cannot guarantee network connec-
tivity or the availability of the target, consider using a store and forward message
delivery mechanism to avoid losing messages. When choosing a store and forward
design strategy, consider using local caches to store messages for later delivery in
case of system or network interruption. Alternatively, consider using Message
Queuing to queue messages for later delivery in case of system or network inter-
ruption or failure. Message Queuing can perform transacted message delivery and
supports reliable once only delivery. If you need to interoperate with other systems
and platforms at the enterprise level, or perform electronic data interchange, consider
using BizTalk Server provide a robust delivery mechanism.

Chapter 18:  Communication and Messaging 231

Coupling and Cohesion
Communication methods that impose interdependencies between the distributed parts
of the application will result in a tightly coupled application. A loosely coupled appli-
cation uses methods that impose a minimum set of requirements for communication to
occur. Consider the following guidelines when designing for coupling and cohesion:
l	 For loose coupling, consider using a message-based technology such as ASP.NET

Web services (ASMX) or WCF, and self describing data and ubiquitous protocols
such as HTTP, REST, and SOAP.

l	 To maintain cohesion, ensure that interfaces contain only methods that are closely
related in purpose and functional area.

Data Formats
The most common data formats for passing data across tiers are scalar values, XML,
DataSets, and custom objects. Use the following table to understand the key consid-
erations for choosing a data type.

Type Considerations
Scalar
values

You want built-in support for serialization.
You can handle the likelihood of schema changes. Scalar values produce tight coupling
that will require method signatures to be modified, thereby affecting the calling code.

XML You need loose coupling, where the caller must know about only the data that defines
the business entity and the schema that provides metadata for the business entity.
You must support different types of callers, including third-party clients.
You need built-in support for serialization.

DataSet You need support for complex data structures.
You must handle sets and complex relationships.
You must track changes to data within the DataSet.
You want built-in support for serialization.

Custom
objects

You need support for complex data structures.
You are communicating with components that know about the object type.
You want to support binary serialization for performance.

Consider the following guidelines when selecting a data format for a communication
channel:
l	 If your application works mainly with instance data, consider using simple values

for better performance. Simple value types will reduce your initial development
costs; however, they produce tight coupling that can increase maintenance costs if
the types must change in the future.

l	 XML may require additional upfront schema definition but will result in loose
coupling that can reduce future maintenance costs and increase interoperability (for
example, if you want to expose your interface to additional XML-compliant callers).

.NET Application Architecture Guide, 2nd Edition232

l	 DataSets work well for complex data types, especially if they are populated directly
from a database. However, it is important to understand that DataSets also contain
schema and state information that increases the overall volume of data passed
across the network, and their special format may restrict interoperability with other
systems. Consider using DataSets if your application works mainly with sets of
data and needs functionality such as sorting, searching, and data binding.

l	 Custom objects work best when none of the other options meet your requirements,
or when you are communicating with components that expect a custom object. They
tend to impose a lower overhead than DataSets and support both binary and XML
serialization. Usually the custom objects you use to transmit data across the com-
munication channel will be data transfer objects (DTOs) that contain data extracted
from your business entities.

l	 Ensure that type information is not lost during the communication process. Binary
serialization preserves type fidelity, which is useful when passing objects between
client and server. However, this approach means that you must implement a more
rigorous versioning system for interfaces. Default XML serialization serializes
only public properties and fields and does not preserve type fidelity.

Interoperability
The main factors that influence interoperability of applications and components are
the availability of suitable communication channels, and the formats and protocols
that the participants can understand. Consider the following guidelines for maximiz-
ing interoperability:
l	 To enable communication with wide variety of platforms and devices, consider using

standard protocols and data formats such as HTTP and XML. Keep in mind that
your protocol decisions may affect the availability of clients you are targeting. For
example, target systems might be protected by firewalls that block some protocols.

l	 Consider versioning issues for interfaces and contracts. Changes to a service
may be required due to changing business needs, information technology
requirements, or other issues. Where these changes result in an incompatible
interface, message contract, or data contract, consider creating a new version
that clients can use while allowing existing clients to use the previous version
where they do not need to access the functionality exposed by the new interface.
For more information, see “Service Versioning” at http://msdn.microsoft.com/
en-us/library/ms731060.aspx.

l	 The data format you choose may affect interoperability. For example, target
systems might not understand platform specific types, or might have different
ways of handling and serializing types.

l	 Your security encryption and decryption decisions may affect interoperability.
For example, some message encryption/decryption techniques might not be
available on all systems.

http://msdn.microsoft.com/

Chapter 18:  Communication and Messaging 233

Performance
The design of your communication interfaces and the data formats you use will also
have a considerable impact on the performance of your application, especially when
crossing process or machine boundaries. While other considerations, such as inter-
operability, may require specific interfaces and data formats, there are techniques you
can use to improve performance related to communication between different layers
or tiers of your application. Consider the following guidelines for performance:
l	 Do not pass unnecessary data to remote methods where possible, and minimize

the volume of data sent across the network. This reduces serialization overhead
and network latency. However, avoid fine-grained (chatty) interfaces for cross-
process and cross-machine communication. These require the client to make
multiple method calls to perform a single logical unit of work. Consider using the
Façade pattern to provide a coarse-grained wrapper for existing chatty interfaces.

l	 Consider using DTOs to pass data as a single unit instead of passing individual
data types one at a time.

l	 If serialization performance is critical for your application, consider using custom
classes with binary serialization.

l	 If XML is required for interoperability, consider using attribute-based structures
for large amounts of data instead of element-based structures.

State Management
It may be necessary for the communicating parties in an application to maintain state
across multiple requests. Consider the following guidelines when deciding how to
implement state management:
l	 Only maintain state between calls if it is absolutely necessary. Maintaining state

consumes resources, can affect the performance of your application, and can limit
your deployment options.

l	 If you are using a stateful programming model within a component or service,
consider using a durable data store such as a database to store state information,
and use a token to access the information.

l	 If you are designing an ASMX service, consider using the ApplicationContext
class to preserve state because it provides access to the default state stores for
application scope and session scope.

l	 If you are designing a WCF service, consider using the extensible objects provided
by the platform for state management. These extensible objects allow state to be
stored in various scopes such as service host, service instance context, and opera-
tion context. Note that all of these states are held in memory and are not durable.
If you require durable state, you can use the durable storage (introduced in the
.NET Framework 3.5) or implement your own custom solution.

.NET Application Architecture Guide, 2nd Edition234

Contract First Design
Traditionally, developers have built services using a code first approach where they
design the service based on requirements, and expose an interface suited to the code
and the requirements. However, the contract first approach is becoming more popular
as it can reduce the incompatibilities that may occur between disparate systems and a
wide range of clients.

Contract first design is the process of designing the service contract in terms of the
data, messages, and interface it will expose, and then generating the service interface
code from the contract. From there, you can implement the code behind the service
interface that performs the processing required. This allows you to concentrate on the
format of the messages and the data types they use at the beginning of the process to
maximize interoperability and compatibility.

You can use modeling tools to help you design the interface, such as the
patterns & practices Web Service Software Factory: Modeling Edition (see
http://msdn.microsoft.com/servicefactory/). Alternatively, you can design
the interface using XML, XSD, and schemas; and then use tools such as WSDL.exe
with the /server switch to generate the interface definition. Message bus technolo-
gies such as Microsoft BizTalk Server encourage the use of contract first design
principles.

Principles to bear in mind when applying contract first design are the following:
l	 Working with XML schemas and data types means that you do not and cannot

think in terms of platform-specific data types. This can make it more difficult to
define the interface, but ensures maximum interoperability and compatibility.
Where you require complex data structures, compose them from simple and
standard XML types that all clients can use.

l	 Consider the platforms, clients, and systems that may interact with the service.
Plan for any limitations in data types or formats that this may impose.

l	 Consider using tools to help you design the service contracts. This can considerably
simplify and speed up the process.

l	 Collaborate with interested parties during the contract design process if possible.
Others may have specific requirements or requests that would make the contract
easier to use, more widely acceptable, and maximize reusability.

For more information about contract first design, see “Contract-First Service
Development” at http://msdn.microsoft.com/en-us/magazine/cc163800.aspx.

http://msdn.microsoft.com/servicefactory/
http://msdn.microsoft.com/en-us/magazine/cc163800.aspx

Chapter 18:  Communication and Messaging 235

Security Considerations
A secure communication strategy will protect sensitive data from being read when
passed over the network; protect sensitive data from being tampered with; and, if
necessary, guarantee the identity of the caller. There are two fundamental areas of
concern for securing communications: transport security and message security. For
maximum protection, consider combining transport and message security techniques.

Transport Security
Transport security is used to provide point-to-point security between the two end-
points, and the transport layer passes user credentials and claims to the recipient.
Protecting the channel prevents attackers from accessing all messages on the channel.
Common approaches to transport security are Secure Sockets Layer (SSL) encryption
and Internet Protocol Security (IPSec). Consider the following when deciding whether
to use transport security:
l	 Transport security uses common industry standards that provide good interoper-

ability, and is usually faster for encryption and signing since it is accomplished at
lower layers—sometimes even in the network hardware. However, it supports a
limited set of credentials and claims compared to message security.

l	 If interactions between the service and the consumer are not routed through inter-
mediaries, you can use transport security. If the message passes through one or more
intermediaries, use message security instead. With transport security, the message is
decrypted and then reencrypted at each intermediary it passes through, which repre-
sents a security risk.

l	 Transport security is a good choice for securing communication between a client
and a service located on a private network such as an intranet.

Message Security
Message security can be used with any transport protocol. You should protect the
content of individual messages passing over the channel whenever they pass outside
your own secure network, and even within your network for highly sensitive con-
tent. Common approaches to message security are encryption and digital signatures.
Consider the following guidelines when deciding whether to use message security:
l	 Consider implementing message security for sensitive messages that pass out of

your secure network, such as services exposed over the Internet. However, keep
in mind that message security generally has a higher impact on communication
performance than transport security. You can use partial or selective message
encryption and signing to improve overall performance.

.NET Application Architecture Guide, 2nd Edition236

l	 If there are intermediaries between the client and the service, use message security
for sensitive messages because it guarantees end-to-end security. Intermediate
servers will terminate the SSL or IPSec connection when they receive the mes-
sage, and then create a new SSL or IPSec connection to pass it to the next server.
Therefore, there is a risk that messages that do not use message security will be
accessible on the intermediate server.

Technology Options
On the Microsoft platform, you can choose between two messaging technologies:
Windows Communication Foundation (WCF) and ASP.NET Web Services (ASMX).
The following sections will help you to understand the capabilities of each, and
choose the one most appropriate for your scenarios.

WCF Technology Options
WCF provides a comprehensive mechanism for implementing services in a range of
situations, and allows you to exert fine control over the configuration and content
of the services. The following guidelines will help you to understand how you can
use WCF:
l	 Consider using WCF in the following situations:

l	 Communicating with Web services where you require interoperability with other
platforms that also support SOAP, such as the J2EE-based application servers.

l	 Communicating with Web services using messages not based on SOAP, such as
applications that use formats such as Really Simple Syndication (RSS).

l	 Communicating using SOAP messages and binary encoding for data structures
when both the server and the client use WCF.

l	 Building REST Singleton and Collection Services, ATOM Feed and Publishing
Protocol Services, and HTTP Plain XML Services.

l	 Consider using WS-MetadataExchange in SOAP requests to obtain descriptive in-
formation about a service, such as its Web Services Description Language (WSDL)
definition and policies.

l	 Consider using WS-Security to implement authentication, data integrity, data
privacy, and other security features.

l	 Consider using WS-Reliable Messaging to implement reliable end-to-end
communication, even when one or more Web services intermediaries must be
traversed.

l	 Consider using WS-Coordination to coordinate two-phase commit transactions in
the context of Web services conversations.

Chapter 18:  Communication and Messaging 237

WCF supports several different protocols for communication:
l	 For services accessed from the Internet, consider using the HTTP protocol.
l	 For services accessed from within a private network, consider using the TCP protocol.
l	 For services accessed from the same machine, consider using the named pipes

protocol, which supports a shared buffer or streams for passing data.

ASMX Technology Options
ASMX provide a simpler solution for building Web services based on ASP.NET and
exposed through an Internet Information Services (IIS) Web server. ASMX has the
following characteristics:
l	 Can be accessed over the Internet using only the HTTP protocol. Uses port 80 by

default, but this can be easily reconfigured.
l	 Has no support for Distributed Transaction Coordinator (DTC) transaction flow.

You must program long-running transactions using custom implementations.
l	 Supports IIS authentication, Roles stored as Windows groups for authorization,

IIS and ASP.NET impersonation, and SSL transport security.
l	 Supports the endpoint technology implemented in IIS.
l	 Provides cross-platform interoperability.

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 “Data Transfer and Serialization” at

http://msdn.microsoft.com/en-us/library/ms730035.aspx.
l	 “Endpoints: Addresses, Bindings, and Contracts” at

http://msdn.microsoft.com/en-us/library/ms733107.aspx.
l	 “Messaging Patterns in Service-Oriented Architecture” at

http://msdn.microsoft.com/en-us/library/aa480027.aspx.
l	 “Principles of Service Design: Service Versioning” at

http://msdn.microsoft.com/en-us/library/ms954726.aspx.
l	 “Web Service Messaging with Web Services Enhancements 2.0” at

http://msdn.microsoft.com/en-us/library/ms996948.aspx.
l	 “Web Services Protocols Interoperability Guide” at

http://msdn.microsoft.com/en-us/library/ms734776.aspx.
l	 “Windows Communication Foundation Security” at

http://msdn.microsoft.com/en-us/library/ms732362.aspx.
l	 “XML Web Services Using ASP.NET” at http://msdn.microsoft.com/en-us/li-

brary/ba0z6a33.aspx.

http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/ms730035.aspx
http://msdn.microsoft.com/en-us/library/ms733107.aspx
http://msdn.microsoft.com/en-us/library/aa480027.aspx
http://msdn.microsoft.com/en-us/library/ms954726.aspx
http://msdn.microsoft.com/en-us/library/ms996948.aspx
http://msdn.microsoft.com/en-us/library/ms734776.aspx
http://msdn.microsoft.com/en-us/library/ms732362.aspx
http://msdn.microsoft.com/en-us/li-brary/ba0z6a33.aspx
http://msdn.microsoft.com/en-us/li-brary/ba0z6a33.aspx
http://msdn.microsoft.com/en-us/li-brary/ba0z6a33.aspx

19
Physical Tiers and Deployment

Overview
Application architecture designs exist as models, documents, and scenarios.
However, applications must be deployed into a physical environment where in-
frastructure limitations may negate some of the architectural decisions. Therefore,
you must consider the proposed deployment scenario and the infrastructure as
part of your application design process. This chapter describes the options avail-
able for deployment of different types of applications, including distributed and
nondistributed styles; ways to scale the application; and guidance and patterns for
performance, reliability, and security issues. By considering the possible deploy-
ment scenarios for your application as part of the design process, you prevent a
situation where the application cannot be deployed successfully, or fails to per-
form to its design requirements because of technical infrastructure limitations.

Choosing a deployment strategy requires design tradeoffs. For example, there might
be protocol or port restrictions, or specific deployment topologies not supported in
your target environment. Identify your deployment constraints early in the design
phase to avoid surprises later; involve members of your network and infrastructure
teams to help with this process. When choosing a deployment strategy:
l	 Understand the target physical environment for deployment.
l	 Understand the architectural and design constraints based on the deployment

environment.
l	 Understand the security and performance impacts of your deployment environment.

	 Contents

19	 239

Physical Tiers and Deployment	 239
Overview. 239
Distributed and Nondistributed Deployment. 240

Nondistributed Deployment. 240
Distributed Deployment . 240
Performance and Design Considerations for Distributed Environments. 241
Recommendations for Locating Components within a Distributed

Deployment. 242
Distributed Deployment Patterns. 243

Client-Server Deployment. 243
n-Tier Deployment. 244
2-Tier Deployment. 244
3-Tier Deployment. 244
4-Tier Deployment. 245
Web Application Deployment. 246
Rich Internet Application Deployment. 246
Rich Client Application Deployment. 246

Performance Patterns. 247
Load-balanced Cluster . 247
Affinity and User Sessions . 250
Application Farms. 250

Reliability Patterns. 250
Failover Cluster. 250

Security Patterns. 252
Impersonation/Delegation. 252
Trusted Subsystem. 253
Multiple Trusted Service Identities. 254

Scale Up and Scale Out. 255
Considerations for Scaling Up . 255
Designing to Support Scale Out. 256
Design Implications and Tradeoffs. 256

Network Infrastructure Security Considerations. 258
Manageability Considerations. 259
Relevant Design Patterns . 260
Additional Resources. 261

.NET Application Architecture Guide, 2nd Edition240

Distributed and Nondistributed Deployment
When creating your deployment strategy, first determine if you will use a distributed
or a nondistributed deployment model. If you are building a simple intranet application
for your organization, which will be accessed by finite set of users, consider nondis-
tributed deployment. If you are building a more complex application, which you
must optimize for scalability and maintainability, consider a distributed deployment.

Nondistributed Deployment
In a nondistributed deployment, all of the functionality and layers reside on a single
server except for data storage functionality, as shown in the example in Figure 1.

Figure 1
Nondistributed deployment

This approach has the advantage of simplicity and minimizes the number of physical
servers required. It also minimizes the performance impact inherent when commu-
nication between layers must cross physical boundaries between servers or server
clusters. Keep in mind that by using a single server, even though you minimize
communication performance overhead, you can hamper performance in other
ways. Because all of your layers share resources, one layer can negatively affect all
of the other layers when it is under heavy utilization. In addition, the servers must
be generically configured and designed around the strictest of operational require-
ments, and must support the peak usage of the largest consumers of system resources.
The use of a single tier reduces your overall scalability and maintainability because
all the layers share the same physical hardware.

Distributed Deployment
In a distributed deployment, the layers of the application reside on separate physical
tiers. Tiered distribution organizes the system infrastructure into a set of physical tiers
to provide specific server environments optimized for specific operational require-
ments and system resource usage. It allows you to separate the layers of an application
on different physical tiers, as shown in the example in Figure 2.

Chapter 19:  Physical Tiers and Deployment 241

Figure 2
Distributed deployment

A distributed approach allows you to configure the application servers that host the
various layers in order to best meet the requirements of each layer. However, because
the primary driver for optimizing component deployment is to match a component’s
resource consumption profile to an appropriate server, this implies that a direct
mapping of layers to tiers is often not the ideal distribution strategy.

Multiple tiers enable multiple environments. You can optimize each environment for
a specific set of operational requirements and system resource usage. You can then
deploy components onto the tier that most closely matches their resource needs to
maximize operational performance and behavior. The more tiers you use, the more
deployment options you have for each component. Distributed deployment provides
a more flexible environment where you can more easily scale out or scale up each
physical tier as performance limitations arise, and when processing demands increase.
However, keep in mind that adding more tiers adds complexity, deployment effort,
and cost.

Another reason for adding tiers is to apply specific security policies. Distributed
deployment allows you to apply more stringent security to the application servers;
for example, by adding a firewall between the Web server and the application
servers, and by using different authentication and authorization options.

Performance and Design Considerations for Distributed Environments
Distributing components across tiers can reduce performance because of the cost
of remote calls across physical boundaries. However, distributing components can
improve scalability opportunities, improve manageability, and reduce costs over
time. Consider the following guidelines when designing an application that will
run on a physically distributed infrastructure:
l	 Choose communication paths and protocols between tiers to ensure that com-

ponents can securely interact with minimum performance degradation. Take
advantage of asynchronous calls, one-way calls, or message queuing to minimize
blocking when making calls across physical boundaries.

.NET Application Architecture Guide, 2nd Edition242

l	 Consider using services and operating system features such as distributed trans-
action support and authentication that can simplify your design and improve
interoperability.

l	 Reduce the complexity of your component interfaces. Highly granular interfaces
(chatty interfaces) that require many calls to perform a task work best when located
on the same physical machine. Interfaces that make only one call to accomplish
each task (chunky interfaces) provide the best performance when the components
are distributed across separate physical machines. However, where you must sup-
port in-process calls as well as calls from other physical tiers, you may consider
implementing a highly granular interface for in-process calls and a façade for use
from other physical tiers that wraps the calls to provide a chunky interface.

l	 Consider separating long-running critical processes from other processes that might
fail by using a separate physical cluster, and determine your failover strategy. For
example, Web servers typically provide plenty of memory and processing power,
but may not have robust storage capabilities (such as RAID mirroring) that can be
replaced rapidly in the event of a hardware failure.

l	 Determine how best to plan for the addition of extra servers or resources that will
increase performance and availability.

l	 When layers communicate across physical boundaries, you must consider how
you will manage state across tiers, as this will affect scalability and performance.
Choices for state management typically include:

l	 Stateless.  All the state required will be provided when calling into a
tier. This tends to be more scalable, but often requires the client to supply
state information.

l	 Stateful.  State will be stored or recovered for each client request. This
tends to require more resources and is therefore a less scalable solution,
but it is often convenient because it does not require the client to track
and provide state information.

Recommendations for Locating Components within a Distributed
Deployment
When designing a distributed deployment, you must determine which logical layers
and components you will put into each physical tier. In most cases, you will place the
presentation layer on the client or on the Web server; the service, business, and data
layers on the application server; and the database on its own server. In some cases,
you may want to modify this pattern. Consider the following guidelines when deter-
mining where to locate components in a distributed environment:
l	 Only distribute components where necessary. Common reasons for implementing

distributed deployment include security policies, physical constraints, shared
business logic, and scalability.

Chapter 19:  Physical Tiers and Deployment 243

l	 If the business components are used synchronously by the presentation components,
deploy the business components on the same physical tier as the presentation com-
ponents in order to maximize performance and ease operational management.

l	 Do not locate presentation and business components on the same tier if there are
security implications that require a trust boundary between them. For example,
you might want to separate business and presentation components in a rich client
application by placing the presentation components on the client and the business
components on the server.

l	 Deploy service agent components on the same tier as the code that calls the
components, unless there are security implications that require a trust boundary
between them.

l	 Deploy business components that are called asynchronously together with work-
flow components on a separate physical tier from the other layers where possible.

l	 Deploy business entities on the same physical tier as the components that use them.

Distributed Deployment Patterns
Several common patterns represent application deployment structures found in
most solutions. When it comes to determining the best deployment solution for
your application, it helps to first identify the common patterns. Once you have a
good understanding of the different patterns, you then consider scenarios, require-
ments, and security constraints to choose the most appropriate pattern.

Client-Server Deployment
This pattern represents a basic structure with two main components: a client and a
server. In this scenario, the client and server will usually be located on two separate
tiers. Figure 3 represents a common Web application scenario where the client inter-
acts with a Web server.

Figure 3
A common Web application scenario

.NET Application Architecture Guide, 2nd Edition244

Consider the client/server pattern if you are developing a client that will access an
application server, or a stand-alone client that will access a separate database server.

n-Tier Deployment
The n-tier pattern represents a general distribution pattern where components of the
application are separated across one or more servers. Commonly, you will choose a
2-tier, 3-tier, or 4-tier pattern as described in the following sections. While you will
often locate all of the components of a layer on the same tier, this is not always the
case. Layers do not have to be confined to a single tier—you can partition workloads
across multiple servers if required. For example, you may decide to have side-by-side
tiers that contain different aspects of your business logic.

2-Tier Deployment
Effectively this is the same physical layout as the client/server pattern. It differs
mainly on the ways that the components on the tiers communicate. In some cases,
as shown in Figure 4, all of the application code is located on the client, and the
database is located on a separate server. The client makes use of stored procedures
or minimal data access functionality on the database server.

Figure 4
2-tier deployment with all the application code located on the client

Consider the 2-tier pattern if you are developing a client that will access an application
server, or a stand-alone client that will access a separate database server.

3-Tier Deployment
In a 3-tier design, the client interacts with application software deployed on a
separate server, and the application server interacts with a database that is located
on another server, as shown in Figure 5. This is a very common pattern for most
Web applications and Web services, and sufficient for most general scenarios. You
might implement a firewall between the client and the Web/App tier, and another
firewall between the Web/App tier and the database tier.

Chapter 19:  Physical Tiers and Deployment 245

Figure 5
3-tier deployment with the application code on a separate tier

Consider the 3-tier pattern if you are developing an Intranet-based application where
all servers are located within the private network or an Internet based application and
security requirements do not prevent you from implementing business logic on the
public facing Web or application server.

4-Tier Deployment
In this scenario, shown in Figure 6, the Web server is physically separated from the
application server. This is often done for security reasons, where the Web server is
deployed into a perimeter network and accesses the application server located on a
different subnet. In this scenario, you might implement a firewall between the client
and the Web tier, and another firewall between the Web tier and the application or
business logic tier.

Figure 6
4-tier deployment with the Web code and the business logic on separate tiers

Consider the 4-tier pattern if security requirements dictate that business logic cannot be
deployed to the perimeter network, or you have application code that makes heavy use
of resources on the server and you want to offload that functionality to another server.

.NET Application Architecture Guide, 2nd Edition246

Web Application Deployment
Consider using distributed deployment for your Web applications if security concerns
prohibit you from deploying your business logic on your front-end Web server. Use a
message-based interface for your business layer, and consider using the TCP protocol
with binary encoding to communicate with the business layer for best performance.
You should also consider using load balancing to distribute requests so that they are
handled by different Web servers, avoid server affinity when designing scalable Web
applications, and design stateless components for your Web application. See the
section “Performance Patterns” later in this chapter for more details.

Rich Internet Application Deployment
A distributed architecture is the most likely scenario for deployment because rich
Internet application (RIA) implementations move presentation logic to the client.
If your business logic is shared by other applications, consider using distributed
deployment. Also, consider using a message-based interface for your business logic.

Rich Client Application Deployment
In an n-tier deployment, you can locate presentation and business logic on the client,
or locate only the presentation logic on the client. Figure 7 illustrates the case where
the presentation and business logic are deployed on the client.

Figure 7
Rich client with the business layer on the client tier

Chapter 19:  Physical Tiers and Deployment 247

Figure 8 illustrates the case where the business and data access logic are deployed on
an application server.

Figure 8
Rich client with the business layer on the application tier

Performance Patterns
Performance deployment patterns represent proven design solutions to common per-
formance problems. When considering a high performance deployment, you can
scale up or scale out. Scaling up entails improvements to the hardware on which
you are already running. Scaling out entails distributing your application across
multiple physical servers to distribute the load. When planning to use a scale out
strategy, you will generally make use of a load balancing strategy. This is usually
referred to as a load-balanced cluster or, in the case of Web servers, a Web farm.
The following sections describe these patterns. For more information about choosing
when and how to scale up or scale out, see the section “Scale Up and Scale Out” later
in this chapter.

Load-balanced Cluster
You can install your service or application onto multiple servers that are configured
to share the workload, as shown in Figure 9. This type of configuration is known as a
load-balanced cluster.

.NET Application Architecture Guide, 2nd Edition248

Figure 9
A load-balanced cluster

Load balancing scales the performance of server-based programs, such as a Web server,
by distributing client requests across multiple servers. Load-balancing technologies,
commonly referred to as load balancers, receive incoming requests and redirect them
to a specific host if necessary. The load-balanced hosts concurrently respond to differ-
ent client requests, even multiple requests from the same client. For example, a Web
browser might obtain the multiple images within a single Web page from different
hosts in the cluster. This distributes the load, speeds up processing, and reduces the
response time.

Chapter 19:  Physical Tiers and Deployment 249

Depending on the routing technology used, it may detect failed servers and remove
them from the routing list to minimize the impact of a failure. In simple scenarios, the
routing may be on a round robin basis where a DNS server hands out the addresses of
individual servers in rotation. Figure 10 illustrates a simple Web farm (a load-balanced
cluster of Web servers) where each server hosts all of the layers of the application
except for the data store.

Figure 10
A simple Web farm

Load-balanced clusters are most scalable and efficient if they do not have to track and
store information between each client request; in other words, if they are stateless. If
they must track state, then you may need to use affinity and session techniques.

.NET Application Architecture Guide, 2nd Edition250

Affinity and User Sessions
Applications may rely on the maintenance of session state between requests from the
same client. A Web server, for example, may need to keep track of user information
between requests. A Web farm can be configured to route all requests from the same
user to the same server—a process known as affinity—in order to maintain state where
this is stored in memory on the Web server. However, for increased availability and re-
liability, you should use a separate session state store with a Web farm to remove the
requirement for affinity. During development, if you are using Internet Information
Services (IIS) 6.0 or later, you can configure IIS to operate in Web Garden mode to
help ensure correct session state handling within your application as you develop it.

In ASP.NET, you must also configure all of the Web servers to use a consistent encryp-
tion key and method for ViewState encryption where you do not implement affinity.
You should also enable affinity for sessions that use Secure Sockets Layer (SSL) encryp-
tion where the system supports this feature, or use a separate cluster for SSL requests.

Application Farms
As with Web servers and Web farms, you can also scale out your business and data
layers if they reside on different physical tiers from the presentation layer by using
an application farm. Requests from the presentation tier are distributed to each server
in the farm so that each has approximately the same load. You may decide to separate
the business layer components and the data layer components on different applica-
tion farms, depending on the requirements of each layer and the expected loading
and number of users.

Reliability Patterns
Reliability deployment patterns represent proven design solutions to common reli-
ability problems. The most common approach to improving the reliability of your
deployment is to use a failover cluster to ensure the availability of your application,
even if a server fails.

Failover Cluster
A failover cluster is a set of servers that are configured in such a way that if one
server becomes unavailable, another server automatically takes over for the failed
server and continues processing. Figure 11 shows a failover cluster.

Chapter 19:  Physical Tiers and Deployment 251

Figure 11
A failover cluster

Install your application or service on multiple servers that are configured to take
over for one another when a failure occurs. The process of one server taking over for
a failed server is commonly known as failover. Each server in the cluster has at least
one other server in the cluster identified as its standby server.

.NET Application Architecture Guide, 2nd Edition252

Security Patterns
Security patterns represent proven design solutions to common security problems.
The impersonation/delegation approach is a good solution when you must flow the
context of the original caller to downstream layers or components in your applica-
tion. The trusted subsystem approach is a good solution when you want to handle
authentication and authorization in upstream components and access a downstream
resource with a single trusted identity.

Impersonation/Delegation
In the impersonation/delegation authorization model, resources and the types of
operations (such as read, write, and delete) permitted for each one are secured using
Windows Access Control Lists (ACLs) or the equivalent security features of the tar-
geted resource (such as tables and procedures in SQL Server). Users access the
resources using their original identity through impersonation, as illustrated in
Figure 12. Bear in mind that this approach may result in the requirement for a
domain account, which makes it unattractive in some scenarios.

Figure 12
The impersonation/delegation authorization model

Chapter 19:  Physical Tiers and Deployment 253

Trusted Subsystem
In the trusted subsystem (or trusted server) model, users are partitioned into appli-
cation defined, logical roles. Members of a particular role share the same privileges
within the application. Access to operations (typically expressed by method calls)
is authorized based on the role membership of the caller. With this role-based (or
operations-based) approach to security, access to operations (not networked re-
sources) is authorized based on the role membership of the caller. Roles, analyzed
and defined at application design time, are used as logical containers that group
together users who share the same security privileges or capabilities within the
application. The middle-tier service uses a fixed identity to access downstream
services and resources, as illustrated in Figure 13.

Figure 13
The trusted subsystem (or trusted server) model

.NET Application Architecture Guide, 2nd Edition254

Multiple Trusted Service Identities
In some situations, you might require more than one trusted identity. For example, you
might have two groups of users, one who should be authorized to perform read/write
operations and the other read-only operations. The use of multiple trusted service
identities provides the ability to exert more granular control over resource access and
auditing, without having a large impact on scalability. Figure 14 illustrates the multiple
trusted service identities model.

Figure 14
The multiple trusted service identities model

Chapter 19:  Physical Tiers and Deployment 255

Scale Up and Scale Out
Your approach to scaling is a critical design consideration. Whether you plan to
scale out your solution through a load-balanced cluster or a partitioned database,
you must ensure that your design supports the option you choose. In general cases,
when you scale your application, you can choose from and combine two basic
choices: scale up (get a bigger box) and scale out (get more boxes).

With the scale up approach, you add hardware such as processors, RAM, and network
interface cards (NICs) to your existing servers to support increased capacity. This
is a simple option and can be cost-effective up to a certain level because it does not
introduce additional maintenance and support costs. However, any single points of
failure remain, which is a risk. In addition, beyond a certain threshold, adding more
hardware to the existing servers may not produce the desired results, and getting the
last 10% of theoretical performance from a single machine though upgrades can be
very expensive.

For an application to scale up effectively, the underlying framework, runtime,
and computer architecture must scale up as well. When scaling up, consider which
resources are limiting application performance. For example, if it is memory bound
or network bound, adding CPU resources will not help.

With the scale out approach, you add more servers and use load balancing and
clustering solutions. In addition to handling additional load, the scale out scenario
also mitigates hardware failures. If one server fails, there are additional servers in
the cluster that can take over the load. For example, you might have multiple load-
balanced Web servers in a Web farm that host the presentation and business layers.
Alternatively, you might physically partition your application’s business logic, and
use a separate load-balanced middle tier for that logic while hosting the presenta-
tion layer on a load-balanced front tier. If your application is I/O constrained and
you must support an extremely large database, you might partition your database
across multiple database servers. In general, the ability of an application to scale
out depends more on its architecture than on the underlying infrastructure.

Considerations for Scaling Up
Scaling up with additional processor power and increased memory can be a cost-
effective solution. This approach also avoids introducing the additional management
cost associated with scaling out and using Web farms and clustering technology. You
should look at scale up options first and conduct performance tests to see whether
scaling up your solution meets your defined scalability criteria and supports the nec-
essary number of concurrent users at an acceptable performance level. You should
have a scaling plan for your system that tracks its observed growth.

.NET Application Architecture Guide, 2nd Edition256

Designing to Support Scale Out
If scaling up your solution does not provide adequate scalability because you reach
CPU, I/O, or memory thresholds, you must scale out and introduce additional servers.
Consider the following practices in your design to ensure that your application can be
scaled out successfully:
l	 Identity and scale out bottlenecks.  Shared resources that cannot be further scaled

up often represent a bottleneck. For example, you might have a single SQL Server
instance that is accessed from multiple application servers. In this case, partitioning
the data so that it can served by multiple SQL Server instances will allow your
solution to scale out. If you anticipate that your database server may become a
bottleneck, an initial design that includes data partitioning can save a significant
amount of effort later.

l	 Define a loosely coupled and layered design.  A loosely coupled layered design
with clean remotable interfaces are easier to scale out than a design that uses
tightly coupled layers with chatty interactions. A layered design will have natural
clutch points, making it ideal for scaling out at the layer boundaries. The trick is
to find the right boundaries. For example, business logic may be relocated more
easily to a load-balanced middle-tier application server farm.

Design Implications and Tradeoffs
You should consider aspects of scalability that may vary by application layer, tier,
or type of data. Identify tradeoffs required so that you are aware of where you have
flexibility and where you do not. In some cases, scaling up and then out with Web or
application servers might not be the best approach. For example, even though you
could use an 8-processor server, economics would probably drive you to use a set of
smaller servers instead of a one large one.

On the other hand, scaling up and then out might be the right approach for your data-
base servers, depending on the role of the data and how the data is used. There are
limitations on the number of servers that you can load balance or failover, and addi-
tional issues such as how you partition the database will affect the process. In addition,
apart from technical and performance considerations, you must also take into account
operational and management implications, and the related total cost of ownership).

Typically, you optimize the price and performance within the boundaries of any
other constraints. For example, using four 2-processor Web or application servers
may be optimal when you evaluate price and performance compared with using two
4-processor servers. However, you must also consider other constraints, such as the
maximum number of servers you can locate behind a particular load-balancing infra-
structure, and power consumption or space constraints within the data center.

Also consider using virtualized servers to implement server farms and for hosting
services. This approach can help you to balance performance and cost while obtain-
ing maximum resource usage and return on investment.

Chapter 19:  Physical Tiers and Deployment 257

Stateless Components
The use of stateless components, such as those you may implement in a Web front
end with no in-process state, means that you can produce a design that better sup-
ports both scaling up and scaling out. To achieve a stateless design, it is likely that a
number of design tradeoffs will be required in your application, but the benefits in
terms of scalability generally outweigh the disadvantages.

Data and Database Partitioning
If your application uses a very large database and you anticipate an I/O bottleneck,
ensure that you design for database partitioning up front. Moving to a partitioned
database later usually results in a significant amount of costly rework, and often
requires a complete redesign of the database. Partitioning provides several benefits,
including the ability to restrict queries to a single partition (thereby limiting the
resource usage to only a fraction of the data), and the ability to engage multiple
partitions (thereby achieving greater parallelism and superior performance because
you can have more disks working to retrieve the data).

However, in some situations, multiple partitions may not be appropriate and could
have a negative impact. For example, some operations that use multiple disks might
be performed more efficiently with concentrated data.

When considering the impact of partitioning data storage on your deployment
scenarios, the decisions depend largely on the type of data. The following list
summarizes the relevant factors:
l	 Static, reference, and read-only data.  For this type of data, you can easily main-

tain many replicas in the appropriate locations if this improves performance and
scalability. It has minimal impact on design and can usually be driven by optimi-
zation considerations. Consolidating several logically separate and independent
databases on one database server may or may not be appropriate, even if you
have the disk capacity, and distributing replicas closer to the consumers of that
data may be an equally valid approach. However, be aware that whenever you
replicate, you have a loosely synchronized system that requires mechanisms to
maintain the appropriate synchronization.

l	 Dynamic (often transient) data that is easily partitioned.  This is data relevant to
a particular user or session, such as a shopping cart, and the data for user A is not
related in any way to the data for user B. This data is slightly more complicated to
handle than static, read-only data, but you can still optimize and distribute it quite
easily because this type of data can be partitioned. There are no dependencies
between the groups, right down to the individual user level. The important aspect
of this data is that you do not query across partitions. For example, you query for
the contents of user A’s shopping cart but do not query all carts that contain
a particular item. Note that, if subsequent requests can come to different Web or
application server, all these servers must be able to access the relevant partition.

.NET Application Architecture Guide, 2nd Edition258

l	 Core data.  This is the main case where the scale up, then out approach usually
applies. Generally, you do not want to hold this type of data in many places because
of the complexity of keeping it synchronized. This is the classic case in which you
would typically want to scale up as far as you can (ideally, remaining as a single
logical instance with suitable clustering), and only consider partitioning and
distributing the data when scaling out is the only option. Advances in database
technology, such as distributed partitioned views, have made partitioning much
easier; although you should do so only when it is necessary. The decision is rarely
prompted by the database growing to too large a size, but is more often driven by
other considerations such as who owns the data, the geographic usage distribution,
proximity to the consumer, and availability.

l	 Delay-synchronized data.  Some data used in applications does not have to be
synchronized immediately, or even at all. A good example of this is retail store
data such as “Users who bought X also bought Y and Z.” This data is mined from
the core data, but need not be updated in real time. Designing strategies that move
data from core to partitionable (dynamic), and then to static, is a key factor in
building highly scalable applications.

For information on patterns for moving and replicating data, see “Data Movement
Patterns” at http://msdn.microsoft.com/en-us/library/ms998449.aspx.

Network Infrastructure Security Considerations
Make sure that you understand the network structure provided by your target envi-
ronment, and understand the baseline security requirements of the network in terms
of filtering rules, port restrictions, supported protocols, and so on. Recommendations
for maximizing network security include:
l	 Identify how firewalls and firewall policies are likely to affect your application’s

design and deployment. Firewalls should be used to separate Internet-facing
applications from the internal network, and to protect the database servers.
Firewalls only allow communication through specifically configured ports and,
therefore, can block some protocols and prevent the use of some communication
options. This includes authentication, such as Windows authentication, between
the Web server and an application or database server behind the firewall.

l	 Consider which protocols, ports, and services can access internal resources from
the Web servers in the perimeter network or from rich client applications. Iden-
tify the protocols and ports that the application design requires, and analyze the
potential threats that occur from opening additional ports or using nonstandard
protocols.

http://msdn.microsoft.com/en-us/library/ms998449.aspx

Chapter 19:  Physical Tiers and Deployment 259

l	 Communicate and record any assumptions made about network and application
layer security, and the security functions each component will handle. This ensures
that security controls and policies are not overlooked when both the development
and the network team assume that the other team is addressing the issue.

l	 Pay attention to the security defenses such as firewalls, packet filters, and hardware
systems that your application relies upon the network to provide, and ensure that
these defenses are in place.

l	 Consider the implications of a change in network configuration, and how this will
affect security.

Manageability Considerations
The choices you make when deploying an application affect the capabilities
for managing and monitoring the application. You should take into account
the following recommendations:
l	 Deploy components of the application that are used by multiple consumers in a

single central location, such as a server or application farm that is available to all
applications, to avoid duplication.

l	 Ensure that data is stored in a location where backup and restore facilities can
access it.

l	 Components that rely on existing software or hardware (such as a proprietary
network that can only be established from a particular computer) must be
physically located on the same computer.

l	 Some libraries and adaptors cannot be deployed freely without incurring extra
cost, or may be charged on a per CPU basis; therefore, you may want to centralize
these features to minimize costs.

l	 Groups within an organization may own a particular service, component, or
application that they must manage locally.

l	 Monitoring tools such as System Center Operations Manager require access to
physical machines to obtain management information, and this may impact
deployment options.

.NET Application Architecture Guide, 2nd Edition260

Relevant Design Patterns
Key patterns are organized into categories such as Deployment, Manageability,
Performance and Reliability, and Security; as shown in the following table. Consider
using these patterns when making design decisions for each category.

Category Relevant patterns
Deployment Layered Application. An architectural pattern where a system is organized into

layers.
Three-Layered Services Application. An architectural pattern where the layers
are designed to maximize performance while exposing services that other ap-
plications can use.
Tiered Distribution. An architectural pattern where the layers of a design can be
distributed across physical boundaries.
Three-Tiered Distribution. An architectural pattern where the layers of a design
are distributed across three physical tiers.
Deployment Plan. Describes the processes for mapping logical layers onto physi-
cal tiers, taking into account constraints imposed by the infrastructure.

Manageability Adapter. An object that supports a common interface and translates operations
between the common interface and other objects that implement similar func-
tionality with different interfaces.
Provider. A component that exposes an API that is different from the client API,
in order to allow any custom implementation to be seamlessly plugged in. Many
applications that provide instrumentation expose providers that can be used
to capture information about the state and health of your application and the
system hosting the application.

Performance &
Reliability

Server Clustering. A distribution pattern where multiple servers are configured to
share the workload and appear to clients as a single machine or resource.
Load-balanced Cluster. A distribution pattern where multiple servers are con-
figured to share the workload. Load balancing provides both improvements in
performance by spreading the work across multiple servers, and reliability where
one server can fail and the others will continue to handle the workload.
Failover Cluster. A distribution pattern that provides a highly available infrastruc-
ture tier to protect against loss of service due to the failure of a single server or
the software that it hosts.

Security Brokered Authentication. Authenticate against a broker, which provides a token
to use for authentication when accessing services or systems.
Direct Authentication. Authenticate directly against the service or system that is
being accessed.
Impersonation and Delegation. The process of assuming a different identity on
a temporary basis so that a different security context or set of credentials can be
used to access a resource, and where a service account is allowed to access a
remote resource on behalf of another user.
Trusted Subsystem. The application acts as a trusted subsystem to access ad-
ditional resources. It uses its own credentials instead of the user’s credentials to
access the resource.

Chapter 19:  Physical Tiers and Deployment 261

For more information on the Layered Application, Three-Layered Services Application,
Tiered Distribution, Three-Tiered Distribution, and Deployment Plan patterns, see
“Deployment Patterns” at http://msdn.microsoft.com/en-us/library/ms998478.aspx.

For more information on the Adapter pattern, see Chapter 4, “Structural Patterns”
in Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley Professional, 1995.

For more information on the Provider pattern, see “Provider Model Design Pattern and
Specification, Part 1” at http://msdn.microsoft.com/en-us/library/ms972319.aspx.

For more information on the Server Clustering, Load-Balanced Cluster,
and Failover Cluster patterns, see “Performance and Reliability Patterns” at
http://msdn.microsoft.com/en-us/library/ms998503.aspx.

For more information on the Brokered Authentication, Direct Authentication,
Impersonation and Delegation, and Trusted Subsystem patterns, see “Web Service
Security” at http://msdn.microsoft.com/en-us/library/aa480545.aspx.

Additional Resources
To more easily access Web resources that may be useful when designing
a deployment strategy, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 For more information on authorization techniques, see

“Designing Application-Managed Authorization” at
http://msdn.microsoft.com/en-us/library/ms954586.aspx.

l	 For more information on deployment scenarios and considerations,
see “Deploying .NET Framework-based Applications” at
http://msdn.microsoft.com/en-us/library/ms954585.aspx.

l	 For more information on design patterns, see
“Enterprise Solution Patterns Using Microsoft .NET” at
http://msdn.microsoft.com/en-us/library/ms998469.aspx.

http://msdn.microsoft.com/en-us/library/ms998478.aspx
http://msdn.microsoft.com/en-us/library/ms972319.aspx
http://msdn.microsoft.com/en-us/library/ms998503.aspx
http://msdn.microsoft.com/en-us/library/aa480545.aspx
http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/ms954586.aspx
http://msdn.microsoft.com/en-us/library/ms954585.aspx
http://msdn.microsoft.com/en-us/library/ms998469.aspx

Application Archetypes

This section of the guide contains a series of topics that will help you to understand
the capabilities, features, benefits, and liabilities of each of the common application
types that you may decide to create. The first topic contains an overview of the basic
application types such as Web, mobile, rich client, services, and RIA. The remaining
chapters describe each of these types in detail, as well as more specialist types of
applications such as hosted and cloud-based services, and applications that take
advantage of SharePoint and Microsoft Office. For more information, see the
following chapters:
l	 Chapter 20, “Choosing an Application Type”
l	 Chapter 21, “Designing Web Applications”
l	 Chapter 22, “Designing Rich Client Applications”
l	 Chapter 23, “Designing Rich Internet Applications”
l	 Chapter 24, “Designing Mobile Applications”
l	 Chapter 25, “Designing Service Applications”
l	 Chapter 26, “Designing Hosted and Cloud Services”
l	 Chapter 27, “Designing Office Business Applications”
l	 Chapter 28, “Designing SharePoint LOB Applications”

	 Contents

Application Archetypes	 263

20
Choosing an Application Type

Overview
This chapter will help you to understand the application types covered in this
guide, the tradeoffs necessary, and the design impact for choosing an application
type. After reading this chapter, you will be able to determine the appropriate
application type for your scenario and requirements. The chapter provides brief
details of each of the five basic application archetypes, and links to more detail
information in other chapters.

The requirements, technology constraints, and type of user experience you plan
to deliver will determine the application type you choose. For example, you must
decide whether the clients you intend to serve will have a permanent network
connection available, whether you must deliver rich media content to anonymous
users for viewing in a Web browser, or whether you will predominantly service a
small number of users on a corporate intranet.

Use the following application archetypes summary to review each application
type, its description, and common scenarios. Use the table in this section to help
you make an informed choice of application type, based on the benefits and con-
siderations for each type.

	 Contents

20	 265

Choosing an Application Type	 265
Overview. 265
Application Archetypes Summary. 266

Application Type Considerations . 266
Mobile Application Archetype. 268
Rich Client Application Archetype. 269
Rich Internet Application Archetype. 271
Service Archetype . 272
Web Application Archetype . 274

.NET Application Architecture Guide, 2nd Edition266

Application Archetypes Summary
The following are the common basic types of applications that you may decide
to build:
l	 Mobile applications.  Applications of this type can be developed as thin client or

rich client applications. Rich client mobile applications can support disconnected
or occasionally connected scenarios. Web or thin client applications support
connected scenarios only. Device resources may prove to be a constraint when
designing mobile applications.

l	 Rich client applications.  Applications of this type are usually developed as stand-
alone applications with a graphical user interface that displays data using a range of
controls. Rich client applications can be designed for disconnected and occasionally
connected scenarios if they need to access remote data or functionality.

l	 Rich Internet applications.  Applications of this type can be developed to support
multiple platforms and multiple browsers, displaying rich media or graphical
content. Rich Internet applications run in a browser sandbox that restricts access
to some features of the client.

l	 Service applications.  Services expose shared business functionality and allow
clients to access them from a local or a remote system. Service operations are
called using messages, based on XML schemas, passed over a transport channel.
The goal of this type of application is to achieve loose coupling between the client
and the server.

l	 Web applications.  Applications of this type typically support connected scenarios
and can support different browsers running on a range of operating systems and
platforms.

There are many other more specific types of application that you can design and
build. In general, these types are specializations or combinations of the basic types
described in this list.

Application Type Considerations
The following table indicates the benefits and considerations for the common
application archetypes.

Application type Benefits Considerations
Mobile applica-
tions

Support for handheld devices.
Availability and ease of use for out of
office users.
Support for offline and occasionally-
connected scenarios.

Input and navigation limitations.
Limited screen display area.

Chapter 20:  Choosing an Application Type 267

Application type Benefits Considerations
Rich client
applications

Ability to leverage client resources.
Better responsiveness, rich UI func-
tionality, and improved user experi-
ence.
Highly dynamic and responsive inter-
action.
Support for offline and occasionally
connected scenarios.

Deployment complexity; however, a
range of installation options such as
ClickOnce, Windows Installer, and
XCOPY are available.
Challenging to version over time.
Platform specific.

Rich Internet
applications (RIA)

The same rich user interface capability
as rich clients.
Support for rich and streaming media
and graphical display.
Simple deployment with the same
distribution capabilities (reach) as
Web clients.
Simple upgrade and version updating.
Cross-platform and cross-browser
support.

Larger application footprint on the cli-
ent compared to a Web application.
Restrictions on leveraging client
resources compared to a rich client
application.
Requires deployment of a suitable
runtime framework on the client.

Service
applications

Loosely coupled interactions between
client and server.
Can be consumed by different and
unrelated applications.
Support for interoperability.

No UI support.
Dependent on network connectivity.

Web
applications

Broad reach and a standards-based
UI across multiple platforms.
Ease of deployment and change
management.

Dependent on continual network con-
nectivity.
Difficult to provide a rich user inter-
face.

Each application type can be implemented using one or more technologies. Scenarios
and technology constraints, as well as the capabilities and experience of your develop-
ment team, will drive your choice of technology.

The following sections describe each of the application types in more detail:
l	 Mobile Application Archetype
l	 Rich Client Application Archetype
l	 Rich Internet Application Archetype
l	 Service Archetype
l	 Web Application Archetype

This guide also contains details of some of the more specialized application types.
For more information, see the following:
l	 Chapter 26 “Designing Hosted and Cloud Services”
l	 Chapter 27 "Designing Office Business Applications"
l	 Chapter 28 "Designing SharePoint LOB Applications"

.NET Application Architecture Guide, 2nd Edition268

Mobile Application Archetype
A mobile application will normally be structured as a multilayered application
consisting of user experience (presentation), business, and data layers, as shown
in Figure 1.

Figure 1
The typical structure of a mobile application

Chapter 20:  Choosing an Application Type 269

When developing a mobile application, you may choose to develop a thin Web-based
client or a rich client. If you are building a rich client, the business and data layers
are likely to be on the device itself. If you are building a thin client, the business and
data layers will be on the server. Mobile applications commonly make use of locally
cached data to support offline or disconnected operation, and synchronize this data
when connected. They may also consume services exposed by other applications,
including S+S hosted services and Web services. Data source synchronization and
other services are often exposed in a controlled way to a mobile client application
through a specific server-based infrastructure.

Consider using mobile applications if:
l	 Your users depend on handheld devices.
l	 Your application supports a simple UI that is suitable for use on small screens.
l	 Your application must support offline or occasionally connected scenarios. In this

case, a mobile rich client application is usually the most appropriate.
l	 Your application must be device independent and can depend on network

connectivity. In this case, a mobile Web application is usually the most
appropriate.

To learn how to design a mobile application, see Chapter 24, “Designing Mobile
Applications.”

Rich Client Application Archetype
Rich client user interfaces can provide a highly responsive, interactive, and rich
user experience for applications that must operate in stand-alone, connected,
occasionally connected, and disconnected scenarios. A rich client application
will normally be structured as a multilayered application consisting of user
experience (presentation), business, and data layers, as shown in the Figure 2.

.NET Application Architecture Guide, 2nd Edition270

Figure 2
The typical structure of a rich client application

A rich client application may use data stored on a remote server, data stored locally,
or a combination of both. It may also consume services exposed by other applica-
tions, including S+S hosted services and Web services.

Consider using rich client applications if:
l	 Your application must support disconnected or occasionally connected scenarios.
l	 Your application will be deployed on client PCs.
l	 Your application must be highly interactive and responsive.
l	 Your application UI must provide rich functionality and user interaction but does

not require the advanced graphics or media capabilities of a RIA.
l	 Your application must utilize the resources of the client PC.

To learn how to design a rich client application, see Chapter 22, “Designing Rich
Client Applications.”

Chapter 20:  Choosing an Application Type 271

Rich Internet Application Archetype
A rich Internet application (RIA) runs in the browser in a sandbox. The benefits of a
RIA over traditional Web applications include richer user experience, improved user
responsiveness, and improved network efficiency. A RIA will normally be structured
as a multilayered application consisting of user experience (presentation), service,
business, and data layers, as shown in Figure 3.

Figure 3
The typical structure of a rich Internet application

.NET Application Architecture Guide, 2nd Edition272

RIAs generally depend on a client-side plug-in or hosted execution environment
(such as a XAML runtime or Silverlight). This plug-in communicates with remote
Web server hosts that generate the code and data consumed by the client plug-in
or execution environment.

Consider using rich Internet applications if:
l	 Your application must support rich media and provide a highly graphical

display.
l	 Your application must provide a rich, interactive, and responsive UI compared to

Web applications.
l	 Your application will leverage client-side processing in a restricted manner.
l	 Your application will utilize client-side resources in a restricted manner.
l	 You want the simplicity of a Web-based deployment model.

To learn how to design a rich Internet application, see Chapter 23, “Designing Rich
Internet Applications.”

Service Archetype
In the context of this guide, a service is a public interface that provides access to a
unit of functionality. Services literally provide some programmatic service to the
caller that consumes the service. A service application that exposes such services
will normally be structured as a multilayered application consisting of service,
business, and data layers, as shown in Figure 4.

Chapter 20:  Choosing an Application Type 273

Figure 4
The typical structure of a service application

.NET Application Architecture Guide, 2nd Edition274

Services are loosely coupled, and can be combined to provide functionality that
is more complex. Services are distributable, and can be accessed from a remote
machine as well as from the machine on which the service is running. Services
are also message oriented. This means that the interfaces are defined by a Web
Services Description Language (WSDL) document and operations are called using
messages based on XML schemas, which are passed over a transport channel.
In addition, services support a heterogeneous environment by focusing inter-
operability on the message/interface definition. If components can understand
the message and interface definition, they can use the service regardless of their
base technology.

Consider using service applications if:
l	 Your application will expose functionality that does not require a UI.
l	 Your application must be loosely coupled with its clients.
l	 Your application must be shared with or consumed by other external

applications.
l	 Your application must expose functionality that will be consumed by applica-

tions over the Internet, an intranet, or on the local machine.

To learn how to design services and service applications, see Chapter 25, “Designing
Service Applications.”

Web Application Archetype
The core of a Web application is its server-side logic. This logic may be comprised
of many distinct layers. A typical example is a three-layered architecture comprising
presentation, business, and data layers, as shown in Figure 5.

Chapter 20:  Choosing an Application Type 275

Figure 5
The typical structure of a Web application

.NET Application Architecture Guide, 2nd Edition276

A Web application will normally access data stored on a remote database server.
It may also consume services exposed by other applications, including S+S hosted
services and Web services.

Consider using Web applications if:
l	 Your application does not require the rich UI and media support offered by a rich

Internet application.
l	 You want the simplicity of a Web-based deployment model.
l	 Your user interface must be platform independent.
l	 Your application must be available over the Internet.
l	 You want to minimize client-side dependencies and resource consumption, such

as disk or processor usage.

To learn how to design a Web application, see Chapter 21, “Designing Web
Applications.”

21
Designing Web Applications

Overview
In this chapter, you will learn the general design considerations and key attributes
for a Web application. This includes the guidelines for a layered structure; guide-
lines for performance, security, and deployment; and the key patterns and technology
considerations.

A Web application is an application that can be accessed by the users through a Web
browser or a specialized user agent. The browser creates HTTP requests for specific
URLs that map to resources on a Web server. The server renders and returns HTML
pages to the client, which the browser can display. The core of a Web application is
its server-side logic. The application can contain several distinct layers. The typical
example is a three-layered architecture comprised of presentation, business, and
data layers. Figure 1 illustrates a typical Web application architecture with com-
mon components grouped by different areas of concern.

	 Contents

21	 277

Designing Web Applications	 277
Overview. 277
General Design Considerations . 279
Specific Design Issues. 280

Application Request Processing. 280
Authentication. 282
Authorization. 282
Caching . 283
Exception Management . 283
Logging and Instrumentation. 284
Navigation. 284
Page Layout . 285
Page Rendering. 286
Session Management. 286
Validation. 287

Design Considerations for Layers. 287
Presentation Layer . 287
Business Layer . 288
Data Layer. 288
Service Layer. 288

Testing and Testability Considerations. 289
Technology Considerations. 289
Deployment Considerations . 290

Nondistributed Deployment. 290
Distributed Deployment . 291
Load Balancing. 292

Relevant Design Patterns . 294
Additional Resources. 296

.NET Application Architecture Guide, 2nd Edition278

Figure 1
The typical structure of a Web application

The presentation layer usually includes UI and presentation logic components; the
business layer usually includes business logic, business workflow and business
entities components, and optionally a façade; and the data layer usually includes
data access and service agent components. For more information about layered
design, see Chapter 5, “Layered Application Guidelines.” For more information
about the components used in each layer, see Chapter 10, “Component Guidelines.”

Chapter 21:  Designing Web Applications 279

General Design Considerations
When designing a Web application, the goal of the software architect is to minimize
the complexity by separating tasks into different areas of concern while designing
a secure, high performance application. Follow these guidelines to ensure that your
application meets your requirements, and performs efficiently in scenarios common
to Web applications:
l	 Partition your application logically.  Use layering to partition your application

logically into presentation, business, and data access layers. This helps you
to create maintainable code and allows you to monitor and optimize the per-
formance of each layer separately. A clear logical separation also offers more
choices for scaling your application.

l	 Use abstraction to implement loose coupling between layers.  This can be accom-
plished by defining interface components, such as a façade with well known inputs
and outputs that translates requests into a format understood by components
within the layer. In addition, you can also use Interface types or abstract base
classes to define a shared abstraction that interface components must implement.

l	 Understand how components will communicate with each other.  This requires
an understanding of the deployment scenarios your application must support. You
must determine if communication across physical boundaries or process boundaries
should be supported, or if all components will run within the same process.

l	 Consider caching to minimize server round trips.  When designing a Web appli-
cation, consider using techniques such as caching and output buffering to reduce
round trips between the browser and the Web server, and between the Web server
and downstream servers. A well designed caching strategy is probably the single
most important performance related design consideration. ASP.NET caching
features include output caching, partial page caching, and the Cache API. Design
your application to take advantage of these features.

l	 Consider logging and instrumentation.  You should audit and log activities across
the layers and tiers of your application. These logs can be used to detect suspicious
activity, which frequently provides early indications of an attack on the system.
Keep in mind that it can be difficult to log problems that occur with script code
running in the browser.

l	 Consider authenticating users across trust boundaries.  You should design
your application to authenticate users whenever they cross a trust boundary; for
example, when accessing a remote business layer from the presentation layer.

.NET Application Architecture Guide, 2nd Edition280

l	 Do not pass sensitive data in plaintext across the network.  Whenever you
must pass sensitive data such as a password or authentication cookie across
the network, consider encrypting and signing the data or using Secure Sockets
Layer (SSL) encryption.

l	 Design your Web application to run using a least-privileged account.  If an
attacker manages to take control of a process, the process identity should have
restricted access to the file system and other system resources in order to limit
the possible damage.

For more information on general design considerations, see Chapter 17, “Crosscutting
Concerns.”

Specific Design Issues
You must consider several common issues as you develop your design. These issues
can be categorized into specific areas of the design. The following sections provide
guidelines to help you avoid the common issues in each area:
l	 Application Request Processing
l	 Authentication
l	 Authorization
l	 Caching
l	 Exception Management
l	 Logging and Instrumentation
l	 Navigation
l	 Page Layout
l	 Page Rendering
l	 Session Management
l	 Validation

Application Request Processing
At a high level, a Web application can perform request processing in two ways. With
the post back approach, the browser primarily communicates with the server using
Web Forms post backs. A popular alternative approach is to use RESTful service calls
between the browser and the server. These two approaches each have advantages
and disadvantages, and your choice may impact how you address the design issues
described below.

When choosing a request processing strategy, you should consider how much control
you require over the UI in your application, your development and testing approach,
and your performance and scaling requirements.

Chapter 21:  Designing Web Applications 281

The post back approach typically allows a forms-based development experience, and
uses rich server-side controls that render the corresponding HTML, associated view
state, and interaction logic to the browser. Consider this approach if you developing
a forms-based Web application and require a rapid application development (RAD)
experience.

The REST-full approach typically allows finer-grained control over the UI of your
application, and provides more flexibility in terms of navigation, testability, and
separation of concerns. Consider using this approach if your application requires
flexible navigation, fine control over its UI, may use alternate UI rendering tech-
nologies, or if you are using a test-driven development approach.

Regardless of the request processing strategy you choose, you should ensure separa-
tion of concerns by implementing the request processing logic and application logic
separately from the UI. Several patterns help achieve this. In general, the Model-
View-Presenter (MVP) or similar patterns can be used in a Web Forms post back
approach to help provide a clean separation of concerns. The Model-View-Controller
(MVC) pattern is typically used in a REST-full request processing approach.

Also consider the following guidelines when designing a request processing
strategy:
l	 Consider centralizing the common preprocessing and post processing steps of

Web page requests to promote logic reuse across pages. For example, consider
creating an HTTP module, or a base class derived from the ASP.NET Page class,
to contain your common preprocessing and post processing logic.

l	 Choose an appropriate approach or pattern for your UI processing. Consider
dividing UI processing into three distinct roles—model, view, and controller/
presenter—by using MVC, MVP, or similar patterns. Avoid mixing processing
and rendering logic in your components.

l	 If you are designing views for handling large amounts of data, consider giving
the view access to the model by using the Supervising Presenter (or Supervising
Controller) pattern, which is a form of the MVP pattern. If your application does
not have a dependency on view state and you have a limited number of control
events, consider using the MVC pattern.

l	 Consider using the Intercepting Filter pattern to implement the processing steps
as pluggable filters when appropriate.

l	 Ensure that you protect all sensitive data sent over the network, especially over
the Internet. Use secure channel protocols such as SSL, and consider encrypting
and digitally signing all highly sensitive data sent over both internal and external
networks.

.NET Application Architecture Guide, 2nd Edition282

Authentication
Designing an effective authentication strategy is important for the security and
reliability of your application. Improper or weak authentication can leave your
application vulnerable to spoofing attacks, dictionary attacks, session hijacking,
and other types of attack. Consider the following guidelines when designing an
authentication strategy:
l	 Identify trust boundaries within Web application layers. This will help you to

determine where to authenticate users.
l	 Enforce secure account management practices such as account lockouts and

password expirations, and strong password policies that specify the mini-
mum password length and complexity.

l	 Use a platform- supported authentication mechanism such as Windows Authentica-
tion when possible. Where you decide to use Forms Authentication, take advantage
of the built-in support in ASP.NET instead of designing a custom authentication
mechanism. Consider using a federated service or single sign on (SSO) if you want
to allow users to log on to several sites with a single set of credentials.

l	 When you must store passwords in a database, do not store them as plaintext;
instead, store a hash (or salted hash) of the password.

Authorization
Authorization determines the tasks that an authenticated identity can perform, and
identifies the resources that can be accessed. Designing an effective authorization
strategy is important for the security and reliability of your application. Improper or
weak authorization leads to information disclosure, data tampering, and elevation
of privileges. Defense in depth is the key security principle to apply to your applica-
tion’s authorization strategy. Consider the following guidelines when designing an
authorization strategy:
l	 Authorize users as they cross all trust boundaries. Use URL authorization for page

and directory access control. Access downstream resources using a trusted iden-
tity based on the trusted subsystem model as described in Chapter 19, “Physical
Tiers and Deployment.”

l	 Consider the granularity of your authorization settings. Building your autho-
rization with too much granularity will increase your management overhead;
however, using less granularity may reduce flexibility.

l	 Use impersonation and delegation to take advantage of the user-specific auditing
and granular access controls of the platform, but consider the effect on perfor-
mance and scalability.

Chapter 21:  Designing Web Applications 283

Caching
Caching improves the performance and responsiveness of your application. However,
incorrect caching choices and poor caching design can degrade performance and
responsiveness. You should use caching to optimize reference data lookups, avoid
network round trips, and avoid unnecessary and duplicate processing. To implement
caching, you must first decide when to load data into the cache. Try to load cache
data asynchronously or by using a batch process to avoid client delays. Consider
the following guidelines when designing caching:
l	 Cache data in a ready to use format when possible, and avoid caching volatile data

that changes regularly. Avoid caching sensitive information unless it is encrypted.
l	 Use output caching to cache pages that are relatively static. This dramatically

improves performance, while still supporting variation based on submitted
values. If only parts of the page are relatively static, consider using partial
page caching with user controls.

l	 Pool shared resources that are expensive, such as network connections, instead
of caching them.

For more information on caching, see Chapter 17, “Crosscutting Concerns.”

Exception Management
Designing an effective exception management strategy is important for the security
and reliability of your application. Correct exception handling in your Web pages
prevents sensitive exception details from being revealed to the user, improves
application robustness, and helps to avoid leaving your application in an incon-
sistent state in the event of an error. Consider the following guidelines when
designing an exception management strategy:
l	 Provide user friendly error messages to notify users of errors in the application,

but ensure that you avoid exposing sensitive data in error pages, error messages,
log files, and audit files.

l	 Ensure that you catch unhandled exceptions, and clean up resources and state when
an exception occurs. Design a global exception handler that displays a global error
page or an error message for all unhandled exceptions. Avoid the use of custom
exceptions when not necessary.

l	 Do not catch exceptions unless you must handle them; for example, to remove
sensitive information or add additional information to the exception. Do not use
exceptions to control application logic flow.

For more information on exception management, see Chapter 17, “Crosscutting
Concerns.”

.NET Application Architecture Guide, 2nd Edition284

Logging and Instrumentation
Designing an effective logging and instrumentation strategy is important for the
security and reliability of your application. You should audit and log activity across
the tiers of your application. These logs can be used to detect suspicious activity,
which frequently provides early indications of an attack on the system, and can
help to address repudiation threats where users deny their actions. Log and audit
files may be required in legal proceedings to prove the wrongdoing of individuals.
Auditing is generally considered to be most authoritative if the audit is generated
at the precise time of resource access, and by the routine that accesses the resource.
Consider the following guidelines when designing a logging and instrumentation
strategy:
l	 Consider auditing in all layers of the application for user management events,

system critical events, business critical operations, and unusual activities.
l	 Create secure log file management policies such as restricting access to log files,

and allowing only write access to users. Ensure that your logging and instrumen-
tation mechanisms are configurable during deployment and when in production.

l	 Do not store sensitive information in log or audit files.

Navigation
Design your navigation strategy in a way that separates it from the processing logic.
Your strategy should allow users to navigate easily through your screens or pages.
Designing a consistent navigation structure for your application will help to mini-
mize user confusion as well as reduce the apparent complexity of the application.
Consider the following guidelines when designing your navigation strategy:
l	 If you are using a Web Forms post back approach, consider using design patterns

such as MVP to decouple UI processing from output rendering. Avoid mixing
navigation logic with your user interface components by handling navigation in
the Presenter.

l	 If you are using a REST-full approach, consider using a MVC pattern to decouple
application logic, data, and navigation into separate components. Typical MVC
application implementation provide flexible navigation support by directing
requests to a controller component that then coordinates the application’s UI
and data.

l	 Consider encapsulating navigation in a master page so that it is consistent
throughout the application. However, avoid hard coding navigation paths in
your application. Also, ensure that users can only navigate to views for which
they are authorized.

Chapter 21:  Designing Web Applications 285

l	 Consider using a site map to help users find pages on the site, and to allow search
engines to crawl the site if appropriate. Consider using visual elements such as
embedded links, navigation menus, and breadcrumb navigation in the UI to help
users understand where they are, what is available on the site, and how to navi-
gate the site quickly. Consider using wizards to implement navigation between
forms in a predictable way.

Page Layout
Design your application so that the page layout can be separated from the specific UI
components and UI processing. When choosing a layout strategy, consider whether
designers or developers will be building the layout. If designers will be building the
layout, choose a layout approach that does not require coding or the use of develop-
ment-focused tools. Consider the following guidelines when designing your layout
strategy:
l	 Use Cascading Style Sheets (CSS) for layout whenever possible, rather than table-

based layout. However, use table-based layout when you must support a grid
layout or where the data is represented as a table. Bear in mind that table-based
layout can be slow to render, and there may be issues with complex layout.

l	 Use a common layout for pages where possible to maximize accessibility and
ease of use. Avoid designing and developing large pages that accomplish multiple
tasks, particularly where only a few tasks are usually executed with each request.
Minimize page size where possible to maximize performance and reduce band-
width requirements.

l	 Use master pages in ASP.NET applications to provide a common appearance
and behavior for all of the pages, and to allow updates to the site with minimum
effort. Consider extracting common sections of pages into separate user controls
to reduce the overall complexity and allow reuse of these controls.

l	 Consider using the ASP.NET AJAX server controls and the ASP.NET AJAX client-
side library to make client script more easily portable between different browsers.
Also, avoid mixing client-side script with HTML code. Doing so makes the page
more complex and harder to maintain. Place client side script in separate script
files so they can be cached by the browser.

l	 When migrating an existing Web application, consider using Silverlight controls
in ASP.NET pages to provide a rich user experience and minimize application
reengineering.

.NET Application Architecture Guide, 2nd Edition286

Page Rendering
When designing for page rendering, you must ensure that you render the pages
efficiently and maximize interface usability. Consider the following guidelines
when designing a page-rendering strategy:
l	 Consider using client-side script or ASP.NET AJAX for an improved user experience

and better responsiveness by reducing the number of post backs required. Using
custom client-side script can make applications harder to test because script support
varies between different browsers and versions. Instead, consider using ASP.NET
AJAX, which supports most common browsers. Remember that the use of client-
side code of any type (including script emitted by the built-in ASP.NET controls)
can affect accessibility. Ensure that you provide appropriate accessibility support
for specialist user agents and disabled users.

l	 Consider data-binding options. For example, you can bind collections, DataReader
objects, DataSet tables, and custom objects to many ASP.NET controls. Use data-
paging techniques to minimize scalability issues associated with large amounts of
data, and to improve performance and response times.

l	 Consider designing to support localization in UI components.
l	 Abstract the user process components from data rendering and acquisition

functions.

Session Management
When designing a Web application, an efficient and secure session management
strategy is important for performance and reliability. You must consider session
management factors such as what to store, where to store it, and how long informa-
tion will be kept. Consider the following guidelines when designing a session
management strategy:
l	 Consider if you actually do need to store session state. Using session state adds

overhead to each page request.
l	 Ensure that you persist session data when required, but consider using read-only

sessions or disabling session state altogether to improve performance where this is
appropriate.

l	 If you have a single Web server, require optimum session state performance, and
have a relatively limited number of concurrent sessions, use the in-process state
store. However, if your session data is expensive to recreate, and you require dura-
bility in the event of an ASP.NET restart, use the session state service running on the
local Web server. For multiple server (Web farm) scenarios, where you must central-
ize session data storage across servers, consider using the SQL Server state store.

l	 If you are storing state on a separate server, protect your session state communi-
cation channel using techniques such as SSL or IPSec.

l	 Prefer basic types for session data to reduce serialization costs.

Chapter 21:  Designing Web Applications 287

Validation
Designing an effective validation solution is important for the security and reliability
of your application. Improper or weak validation can leave your application vulner-
able to cross-site scripting attacks, SQL injection attacks, buffer overflows, and other
types of input attack. Consider the following guidelines when designing a validation
strategy:
l	 Validate all data crossing the trust boundaries of your application. Assume that

all client controlled data is malicious and must be validated.
l	 Design your validation strategy to constrain, reject, and sanitize malicious input;

and validate all input data based on length, range, format, and type.
l	 Use client-side validation for optimum user experience and reduced network

round trips, but always validate on the server for security reasons.
l	 Investigate third-party solutions, design patterns, and libraries that can help you

to centrally manage and reuse validation rules and code.

For more information on validation techniques, see Chapter 17, “Crosscutting
Concerns.”

Design Considerations for Layers
If you have chosen to use a layered design for your application, consider the specific
issues for each layer described in the following sections.

Presentation Layer
The presentation layer of your Web application displays the UI and facilitates user
interaction. The design should focus on separation of concerns, where the user inter-
action logic is decoupled from the UI components. You should consider using
separate UI components and presentation logic components in complex interfaces,
and base your UI components on standard Web controls where possible. You can
compile the controls into an assembly for reuse across applications, or if you need
to add additional features to existing server controls.

For Web applications, the presentation layer consists of a server-side component
(which renders the HTML) and a client-side component (the browser or user agent
that executes scripts and displays the HTML). Usually, all presentation logic exists
in the server components, and the client components only display the HTML. With
client-side techniques such as AJAX, it is possible to execute logic on the client,
usually to improve the user experience. Doing so requires extra development
effort and testing. If you decide to do any validation on the client, ensure that
you repeat the validation on the server, as any client side validation can easily
be circumvented.

.NET Application Architecture Guide, 2nd Edition288

Business Layer
When designing the business layer for your Web application, consider how to imple-
ment the business logic and long-running workflows. Using a separate business layer
that implements the business logic and workflows can improve the maintainability
and testability of your application, and allow you to centralize and reuse common
business logic functions. Consider designing business entities that represent the real
world data, and use these to pass data between components.

Design your business layer to be stateless, which helps to reduce resource contention
and increase performance, and consider using a message-based interface. This works
well with a stateless Web application business layer. If you perform business critical
operations in your business layer, design to use transactions to maintain integrity
and prevent data loss.

Data Layer
Consider designing a data layer for your Web application that abstracts the logic
necessary to access the database. Using a separate data layer makes the application
easier to configure and maintain, and hides the details of the database from other
layers of the application. Design entity objects that the data layer can populate or
use to update the data source, and use data transfer objects (DTOs) when inter-
acting with other layers and to pass the data between layers.

Design the data layer to take advantage of connection pooling to minimize the num-
ber of open connections, and consider using batch operations to reduce round trips to
the database. The data layer may also need to access external services using service
agents. Also, ensure that you design an exception handling strategy to handle data
access errors, and to propagate exceptions to the business layer.

Service Layer
Consider designing a separate service layer if you plan to deploy your business layer
on a remote tier, or if you plan to expose your business logic using a Web service.
Design the services to achieve maximum reusability by not assuming the specific
details of clients that will use them, and avoid changes over time that might break
the service interface for existing clients. Instead, implement versions of the interface
to allow clients to connect to the appropriate version.

If your business layer resides on a remote tier, design coarse-grained service methods
in order to minimize the number of round trips, and to provide loose coupling. Also,
design the services to be idempotent (so that they can manage the situation where the
same request message arrives more than once) and commutative (so that they can man-
age the situation where messages that perform a specific set of task steps arrive in the
wrong order). Ensure that you do not implement business rules in a service interface,
which can make is more difficult to keep the interface stable and may generate un-
necessary dependencies across components and clients.

Chapter 21:  Designing Web Applications 289

Finally, consider interoperability requirements by choosing appropriate protocols
and transport mechanisms. For example, use ASMX for broad reach and WCF for
more fine control over configuration. Decide whether the interface will expose SOAP,
REST, or both methods. For more information about exposing services, see Chapter 9,
“Service Layer Guidelines” and Chapter 18, “Communication and Messaging.”

Testing and Testability Considerations
Testability is a measure of how well your system or components allow you to create
test criteria and execute tests to determine if the criteria are met. You should consider
testability when designing your architecture because it makes it easier to diagnose
problems earlier and reduces maintenance cost. Consider the following guidelines
for testability:
l	 Clearly define the inputs and outputs of the application’s layers and components

during the design phase.
l	 Consider separated presentation patterns, such as MVC or MVP in the presenta-

tion layer. This allows the presentation logic to be unit tested.
l	 Design a separate business layer to implement the business logic and workflows,

which improves the testability of your application.
l	 Design loosely coupled components that can be tested individually.
l	 Design an effective logging and tracing strategy, which allows you to detect or

troubleshoot errors that might otherwise be difficult to find. Provide logging and
tracing information that can be consumed by monitoring or management tools.
This will help you to locate and focus on the faulty code when errors occur. Log
files should contain information that can be used to replicate the issue.

Technology Considerations
On the Microsoft platform, from an ASP.NET standpoint, you can combine the ASP.
NET Web Forms model with a range of other technologies, including ASP.NET AJAX,
ASP.NET MVC, Silverlight, and ASP.NET Dynamic Data. Consider the following
guidelines:
l	 If you want to build applications that are accessed through a Web browser or

specialized user agent, consider using ASP.NET.
l	 If you want to build applications that provide increased interactivity and

background processing, with fewer page reloads, consider using ASP.NET
with AJAX.

l	 If you want to build applications that include rich media content and interactivity,
consider using ASP.NET with Silverlight controls.

.NET Application Architecture Guide, 2nd Edition290

l	 If you are using ASP.NET, consider using master pages to implement a consistent
UI across all pages.

l	 If you are building a data driven Web application with pages based on the data
model of the underlying database, consider using ASP.NET Dynamic Data.

l	 If you are using a test-driven development approach, or need fine-grained
control over your UI, consider using the MVC pattern and ASP.NET MVC to
cleanly separate application and navigation logic from your application’s UI.

Deployment Considerations
When deploying a Web application, you should take into account how layer and
component location will affect the performance, scalability, and security of the appli-
cation. You might also need to consider design tradeoffs. Use either a distributed or a
nondistributed deployment approach, depending on the business requirements and
infrastructure constraints. Nondistributed deployment will generally maximize perfor-
mance by reducing the number of calls that must cross physical boundaries. However,
distributed deployment will allow you to achieve better scalability and allows each
layer to be secured separately.

Nondistributed Deployment
In a nondistributed deployment scenario, all the logically separate layers of the
Web application are physically located on the same Web server, except for the
database. You must consider how the application will handle multiple concurrent
users, and how to secure the layers that reside on the same server. Figure 2 shows
this scenario.

Figure 2
Nondistributed deployment of a Web application

Chapter 21:  Designing Web Applications 291

Consider the following guidelines when choosing a nondistributed deployment:
l	 Use nondistributed deployment if your Web application is performance sensitive,

because the local calls to other layers reduce the impact on performance that would
be caused by remote calls across tiers.

l	 If you do not need to share the business logic with other applications, and only
the presentation layer will access it, design a component-based interface for your
business layer.

l	 If your business logic and presentation logic run in the same process, avoid
authentication at the business layer.

l	 Use a trusted identity (through the trusted subsystem model) to access the
database. This improves the performance and scalability of your application.

l	 Decide how you will protect sensitive data passed between the Web server and
the database server.

Distributed Deployment
In a distributed deployment scenario, the presentation and business layers of the
Web application reside on separate physical tiers, and communicate remotely. You
will typically locate your business and data access layers on the same sever. Figure 3
shows this scenario.

Figure 3
Distributed deployment of a Web application

Consider the following guidelines when choosing a distributed deployment:
l	 Do not deploy your business layer on separate tier unless it is necessary; for

example, to maximize scalability, or when security concerns prohibit you from
deploying your business logic on your front-end Web server.

l	 Consider using a message-based interface for your business layer.
l	 Consider using the TCP protocol with binary encoding to communicate with the

business layer for best performance.
l	 Consider protecting sensitive data passed between different physical tiers.

.NET Application Architecture Guide, 2nd Edition292

Load Balancing
When you deploy your Web application on multiple servers, you can use load bal-
ancing to distribute requests so that they are handled by different Web servers. This
helps to maximize response times, resource utilization, and throughput. Figure 4
shows this scenario.

Figure 4
Load balancing a Web application

Chapter 21:  Designing Web Applications 293

Consider the following guidelines when designing your Web application to use load
balancing:
l	 Avoid server affinity when designing Web applications if possible because this

can negatively affect the application’s ability to scale out. Server affinity occurs
when all requests from a particular client must be handled by the same server.
It usually occurs when you use locally updatable caches, or in-process or local
session state stores. If you must support server affinity, configure the cluster to
route all requests from the same user to the same server.

l	 Consider designing stateless components for your Web application; for example,
a Web front end that has no in-process state and no stateful business components.
If you must store state for users, avoid the use of in-process session management
in a Web farm unless you can configure affinity and guarantee that requests from
the same user will be routed to the same server. Instead, use of an out-of-process
state server service or a database server.

l	 Consider using Windows Network Load Balancing (NLB) as a software solution
to implement redirection of requests to the servers in an application farm.

l	 Consider using clustering to minimize the impact of hardware failures.
l	 Consider partitioning your database across multiple database servers if your

application has high input/output requirements.

For more information on deployment patterns, see Chapter 19, “Physical Tiers and
Deployment.”

.NET Application Architecture Guide, 2nd Edition294

Relevant Design Patterns
Key patterns are organized into categories such as Caching, Exception Management,
Logging and Instrumentation, Page Layout, Presentation, Request Processing, and
Service Interface Layer; as shown in the following table. Consider using these
patterns when making design decisi ons for each category.

Category Relevant patterns
Caching Cache Dependency. Use external information to determine the state of data

stored in a cache.
Page Cache. Improve the response time for dynamic Web pages that are
accessed frequently but change less often and consume a large amount of
system resources to construct.

Exception Man-
agement

Exception Shielding. Filter exception data that should not be exposed to exter-
nal systems or users.

Logging and In-
strumentation

Provider. Implement a component that exposes an API that is different from the
client API, to allow any custom implementation to be seamlessly plugged in.

Page Layout (UI) Composite View. Combine individual views into a composite representation.
Template View. Implement a common template view, and derive or construct
views using this template view.
Transform View. Transform the data passed to the presentation tier into HTML
to be displayed on the UI.
Two-Step View. Transform the model data into a logical presentation without
any specific formatting, and then convert that logical presentation into the
actual formatting required.

Presentation Model-View-Controller. Separate the data in the domain, the presentation, and
the actions based on user input into three separate classes. The Model man-
ages the behavior and data of the application domain, responds to requests for
information about its state (usually from the View), and responds to instruc-
tions to change state (usually from the Controller). The View manages the
display of information. The Controller interprets the mouse and keyboard inputs
from the user, informing the model and/or the view to change as appropriate.
Model-View-Presenter. Separate request processing into three roles, with the
View being responsible for handling user input, the Model responsible for appli-
cation data and business logic, and the Presenter responsible for presentation
logic andfor coordinating the interaction between the View and the Model.
Passive View. A variant of the MVC pattern. Reduce the view to the absolute
minimum by allowing the controller to process user input and maintain the
responsibility for updating the view.
Supervising Presenter (or Supervising Controller). A variation of the MVC
pattern in which the controller handles complex logic, in particular coordinating
between views, but where the view is responsible for simple view specific logic.

Chapter 21:  Designing Web Applications 295

Category Relevant patterns
Request
Processing

Intercepting Filter. Create a chain of composable filters (independent mod-
ules) to implement common preprocessing and post processing tasks during a
Web page request.
Page Controller. Accept input from the request and handle it for a specific
page or action on a Web site.
Front Controller. Consolidate request handling by channeling all requests
through a single handler object, which can be modified at run time with decora-
tors.

Service Interface
Layer

Façade. Implement a unified interface to a set of operations to provide a sim-
plified, reduced coupling between systems.
Service Interface. A programmatic interface that other systems can use to
interact with the service.

For more information on the Page Cache pattern, see “Enterprise Solution Patterns Using
Microsoft .NET” at http://msdn.microsoft.com/en-us/library/ms998469.aspx.

For more information on the Model-View-Controller (MVC), Page Controller, Front
Controller, Template View, Transform View, and Two-Step View patterns, see
Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.
Or at http://martinfowler.com/eaaCatalog.

For more information on the Composite View, Supervising Presenter, and
Presentation Model patterns, see “Patterns in the Composite Application Library” at
http://msdn.microsoft.com/en-us/library/cc707841.aspx.

For more information on the Exception Shielding pattern, see “Useful Patterns for
Services” at http://msdn.microsoft.com/en-us/library/cc304800.aspx.

For more information on the Service Interface pattern, see “Service Interface” at
http://msdn.microsoft.com/en-us/library/ms998421.aspx.

For more information on the Provider pattern, see “Provider Model Design Pattern and
Specification, Part I” at http://msdn.microsoft.com/en-us/library/ms998421.aspx.

http://msdn.microsoft.com/en-us/library/ms998469.aspx
http://martinfowler.com/eaaCatalog
http://msdn.microsoft.com/en-us/library/cc707841.aspx
http://msdn.microsoft.com/en-us/library/cc304800.aspx
http://msdn.microsoft.com/en-us/library/ms998421.aspx
http://msdn.microsoft.com/en-us/library/ms998421.aspx

.NET Application Architecture Guide, 2nd Edition296

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 For more information on designing and implementing Web client

applications, see “Design and Implementation Guidelines for Web Clients” at
http://msdn.microsoft.com/en-us/library/ms978605.aspx.

l	 For more information on designing distributed Web applications,
see “Designing Distributed Applications” at
http://msdn.microsoft.com/en-us/library/aa292470(VS.71).aspx.

l	 For more information on Web application performance issues,
see “Improving .NET Application Performance and Scalability” at
http://msdn.microsoft.com/en-us/library/ms998530.aspx.

l	 For more information on Web application security, see
“Improving Web Application Security: Threats and Countermeasures” at
http://msdn.microsoft.com/en-us/library/ms994921.aspx.

http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/ms978605.aspx
http://msdn.microsoft.com/en-us/library/aa292470
http://msdn.microsoft.com/en-us/library/ms998530.aspx
http://msdn.microsoft.com/en-us/library/ms994921.aspx

22
Designing Rich Client
Applications

Overview
In this chapter, you will learn about the key scenarios for using rich client applica-
tions, the components found in a rich client application, and the important design
considerations for rich client applications. You will also learn about deployment
scenarios for rich client applications, and the key patterns and technology consider-
ations for designing rich client applications.

Rich client UIs can provide high performance, interactive, and rich user experiences
for applications that must operate in stand-alone, connected, occasionally connected,
and disconnected scenarios. Windows Forms, Windows Presentation Foundation
(WPF), and Microsoft Office Business Application (OBA) development environments
and tools are available that allow developers to quickly and easily build rich client
applications.

While these technologies can be used to create stand-alone applications, they can
also be used to create applications that run on the client machine but communicate
with services exposed by other layers (both logical and physical) and other applica-
tions that expose operations the client requires. These operations may include data
access, information retrieval, searching, sending information to other systems, back
up, and related activities. Figure 1 shows an overall view of typical rich client archi-
tecture, and identifies the components usually found in each layer.

	 Contents

22	 297

Designing Rich Client
Applications	 297
Overview. 297
General Design Considerations . 299
Specific Design Issues. 300

Business Layer . 300
Communication. 301
Composition. 302
Configuration Management. 303
Data Access. 303
Exception Management . 304
Maintainability. 305
Presentation Layer . 306
State Management. 307
Workflow . 307

Security Considerations. 308
Data Handling Considerations . 309

Caching Data. 309
Data Concurrency. 310
Data Binding. 310

Offline/Occasionally Connected Considerations. 311
Technology Considerations. 312
Deployment Considerations . 313

Stand-alone Deployment . 313
Client/Server Deployment . 313
N-Tier Deployment. 314
Deployment Technologies. 315

Relevant Design Patterns . 315
Additional Resources. 317

.NET Application Architecture Guide, 2nd Edition298

Figure 1
Overall view of typical rich client architecture

A typical rich client application is decomposed into three layers: the presentation layer,
business layer and data layer. The presentation layer usually contains UI and presen-
tation logic components; the business layer usually contains business logic, business
workflow and business entity components; and the data layer usually contains data
access and service agent components. For more information about layered design, see
Chapter 5, “Layered Application Guidelines.” For more information about the compo-
nents appropriate for each layer, see Chapter 10, “Component Guidelines.”

Rich client applications may be fairly thin applications consisting of mainly a presen-
tation layer, which access a remote business layer hosted on server machines through
services. An example of this is a data entry application that sends all of the data to
the server for processing and storage.

Chapter 22:  Designing Rich Client Applications 299

At the other end of the scale, they may be complex applications that perform most of
the processing themselves and only communicate with other services and data stores
to consume or send back information. An example of this is an application such as
Microsoft Excel® spreadsheet software that performs complex local tasks, stores state
and data locally and only communicates with remote servers to fetch and update
linked data. These types of rich clients may contain their own business layers and
data access layers. The guidelines for the business and data layers in such applica-
tions are the same as those discussed generally for all applications.

General Design Considerations
When designing a rich client application, the goal of the software architect is to
choose an appropriate technology and design a structure that minimizes complex-
ity by separating tasks into different areas of concern. The design should meet the
requirements for the application in terms of performance, security, reusability, and
ease of maintenance.

Consider the following guidelines when designing rich client applications:
l	 Choose an appropriate technology based on application requirements.  Suitable

technologies include Windows Forms, WPF, XAML Browser Applications (XBAP),
and OBA.

l	 Separate presentation logic from interface implementation.  Consider design
patterns such as Presentation Model and Supervising Presenter (or Supervising
Controller) that separate UI rendering from UI logic; which eases maintenance,
promotes reusability, and improves testability. The use of separate components
within the application can reduce dependencies, make maintenance and testing
easier, and promote reusability.

l	 Identify the presentation tasks and presentation flows.  This will help you to
design each screen and each step in a multi screen or Wizard process.

l	 Design to provide a suitable and usable interface.  Take into account features
such as layout, navigation, choice of controls, and localization to maximize
accessibility and usability.

l	 Apply separation of concerns across all layers.  For example, extract business
rules and other tasks not related to presentation and locate these in a separate
business layer. Separate data access code into separate components located in a
data layer.

l	 Reuse common presentation logic.  Libraries that contain templates, generalized
client-side validation functions, and helper classes may be reusable in several
applications.

l	 Loosely couple your client from any remote services it uses.  Use a message-
based interface to communicate with services located on separate physical tiers.

.NET Application Architecture Guide, 2nd Edition300

l	 Avoid tight coupling to objects in other layers.  Use the abstraction provided
by common interface definitions, abstract base classes, or messaging when com-
municating with other layers of the application. For example, implementing the
Dependency Injection and Inversion of Control patterns can provide a shared
abstraction between layers.

l	 Reduce round trips when accessing remote layers.  Use coarse-grained methods
and execute them asynchronously if possible to avoid blocking or freezing the UI.

For more information about designing the business layer, see Chapter 7, “Business
Layer Guidelines.” For more information about designing the data layer, see
Chapter 8, “Data Layer Guidelines.”

Specific Design Issues
There are several common issues that you must consider as your develop your design.
These issues can be categorized into specific areas of the design. The following sections
contain guidelines to help you resolve the common issues in each area:
l	 Business Layer
l	 Communication
l	 Composition
l	 Configuration Management
l	 Data Access
l	 Exception Management
l	 Maintainability
l	 Presentation Layer
l	 State Management
l	 Workflow

Business Layer
A typical thin rich client acts as the interface to a business system, and the business
layer is part of that business system and is usually exposed as a service. However, in
a typical thick rich client, the business layer is located on the client itself. Consider
the following guidelines when designing the business layer for a rich client:
l	 Identify the business layers and service interfaces that the application will use. If

the application will access remote services, import the interface definitions and
write code that accesses these service functions using the interfaces. This helps
to minimize coupling between the client and a remote business layer or services
that it uses.

Chapter 22:  Designing Rich Client Applications 301

l	 If your business logic does not contain sensitive information, consider locating
some of the business rules on the client to improve performance of the UI and the
client application. If your business logic does contain sensitive information, you
should locate the business layer on a separate tier.

l	 Consider how the client will obtain information required to operate business rules
and other client-side processing, update this information automatically as it changes,
and how users or administrators will update the business rules as requirements
change. You may decide to have the client obtain business rule information from a
remote server when it starts up.

For more information about designing the business layer, see Chapter 7, “Business
Layer Guidelines.”

Communication
If the business and data layers of a rich client application are located on a remote tier and
exposed as services, or if a rich client uses other remote services, it can communicate
with these services using a variety of protocols and methods. These may include HTTP
requests, Simple SMTP e-mail messages, SOAP Web service messages, DCOM for re-
mote components, remote database access protocols, or other TCP/IP-based standard
or custom communication protocols. If the business layer and data layer are located on
the client, the presentation layer can use object-based methods to interact with them.
Consider the following guidelines when designing a communication strategy:
l	 When communicating with services on a remote physical tier, use a message-

based protocol when possible. This gives you a more natural way to make
asynchronous calls to avoid blocking the presentation layer, and to support
load balanced and failover server configurations. Use coarse-grained interfaces
to minimize network traffic and maximize performance.

l	 Where required, enable offline processing for the application. Detect and moni-
tor the connection state. When disconnected, cache information locally and then
resynchronize when communication is re-enabled. Consider holding application
state and data locally in a persistent cache to allow disconnected start up and a
shutdown/restart cycles without information loss.

l	 To protect sensitive information and communication channels, consider using
IPSec and SSL to secure the channel, encryption to protect data, and digital
signatures to detect data tampering.

l	 If the application must consume or send large sets or amounts of data, consider
the potential performance and network impact. Choose more efficient commu-
nication protocols such as TCP, using compression mechanisms to minimize the
data payload size for message-based protocols such as SMTP and SOAP, or cus-
tom binary formats when the application does not need to support open commu-
nication standards.

.NET Application Architecture Guide, 2nd Edition302

For more information about communication between clients and layers of the
application, see Chapter 18, “Communication and Messaging.”

Composition
To maximize extensibility and maintainability of the application—particularly where
it exposes a complex UI as is common in many business scenarios—consider imple-
menting the interface using the Composition design pattern, where the UI consists of
separate modules or forms loaded dynamically at run time. This approach is useful
when users may open several forms to perform specific tasks, and work with data in
a range of different ways. Users can open and close forms as required, and the appli-
cation can maximize performance and reduce start up delays by loading these forms
only when required. Also consider how you can support personalization for users, so
that they can modify the layout and content to suit their own requirements. Consider
the following guidelines when designing a composition strategy:
l	 Based on functional specifications and requirements, identify the appropriate

types of interface components you require. For example, possible components
include Windows Forms, WPF forms, Office-style documents, user controls, or
custom modules.

l	 Identify an appropriate composition mechanism, where composition is appropriate,
and consider composing views from reusable modular parts. For example, use the
Composite View pattern to build a view from modular, atomic component parts.
You may alternatively decide to use a composition framework such as the patterns
& practices Composite Client Application Guidance, or built-in features of your
development environment such as user controls or document panels. However, be
careful with dependencies between components, and use abstraction patterns when
possible to avoid issues with maintainability. Implement, where possible, features
for managing auto update and versioning of composable components.

l	 If you must support communication between different forms and presentation
components that make up a composite interface, consider implementing decoupled
communication techniques such as the Publish/Subscribe or Command pattern.
This will minimize the coupling between these components and improve testability.

l	 Take advantage of appropriate templates and data binding techniques available
in your chosen implementation technology to simplify and minimize the code
required for each form that you use within a composable interface.

l	 Consider implementing personalization so that users can customize the layout of
composable components within the interface.

Chapter 22:  Designing Rich Client Applications 303

Configuration Management
Rich client applications will usually require configuration information loaded at start-
up, and sometimes during execution. This information may be network or connection
information, user settings, UI business rules, or general display and layout settings. You
may decide to store some or all of this information locally, or download it from a remote
server when the application starts. You may also need to persist changes to the infor-
mation as the application runs or when it ends; for example, storing user preferences,
layout settings, and other UI data in the user’s local profile. Consider the following
guidelines when designing a configuration management strategy:
l	 Determine what configurable data may change during the life of your application;

for example, file locations, developer versus production settings, logging, assem-
bly references, and contact information for notifications. If necessary, design the
application to detect and dynamically apply the configuration changes.

l	 Choose local or centralized storage locations. User managed data (including profile
information or personalization settings) should generally be stored locally, though
you may consider storing it centrally to enable roaming. Global application settings
should be stored in a central location, and perhaps downloaded locally for perfor-
mance reasons.

l	 Identify sensitive configuration information and implement a suitable mechanism
for protecting it during transit over the network, when persisted locally, and even
when stored in memory.

l	 Take into account any global security policies and Group Policy overrides that
might affect or override local configurations.

Data Access
Rich client applications will usually access data stored on a remote server, as well as
data stored on the local machine. Data access often has a significant impact on perfor-
mance, and is the most obvious factor in the user’s perception of an application and
its usability and responsiveness. You should aim to maximize performance of data
access routines and data transmission across tiers. You must also design the applica-
tion with regard to the types of data it will use. If the client application cannot handle
the data in the exposed format, you must implement a translation mechanism that con-
verts it. However, this will have an impact on performance. Consider the following
guidelines when designing a data access strategy:
l	 Whenever possible, load data asynchronously so that the UI is still responsive

while the data is loading. However, you must also be aware of conflicts that might
occur if the user attempts to interact with the data before loading is complete, and
design the interface to protect against errors arising from this.

.NET Application Architecture Guide, 2nd Edition304

l	 If the client will consume very large amounts of data, consider chunking these
and loading them asynchronously into a local cache to improve performance. You
must plan how you will handle inconsistencies between the local copy and the
original data, perhaps by using methods such as time stamps or events.

l	 In occasionally connected scenarios, monitor connectivity and implement a ser-
vice dispatcher mechanism to support batch processing so that users can perform
multiple updates to data.

l	 Determine how you will detect and manage concurrency conflicts that arise when
multiple users attempt to update the central data store. Explore optimistic and
pessimistic concurrency models.

For more information about data access and handling data in rich client applications,
see “Data Handling Considerations” later in this chapter.

Exception Management
All applications and services are subject to the occurrence of errors and exceptions, and
you must implement a suitable strategy for detecting and managing these errors and ex-
ceptions. A robust and well designed exception management strategy can simplify
application design, and improve security and manageability. It can also make it easier
for developers to create the application, and reduces development time and cost. In a
rich client application, you will usually need to notify the user. In addition, for any-
thing other than trivial UI errors such as validation messages, you should consider
logging errors and exceptions for use by operations staff and monitoring systems. The
main challenge here is usually collating log information or designing a centralized
server-based logging sink that can be accessed by all clients. Consider the following
guidelines when designing an exception management strategy:
l	 Identify the errors and exceptions that are likely to arise within the application,

and identify which of these require only user notification. Errors such as valida-
tion failures are usually only notified locally to the user. However, errors such as
repeated invalid logon attempts or detection of malicious data should be logged
and administrators notified. All execution exceptions and application failures
should be logged and, optionally, administrators notified.

l	 Identify an overall strategy for handling exceptions. This may involve actions such
as wrapping exceptions with other application specific or custom exceptions that
contain additional data to assist in resolving failures, or replacing exceptions to pre-
vent exposure of sensitive information. Also, implement a mechanism for detecting
and logging unhandled exceptions. A framework for managing exceptions, such as
the patterns & practices Enterprise Library, may be useful for these tasks.

l	 Determine how you will store exception information, how you will pass it to other
layers of the application if required, and how you will notify administrators. Con-
sider using a monitoring tool or environment that can read events from the local
machine and present a view of the application state to administrators.

Chapter 22:  Designing Rich Client Applications 305

l	 Ensure that you sanitize exception information that is exposed to users in order
to prevent sensitive information from being displayed or stored in log and audit
files. If necessary, encrypt information and use secure channels to communicate
exceptions and errors to other physical tiers of the application.

l	 Only catch exceptions that you can handle. For example, catch data conversion
exceptions that can occur when trying to convert null values. Do not use excep-
tions to control business logic.

For more information about exception handling, see Chapter 17, “Crosscutting
Concerns.”

Maintainability
It is vital to minimize maintenance cost and effort for all applications and compo-
nents. You should implement mechanisms that reduce maintenance liabilities; for
example, by using design patterns that provide good separation of concerns and
loose coupling between components. Rich client applications are usually located on
remote client machines, and are subsequently more difficult to operate than server
installed applications. Other issues to consider, therefore, include deployment, up-
dates, patches, and versioning. Consider the following guidelines when designing a
maintainability strategy:
l	 Implement a suitable mechanism for manual and/or automatic updates to the

application and its components. You must take into account versioning issues to
ensure that the application has consistent and interoperable versions of all the
components it uses.

l	 Choose an appropriate deployment approach based on the environment in which
your application will be used. For example, you might require an installation
program for applications that are publically available, or you may be able to use
system tools such as Microsoft System Center to deploy applications within a
closed environment.

l	 Design the application so that components are loosely coupled and interchange-
able where possible. This allows you to change individual components depending
on requirements, run-time scenarios, and individual user requirements or prefer-
ences. Also, design to minimize dependencies between components and layers
so that the application or the individual layers and components can be used in
different scenarios where appropriate.

l	 Implement logging and auditing as appropriate for the application to assist
administrators and developers when debugging the application and solving
run-time problems.

For more information about maintainability, see Chapter 16, “Quality Attributes.”

.NET Application Architecture Guide, 2nd Edition306

Presentation Layer
The presentation layer is the part of the application that the user sees and interacts
with, and it must therefore satisfy many requirements. These requirements encom-
pass general factors such as usability, performance, design, and interactivity. A poor
user experience can result in a severely negative impact on an application that per-
forms well in all other respects. It is important to design your application to support
a compelling and intuitive user experience from the outset, as the user experience is
influenced by many different aspects of your application’s architecture. Consider the
following guidelines when designing the presentation features of your application:
l	 Investigate how you can separate the logic for managing user interaction from the

UI, and from the data with which the user works—perhaps by applying a Separated
Presentation style. This makes it easier to update parts of the application, allows
developers and designers to work separately on the components, and improves
testability.

l	 Implement command and navigation strategies and mechanisms that are flexible
and can be updated easily. Consider implementing well-known design patterns
such as Command, Publish/Subscribe, and Observer to decouple commands and
navigation from the components in the application and to improve testability.

l	 Take advantage of data binding capabilities to display data whenever possible,
especially for tabular and multirow data presentation. This reduces the code
required, simplifies development, and reduces coding errors. It can also auto-
matically synchronize data in different views or forms. Use two-way binding
where the user must be able to update the data.

l	 Consider how you will display documents in an Office document–style interface,
or when displaying document content or HTML in other UI elements. Ensure
that the user is protected from invalid and malicious content that might reside
in documents.

l	 Ensure that the application UI can be internationalized and then localized to all
geographical and cultural scenarios where it may be used. This includes changing
the language, text direction, and content layout based on configuration or auto
detection of the user’s culture. Also, ensure that you provide appropriate support
for accessibility and navigation.

For more information about presentation layer design considerations, see Chapter 6,
“Presentation Layer Guidelines.”

Chapter 22:  Designing Rich Client Applications 307

State Management
State management concerns the persistence of data that represents the state of a compo-
nent, operation, or step in a process. State data may include user settings, configuration
information, workflow information, business rule values, and data that the UI displays.
The application must be able to save this data, access it as required, and handle con-
flicts, restarts, and connection status changes. Consider the following guidelines when
designing a state-management strategy:
l	 Determine the state information that the application must store, including estimates

of the size, the frequency of changes, and the processing or overhead cost of re-
creating or refetching the data; and ensure that your chosen state management
mechanism can provide appropriate support.

l	 If you have large volumes of state data, consider using a local disk-based mecha-
nism to store it. If the application requires data to be available when it starts up,
use a persistent mechanism such as isolated storage or a disk file.

l	 When storing sensitive data, ensure that you implement the appropriate level of
protection by using encryption and/or digital signatures.

l	 Consider at what granularity you must maintain state information. For example,
determine the state information that applies to all users of an application and the
information that applies only to specific users or roles.

Workflow
Some rich client applications require view flow or workflow support to enable multi-
step operations or Wizard-style UI elements. You can implement these features
using separate components or custom solutions, or you can take advantage of a
framework such as Windows Workflow Foundation (WF). Consider the following
guidelines when designing a workflow strategy:
l	 Use workflow within business components for operations that involve multistep

or long-running processes. Consider creating separate components to implement
your workflow and view flow tasks. This reduces dependencies and makes it
easier to interchange components as requirements change.

l	 For simple workflow and view flow requirements, it is usually sufficient to use
custom code based on well-known patterns such as Use Case Controller and
ViewFlow. For workflow and view flow requirements that are more complex,
consider using a workflow engine such as WF.

l	 Consider how you will capture, manage, and display errors in workflows. Also,
identify how you will handle partially completed tasks, and whether it is possible to
recover from a failure and continue the task or whether you must restart the process.

For more information about workflow components, see Chapter 14, “Designing
Workflow Components.”

.NET Application Architecture Guide, 2nd Edition308

Security Considerations
Security encompasses a range of factors and is vital in all types of applications. Rich
client applications must be designed and implemented with security in mind, and—
where they act as the presentation layer for business applications—must play their
part in protecting and securing the other layers of the application. Security issues
involve a range of concerns, including protecting sensitive data, user authentication
and authorization, guarding against attack from malicious code and users, and
auditing and logging events and user activity. Consider the following guidelines
when designing a security strategy:
l	 Determine the appropriate technology and approach for authenticating users,

including support for multiple users of the same rich client application instance.
You should consider how and when to log on users, whether you must support
different types of users (different roles) with differing permissions (such as
administrators and standard users), and how you will record successful and
failed logons. Take into account the requirements for disconnected or offline
authentication where this is relevant.

l	 Consider using Windows Integrated Authentication or a federated authentication
solution if users must be able to access multiple applications with the same creden-
tials or identity. If you cannot use Windows Integrated Authentication, you may be
able to use an external agency that offers federated authentication support. If you
cannot use an external agency, consider using a certificate-based system, or create a
custom solution for your organization.

l	 Consider the requirement to validate inputs, both from the user and from sources
such as services and other application interfaces. You might need to create custom
validation mechanisms, or you might be able to take advantage of the validation
features of the technology you are working with. The Microsoft Visual Studio®
Windows Forms development environment contains validation controls. Alterna-
tively, consider a third party validation framework such as the Enterprise Library
Validation Application Block, which provides comprehensive features for valida-
tion in the UI and in the business layer. Irrespective of your validation choice,
remember that you must always validate data when it crosses trust boundaries.

l	 Consider how you will protect data stored in the application and in resources such
as files, caches, and documents used by the application. Encrypt sensitive data
where it might be exposed, and consider using a digital signature to prevent tam-
pering. In maximum security applications, consider encrypting volatile information
stored in memory. Also, remember to protect sensitive information that is sent from
the application over a network or communication channel.

l	 Consider how you will implement auditing and logging for the application, and
what information to include in these logs. Remember to protect sensitive infor-
mation in the logs using encryption, and optionally use digital signatures for the
most sensitive information that is vulnerable to tampering.

Chapter 22:  Designing Rich Client Applications 309

Data Handling Considerations
Application data can be made available from server-side applications through a Web
service. Cache this data on client to improve performance and enable offline usage.
Rich client applications can also use local data. Data use by rich client applications
falls into two categories:
l	 Read-only reference data.  This is data that does not change often and is used by

the client for reference purposes, such as a product catalog. Store reference data
on the client to reduce the amount of data interchange between the client and the
server in order to improve the performance of your application, enable offline
capabilities, provide early data validation, and generally improve the usability
of your application.

l	 Transient data.  This is data that can be changed on the client as well as on the
server. One of the most challenging aspects of dealing with transient data in rich
client applications is dealing with concurrency issues where the same data can be
modified by multiple clients at the same time. You must keep track of any client-
side changes made to transient data on the client and manage updates on the
server that may contain conflicting changes.

Caching Data
Rich clients often must cache data locally, whether it is read-only reference data or
transient data. Caching data can improve performance in your application and pro-
vide the data necessary to work offline. To enable data caching, rich client applica-
tions should implement some form of caching infrastructure that can handle the data
caching details transparently. The common types of caching are:
l	 Short term data caching.  Data is not persistent, so the application cannot run

offline.
l	 Long term data caching.  Caching data in a persistent medium, such as isolated

storage or the local file system, allows the application to work when there is no
connectivity to the server. Rich client applications should differentiate between
data that has been successfully synchronized with the server and data that is still
tentative.

.NET Application Architecture Guide, 2nd Edition310

Data Concurrency
When serving multiple clients simultaneously, changes to the data held on the
server can occur before a specific client’s changes can be synchronized with the server.
This can lead to data corruption or inconsistencies. You must, therefore, implement
a mechanism to ensure that any data conflicts are handled appropriately when the
data is synchronized, and that the resulting data is consistent and correct. Common
approaches for handling data concurrency are:
l	 Pessimistic concurrency.  Pessimistic concurrency assumes that the risk of a data

conflicts is high. To prevent data conflicts, it allows one client to maintain a lock
over the data, thereby preventing any other clients from accessing or modifying
the data until the client’s own changes are completed and committed. This pattern
is also known as the pessimistic offline lock pattern.

l	 Optimistic concurrency.  Optimistic concurrency assumes that the risk of data
conflicts is low. With optimistic concurrency, the data is not locked by a client while
it is being updated. To detect data conflicts, the original data and the changed data
are both sent to the server. The original data is checked against the current data to
see if it has been updated since it was last retrieved. If not, the changes are applied;
otherwise a data conflict exception is raised. This pattern is also known as the opti-
mistic offline lock pattern.

The ADO.NET DataSet helps clients to work with data while offline. DataSets can
keep track of local changes made to the data, which makes it easier to synchronize
the data with the server and reconcile data conflicts. DataSets can also be used to
merge data from different sources.

Data Binding
Windows Forms, WPF, and Silverlight data binding supports bidirectional binding
that allows you to bind a data structure to a UI component, display the current data
values to the user, allow the user to edit the data, and then automatically update the
underlying data using the values entered by the user. Data binding can be used to
display read-only data to users, allow users to update data within the UI, provide
master\detail views of data, allow users to explore complex related data items, and
provide lookup table functionality that allows the UI to display user friendly names
for data items instead of data row key values.

For more information about designing the data layer, see Chapter 8, “Data Layer
Guidelines.” For more information about designing data components for rich client
applications, see Chapter 15, “Designing Data Components.”

Chapter 22:  Designing Rich Client Applications 311

Offline/Occasionally Connected Considerations
An application is occasionally connected if, during unspecified periods, it cannot
interact with services or data over a network in a timely manner. Occasionally con-
nected rich client applications are capable of performing work when not connected
to a networked resource, and can update the networked resources in the background
when a connection is available.

When designing occasionally connected applications, aim to favor asynchronous
communication when interacting with data and services over a network and mini-
mize or eliminate complex interactions with network located data and services. This
makes it easier to implement a synchronization mechanism for use when a connec-
tion is available.

In order to work when disconnected, your application should implement data
caching capabilities that provide all of the data necessary on the client for the
user to continue working when offline. You must also determine how to prevent
the application using stale data. In general, you should consider designing a store
and forward mechanism where messages are created, stored while disconnected,
and eventually forwarded to their respective destinations when a connection
becomes available. The most common implementation of store and forward is a
message queue.

Consider the following two approaches when designing for an occasionally connected
scenario:
l	 Data centric.  Applications that use the data centric strategy have a relational

database management system (RDBMS) installed locally on the client, and use
the built-in capabilities of the database system to propagate local data changes
back to the server, handle the synchronization process, and detect and resolve
any data conflicts.

l	 Service oriented.  Applications that use the service-oriented approach store in-
formation in messages, and arrange these messages in queues while the client is
offline. After the connection is reestablished, the queued messages are sent to the
server for processing.

.NET Application Architecture Guide, 2nd Edition312

Technology Considerations
There are several different technologies available that you can use to implement a rich
client application. The following guidelines will help you to choose an appropriate
implementation technology, and provide guidance on the use of appropriate patterns
and system functions for configuration and monitoring:
l	 Choose a suitable development technology:

l	 Consider WFP for applications that will fully support rich media and
graphics.

l	 Consider using Windows Forms if you have existing Windows Forms in-
vestments, or if you are building LOB applications that do not require rich
visualization and should execute with minimal hardware requirements.

l	 Consider XBAP for applications that are downloaded from a Web server
and then execute in the browser.

l	 Consider OBA for applications that are predominantly document-based,
or are used for reporting.

l	 Explore patterns & practices assets that can help you to design and implement
the application:

l	 Consider using the Smart Client Software Factory if you decide to use
Windows Forms and you are designing composite interfaces.

l	 Consider using the Composite Client Application Guidance if you decide
to use WPF and/or Silverlight, and you wish to develop modular applica-
tions that typically feature multiple screens, rich, flexible user interaction
and data visualization, and role-determined behavior.

l	 Consider Enterprise Library to help you implement solutions for cross-
cutting concerns such as exception handling, caching, and validation.

l	 If you decide to use WPF:
l	 Consider implementing the Presentation Model or View Model pattern

to make the UI logic unit testable and to make it easier to re-skin your
application.

l	 WPF allows you to attach additional behaviors to existing control
implementations. Use this approach instead of attempting to subclass
a control.

l	 If you want to support remote administration and monitoring:
l	 Consider implementing Group Policy overrides for your application config-

uration. This is required to meet Certified for Windows logo requirements.
l	 Consider using technologies such as SNMP and WMI to expose exceptions

and health state.

Chapter 22:  Designing Rich Client Applications 313

Deployment Considerations
There are several options for the deployment of rich client applications. You might
have a stand-alone application where all of the application logic, including data, is
deployed on the client machine. Another option is client/server, where the application
logic is deployed on the client and the data is deployed on a database tier. Finally, there
are several n-tier options where one or more application servers host part of the appli-
cation logic.

Stand-alone Deployment
Figure 2 illustrates a stand-alone deployment where all of the application logic and
data is deployed on the client.

Figure 2
Stand-alone deployment for a rich client application

Client/Server Deployment
In a client/server deployment, all of the application logic is deployed on the client
and the data is deployed on a database server, as shown in Figure 3.

Figure 3
Client/server deployment for a rich client application

.NET Application Architecture Guide, 2nd Edition314

N-Tier Deployment
In an n-tier deployment, you can place presentation and business logic on the client,
or only the presentation logic on the client. Figure 4 illustrates the case where the
presentation and business logic are deployed on the client.

Figure 4
N-tier deployment with the business layer located on the client tier

Figure 5 illustrates the case where the business and data access logic are deployed on
an application server.

Figure 5
N-tier deployment with the business layer located on the application tier

For more information on deployment strategies, see Chapter 19, “Physical Tiers and
Deployment.”

Chapter 22:  Designing Rich Client Applications 315

Deployment Technologies
Several options exist for deploying a rich client application to a physical machine.
Each has specific advantages and liabilities, and you should research the options to
ensure that the one you choose is suitable for the target environments in which your
application will execute. The options are the following:
l	 Click Once deployment.  This approach requires little user interaction, provides

automated updates, and requires little effort for the developer. However, it can
only be used to deploy a single solution that is not part of a larger solution; it
cannot deploy additional files or registry keys; it cannot interact with the user to
configure the installation; and it cannot provide a branded installation.

l	 XCOPY deployment.  If no registry settings or component registration are required,
the executable can be copied directly to the client machine hard disk.

l	 Windows Installer (.MSI) package.  This is a comprehensive setup program that
can install components, resources, registry settings, and other artifacts required by
the application. Users require administrator privileges to install MSI packages them-
selves. There are solutions available, such as Microsoft System Center Configuration
Manager, for distributing applications in a corporate environment.

l	 XBAP package.  The application is downloaded through the browser and runs in
a constrained security environment on the machine. Updates can be pushed to the
client automatically.

Relevant Design Patterns
Key patterns are organized into categories such as Communication, Composition,
Configuration Management, Exception Management, Presentation, State Management,
and Workflow; as shown in the following table. Consider using these patterns when
making design decisions for each category.

.NET Application Architecture Guide, 2nd Edition316

Category Relevant patterns
Communication Asynchronous Callback. Execute long-running tasks on a separate thread that

executes in the background, and provide a function for the thread to call back
into when the task is complete.
Gateway. Provide access to an external system through a common abstract
interface so that consumers are not required to understand the external
system interface.
Service Locator. Centralize distributed service object lookups, provide a central-
ized point of control, and act as a cache that eliminates redundant lookups.
Service Agent and Proxy. Implement a component that the consuming applica-
tion can use without knowing that it is not accessing the actual target component
or service. The component passes calls to the remote component or service, and
returns the result to the consuming application. The proxy abstracts the details
of communication with other remote components, typically when using ASMX or
WCF services.
Service Interface. A programmatic interface that other systems can use to
interact with the service.

Composition Composite View. Combine individual views into a composite view.
Template View. Implement a common template view, and derive or construct
views using the template view.
Two-Step View. Transform the model data into a logical presentation without any
specific formatting, and then convert that logical presentation into the actual
formatting required.
View Helper. Delegate business data processing responsibilities to helper classes.

Configuration
Management

Provider. Implement a component that exposes an API that is different from
the client API in order to allow any custom implementation to be seamlessly
plugged in.

Exception
Management

Exception Shielding. Prevent a service from exposing information about its inter-
nal implementation when an exception occurs.

Presentation Application Controller. An object that contains all of the flow logic and is used by
other Controllers that work with a Model and display the appropriate View.
Model-View-Presenter. Separate request processing into three roles, with the
View being responsible for handling user input, the Model responsible for applica-
tion data and business logic, and the Presenter responsible for presentation logic
andfor coordinating the interaction between the View and the Model.
Model-View-ViewModel. A variation of Model-View-Controller (MVC) that is tai-
lored for modern UI development platforms where the View is the responsibility of
a designer rather than a classic developer.
Presentation Model. Separate the responsibilities for the visual display of the
user interface and the presentation state and behavior into different classes
named, respectively, the view and the presentation model. The view class man-
ages the user interface controls and encapsulates any visual state or behavior
that is specific to the UI. The presentation model class encapsulates presenta-
tion behavior and state and acts as a façade onto the underlying model.

State
Management

Context Object. An object used to manage the current execution context.

Chapter 22:  Designing Rich Client Applications 317

Category Relevant patterns
Workflow View Flow. Manage navigation from one view to another based on state in the

application or environment, and the conditions and limitations required for correct
operation of the application.
Work Flow. Manage the flow of control in a complex process-oriented application
in a predefined manner while allowing dynamic route modification through
decision and branching structures that can modify the routing of requests.

For more information on the Template View, Transform View, and Two-Step
View patterns, see Fowler, Martin. Patterns of Enterprise Application Architecture.
Addison-Wesley, 2002. Or at http://martinfowler.com/eaaCatalog.

For more information on the Provider pattern, see “Provider Model Design Pattern and
Specification, Part I” at http://msdn.microsoft.com/en-us/library/ms998421.aspx.

For more information on the Asynchronous Callback pattern, see “Creating a
Simplified Asynchronous Call Pattern for Windows Forms Applications” at
http://msdn.microsoft.com/en-us/library/ms996483.aspx.

For more information on the Service Interface pattern, see “Service Interface” at
http://msdn.microsoft.com/en-us/library/ms998421.aspx.

For more information on the Exception Shielding pattern, see “Useful Patterns for
Services” at http://msdn.microsoft.com/en-us/library/cc304800.aspx.

For more information on the Composite View pattern, see “Patterns in the Composite
Application Library” at http://msdn.microsoft.com/en-us/library/dd458924.aspx.

For more information on the Presentation Model pattern, see “Presentation Model” at
http://msdn.microsoft.com/en-us/library/dd458863.aspx.

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 For more information on building composite applications, see “Composite Client

Application Guidance” at http://msdn.microsoft.com/en-us/library/cc707819.aspx.
l	 For more information on designing rich client and smart client applications,

see the “Smart Client Architecture and Design Guide” at
http://msdn.microsoft.com/en-us/library/ms998506.aspx.

l	 For more information on caching architectures, see the “Caching Architecture
Guide for .NET Framework Applications” at
http://msdn.microsoft.com/en-us/library/ms978498.aspx.

l	 For more information on deployment scenarios and considerations,
see “Deploying .NET Framework-based Applications” at
http://msdn.microsoft.com/en-us/library/ms954585.aspx.

http://martinfowler.com/eaaCatalog
http://msdn.microsoft.com/en-us/library/ms998421.aspx
http://msdn.microsoft.com/en-us/library/ms996483.aspx
http://msdn.microsoft.com/en-us/library/ms998421.aspx
http://msdn.microsoft.com/en-us/library/cc304800.aspx
http://msdn.microsoft.com/en-us/library/dd458924.aspx
http://msdn.microsoft.com/en-us/library/dd458863.aspx
http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/cc707819.aspx
http://msdn.microsoft.com/en-us/library/ms998506.aspx
http://msdn.microsoft.com/en-us/library/ms978498.aspx
http://msdn.microsoft.com/en-us/library/ms954585.aspx

23
Designing Rich Internet
Applications

Overview
In this chapter, you will learn about the key scenarios for Rich Internet Applications
(RIAs), understand the components found in a RIA, and learn about the key design
considerations for RIAs. This includes the guidelines for performance, security,
and deployment; in addition to key patterns and technology considerations for
designing RIAs.

RIAs support rich graphics and streaming media scenarios, while providing most
of the deployment and maintainability benefits of a Web application. RIAs may run
inside a browser plug-in, such as Microsoft® Silverlight®, as opposed to extensions
that utilize browser code, such as Asynchronous JavaScript and XML (AJAX). A
typical RIA implementation utilizes a Web infrastructure combined with a client-side
application that handles the presentation. The plug-in provides library routines for
rich graphics support as well as a container that limits access to local resources for
security purposes. RIAs have the ability to run more extensive and complex client-
side code than possible in a normal Web application, thus providing the opportunity
to reduce the load on the Web server. Figure 1 shows the typical structure of a RIA
implementation.

	 Contents

23	 319

Designing Rich Internet
Applications	 319
Overview. 319
General Design Considerations . 321
Specific Design Issues. 323

Business Layer . 323
Caching . 324
Communication. 324
Composition. 325
Data Access. 326
Exception Management . 326
Logging. 327
Media and Graphics. 327
Mobile . 328
Portability. 328
Presentation . 329
State Management. 329
Validation. 330

Security Considerations. 330
Data Handling Considerations . 331
Technology Considerations. 332
Deployment Considerations . 334

Installation of the RIA Plug-In. 334
Distributed Deployment . 335
Load Balancing. 336
Web Farm Considerations . 337

Relevant Design Patterns . 337
Additional Resources. 338

.NET Application Architecture Guide, 2nd Edition320

Figure 1
Architecture of a typical RIA implementation. Broken lines indicate optional components.

A typical Rich Internet Application is decomposed into three layers: the presentation
layer, business layer, and data layer. The presentation layer usually contains UI and
presentation logic components; the business layer usually contains business logic,
business workflow and business entities components; the data layer usually contains
data access and service agent components.

Chapter 23:  Designing Rich Internet Applications 321

Note:  It is common in RIAs to move some of business processing and even the data access code to
the client. Therefore, the client may in fact contain some or all of the functionality of the business and
data layers, depending on the application scenario. Figure 1 shows how some business processing is
usually implemented on the client.

RIAs can range from thin interfaces that overlay back end business services, to
complex applications that perform most of the processes themselves and only com-
municate with back end services to consume or send back information. Therefore,
the design and implementation varies. However, in terms of the presentation layer
and the way that it communicates with back end services, there are some common
approaches to good architectural design. Most of these are based on well-known
design patterns that encourage the use of separate components within the applica-
tion to reduce dependencies, make maintenance and testing easier, and promote
reusability.

For more information about layered design, see Chapter 5, “Layered Application
Guidelines.” For more information about the components appropriate for each
layer, see Chapter 10, “Component Guidelines.”

General Design Considerations
The following guidelines provide information about several aspects you should
consider when designing a RIA, and will help to ensure that your application
meets your requirements and performs efficiently in scenarios common to RIAs:
l	 Choose a RIA based on audience, rich interface, and ease of deployment.  Con-

sider designing a RIA when your vital audience is using a browser that supports
RIAs. If part of your vital audience is on a non-RIA supported browser, consider
whether limiting browser choice to a supported version is a possibility. If you
cannot influence the browser choice, consider if the loss of audience is significant
enough to require choice of an alternative type of application, such as a Web
application using AJAX. With a RIA, the ease of deployment and maintenance
is similar to that of a Web application, assuming that your clients have a reliable
network connection. RIA implementations are well suited to Web-based scenarios
where you need visualization beyond that provided by basic HTML. They are
likely to have more consistent behavior and require less testing across the range
of supported browsers when compared to Web applications that utilize advanced
functions and code customizations. RIA implementations are also perfect for
streaming-media applications. They are less suited to extremely complex multi-
page UIs.

.NET Application Architecture Guide, 2nd Edition322

l	 Design to use a Web infrastructure utilizing services.  RIA implementations
require an infrastructure similar to Web applications. Typically, a RIA will
perform processing on the client, but also communicate with other networked
services; for example, to persist data in a database.

l	 Design to take advantage of client processing power.  RIAs run on the client
computer and can take advantage of all the processing power available there.
Consider moving as much functionality as possible onto the client to improve
user experience. Sensitive business rules should still be executed on the server,
because the client logic can be circumvented.

l	 Design for execution within the browser sandbox.  RIA implementations have
higher security by default and therefore may not have access to all resources on a
machine, such as cameras and hardware video acceleration. Access to the local file
system is limited. Local storage is available, but there is a maximum limit.

l	 Determine the complexity of your UI requirements.  Consider the complexity of
your UI. RIA implementations work best when using a single screen for all opera-
tions. They can be extended to multiple screens, but this requires extra code and
screen flow consideration. Users should be able to easily navigate or pause, and
return to the appropriate point in a screen flow, without restarting the whole pro-
cess. For multi-page UIs, use deep linking methods. Also, manipulate the Uniform
Resource Locator (URL), the history list, and the browser’s back and forward but-
tons to avoid confusion as users navigate between screens.

l	 Use scenarios to increase application performance or responsiveness.  List and
examine the common application scenarios to decide how to divide and load com-
ponents of your application, as well as how to cache data or move business logic
to the client. To reduce the download and startup time for the application, segre-
gate functionality into separate downloadable components.

l	 Design for scenarios where the plug-in is not installed.  Because RIA implemen-
tations require a browser plug-in, you should design for non-interruptive plug-in
installation. Consider whether your clients have access to, have permission to, and
will want to install the plug-in. Consider what control you have over the instal-
lation process. Plan for the scenario where users cannot install the plug-in by
displaying an informative error message, or by providing an alternative Web UI.

In addition to the guidelines above that are especially applicable to RIA implemen-
tations, consider the more general guidelines for rich client applications in general
(including mobile rich clients). These guidelines include separating presentation logic
from interface implementation, identifying presentation tasks and presentation flows,
separating business rules and other tasks not related to the interface, reusing com-
mon presentation logic, loosely coupling your client to any remote services it uses,
avoiding tight coupling to objects in other layers, and reducing round trips when
accessing remote layers. For more information, see Chapter 22, “Designing Rich
Client Applications.”

Chapter 23:  Designing Rich Internet Applications 323

Specific Design Issues
There are several common issues that you must consider as your develop your design.
These issues can be categorized into specific areas of the design. The following sections
contain guidelines to help you resolve the common issues in each area:
l	 Business Layer
l	 Caching
l	 Communication
l	 Composition
l	 Data Access
l	 Exception Management
l	 Logging
l	 Media and Graphics
l	 Mobile
l	 Portability
l	 Presentation
l	 State Management
l	 Validation

Business Layer
In most scenarios, RIAs will access data or information located outside the applica-
tion. While the nature of the information will vary, it is likely to be extracted from a
business system. To maximize performance and usability, you might consider locating
some of the business processing tasks on the client. Consider the following guidelines
when designing interaction with business and service layers:
l	 Identify the business layers and service interfaces that the application will use.

The business layer on the client should access the service interfaces using a service
agent. Service agents can typically be implemented by generating a service proxy
using the service definition.

l	 If your business logic does not contain sensitive information, consider locating
some of the business rules on the client to improve performance and responsive-
ness of the application. If your business logic does contain sensitive information,
you should locate it on the application server.

l	 Consider how the client will obtain information required to operate business
rules and other client-side processing, and how it will update the business rules
automatically as requirements change. You might want to have the client obtain
business rule information from the business layer when it starts up.

.NET Application Architecture Guide, 2nd Edition324

l	 If your RIA implementation allows creation of an instance without a UI, consider
using it to implement business processes using more structured, powerful, or
familiar programming languages (such as C#) instead of using less flexible
browser-supported languages.

l	 If your business logic is duplicated on the client and the server, use the same
code language on the client and server if your RIA implementation allows it.
This will reduce any differences in language implementations and make it easier
to be consistent in how rules are processed. Domain models that can exist on
both the server and client side should be as similar as possible.

l	 For security reasons, do not put sensitive unencrypted business logic on the client.
The code in downloaded XAP files can easily be decompiled. Implement sensitive
business logic on the server and access it using Web services.

For more information about implementing the business layer, see Chapter 7,
“Business Layer Guidelines.”

Caching
RIA implementations generally use the normal browser caching mechanism.
Caching resources intelligently will improve application performance. Consider
the following guidelines when designing a caching strategy:
l	 By dividing large client applications into smaller separately downloadable com-

ponents, you can cache these components to improve performance and minimize
network round trips. Avoid downloading and instantiating the entire application
at start up if possible. Use installation, updates, and user scenarios to derive ways
to divide and load application modules. For example, load stubs at start up and
then dynamically load additional functionality in the background. Consider using
events to intelligently preload modules just before they may be required.

l	 Allow the browser to cache objects that are not likely to change during a session.
Utilize specific RIA local storage for information that changes during a session, or
which should persist between sessions.

l	 To avoid unintended exceptions, check that isolated storage is large enough to con-
tain the data you will write to it. Storage space does not increase automatically; you
must ask the user to increase it.

For more information about designing a caching strategy, see Chapter 17, “Crosscutting
Concerns.”

Communication
RIA implementations should use the asynchronous call model for services to avoid
blocking browser processes. Cross domain, protocol, and service efficiency issues
should be considered as part of your design. If your RIA implementation allows it,

Chapter 23:  Designing Rich Internet Applications 325

consider using a different thread for background operations. Consider the following
guidelines when designing a communication strategy:
l	 If you have long-running operations, consider using a background thread or

asynchronous execution to avoid blocking the UI thread.
l	 Ensure that the RIA and the services it calls use compatible bindings that include

security information. If you are authenticating through services, design your services
to use a binding that your RIA implementation supports.

l	 To protect sensitive information and communication channels, consider using
Internet Protocol Security (IPSec) and Secure Sockets Layer (SSL) to secure the
channel, encryption to protect data, and digital signatures to detect data tampering.

l	 If your RIA client must access a server other than the one from which it was
downloaded, ensure that you use a cross-domain configuration mechanism to
permit access to the other servers/domains.

l	 Consider using a duplex mechanism with Windows Communication Foundation
(WCF) to push data to the client if client polling causes heavy server load, or
to push information to the server when this is significantly more efficient than
using services; for example, real time multiplayer gaming scenarios utilizing
a central server. However, be aware that firewalls and routers may block some
ports and protocols. See “Additional Resources” at the end of this chapter for
more information.

For more information about designing services, see Chapter 25, “Designing Service
Applications.” For more information about communication protocols and techniques,
see Chapter 18, “Communication and Messaging.”

Composition
Composition lets you build applications that can be maintained or extended more
easily without reimplementation or redeployment of the entire application. You can
implement your application from a number of modules, and have the components
within those modules be loosely coupled. This can allow the application to be
extended by deploying a new module or a new version of a module; or allow the
application to be more easily customized or personalized by the user, or tailored
to the user’s role or task. Consider the following guidelines when designing a
composition strategy:
l	 Evaluate whether composition is appropriate for your scenario; and, if so, which

composition model patterns are most suitable. Composition can help you to
design applications that can be reused in different scenarios with minimal or no
changes. However, avoid designs that introduce dependencies that will require
frequent application redeployment.

l	 Composition is well suited to mash-up applications that integrate information and
functionality from disparate sources, or in situations where the application user
extensible or customizable.

.NET Application Architecture Guide, 2nd Edition326

Data Access
RIA implementations request data from the Web server through services in the same
way as an AJAX client. After data reaches the client, it can be cached to maximize per-
formance. Consider the following guidelines when designing a data-access strategy:
l	 Use client-side caching to minimize the number of round trips to the server, and

to provide a more responsive UI.
l	 Filter data at the server rather than at the client to reduce the amount of data that

must be sent over the network.

For more information about designing a data layer, see Chapter 8, “Data Layer
Guidelines.”

Exception Management
A robust and well designed exception management strategy can simplify applica-
tion design, and improve security and manageability. It can also make it easier for
developers to create the application, and reduces development time and cost. In a
RIA, you will usually need to notify the user when an error occurs. In addition, for
anything other than trivial UI errors such as validation messages, you should consider
logging errors and exceptions on the server for use by operations staff and monitor-
ing systems. You must also consider managing asynchronous exceptions, as well as
exception coordination between the client and server code. Consider the following
guidelines when designing an exception management mechanism:
l	 Design for both synchronous and asynchronous exceptions. Use try/catch blocks

to trap exceptions in synchronous code. Put exception handling for asynchronous
service calls in a separate handler designed specifically for such exceptions; for
example, in Silverlight, this is the OnError handler.

l	 Design an approach for catching and handling unhandled exceptions. Unhandled
exceptions in RIAs are passed to the browser. They will allow execution to con-
tinue after the user dismisses a browser error message. Provide a friendly error
message for the user if possible. Stop program execution if continued execution
would be harmful to the data integrity of the application or could mislead the
user into thinking the application is still in a stable state.

l	 Only catch internal exceptions that you can handle. For example, catch data con-
version exceptions that can occur when trying to convert null values. Do not use
exceptions to control business logic.

l	 Design an appropriate exception propagation strategy. For example, allow excep-
tions to bubble up to boundary layers where they can be logged and transformed
as necessary before passing them to the next layer.

l	 Design an appropriate logging and notification strategy for critical errors and
exceptions that does not reveal sensitive information.

Chapter 23:  Designing Rich Internet Applications 327

For more information about designing an exception management strategy, see
Chapter 17, “Crosscutting Concerns.”

Logging
Logging for the purpose of debugging or auditing can be challenging in a RIA imple-
mentation. For example, access to the client file system is not available in Silverlight
applications, and execution of the client and the server proceed asynchronously. Log
files from a client user must be combined with server log files to gain a full picture
of program execution. Consider the following guidelines when designing a logging
strategy:
l	 Consider the limitations of the logging component in the RIA implementation.

Some RIA implementations log each user’s information in a separate file, perhaps
in different locations on the disk.

l	 Determine a strategy to transfer client logs to the server for processing. Recom-
bination of different users’ logs from the same machine may be necessary if
troubleshooting a client machine–specific issue. Avoid segregating logs by
machine instead of by user, as there could be several users for each client machine.

l	 If using isolated storage for logging, consider the maximum size limit and the
need to ask the user to increase storage capacity when required.

l	 Ensure that you log critical errors, and consider enabling logging and transferring
logs to the server when exceptions are encountered.

Media and Graphics
RIA implementations provide a much richer experience and better performance than
ordinary Web applications. Research and utilize the built-in media capabilities of
your RIA platform. Keep in mind the features that may not be available on the RIA
platform compared to a stand-alone media player. Consider the following guidelines
when designing for multimedia and graphics:
l	 Design to utilize streaming media and video in the browser instead of invoking a

separate player utility. In general, you should always use adaptive streaming in
conjunction with RIA clients to gracefully and seamlessly handle varying band-
width issues.

l	 To increase performance, position media objects on whole pixels and present
them in their native size, and utilize the native vector graphics engine for the
best drawing performance.

l	 If programming an extremely graphics-intensive application, investigate if your
RIA implementation provides hardware acceleration. If it does not, create a base-
line for what is acceptable drawing performance. Consider a plan to reduce load
on the graphics engine if it falls below acceptable limits.

.NET Application Architecture Guide, 2nd Edition328

l	 Be aware of the size of your drawing areas. Only redraw parts of an area that
are actually changing. Reduce overlapping regions when not necessary to
reduce blending. Use profiling and debugging methods—for example, the
“EnableRedrawRegions = true” setting in Silverlight—to discover which areas
are being redrawn. Note that certain effects, such as blurring, can cause every
pixel in an area to be redrawn. Windowless and transparent controls can also
cause unintended redrawing and blending.

Mobile
RIA implementations provide a much richer experience than an ordinary mobile
application. Utilize the built-in media capabilities of the RIA platform you are using.
Consider the following guidelines when designing for mobile device multimedia
and graphics:
l	 When a RIA must be distributed to a mobile client, research whether a RIA plug-

in implementation is available for the device you want to support. Find out if the
RIA plug-in has reduced functionality compared to non-mobile platforms.

l	 Attempt to use a single or similar codebase. Then, if required, branch code for
specific devices.

l	 Ensure that your UI layout and implementation is suitable for the smaller screen
size of mobile devices. RIAs work on mobile devices, but consider using different
layout code on each type of device to reduce the impact of different screen sizes
when designing for Windows Mobile.

For more information about implementing a mobile application, see Chapter 24,
“Designing Mobile Applications.”

Portability
One of the main benefits of RIAs is the portability of compiled code between different
browsers, operating systems, and platforms. Similarly, using a single source codebase,
or similar codebases, reduces the time and cost of development and maintenance
while still providing platform flexibility. Consider the following guidelines when
designing for portability:
l	 Make full use of the native RIA code libraries and design for the goal of “write

once, run everywhere,” but be willing to fork code in cases where overall project
complexity or feature tradeoffs dictate that you must do so.

l	 When deciding whether to design a RIA or a Web application, consider that the
differences between browsers will require Web applications to undergo extensive
testing of ASP.NET and JavaScript code. With a RIA application, the plug-in creator,
and not the developer, is responsible for consistency across different platforms.
This considerably reduces the cost of testing for each platform and browser
combination.

Chapter 23:  Designing Rich Internet Applications 329

l	 If your audience will be running the RIA on multiple platforms, do not use features
available only on one platform; for example, Windows Integrated Authentication.
Design a solution based on portable RIA routines and features that are available
in a range of clients.

l	 If you are targeting rich client and RIA applications, consider languages and
development environments such as the patterns & practices Composite Client
Application Guidance that can target both platforms. For more information,
see “Composite Client Application Guidance” at http://msdn.microsoft.com/
en-us/library/cc707819.aspx.

Presentation
Because RIA applications are normally constrained to the browser, they tend to
work best when designed as one central interface. Applications with multiple pages
require that you consider how you will link between pages. Consider the following
guidelines when designing for presentation:
l	 Use Separated Presentation patterns to separate the visual representation of your

application from the presentation logic of your application.
l	 Take advantage of data binding capabilities to display data whenever possible,

especially for tabular and multirow data presentation. This reduces the code
required, simplifies development, and reduces coding errors. It can also auto-
matically synchronize data in different views or forms. Use two-way binding
where the user must be able to update the data.

l	 For multipage UIs, use deep-linking methods to allow unique identification of
and navigation to individual application pages.

l	 Trap the browser forward and back button events to avoid unintentional naviga-
tion away from your page. Also, consider the ability to manipulate the browser’s
address text box content, and history list in order to implement normal Web
page-like navigation.

For more information about implementing presentation layers, see Chapter 6,
“Presentation Layer Guidelines.”

State Management
You can store application state on the client using isolated storage, which is useful
for maintaining or caching state locally between user sessions. Isolated storage is
not managed in the same way as the browser cache.Applications that write data to
isolated storage must either delete it directly, or explicitly instruct the user to remove
the data.Consider the following guidelines when designing for state management:
l	 Determine the state information that the application must store, including esti-

mates of the size, the frequency of changes, and the processing or overhead cost
of re-creating or refetching the data.

http://msdn.microsoft.com/

.NET Application Architecture Guide, 2nd Edition330

l	 Store state on the client in isolated storage to persist it during and between ses-
sions. State that is required for the application to function should always be stored
on the server. This also allows users to access saved state when logging on from a
different computer.

l	 Design for multiple concurrent sessions because you cannot prevent multiple RIA
instances from initializing. Design either for concurrency in your state manage-
ment, or to detect and prevent multiple sessions from corrupting application state.

Validation
Validation must be performed using code on the client or through services located on
the server. If you require more than trivial validation on the client, isolate validation
logic in a separate downloadable assembly. This makes the rules easy to maintain.
Consider the following guidelines when designing for validation:
l	 Use client-side validation to maximize the user experience, but always use server-

side validation as well for security. In general, assume that all client-controlled
data is malicious. The server should revalidate all data sent to it. Design to vali-
date input from all sources, such as the query string, cookies, and HTML controls.

l	 Design your validation mechanisms to constrain, reject, and sanitize data. Validate
input for length, range, format, and type. Identify trust boundaries on the server
and validate data that passes across them.

l	 Consider using isolated storage to hold client-specific validation rules. For rules
that require access to server resources, evaluate whether it is more efficient to use
a single service call that performs validation on the server.

l	 If you have a large volume of client-side validation code that may change, con-
sider locating it in a separate downloadable module so it can be easily replaced
without downloading the entire RIA application again.

For more information about validation techniques, see Chapter 17, “Crosscutting
Concerns.”

Security Considerations
Security encompasses a range of factors and is vital in all types of applications.
Rich Internet applications must be designed and implemented with security in mind,
and—where they act as the presentation layer for business applications—must play
their part in protecting and securing the other layers of the application. Security issues
involve a range of concerns, including protecting sensitive data, user authentication
and authorization, guarding against attack from malicious code and users, and audit-
ing and logging events and user activity.

Chapter 23:  Designing Rich Internet Applications 331

Consider the following guidelines when designing a security strategy:
l	 Determine the appropriate technology and approach for authenticating users.

You should consider how and when to log on users, whether you need to sup-
port different types of users (different roles) with differing permissions (such
as administrators and standard users), and how you will record successful and
failed logons.

l	 Consider using Windows Integrated Authentication, a single sign-on (SSO) mech-
anism, or a federated authentication solution if users must be able to access multiple
applications with the same credentials or identity. If you cannot use Windows
Integrated Authentication, you may be able to use an external agency that offers
federated authentication support. If you cannot use an external agency, consider
using a certificate-based system, or create a custom solution for your organization.

l	 Consider the need to validate inputs, both from the user and from sources such
as services and other application interfaces. You might need to create custom
validation mechanisms, or you might be able to take advantage of the validation
features of the UI Technology you are working with.

l	 Consider how you will implement auditing and logging for the application, and
what information to include in these logs. Remember to protect sensitive infor-
mation in the logs using encryption, and optionally use digital signatures for the
most sensitive information that is vulnerable to tampering.

Data Handling Considerations
Application data is typically accessed through networked services. Cache this data
on the client to improve performance and enable offline usage. Application data falls
typically into two categories:
l	 Read-only reference data.  This is data that does not change often and is used by

the client for reference purposes, such as a product catalog. Store reference data
on the client to reduce the amount of data interchange between the client and the
server in order to improve the performance of your application, enable offline
capabilities, provide early data validation, and generally improve the usability of
your application.

l	 Transient data.  This is data that can be changed on the client as well as on the
server. One of the most challenging aspects of dealing with transient data in rich
Internet applications is dealing with concurrency issues where the same data
can be modified by multiple clients at the same time. You must keep track of any
client-side changes made to transient data on the client and manage updates on
the server that may contain conflicting changes.

.NET Application Architecture Guide, 2nd Edition332

Technology Considerations
The following guidelines discuss Silverlight and Microsoft Windows Communication
Foundation (WCF) and provide specific guidance for these technologies. At the time
of writing, the latest versions are WCF 3.5 and Silverlight 3.0. Use the guidelines to
help you to choose and implement an appropriate technology.

Versions and Target Platforms
l	 At the time of the release of this guide, Silverlight for Mobile was an announced

product and in development, but not released.
l	 Silverlight currently supports the Safari, Firefox, and Microsoft Internet Explorer

browsers using a plug-in. Through these browsers, Silverlight currently supports
Mac and Windows. Support for Windows Mobile was also announced in 2008. An
open source implementation of Silverlight, called Moonlight, provides support for
Linux and Unix/X11 systems.

l	 Silverlight supports the C#, Iron Python, Iron Ruby, and Visual Basic® .NET develop-
ment languages. Most XAML code will also run in both WPF and Silverlight hosts.

l	 In Silverlight 2.0, you must implement custom code for input and data validation.
Silverlight 3.0 provides support for exception-based data validation through data
binding. Check the documentation to verify if this is true for later versions.

Security
l	 The .NET cryptography APIs are available in Silverlight and should be utilized

when storing sensitive data and communicating it to the server if it is not already
encrypted using another mechanism.

l	 Silverlight logs to an individual file in the user store for a specific logged in user.
It cannot log to one file for the whole machine.

l	 Silverlight does not obfuscate downloaded modules, which can be decompiled
and the programming logic extracted.

Chapter 23:  Designing Rich Internet Applications 333

Communication
l	 Silverlight supports only asynchronous calls to Web services.
l	 Silverlight supports only Basic HTTP binding. WCF in .NET 3.5 supports Basic

HTTP binding, but security is not turned on by default. Be sure to turn on at least
transport security to secure your service communications.

l	 Silverlight supports two file formats to deal with calling services in a different domain
to the source of the current page. You can use either a ClientAccessPolicy.xml file spe-
cific to Silverlight, or a CrossDomain.xml file compatible with Adobe Flash. Place the
file in the root of the server(s) to which your Silverlight client needs access.

l	 Consider using ADO.NET Data Services in a Silverlight application if you must
transfer large volumes of data from the server.

l	 Silverlight does not currently support SOAP faults exposed by services due to the
browser security model. Services must return exceptions to the client through a
different mechanism.

Controls
l	 Silverlight contains controls specifically designed for it. Third parties are likely to

have additional control packages available.
l	 Use Silverlight windowless controls if you want to overlay viewable HTML content

and controls on top of a Silverlight application.
l	 Silverlight allows you to attach additional behaviors to existing control implemen-

tations. Use this approach instead of attempting to subclass a control.
l	 Silverlight performs antialiasing for all UI components, so consider the recommen-

dations regarding snapping UI elements to whole pixels.

Storage
l	 The local storage mechanism for Silverlight is the client machine’s Isolated Storage

cache. The initial maximum size is 1 megabyte (MB). The maximum storage size is
unlimited; however, Silverlight requires that your application request the user to
increase the storage size.

See also “Contrasting Silverlight and WPF” at
http://msdn.microsoft.com/en-us/library/dd458872.aspx.

http://msdn.microsoft.com/en-us/library/dd458872.aspx

.NET Application Architecture Guide, 2nd Edition334

Deployment Considerations
RIA implementations provide many of the same benefits as Web applications in terms
of deployment and maintainability. Design your RIA as separate modules that can be
downloaded individually and cached to allow replacement of one module instead of the
whole application. Version your application and components so that you can detect
the versions that clients are running. Consider the following guidelines when design-
ing for deployment and maintainability:
l	 Consider how you will manage the scenario where the RIA browser plug-in is not

installed.
l	 Consider how you will redeploy modules when the application instance is still

running on a client.
l	 Divide the application into logical modules that can be cached separately, and

that can be replaced easily without requiring the user to download the entire
application again.

l	 Version your components.

Installation of the RIA Plug-In
Consider how you will manage installation of the RIA browser plug-in when it is not
already installed:
l	 Intranet.  If available, use application distribution software or the Group Policy

feature of the Microsoft Active Directory® directory service to preinstall the plug-
in on each computer in the organization. Alternatively, consider using Windows
Update, where Silverlight is an optional component. Finally, consider manual
installation through the browser, which requires the user to have Administrator
privileges on the client machine.

l	 Internet.  Users must install the plug-in manually, so you should provide a link
to the appropriate location to download the latest plug in. For Windows users,
Windows Update provides the plug-in as an optional component.

l	 Plug-in updates.  In general, updates to the plug-in take into account backward
compatibility. You may target a particular plug-in version, but consider imple-
menting a plan to verify your application’s functionality on new versions of the
browser plug-in as they become available. For intranet scenarios, distribute a new
plug-in after testing your application. In Internet scenarios, assume that automatic
plug-in updates will occur. Test your application using the plug-in beta to ensure a
smooth user transition when the plug-in is released.

Chapter 23:  Designing Rich Internet Applications 335

Distributed Deployment
Because RIA implementations copy or move presentation logic to the client, a dis-
tributed architecture is the most likely scenario for deployment. In a distributed RIA
deployment, the presentation logic is on the client; the business layer can be on the
client, on the server, or shared across the client and server; and the data layer resides
on the Web server or application server. Typically, you will move some of your busi-
ness logic (and even, perhaps, some of the data access logic) to the client to maximize
performance. In this case, your business and data access layers will tend to extend
across the client and the application server, as shown in Figure 2.

Figure 2
Distributed deployment for a RIA

Consider the following guidelines for deploying a RIA:
l	 If your applications are large, factor in the processing requirements for down-

loading the RIA components to clients.
l	 If your business logic is shared by other applications, consider exposing it as a

service on the server so that all applications can access it.
l	 If you use sockets or WCF in your application and you are not using port 80, con-

sider how firewalls that commonly block other ports will affect your application.
l	 Ensure that you use a crossdomain.xml file so that RIA clients can access other

domains when required.

.NET Application Architecture Guide, 2nd Edition336

Load Balancing
When you deploy your application on multiple servers, you can use load balancing
to distribute RIA client requests to different servers. This improves response times,
increases resource utilization, and maximizes throughput. Figure 3 shows a load-
balanced scenario.

Figure 3
Load balancing a RIA deployment

Consider the following guidelines when designing your application to use load
balancing:
l	 Avoid server affinity. Server affinity occurs when all requests from a particular

client must be handled by the same server. It is most often introduced by using
locally updatable caches or in-process or local session state stores.

l	 Consider storing all state on the client and designing stateless business components.
l	 Consider using network load balancing software to implement redirection of

requests to the servers in an application farm.

Chapter 23:  Designing Rich Internet Applications 337

Web Farm Considerations
If your RIA application has significant business logic, data access or data processing
requirements on the application server, consider using a Web farm that distrib-
utes requests from RIA clients to multiple servers. A Web farm allows you to scale
out your application, and reduces the impact of hardware failures. You can use
either load balancing or clustering solutions to add more servers for your applica-
tion. Consider the following guidelines:
l	 Consider using clustering to reduce the impact of hardware failures, and parti-

tioning your database across multiple database servers if your application has
high I/O requirements.

l	 If you must support server affinity, user-specific cached data or state, configure
the Web farm to route all requests for the same user to the same server.

l	 Do not use in-process session management in a Web farm unless you implement
server affinity, because requests from the same user cannot be guaranteed to be
routed to the same server otherwise. Use the out-of-process session service or a
database server for this scenario.

For more information on deployment patterns and scenarios, see Chapter 19,
“Physical Tiers and Deployment.”

Relevant Design Patterns
Key patterns are organized into categories such as Layers, Communication,
Composition, and Presentation; as shown in the following table. Consider using
these patterns when making design decisions for each category.

Category Relevant patterns
Layers Service Layer. An architectural design pattern where the service interface and

implementation is grouped into a single layer.
Communication Asynchronous Callback. Execute long-running tasks on a separate thread that

executes in the background, and provide a function for the thread to call back
into when the task is complete.
Command. Encapsulate request processing in a separate command object that
exposes a common execution interface.

Composition Composite View. Combine individual views into a composite view.
Inversion of Control. Populate any dependencies of objects on other objects
or components that must be fulfilled before the object can be used by the
application.

(continued)

.NET Application Architecture Guide, 2nd Edition338

Category Relevant patterns
Presentation Application Controller. An object that contains all of the flow logic and is used

by other Controllers that work with a Model and display the appropriate View.
Supervising Presenter. Separate presentation design into three separate roles,
with the View being responsible for handling user input and being data bound
against a Model component that encapsulate business data. A Presenter object
implements presentation logic and coordinates interactions between the View
and Model.
Presentation Model. A variation of Model-View-Presenter (MVP) pattern that is
tailored for modern UI development platforms where the View is the responsibil-
ity of a designer rather than a developer.

For more information on the Composite View pattern, see “Patterns in the Composite
Application Library” at http://msdn.microsoft.com/en-us/library/dd458924.aspx.

For more information on the Model-View-Controller (MVC) and Application
Controller patterns, see Fowler, Martin. Patterns of Enterprise Application Architecture.
Addison-Wesley, 2002. Or at http://martinfowler.com/eaaCatalog.

For more information on the Command pattern, see Chapter 5, “Behavioral Patterns”
in Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley Professional, 1995.

For more information on the Asynchronous Callback pattern, see “Creating a
Simplified Asynchronous Call Pattern for Windows Forms Applications” at
http://msdn.microsoft.com/en-us/library/ms996483.aspx.

For more information on the Service Layer pattern, see “P of EAA: Service Layer” at
http://www.martinfowler.com/eaaCatalog/serviceLayer.html.

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 For information on Silverlight, see the official Silverlight Web site at

http://silverlight.net/default.aspx.
l	 For information on using WCF with Silverlight, see “How to: Build a Duplex

Service” at http://msdn.microsoft.com/en-us/library/cc645027(VS.95).aspx
and “How to: Access a Duplex Service with the Channel Model” at
http://msdn.microsoft.com/en-us/library/cc645028(VS.95).aspx.

l	 For Silverlight blogs, see Brad Abrams’s blog at http://blogs.msdn.com/brada/
and Scott Guthrie’s blog at http://weblogs.asp.net/Scottgu/.

http://msdn.microsoft.com/en-us/library/dd458924.aspx
http://martinfowler.com/eaaCatalog
http://msdn.microsoft.com/en-us/library/ms996483.aspx
http://www.martinfowler.com/eaaCatalog/serviceLayer.html
http://www.microsoft.com/architectureguide
http://silverlight.net/default.aspx
http://msdn.microsoft.com/en-us/library/cc645027
http://msdn.microsoft.com/en-us/library/cc645028
http://blogs.msdn.com/brada/
http://weblogs.asp.net/Scottgu/

24
Designing Mobile Applications

Overview
This chapter will help you to understand when and how mobile applications are
an appropriate solution, and the key design considerations for mobile applications.
This includes learning about the components found in a mobile application; specific
issues for mobile applications such as deployment, power usage, and synchroniza-
tion; and the key patterns and technology considerations.

A mobile application will normally be structured as a multilayered application
consisting of presentation, business, and data layers. When developing a mobile
application, you may choose to develop a thin Web-based client or a rich client. If
you are building a rich client, the business and data services layers are likely to be
located on the device itself. If you are building a thin client, all of the layers will
be located on the server. Figure 1 illustrates common rich client mobile application
architecture with components grouped by areas of concern.

	 Contents

24	 339

Designing Mobile Applications	 339
Overview. 339
General Design Considerations . 341
Specific Design Issues. 342

Authentication and Authorization. 342
Caching . 343
Communication. 344
Configuration Management. 345
Data Access. 345
Device Specifics . 346
Exception Management . 347
Logging. 347
Porting Applications . 348
Power Management . 349
Synchronization. 349
Testing. 350
User Interface. 350
Validation. 351

Technology Considerations. 352
Microsoft Silverlight for Mobile. 352
.NET Compact Framework . 352
Windows Mobile . 353
Windows Embedded. 354

Deployment Considerations . 355
Relevant Design Patterns . 356
Additional Resources. 357

.NET Application Architecture Guide, 2nd Edition340

Figure 1
The typical structure of a mobile application

A mobile application generally contains user interface components in the presentation
layer, and perhaps may include presentation logic components. The business layer, if it
exists, will usually contain business logic components, any business workflow and busi-
ness entity components that are required by the application, and, optionally, a façade.
The data layer will usually include data access and service agent components. In order
to minimize the footprint on the device, mobile applications generally use less rigid lay-
ering approaches and fewer discrete components. For more information about layered
design, see Chapter 5, “Layered Application Guidelines.” For more information about
the components appropriate for each layer, see Chapter 10, “Component Guidelines.”

Chapter 24:  Designing Mobile Applications 341

General Design Considerations
The following design guidelines provide information about different aspects that
you should consider when designing a mobile application. Follow these guidelines
to ensure that your application meets your requirements and performs efficiently in
scenarios common to mobile applications:
l	 Decide if you will build a rich client, a thin Web client, or rich Internet application

(RIA).  If your application requires local processing and must work in an occasionally
connected scenario, consider designing a rich client. A rich client application will
be more complex to install and maintain. If your application can depend on server
processing and will always be fully connected, consider designing a thin client.
If your application requires a rich UI, only limited access to local resources, and
must be portable to other platforms, design an RIA client.

l	 Determine the device types you will support.  When choosing which device types
to support, consider screen size and resolution, CPU performance characteristics,
memory and storage space, and development tool environment availability. In
addition, factor in user requirements and organizational constraints. You may
require specific hardware such as a global positioning system (GPS) or a camera,
which may impact not only your application type, but also your device choice.

l	 Consider occasionally connected and limited-bandwidth scenarios when
appropriate.  If your mobile device is a stand-alone device, you will not need to
account for connection issues. When network connectivity is required, mobile
applications should handle cases when a network connection is intermittent or
not available. It is vital in this case to design your caching, state management,
and data access mechanisms with intermittent network connectivity in mind;
batch communications for delivery when connectivity is available. Choose
hardware and software protocols based on speed, power consumption, and
granularity, and not just on ease of programming.

l	 Design a UI appropriate for mobile devices, taking into account platform
constraints.  Mobile devices require a simpler architecture, simpler UI, and
other specific design decisions in order to work within the constraints imposed
by the device hardware. Keep these constraints in mind and design specifically
for the device instead of trying to reuse the architecture or UI from a desktop or
Web application. The main constraints are memory, battery life, ability to adapt
to difference screen sizes and orientations, security, and network bandwidth.

l	 Design a layered architecture appropriate for mobile devices that improves
reuse and maintainability.  Depending on the application type, multiple layers
may be located on the device itself. Use the concept of layers to maximize sepa-
ration of concerns, and to improve reuse and maintainability for your mobile
application. However, aim to achieve the smallest footprint on the device by
simplifying your design compared to a desktop or Web application.

.NET Application Architecture Guide, 2nd Edition342

l	 Consider device resource constraints such as battery life, memory size, and
processor speed.  Every design decision should take into account the limited
CPU, memory, storage capacity, and battery life of mobile devices. Battery life
is usually the most limiting factor in mobile devices. Backlighting, reading and
writing to memory, wireless connections, specialized hardware, and processor
speed all have an impact on the overall power usage. When the amount of
memory available is low, the Windows Mobile operating system may ask your
application to shut down or sacrifice cached data, slowing program execution.
Optimize your application to minimize its power and memory footprint while
considering performance during this process.

Specific Design Issues
There are several common issues that you must consider as your develop your design.
These issues can be categorized into specific areas of the design. The following sections
contain guidelines to help you resolve the common issues in each area:
l	 Authentication and Authorization
l	 Caching
l	 Communication
l	 Configuration Management
l	 Data Access
l	 Device Specifics
l	 Exception Management
l	 Logging
l	 Porting Applications
l	 Power Management
l	 Synchronization
l	 Testing
l	 User Interface
l	 Validation

Authentication and Authorization
Designing an effective authentication and authorization strategy is important for
the security and reliability of your application. Weak authentication can leave your
application vulnerable to unauthorized use. Mobile devices are usually designed to
be single user devices and normally lack basic user profile and security tracking
beyond just a simple password. Other common desktop mechanisms are also likely

Chapter 24:  Designing Mobile Applications 343

to be missing. The discoverability of mobile devices over protocols such as Bluetooth
can present users with unexpected risks. Mobile application design can also be
especially challenging due to connectivity interruptions. Consider all possible
connectivity scenarios, whether over the air or hard wired. Consider the following
guidelines when designing authentication and authorization:
l	 Design authentication and authorization for both fully connected and occasionally

connected scenarios; including synchronization over the air, cradled (PC) synchro-
nization, Bluetooth discovery, synchronization over a Virtual Private Network
(VPN), and local SD memory card synchronization.

l	 Consider that different devices might have variations in their programming
security models, which can affect authorization for resource access.

l	 Do not assume that security mechanisms available on larger platforms will be
available on a mobile platform, even if you are using the same tools. For example,
access control lists (ACLs) are not available in Windows Mobile, and consequently
there is no operating system–level file security.

l	 Identify trust boundaries within your mobile application layers; for example,
between the client and the server or the server and the database. This will help
you to determine where and how to authenticate.

Caching
Use caching to improve the performance and responsiveness of your application,
and to support operation when there is no network connection. Caching can optimize
reference data lookups, avoid network round trips, and prevent unnecessarily dupli-
cated processing. When deciding what data to cache, consider the limited resources
of the device; you will have less storage space available than on a desktop computer.
Consider the following guidelines when designing caching:
l	 Identify your performance objectives. For example, determine your minimum

response time and battery life. Test the performance of the specific devices you
will be using. Most mobile devices use only flash memory, which is likely to be
slower than the memory used in desktop computers.

l	 Design for minimum memory footprint. Cache only data that is absolutely neces-
sary for the application to function, or expensive to transform into a ready to use
format. If designing a memory-intensive application, detect low memory scenarios
and design a mechanism for prioritizing the data to discard as available memory
decreases. However, consider caching any data, including volatile data, that the
application will need in an occasionally connected or offline scenario. Also, ensure
that the application can survive the situation where cached data is not available in
offline or occasionally connected scenarios.

.NET Application Architecture Guide, 2nd Edition344

l	 Choose the appropriate cache location, such as on the device, at the mobile gate-
way, or in the database server. Consider using SQL Server Compact edition for
caching instead of device memory because memory consumed by the application
may be cleared in low-memory situations.

l	 Ensure that sensitive data is encrypted when caching, especially when caching data
in removable memory media, but also consider encryption when caching data in
device memory.

For more information about designing a caching strategy, see Chapter 17, “Crosscutting
Concerns.”

Communication
Device communication includes wireless communication (over the air) and wired
communication with a host computer, as well as more specialized communication
such as Bluetooth or Infrared Data Association (IrDA). When communicating over
the air, consider data security to protect sensitive data from theft or tampering. If
you are communicating through Web service interfaces, use mechanisms such as the
WS-Secure standards to secure the data. Keep in mind that wireless device commu-
nication is more likely to be interrupted than communication from a computer, and
that your application might be required to operate for long periods in a disconnected
state. Consider the following guidelines when designing your communication strategy:
l	 Design asynchronous, threaded communication to improve performance and

usability in occasionally connected scenarios. Limited bandwidth connections
common on mobile devices can reduce performance and affect usability, especially
if they block the user interface. Use appropriate communication protocols, and
consider how the application will behave when multiple connection types are
available. Consider allowing users to choose the connection to use, and to switch
off communication to preserve battery life when appropriate.

l	 If you are designing an application that will run on a mobile phone, consider the
effects of receiving a phone call during communication or program execution. Design
the application to allow it to suspend and resume, or even exit the application.

l	 Protect communication over untrusted connections, such as Web services and
other over the air methods. Consider using encryption and digital signatures for
sensitive data, and ensure that data passed over a VPN is protected. However,
consider the effects of communication security on performance and battery life.

l	 If you must access data from multiple sources, interoperate with other applications,
or work while disconnected, consider using Web services for communication.
Ensure you manage connections efficiently, especially in limited bandwidth
communication scenarios.

l	 If you are using WCF for communication and must implement message queuing,
consider using WCF store and forward.

Chapter 24:  Designing Mobile Applications 345

For more information about communication protocols and techniques, see Chapter 18,
“Communication and Messaging.”

Configuration Management
When designing device configuration management, consider how to handle device
resets, as well as whether you want to allow configuration of your application over
the air or from a host computer. Consider the following guidelines when designing
your configuration management strategy:
l	 Choose an appropriate format for configuration information. Consider a binary

format over XML to minimize memory use. Consider using compression library
routines to reduce the memory requirements for storing configuration and state
information. Ensure that you encrypt sensitive data stored in configuration files.

l	 Ensure that your design supports restoration of configuration after a device reset.
Consider how you will synchronize configuration information over the air and
with a host computer when cradled, and ensure that you are familiar with the
techniques used by different manufacturers for loading configuration settings.

l	 If you have your enterprise data in Microsoft SQL Server 2005 or 2008 and require
an accelerated time to market, consider using merge replication with a “buy and
configure” application from a third party. Merge replication can synchronize data
in a single operation regardless of network bandwidth or data size.

l	 If you have an Active Directory infrastructure, consider using the System Center
Mobile Device Manager interface to manage group configuration, authentication,
and authorization of devices. See “Technology Considerations” for the require-
ments of Mobile Device Manager.

Data Access
Data access on a mobile device is constrained by unreliable network connections and
the hardware constraints of the device itself. When designing data access, consider
how low bandwidth, high latency, and intermittent connectivity will affect your
design. Consider the following guidelines when designing data access:
l	 Consider using a local device database that provides synchronization services,

such as SQL Server Compact Edition. Only design a custom mechanism to syn-
chronize data if the standard data synchronization features cannot meet your
requirements.

l	 Program for data integrity. Files that remain open during device suspend and
power failures may cause data integrity issues, especially when data is stored on
a removable storage device. Include exception handling and retry logic to ensure
that file operations succeed. To ensure data integrity in cases where the device
loses power or connectivity, consider using transactions with SQL Server Mobile.

.NET Application Architecture Guide, 2nd Edition346

l	 Do not assume that removable storage will always be available, as a user can remove
it at any time. Check for the existence of a removable storage device before writing to
it or using FlushFileBuffers.

l	 If you use XML to store or transfer data, consider its overall size and impact on
performance. XML increases both bandwidth and local storage requirements. Use
compression algorithms or a non-XML transfer method.

l	 Minimize performance impact by designing for efficient database access and data
processing. Consider the use of typed objects instead of DataSets to reduce mem-
ory overhead and improve performance. If you are only reading and not writing
data, utilize DataReaders. Avoid process intensive operation such as navigating
through large data sets.

For more information about designing a data layer, see Chapter 8, “Data Layer
Guidelines.”

Device Specifics
Mobile device design and development is unique due to the constrained and dif-
fering nature of device hardware. You may be targeting multiple devices with very
different hardware parameters. Keep the heterogeneous device environment in mind
when designing your mobile application. Factors include variations in screen size
and orientation, limitations in memory and storage space, and network bandwidth
and connectivity. Your choice of a mobile operating system will generally depend
on the target device type. Consider the following guidelines when determining your
device strategy:
l	 Optimize the application for the device by considering factors such as screen size

and orientation, network bandwidth, memory storage space, processor perfor-
mance, and other hardware capabilities.

l	 Consider device-specific capabilities that you can use to enhance your applica-
tion functionality such as accelerometers, graphics processing units, GPS, haptic
(touch, force, and vibration) feedback, compass, camera, and fingerprint readers.

l	 If you are developing for more than one device, design first for the subset of
functionality that exists on all of the devices and then customize the code to
detect and use device-specific features when they are available.

l	 Consider limited memory resources and optimize your application to use the
minimum amount of memory. When memory is low, the system may release
cached intermediate language (IL) code to reduce its own memory footprint,
return to interpreted mode, and thus slow overall execution.

l	 Create modular code to allow easy module removal from executables. This covers
cases where separate smaller executable files are required due to constraints in
device memory size.

Chapter 24:  Designing Mobile Applications 347

l	 Consider using programming shortcuts as opposed to following pure program-
ming practices that can inflate code size and memory consumption. For example,
examine the cost of using pure object-oriented practices such as abstract base
classes and repeated object encapsulation. Consider using lazy initialization so
that objects are instantiated only when required.

Exception Management
Designing an effective exception management strategy is important for the security
and reliability of your application. Good exception handling in your mobile applica-
tion prevents sensitive exception details from being revealed to the user, improves
application robustness, and helps keep your application from remaining in an incon-
sistent state when an error occurs. Consider the following guidelines when designing
for exception management:
l	 Design your application to recover to a known good state after an exception occurs

without revealing sensitive information to the end user.
l	 Catch exceptions only if you can handle them, and do not use exceptions to con-

trol logic flow. Ensure that you design a global error handler to catch unhandled
exceptions.

l	 Design an appropriate logging and notification strategy that stores sufficient details
about exceptions, but bear in mind memory and storage limitations of mobile
devices. Ensure that user friendly exception messages are displayed, and that
they do not reveal sensitive information for critical errors and exceptions.

For more information about designing an exception management strategy, see
Chapter 17, “Crosscutting Concerns.”

Logging
Because of the limited memory available on mobile devices, logging and instrumen-
tation should be limited to only the most necessary cases; for example, attempted
intrusion into the device. When devices are designed to be a part of a larger infra-
structure, choose to track most device activity at the infrastructure level. Generally,
auditing is considered most authoritative if the audits are generated at the precise
time of resource access, and by the same routines that access the resource. Consider
the fact that some of the logs might have to be generated on the device and must be
synchronized with the server during periods of network connectivity. Consider the
following guidelines when designing logging:
l	 There is no Event Log mechanism in Windows Mobile. Consider using a third-

party logging mechanism that supports the .NET Compact Framework, such as
OpenNetCF, NLog, or log4Net (see Additional Resources at the end of this chapter
for more details). Also, consider how you will access logs stored on the device.

.NET Application Architecture Guide, 2nd Edition348

l	 If you carry out extensive logging on the device, consider logging in an abbreviated
or compressed format to minimize memory and storage impact. Alternatively,
consider remote logging instead of logging on the device.

l	 Consider using platform features such as health monitoring on the server, and
mobile device services on the device, to log and audit events. Explore adding
remote health monitoring capabilities using the Open Mobile Alliance Device
Management (OMA DM) standard.

l	 Synchronize between the mobile database logs and the server database logs to
maintain audit capabilities on the server. If you have an Active Directory infra-
structure, consider using the System Center Mobile Device Manager to extract
logs from mobile devices. See “Technology Considerations” for the requirements
of Mobile Device Manager.

l	 Do not store sensitive information in log and audit files unless absolutely neces-
sary, and ensure that any sensitive information is protected through encryption.

l	 Decide what constitutes unusual or suspicious activity on a device, and log infor-
mation based on these scenarios.

Porting Applications
Developers often want to port part or all of an existing application to a mobile device.
Certain types of applications will be easier to port than others, and it is unlikely that
you will be able to port the code directly without modification. Consider the follow-
ing guidelines when designing to port your existing application to a mobile device:
l	 If you are porting a rich client application from the desktop, rewrite the applica-

tion in its entirety. Rich clients are rarely designed to suit a small screen size and
limited memory and disk resources.

l	 If you are porting a Web application to a mobile device, consider rewriting the UI
for the smaller screen size. Also, consider communication limitations and interface
chattiness as these can translate into increased power usage and connection costs
for the user.

l	 If you are porting a RIA client, carry out research to discover which code will port
without modification. Consult the “Technology Considerations” section of this
chapter for specific advice.

l	 Research and utilize tools to assist in porting. For example, Java-to-C++ convertors
are available. When converting from Smartphone to Pocket PC code, Visual Studio
allows you to change the target platform and provides warnings when you are
using Smartphone-specific functionality. You can also link Visual Studio Desktop
and Mobile projects to discover what is portable between the two projects.

l	 Do not assume that you can port custom controls to a mobile application without
modification. Supported APIs, memory footprint, and UI behavior are different
on a mobile device. Test the controls as early as possible so that you can plan to
rewrite them or find an alternative if required.

Chapter 24:  Designing Mobile Applications 349

Power Management
Power is the major limiting design factor for mobile devices. All design decisions
should take into account how much power the device consumes, and their effect
on overall battery life. If you have a choice, consider devices that can draw power
from Universal Serial Bus (USB) or other types of data connections. Research com-
munication protocols and investigate their relative power consumption. Consider
the following guidelines when designing for power consumption:
l	 Implement power profiles to increase performance when the device is plugged into

external power and not charging its battery. Allow the user to turn off features of the
device when not in use or when not required. Common examples are screen back-
lighting, hard drives, GPS functions, speakers, and wireless communications.

l	 To conserve battery life, do not update the UI while the application is running in
the background.

l	 Choose protocols, design service interfaces, and batch communications in such a
way as to transfer the smallest number of bytes possible over the air. Consider both
power usage as well as network speed when choosing communication methods,
and consider deferring nonessential wireless communications until the device is
using external power.

l	 If you are considering using the 3G hardware communications protocol, consider
that while it is significantly faster, it also currently uses much more power than its
predecessors, such as the Edge protocol. When you are using 3G, be sure to com-
municate in batched bursts and to shut down communication at times when it is
not required.

Synchronization
Consider whether you want to support over the air synchronization, cradled synchro-
nization, or both. Because synchronization will often involve sensitive data, consider
how to secure your synchronization data, especially when synchronizing over the
air. Design your synchronization to handle connection interruptions gracefully, either
by canceling the operation or by allowing it to resume when a connection becomes
available. Merge replication allows both upload-only and bidirectional synchroniza-
tion and is a good choice for infrastructures utilizing newer versions of SQL Server.
Consider the Microsoft Sync Framework, which can provide robust synchronization
services in a wide variety of situations. Consider the following guidelines when
designing synchronization:
l	 If your users will be synchronizing with a host computer, consider including cradled

synchronization in your design. If your users must synchronize data when away
from the office, consider including over the air synchronization in your design.

l	 Ensure that the application can recover when synchronization is reset or when
synchronization is interrupted, and decide how you will manage synchronization
conflicts.

.NET Application Architecture Guide, 2nd Edition350

l	 Ensure that synchronization communication is protected, perhaps using encryption
and digital certificates, and use secure channels. Be especially sure to apply appro-
priate authentication and authorization when using Bluetooth synchronization.

l	 If you must support bidirectional synchronization to SQL Server, consider using
merge replication synchronization. Remember that merge synchronization will
synchronize all of the data in the merge set, which may require additional net-
work bandwidth and can adversely affect performance.

l	 Consider store and forward synchronization using WCF rather than e-mail or
SMS (text message), as WCF guarantees delivery and works well in occasionally
connected scenarios.

Testing
Mobile application debugging can be much more costly than debugging a similar
application on a computer. Consider this debugging cost when deciding which
devices, and how many devices, your application will support. Also keep in mind
that it can be harder to get debug information from the device, and that device
emulators do not always perfectly simulate the device hardware environment.
Consider the following guidelines when designing your debugging strategy:
l	 Understand your debugging costs when choosing which devices to support.

Factor in tools support, the cost of initial (and perhaps replacement) test devices,
and the cost of software-based device emulators.

l	 If you have access to the physical device you are targeting, debug your code on
the actual device rather than using an emulator. If the device is not available, use
an emulator for initial testing and debugging. Consider that an emulator might
run code more slowly than the actual device.

l	 As soon as you obtain the physical device, switch to running code on the device
connected to a normal computer. Test scenarios where your device is fully discon-
nected from any network or connection, including being disconnected from a
computer debugging session, and perform final testing on your device when not
connected to a computer. Add temporary or permanent mechanisms to debug prob-
lems in this scenario. Consider the needs of people who will support the device.

l	 If you are an OEM and your device has not yet been created, note that it is possi-
ble to debug a mobile program on a dedicated x86-based Windows CE computer.
Consider this option until your device is available.

User Interface
When designing the UI for a mobile application, do not try to adapt or reuse the
UI from a desktop application. Design your device UI so that it is as simple as pos-
sible and tailored specifically for pen-based input and limited data entry capabilities

Chapter 24:  Designing Mobile Applications 351

where appropriate. Consider the fact that your mobile application will run in full
screen mode and will only be able to display a single window at a time; and, therefore,
blocking operations will prevent the user from interacting with the application. Con-
sider the following guidelines when designing the UI for your mobile application:
l	 Design for a single window, full screen UI. If your device will be a single user

device running only the main application, consider using kiosk mode. Keep in
mind that Windows Mobile does not support a kiosk mode, so you will need to
use Windows CE.

l	 Take into account the various screen sizes and orientations of your target devices
when designing your application UI. Also, consider the limitations imposed by
the small screen size, limited API, and reduced range of UI controls compared to
desktop environments.

l	 Design for usability by supporting touchscreen or stylus-driven UI. Place menu
bars and other controls at the bottom of the screen (expanding upwards when
required) to prevent the user's hands from obscuring the display. Support touch-
screen input by making buttons large enough, and lay out controls so that the UI
is usable using a finger or stylus for input.

l	 Give the user visual indication of blocking operations; for example, an hourglass
cursor.

Validation
Use validation to protect the device and your application, and to improve usability.
Validating input values before submitting them to a remote server can reduce com-
munication roundtrips and improve the performance and usability of the application,
especially in occasionally connected or disconnected scenarios. When designing
validation, consider the following guidelines:
l	 Validate data input by the user where possible to prevent unnecessary commu-

nication and server roundtrips. This also makes the application more responsive
when the user enters invalid values.

l	 Validate all data received during communication with a host computer and during
over the air communication.

l	 Ensure that you protect hardware resources, such as the camera and initiation of
phone calls, by validating code and actions that automatically initiate these features.

l	 Consider the limited resources and performance of the device by designing efficient
validation mechanisms that have the minimum memory footprint.

For more information about validation techniques, see Chapter 17, “Crosscutting
Concerns.”

.NET Application Architecture Guide, 2nd Edition352

Technology Considerations
The following guidelines contain suggestions and advice for common scenarios for
mobile applications and technologies.

Microsoft Silverlight for Mobile
At the time of release of this guidance, Silverlight for Mobile was an announced
product under development but not released. Consider the following guidelines if
you are using Silverlight for Mobile:
l	 If you want to build applications that support rich media and interactivity and have

the ability to run on both a mobile device and desktop, consider using Silverlight
for Mobile. Silverlight 2.0 code created to run on the desktop in the Silverlight 2.0
plug-in will run in the Windows Mobile Silverlight plug-in in the latest version of
Microsoft Internet Explorer® for Mobile browser. Consider that while it is possible
to use the same Silverlight code on both mobile device and desktop, you should
take into account the differing screen size and resource constraints of a mobile
device. Consider optimizing the code for Windows Mobile.

l	 If you want to develop Web pages for both desktop and mobile platforms, consider
Silverlight for Mobile or normal ASP.NET/HMTL instead of using ASP.NET for
Mobile, unless you know that your device cannot support either alternative. As
device browsers have become more powerful, they are able to process the same
native HTML and ASP.NET targeted at the desktop, thus making ASP.NET mobile-
specific development less important. ASP.NET for Mobile currently supports a
variety of mobile devices through specific markup adapters and device profiles.
While ASP.NET for Mobile automatically renders content to match device capa-
bilities at run time, there is overhead associated with testing and maintaining the
device profiles. Development support for these controls is included in Microsoft
Visual Studio 2003 and 2005, but is not included in Visual Studio 2008. Run-time
support is currently still available but may be discontinued in the future. For more
information, see “Additional Resources” at the end of this chapter.

.NET Compact Framework
Consider the following guidelines if you are using the Microsoft .NET Compact
Framework:
l	 If you are familiar with the Microsoft .NET Framework and are developing for

both the desktop and mobile platforms concurrently, consider that the .NET
Compact Framework is a subset of the .NET Framework class library. It also
contains some classes exclusively designed for Windows Mobile. The .NET
Compact Framework supports only the Microsoft Visual Basic® and Microsoft
Visual C#® development systems.

Chapter 24:  Designing Mobile Applications 353

l	 If you have issues tracing into a subset of Windows Mobile code with the Visual
Studio debugger, consider that you might require multiple debug sessions. For
example, if you have both native and managed code in the same debug session,
Visual Studio might not follow the session across the boundary. In this case, you
will require two instances of Visual Studio running and you must track the context
between them manually.

Windows Mobile
Consider the following general guidelines for Windows Mobile applications:
l	 If you are targeting an application for both Windows Mobile Professional and

Windows Mobile Standard editions, consider that the Windows Mobile security
model varies on the different versions of Windows Mobile. Code that works on
one platform might not work on the other because of the differing security models
for APIs. Check the Windows Mobile documentation for your device and version.
Also see the “Additional Resources” section at the end of this chapter.

l	 If you will have to manage your application in the future or are upgrading an
existing application, be sure that you understand the Windows Mobile operating
system derivation, product naming, and versioning tree. There are slight differ-
ences between each version that could potentially impact your application.
l	 Windows Mobile is derived from releases of the Windows CE operating system.
l	 Both Windows Mobile version 5.x and 6.x are based on Windows CE version 5.x.
l	 Windows Mobile Pocket PC was renamed Windows Mobile Professional starting

with Windows Mobile 6.0.
l	 Windows Mobile Smartphone was renamed Windows Mobile Standard starting

with Windows Mobile 6.0.
l	 Windows Mobile Professional and Windows Mobile Standard have slight differ-

ences in their APIs. For example, the Windows Mobile Standard (Smartphone)
lacks a Button class in its Compact Framework implementation because softkeys
are used for data entry instead.

l	 Always use the Windows Mobile APIs to access memory and file structures. Do
not access them directly after you have obtained a handle to either structure.
Windows CE version 6.x (and thus the next release of Windows Mobile) uses a
virtualized memory model and a different process execution model than previ-
ous versions. This means that structures such as file handles and pointers may
no longer be actual physical pointers to memory. Windows Mobile programs
that relied on this implementation detail in versions 6.x and before will fail
when moved to the next version of Windows Mobile.

.NET Application Architecture Guide, 2nd Edition354

l	 The Mobile Device Manager (MDM) is a possible solution for authorizing, track-
ing, and collecting logs from mobile devices, assuming that you have an Active
Directory infrastructure. As well as Windows Mobile 6.1 on the managed devices,
MDM also requires a number of other products to be installed on the server in
order to function fully, including:
l	 Windows Server Update Service (WSUS) 3.0
l	 Windows Mobile Device Management Server
l	 Enrollment Server
l	 Gateway Server
l	 Active Directory as part of Windows Server
l	 SQL Server 2005 or above
l	 Microsoft Certificate Authority
l	 Internet Information Server (IIS) 6.0
l	 .NET Framework 2.0 or above

Windows Embedded
Consider the following guidelines if you are choosing a Windows Embedded
technology:
l	 If you are designing for a set top box or other larger footprint device, consider

using Windows Embedded Standard.
l	 If you are designing for a point of service device such as an automated teller

machine (ATMs, customer-facing kiosks, or self checkout systems), consider
using Windows Embedded for Point of Service.

l	 If you are designing for a GPS-enabled device or a device with navigation capabil-
ities, consider using Microsoft Windows Embedded NavReady™ software. Note
that Windows Embedded NavReady 2009 is built on Windows Mobile 5.0, while
Windows Mobile version 6.1 is used in the latest versions for Windows Mobile
Standard and Professional. If you are targeting a common codebase for NavReady
and other Windows Mobile devices, be sure to verify that you are using APIs
available on both platforms.

Chapter 24:  Designing Mobile Applications 355

Deployment Considerations
Mobile applications can be deployed using many different methods. Consider the
requirements of your users, as well as how you will manage the application, when
designing for deployment. Ensure that you design to allow for the appropriate
management, administration, and security for application deployment. Deployment
scenarios for Windows Mobile device applications, with the more common ones
listed first, are:
l	 Microsoft Exchange ActiveSync® technology using a Windows Installer file (MSI).
l	 Over the air, using HTTP, SMS, or CAB files to provide install and run functionality.
l	 Mobile Device Manager–based, using Active Directory to load from a CAB or

MSI file.
l	 Post load and autorun, which loads a company-specific package as part of the

operating system.
l	 Site loading, manually using an SD card.

Consider the following guidelines when designing your deployment strategy:
l	 If your users must be able to install and update applications while away from

the office, consider designing for over the air deployment.
l	 If you are using CAB file distribution for multiple devices, include multiple

device executables in the CAB file. Have the device detect which executable to
install, and discard the rest.

l	 If your application relies heavily on a host computer, consider using ActiveSync
to deploy your application.

l	 If you are deploying a baseline experience running on top of Windows Mobile,
considering using the post-load mechanism to automatically load your applica-
tion immediately after the Windows Mobile operating system starts up.

l	 If your application will be run only at a specific site, and you want to manually
control distribution, consider deployment using an SD memory card.

For more information on deployment patterns and scenarios, see Chapter 19,
“Physical Tiers and Deployment.”

.NET Application Architecture Guide, 2nd Edition356

Relevant Design Patterns
Key patterns are organized into categories such as Caching, Communication, Data
Access, Synchronization, and UI; as shown in the following table. Consider using
these patterns when making design decisions for each category.

Category Relevant patterns
Caching Lazy Acquisition. Defer the acquisition of resources as long as possible to opti-

mize device resource use.
Communication Active Object. Support asynchronous processing by encapsulating the service

request and service completion response.
Communicator. Encapsulate the internal details of communication in a sepa-
rate component that can communicate through different channels.
Entity Translator. An object that transforms message data types into business
types for requests, and reverses the transformation for responses.
Reliable Sessions. End to end reliable transfer of messages between a source
and a destination, regardless of the number or type of intermediaries that sepa-
rate the endpoints.

Data Access Active Record. Include a data access object within a domain entity.
Data Transfer Object (DTO). An object that stores the data transported between
processes, reducing the number of method calls required.
Domain Model. A set of business objects that represents the entities in a domain
and the relationships between them.
Transaction Script. Organize the business logic for each transaction in a single
procedure, making calls directly to the database or through a thin database
wrapper.

Synchronization Synchronization. A component installed on a device tracks changes to data and
exchanges information with a component on the server when a connection is
available.

UI Application Controller. An object that contains all of the flow logic, and is used
by other Controllers that work with a Model and display the appropriate View.
Model-View-Controller. Separate the data in the domain, the presentation, and
the actions based on user input into three separate classes. The Model man-
ages the behavior and data of the application domain, responds to requests for
information about its state (usually from the View), and responds to instructions
to change state (usually from the Controller). The View manages the display of
information. The Controller interprets the mouse and keyboard inputs from the
user, informing the model and/or the view to change as appropriate.
Model-View-Presenter. Separate request processing into three roles, with the
View being responsible for handling user input, the Model responsible for appli-
cation data and business logic, and the Presenter responsible for presentation
logic and for coordinating the interaction between the View and the Model.
Pagination. Separate large amounts of content into individual pages to optimize
system resources and minimize use of screen space.

Chapter 24:  Designing Mobile Applications 357

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 For more information on the Windows Embedded technology options,

see the “Windows Embedded Developer Center” at
http://msdn.microsoft.com/en-us/embedded/default.aspx.

l	 For more information on software factories dedicated to mobile devices,
see “patterns & practices Mobile Client Software Factory” at
http://msdn.microsoft.com/en-us/library/aa480471.aspx.

l	 For information on the Microsoft Sync Framework, see the “Microsoft Sync Framework
Developer Center” at http://msdn.microsoft.com/en-us/sync/default.aspx.

l	 For more information on the OpenNETCF.Diagnostics.EventLog in the Smart
Device Framework, see “Instrumentation for .NET Compact Framework Applications”
at http://msdn.microsoft.com/en-us/library/aa446519.aspx.

l	 For more information on ASP.NET Mobile, see “Roadmap for ASP.NET Mobile
Development” at http://www.asp.net/mobile/road-map/.

l	 For more information on adding ASP.NET Mobile source code support into Visual
Studio 2008, see “Tip/Trick: ASP.NET Mobile Development with Visual Studio 2008” at
http://blogs.msdn.com/webdevtools/archive/2007/09/17/
tip-trick-asp-net-mobile-development-with-visual-studio-2008.aspx.

l	 For more information on security model permissions in Windows
Mobile 6.x, see “Security Model for Windows Mobile 5.0 and Windows Mobile 6” at
http://blogs.msdn.com/jasonlan/archive/2007/03/13/
new-whitepaper-security-model-for-windows-mobile-5-0-and-windows-mobile-6.aspx.

l	 For more information on Apache Logging Services “log4Net,” see
http://logging.apache.org/log4net/index.html.

l	 For more information on Jarosław Kowalski's “NLog,” see
http://www.nlog-project.org/introduction.html.

l	 For more information on the OpenNetCF Community, see
http://community.opennetcf.com/.

http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/embedded/default.aspx
http://msdn.microsoft.com/en-us/library/aa480471.aspx
http://msdn.microsoft.com/en-us/sync/default.aspx
http://msdn.microsoft.com/en-us/library/aa446519.aspx
http://www.asp.net/mobile/road-map/
http://blogs.msdn.com/webdevtools/archive/2007/09/17/
http://blogs.msdn.com/jasonlan/archive/2007/03/13/
http://logging.apache.org/log4net/index.html
http://www.nlog-project.org/introduction.html
http://community.opennetcf.com/

25
Designing Service Applications

Overview
In this chapter, you will learn about the nature and use of services, the general
guidelines for different service scenarios, and the key attributes of services. You
will also see guidelines for the layers within a services application, and key factors
you must consider in terms of performance, security, deployment, patterns, and
technology considerations.

A service is a public interface that provides access to a unit of functionality. Services
literally provide some programmatic service to the caller, who consumes the ser-
vice. Services are loosely coupled and can be combined within a client, or combined
within other services, to provide functionality that is more complex. Services are dis-
tributable and can be accessed from a remote machine as well as from the machine
on which they are running. Services are message-oriented, meaning that service inter-
faces are defined by a Web Services Description Language (WSDL) file, and operations
are called using Extensible Markup Language (XML)-based message schemas that
are passed over a transport channel. Services support a heterogeneous environment
by focusing interoperability at the message/interface definition. If components can
understand the message and interface definition, they can use the service regardless
of their base technology. Figure 1 shows an overall view of a typical services applica-
tion architecture.

	 Contents

25	 359

Designing Service Applications	 359
Overview. 359
General Design Considerations . 361
Specific Design Issues. 363

Authentication. 364
Authorization. 364
Business Layer . 364
Communication. 365
Data Layer . 366
Exception Management . 366
Message Construction . 367
Message Endpoint . 367
Message Protection . 368
Message Transformation . 369
Message Exchange Patterns . 369
Representational State Transfer . 370
Service Layer. 371
SOAP . 372
Validation. 373

Technology Considerations. 373
Deployment Considerations . 374
Relevant Design Patterns . 375
Additional Resources. 378

.NET Application Architecture Guide, 2nd Edition360

Figure 1
A common services application architecture

A typical services application is composed of three layers: the service layer, business
layer, and data layer. The service layer may include service interfaces, message types,
and data types components; the business layer may include business logic, business
workflow, and business entity components; and the data layer may include data
access and service agent components. For more information about layered design,
see Chapter 5, “Layered Application Guidelines.” For more information about the
components appropriate for each layer, see Chapter 10, “Component Guidelines.”

Services are flexible by nature and can be used in a wide variety of scenarios and
combinations. The following are typical scenarios:
l	 Service exposed over the Internet.  This scenario describes a service that is

consumed by a range of clients over the Internet. This scenario includes

Chapter 25:  Designing Service Applications 361

business-to-business as well as consumer-focused services. A stockbroker Web
site that consumes Web services from stock exchanges and provides stock quotes
would be an example of this scenario. Decisions on authentication and authori-
zation must be based on Internet trust boundaries and credentials options. For
example, user name and password authentication or the use of certificates is
more likely in the Internet scenario than the intranet scenario.

l	 Service exposed over an intranet.  This scenario describes a service that is con-
sumed over an intranet by a (usually restricted) set of internal or corporate clients.
An enterprise-level document management application would be an example of
this scenario. Decisions on authentication and authorization must be based on
intranet trust boundaries and credentials options. For example, Windows authen-
tication using Active Directory is more likely to be the chosen user store in the
intranet scenario than in the Internet scenario.

l	 Service exposed on the local machine.  This scenario describes a service that is
consumed by an application on the local machine. Transport and message protec-
tion decisions must be based on local machine trust boundaries and users.

l	 Mixed scenario.  This scenario describes a service that is consumed by multiple
applications over the Internet, an intranet, and/or the local machine. A line-of-
business (LOB) service application that is consumed internally by a rich client
application and over the Internet by a Web application would be an example of
this scenario.

General Design Considerations
When designing service-based applications, you should follow the general guidelines
that apply to all services such as designing for coarse-grained operations, honoring the
service contract, and anticipating invalid requests or requests that arrive in the wrong
order. In addition to the general guidelines, there are specific guidelines that you
should follow for different types of services. For example, with a Service-Oriented
Architecture (SOA), you should ensure that the operations are application-scoped
and that the service is autonomous. Alternatively, you might have an application
that provides workflow services, or you might be designing an operational data
store that provides a service-based interface. Consider the following guidelines
when designing service applications:
l	 Consider using a layered approach to designing service applications and avoid

tight coupling across layers.  Separate the business rules and data access functions
into distinct components where appropriate. Use abstraction to provide an inter-
face into the business layer. This abstraction can be implemented by using public
object interfaces, common interface definitions, abstract base classes, or messaging.
For more information about abstraction in layered architecture, see Chapter 5,
“Layered Application Guidelines.”

.NET Application Architecture Guide, 2nd Edition362

l	 Design coarse-grained operations.  Avoid chatty calls to the service interface,
which can lead to very poor performance. Service operations should be coarse-
grained and focused on application operations. Consider using the Façade pattern
to package smaller fine-grained operations into single coarse-grained operations.
For example, with demographics data, you should provide an operation that
returns all of the data in one call instead of requiring multiple calls that return
subsets of the data.

l	 Design data contracts for extensibility and reuse.  Data contracts should be designed
so that you can extend them without affecting consumers of the service. When pos-
sible, compose the complex types used by your service from standard elements. The
service layer should have knowledge of business entities used by the business layer.
Typically, this is achieved by creating a separate assembly that contains business
entities, which is shared between the service layer and business layer.

l	 Design only for the service contract.  The service layer should implement and
provide only the functionality detailed in the service contract, and the internal
implementation and details of a service should never be exposed to external
consumers. Also, if you need to change the service contract to include new func-
tionality implemented by a service, and the new operations and types are not
backward compatible with the existing contracts, consider versioning your con-
tracts. Define new operations exposed by the service in a new version of a service
contract, and define new schema types in a new version of the data contract. For
information about designing message contracts, see Chapter 18, “Communication
and Messaging.”

l	 Design services to be autonomous.  Services should not require anything from
consumers of the service, and should not assume who the consumer is or how
they plan to use the service you provide.

l	 Design to assume the possibility of invalid requests.  Never assume that all
messages received by the service are valid. Implement validation logic to check
all messages against the appropriate schemas; and reject or sanitize all invalid
messages. For more information about validation, see Chapter 17, “Crosscutting
Concerns.” Ensure that the service can detect and manage repeated messages
(idempotency) by implementing well-known patterns, or by taking advantage of
infrastructure services, to ensure that duplicate messages are not processed. In
addition, ensure that the service can manage messages arriving out of order
(commutativity), perhaps by implementing a design that will store messages
and then process them in the correct order.

l	 Design services based on policy and with explicit boundaries.  A services applica-
tion should be self contained, with strict boundaries. Access to the service should
only be allowed through the service interface layer. The service should publish a
policy that describes how consumers can interact with the service. This is particu-
larly important for public services, where consumers can examine the policy to
determine interaction requirements.

Chapter 25:  Designing Service Applications 363

l	 Separate service concerns from infrastructure operational concerns.  Crosscutting
logic should never be combined with application logic. Doing so can lead to imple-
mentations that are difficult to extend and maintain.

l	 Use separate assemblies for major components in the service layer.  For example,
the interface, implementation, data contracts, service contracts, fault contracts, and
translators should all be separated into their own assemblies.

l	 Avoid using data services to expose individual tables in a database.  This will lead
to chatty service calls and interdependencies between service operations, which can
lead to dependency issues for consumers of the service. In addition, try to avoid
implementing business rules within services because different consumers of the
data will have unique viewpoints and rules, and this will impose restrictions on
the use of the data.

l	 Design workflow services to use interfaces supported by your workflow engine. 
Attempting to create custom interfaces can restrict the types of operations sup-
ported, and will increase the effort required to extend and maintain the services.
Instead of adding workflow services to an existing service application, consider
designing an autonomous service that supports only workflow requirements.

Specific Design Issues
The following sections contain guidelines to help you resolve the common issues that
arise as you develop a services architecture:
l	 Authentication
l	 Authorization
l	 Business Layer
l	 Communication
l	 Data Layer
l	 Exception Management
l	 Message Construction
l	 Message Endpoint
l	 Message Protection
l	 Message Transformation
l	 Message Exchange Patterns
l	 Representational State Transfer
l	 Service Layer
l	 SOAP
l	 Validation

.NET Application Architecture Guide, 2nd Edition364

Authentication
The design of an effective authentication strategy for your service depends on the
type of service host you are using. For example, if the service is hosted in Internet
Information Services (IIS), you can take advantage of the authentication support
provided by IIS. If the service is hosted by using a Windows Service, you must use
message-based or transport-based authentication. Consider the following guidelines
when designing an authentication strategy:
l	 Identify a suitable mechanism for securely authenticating users, and apply authen-

tication across all trust boundaries. Consider federated services and single sign on
(SSO) mechanisms where appropriate.

l	 Consider the implications of using different trust settings for executing service code.
l	 Ensure that secure protocols such as Secure Sockets Layer (SSL) are used with

Basic authentication, or when credentials are passed as plain text. Use secure
mechanisms such as Web Services Security (WS-Security) with SOAP messages.

Authorization
Designing an effective authorization strategy is important for the security and reliability
of your service application. Failure to design a good authorization strategy can leave
your application vulnerable to information disclosure, data tampering, and elevation of
privileges. Consider the following guidelines when designing an authorization strategy:
l	 Set appropriate access permissions on resources for users, groups, and roles; and

apply granular level authorization across all trust boundaries. Execute services
under the most restrictive account that is appropriate.

l	 Consider using Uniform Resource Locator (URL) authorization and/or file autho-
rization when protecting URL- and file-based resources.

l	 Where appropriate, restrict access to publicly accessible service methods using
declarative principle permission demands.

Business Layer
The business layer in a services application uses a façade to translate service opera-
tions into business operations. The primary goal when designing a service interface
is to use coarse-grained operations, which can internally translate into multiple
business operations. The business layer façade is responsible for interacting with the
appropriate business process components. Consider the following guidelines when
designing your business layer:
l	 Components in the business layer should have no knowledge of the service layer.

The business layer and any business logic code should not have dependencies on
code in the service layer, and should never execute code in the service layer.

Chapter 25:  Designing Service Applications 365

l	 When supporting services, use a façade in the business layer. The façade represents
the main entry point into the business layer. Its responsibility is to accept coarse-
grained operations and break them down into multiple business operations.
However, if your service may be accessed from the local machine or from a client
that will not access the service across physical boundaries, you may consider
exposing the fine-grained operations as well where this is useful to the client.

l	 Design the business layer to be stateless. Service operations should contain all of the
information, including state information, which the business layer uses to process
a request. Because a service can handle a large number of consumer interactions,
attempting to maintain state in the business layer would consume considerable
resources in order to maintain state for each unique consumer. This would restrict
the number of requests that a service could handle at any one time.

l	 Implement all business entities within a separate assembly. This assembly rep-
resents a shared component that can be used by both the business layer and the
data access layer. Note, however, that business entities should not be exposed
across a service boundary; instead use data transfer objects (DTOs) to transfer
data between services.

For more information about implementing the business layer, see Chapter 7, “Business
Layer Guidelines.” For information about business entities, see Chapter 13, “Designing
Business Entities.”

Communication
When designing the communication strategy for your service application, the protocol
you choose should be based on the deployment scenario for your service. Consider the
following guidelines when designing a communication strategy:
l	 If the service will be deployed within a closed network, you can use Transmission

Control Protocol (TCP) for communication that is more efficient. If the service will
be deployed on a public-facing network, you should choose Hypertext Transfer
Protocol (HTTP).

l	 Determine how to handle unreliable or intermittent communication reliably, per-
haps by caching messages and sending them when a connection is available, and
how to handle asynchronous calls. Decide if message communication must be one
way or two way, and whether you need to use the Duplex, Request Response, and
Request-Reply patterns.

l	 Use dynamic URL behavior with configured endpoints for maximum flexibility,
and determine how you will validate endpoint addresses in messages.

l	 Choose appropriate communication protocols, and ensure that you protect data
sent across communication channels using encryption and/or digital signatures.

For more information about communication protocols and techniques, see Chapter
18, “Communication and Messaging.”

.NET Application Architecture Guide, 2nd Edition366

Data Layer
The data layer in a services application includes the data access functionality that
interacts with external data sources. These data sources could be databases, other
services, the file system, SharePoint lists, or any other applications that manage data.
Data consistency is critical to the stability and integrity of your service implementa-
tion, and failure to validate the consistency of data received by the service can lead to
invalid data inserted into the data store, unexpected exceptions, and security breaches.
As a result, you should always include data consistency checks when implementing a
service. Consider the following guidelines when designing your data layer:
l	 The data layer should be deployed to the same tier as the business layer where

possible. Deploying the data layer on a separate physical tier will require serializa-
tion of objects as they cross physical boundaries.

l	 Always use abstraction when implementing an interface to the data layer. This
is normally achieved by using the Data Access or Table Data Gateway patterns,
which use well-known types for inputs and outputs.

l	 For simple Create, Read, Update, and Delete (CRUD) operations, consider creating
a class for each table or view in the database. This represents the Table Module
pattern, where each table has a corresponding class with operations that interact
with the table. Plan how you will handle transactions.

l	 Avoid using impersonation or delegation to access the database. Instead, use a
common entity to access the database, while providing user identity information
so that log and audit processes can associate users with the actions they perform.

For more information about implementing the data layer, see Chapter 8, “Data Layer
Guidelines.”

Exception Management
Designing an effective exception-management strategy is important for the security
and reliability of your service application. Failure to do so can leave your applica-
tion vulnerable to Denial of Service (DoS) attacks, and may also allow it to reveal
sensitive and critical information. Raising and handling exceptions is an expensive
operation, so it is important that the design take into account the potential impact on
performance. A good approach is to design a centralized exception management and
logging mechanism, and to consider providing access points that support instrumen-
tation and centralized monitoring in order to assist system administrators. Consider
the following guidelines when designing an exception management strategy:
l	 Ensure that you catch unhandled exceptions, and clean up resources after an

exception occurs. Avoid exposing sensitive data in service exceptions, log files,
and audit files.

Chapter 25:  Designing Service Applications 367

l	 Do not catch exceptions unless you can handle them; for example, to remove
sensitive information or add additional information to the exception. Do not use
exceptions to control application logic flow. Avoid the use of custom exceptions
when not necessary.

l	 Use SOAP Fault elements or custom extensions to return exception details to the
caller.

For more information about designing an exception management strategy, see
Chapter 17, “Crosscutting Concerns.”

Message Construction
When data is exchanged between a service and a consumer, it must be wrapped inside
a message. The format of that message is based on the types of operations you must
support. For example, you might be exchanging documents, executing commands, or
raising events. When using slow message delivery channels, you should also consider
including expiration information in the message. Consider the following guidelines
when designing a message construction strategy:
l	 Determine the appropriate patterns for message construction (such as Command,

Document, Event, and Request-Response).
l	 Divide very large quantities of data into relatively small chunks, and send them in

sequence.
l	 Include expiration information in messages that are time sensitive. The service

should ignore expired messages.

Message Endpoint
The message endpoint represents the connection that applications use to interact
with your service. The implementation of your service interface provides the mes-
sage endpoint. When designing the service implementation, you must consider the
type of message that you are consuming. In addition, you should design for a range
of scenarios related to handling messages. Consider the following guidelines when
designing message endpoints:
l	 Determine relevant patterns for message endpoints (such as Gateway, Mapper,

Competing Consumers, and Message Dispatcher).
l	 Design for disconnected scenarios. For example, you may need to support guaran-

teed delivery by caching or storing messages for later delivery. Ensure you do not
attempt to subscribe to endpoints while disconnected.

l	 Determine if you should accept all messages, or implement a filter to handle specific
messages.

.NET Application Architecture Guide, 2nd Edition368

l	 Design for idempotency in your service interface. Idempotency is the situation
where you could receive duplicate messages from the same consumer, but should
only handle one. In other words, an idempotent endpoint will guarantee that only
one message will be handled, and that all duplicate messages will be ignored.

l	 Design for commutativity. Commutativity is the situation where the messages
could arrive out of order. In other words, a commutative endpoint will guarantee
that messages arriving out of order will be stored and then processed in the cor-
rect order.

Message Protection
When transmitting sensitive data between a service and its consumer, you should
design for message protection. You can use transport layer protection (such as IPSec
or SSL) or message-based protection (such as encryption and digital signatures).
Consider the following guidelines when designing message protection:
l	 Use message-based security when you require end to end security and it is pos-

sible that intermediaries such as servers and routers will exist between the service
and the caller. Message-based security helps to protect sensitive data in messages
by encrypting it, and a digital signature will help to protect against repudiation
and tampering of the messages. However, keep in mind that applying security
will affect performance.

l	 If interactions between the service and the consumer are not routed through inter-
mediaries, such as other servers and routers, you can use transport layer security
such as IPSec or SSL. However, if the message passes through one or more inter-
mediaries, always use message-based security. With transport layer security, the
message is decrypted and then encrypted at each intermediary through which it
passes—which represents a security risk.

l	 For maximum security, consider using both transport layer and message-based
security in your design. Transport layer security will help to protect the headers
information that cannot be encrypted using message based security.

l	 When designing extranet or business-to-business services, consider using message-
based brokered authentication with X.509 certificates. In the business-to-business
scenario, the certificate should be issued by a commercial certificate authority. For
extranet services, you can use certificates issued through an organization-based
certificate service.

Chapter 25:  Designing Service Applications 369

Message Transformation
When passing messages between a service and consumer, there are many cases
where the message must be transformed into a format that the consumer can under-
stand. This normally occurs in cases where consumers that cannot use messaging
must process data retrieved from a message-based system. You can use adapters to
provide access to the message channel for such consumers, and translators to convert
the message data into a format that each consumer understands. Consider the follow-
ing guidelines when designing for message transformation:
l	 Determine if you must perform transformation; and, if so, identify relevant pat-

terns for message transformation. For example, the Normalizer pattern can be
used to translate semantically equivalent messages into a common format. Avoid
using a canonical model when not necessary.

l	 Ensure you perform transformations at the appropriate location to avoid repeated
processing and unnecessary overheads.

l	 Use metadata to define the message format, and consider using an external
repository to store this metadata.

l	 Consider using mechanisms such as BizTalk Server that can perform message
transformations between a range of formats and client types.

Message Exchange Patterns
A Message Exchange Pattern defines a conversation between a service and the service
consumer. This conversation represents a contract between the service and the consumer.
The W3C standards group defines two patterns for SOAP messages: Request-Response
and SOAP Response. Another standards group named OASIS has defined a Business
Process Execution Language (BPEL) for services. BPEL defines a process for exchang-
ing business process messages. In addition, other organizations have defined specific
message exchange patterns for exchanging business process messages. Consider the
following guidelines when designing message exchange patterns:
l	 Choose patterns that match your requirements without adding unnecessary

complexity. For example, avoid using a complex business process exchange
pattern if the Request-Response pattern is sufficient. For one-way messages,
consider the Fire and Forget pattern.

l	 When using business process modeling techniques, be careful not to design
exchange patterns based on process steps. Instead, the patterns should support
operations that combine process steps.

l	 Use existing standards for message exchange patterns instead of inventing
your own. This promotes a standards-based interface that will be understood
by many consumers. In other words, consumers will be more inclined to inter-
act with standards-based contracts instead of having to discover and adapt to
non-standard contracts.

.NET Application Architecture Guide, 2nd Edition370

Representational State Transfer
Representational State Transfer (REST) is an architectural style that is based on HTTP
and works very much like a Web application. However, instead of a user interacting
with and navigating through Web pages, applications interact with and navigate
through REST resources using the same semantics as a Web application. In REST,
a resource is identified by a Uniform Resource Identifier (URI), and the actions
that can be performed against a resource are defined by using HTTP verbs such
as GET, POST, PUT, and DELETE. Interaction with a REST service is accomplished
by performing HTTP operations against a URI, which is typically in the form of
an HTTP-based URL. The result of an operation provides a representation of the
current state for that resource. In addition, the result can contain links to other
resources that you can move to from the current resource.

The most common misconception about REST is that it is only useful for CRUD
operations against a resource. REST can be used with any service that can be repre-
sented as a state machine. In other words, as long as you can break a service down
into distinguishable states, such as retrieved and updated, you can convert those
states into actions and demonstrate how each state can lead to one or more states.
Consider how the UI of a Web application represents a state machine. When you
access a page, the information displayed represents the current state of that informa-
tion. You might have the ability to change that state by POSTing form fields, or by
moving to another page using links that are included in the current page. A RESTful
service works the same way, in that an application can perform a GET operation on
a resource to get the current state of that resource, change the state of the resource by
performing a PUT operation, or move to a different resource using links provided
by the current resource.

Both application state and resource state exist in RESTful services. The client stores
all application state, while the server stores only the resource state. Each individual
request sent from the client to the server must contain all of the information neces-
sary for the server to fully understand that request. In other words, the client must
transfer any relevant application state in its request. The client can then make deci-
sions on how to modify the resource state, based upon the server responses. Passing
the application state each time allows the application design to scale, as you can now
add multiple identical Web servers and load balance in such a way that the client
needs no affinity to one particular server or any shared application state.

A REST style service has the qualities of safety and idempotency. Safety refers to the
ability to repeat a request many times and get back the same answer without side
effects. Idempotency refers to behavior where making a single call has the same
consequences as making the same call several times. The presence of these qualities
adds robustness and reliability because, even if HTTP is unreliable, you can safely
reissue a request when the server is nonresponsive or returns a failure.

Chapter 25:  Designing Service Applications 371

Consider the following guidelines when designing REST resources:
l	 Consider using a state diagram to model and define resources that will be supported

by your REST service. Do not use session state within a REST service.
l	 Choose an approach for resource identification. A good practice would be to use

meaningful names for REST starting points and unique identifiers, as part of their
overall path, for specific resource instances. Avoid putting actions into the URI
with QueryString values.

l	 Decide if multiple representations should be supported for different resources. For
example, decide if the resource should support an XML, Atom, or JavaScript Object
Notation (JSON) format and make it part of the resource request. A resource could
be exposed as both (for example) http://www.contoso.com/example.atom and
http://www.contoso.com/example.json (note: links are to placeholder sites). Do
not use QueryString values to define actions on a URI. Instead, all actions are based
on the HTTP operation performed against a URI.

l	 Do not overuse the POST operation. A good practice is to use specific HTTP opera-
tions such as PUT or DELETE as appropriate to reinforce the resource-based design
and the use of a uniform interface.

l	 Take advantage of the HTTP application protocol to use common Web infrastructure
(caching, authentication, common data representation types, and so on).

l	 Ensure that your GET requests are safe, meaning that they always return the same
result when called. Consider making your PUT and DELETE requests idempotent,
meaning that repeated identical requests should have the same effect as a single
request.

Service Layer
The service layer contains components that define and implement services for your
application. Specifically, this layer contains the service interface (which is composed
of contracts), the service implementation, and translators that convert internal busi-
ness entities to and from external data contracts. Consider the following guidelines
when designing your service layer:
l	 Do not implement business rules in the service layer. The service layer should

only be responsible for managing service requests and for translating data con-
tracts into entities for use by the business layer.

l	 Access to the service layer should be defined by policies. Policies provide a way
for consumers of the service to determine the connection and security require-
ments, as well as other details related to interacting with the service.

l	 Use separate assemblies for major components in the service layer. For example,
the interface, implementation, data contracts, service contracts, fault contracts,
and translators should all be separated into their own assemblies.

http://www.contoso.com/example.atom
http://www.contoso.com/example.json

.NET Application Architecture Guide, 2nd Edition372

l	 Interaction with the business layer should only be through a well-known
public interface. The service layer should never call the underlying business
logic components.

l	 The service layer should have knowledge of business entities used by the business
layer. This is typically achieved by creating a separate assembly that contains
business entities shared between the service layer and business layer.

SOAP
SOAP is a message-based protocol in which the message is composed of an XML
envelope that contains a header and body. The header can provide information that
is external to the operation performed by the service. For example, a header may
contain security, transaction, or routing information. The body contains contracts, in
the form of XML schemas, which define the service and the actions it can perform.
Compared to REST, SOAP gives more protocol flexibility, and so you can utilize
higher-performance protocols such as TCP. SOAP supports the WS-* standards
including security, transactions, and reliability. Message security and reliability
ensure that the messages not only reach their destination, but also that those
messages have not been read or modified during transit. Transactions provide the
ability to group operations and provide roll back ability in the case of a failure.

SOAP is useful when performing RPC-type interactions between services or decoupled
layers of an application. It excels at providing an interface between new and legacy
systems on an internal network. A service layer can be placed on top of an older sys-
tem, allowing API-type interaction with the system without having to redesign the
system to expose a REST resource model. SOAP is also useful where information is
actively routed to one or more systems that may change communication protocols
frequently over their lifetimes. It is also helpful when you want to encapsulate infor-
mation or objects in an opaque manner and then store or relay that information to
another system.

If you want your application to be scalable by using Web farms or load balancing,
avoid storing session state on the server. Storing sessions on the server means that
a particular server must service the client throughout the duration of the session or,
in the case of load balancing, must pass the session information to another server.
Passing session state between servers makes failover and scale out scenarios much
harder to implement.

Consider the following guidelines when designing SOAP messages:
l	 Within a SOAP envelope, the SOAP header is optional but the SOAP body is

mandatory. Avoid the use of complex types in all message schemas.
l	 Consider using SOAP faults for errors instead of relying on the default error

handling behavior. When returning error information, the SOAP fault must be
the only child element within the SOAP body.

Chapter 25:  Designing Service Applications 373

l	 To force processing of a SOAP header block, set the block’s mustUnderstand
attribute to “true” or “1”. Errors that occur when processing the SOAP header
should be returned as a SOAP fault in the SOAP header element.

l	 Research and utilize WS-* standards. These standards provide consistent rules
and methods for dealing with the issues commonly encountered in a messaging
architecture.

Validation
Designing an effective input validation and data validation strategy is critical to the
security of your application. You must determine the validation rules for data you
receive from consumers of the service. Consider the following guidelines when
designing a validation strategy:
l	 Validate all data received by the service interface, including data fields associated

with the message, and return informative error messages if validation fails. Con-
sider using XML schemas to validate incoming messages.

l	 Check all input for dangerous or malicious content, and consider the way that
data will be used. For example, if the data will be used to initiate database queries
you must protect the database from SQL injection attacks. This may be through
the use of stored procedures or parameterized queries to access the database.

l	 Determine your signing, encryption, and encoding strategies.
l	 Understand the trust boundaries between layers and elsewhere so that you can

validate data that crosses these boundaries. However, determine if validation that
occurs in other layers is sufficient. If data is already trusted, you might not need to
validate it again.

For more information about validation techniques, see Chapter 17, “Crosscutting
Concerns.”

Technology Considerations
Take into account the following technology considerations when designing a service:
l	 Consider using ASMX for simplicity, but only when a Web server running IIS is

available.
l	 Consider using WCF services if you require advanced features such as reliable ses-

sions and transactions, activity tracing, message logging, performance counters,
and support for multiple transport protocols.

l	 If you are using ASP.NET Web services, and you require message-based security
and binary data transfer, consider using Web Service Extensions (WSE).

.NET Application Architecture Guide, 2nd Edition374

l	 If you decide to use WCF, consider the following:
l	 If you want interoperability with non-WCF or non-Windows clients,

consider using HTTP transport based on SOAP specifications.
l	 If you want to support clients within an intranet, consider using the

TCP protocol and binary message encoding with transport security
and Windows authentication.

l	 If you want to support WCF clients on the same machine, consider using
the named pipes protocol and binary message encoding.

l	 Consider defining service contracts that use an explicit message wrapper
instead of an implicit one. This allows you to define message contracts as
inputs and outputs for your operations, which then allows you to extend
the data contracts included in the message contract without affecting the
service contract.

Deployment Considerations
Services applications are usually designed using the layered approach, where the
service interface, business, and data layers are decoupled from each other. You can
use distributed deployment for a services application in exactly the same way as
any other application type. Services may be deployed to a client, a single server, or
multiple servers across an enterprise. However, when deploying a services applica-
tion, you must consider the performance and security issues inherent in distributed
scenarios, and take into account any limitations imposed by the production environ-
ment. Consider the following guidelines when deploying a services application:
l	 Locate the service layer on the same tier as the business layer if possible to im-

prove application performance.
l	 When a service is located on the same physical tier as the consumer of the service,

consider using named pipes or shared memory for communication.
l	 If the service is accessed only by other applications within a local network, consider

using TCP for communication.
l	 Configure the service host to use transport layer security only if consumers have

direct access to the service and requests do not pass through intermediaries.
l	 Disable tracing and debug-mode compilation for all services except during

development and testing.

For more information on deployment patterns and scenarios, see Chapter 19,
“Physical Tiers and Deployment.”

Chapter 25:  Designing Service Applications 375

Relevant Design Patterns
Key patterns are organized into categories such as Communication, Data
Consistency, Message Construction, Message Endpoint, Message Protection,
Message Transformation, REST, Service Interface, and SOAP; as shown in the
following table. Consider using these patterns when making design decisions for
each category.

Category Relevant patterns
Communication Duplex. Two-way message communication where both the service and the client

send messages to each other independently, irrespective of the use of the one-
way or Request-Reply pattern.
Fire and Forget. A one-way message communication mechanism used when no
response is expected.
Reliable Sessions. End to end reliable transfer of messages between a source
and a destination, regardless of the number or type of intermediaries that sepa-
rate the endpoints.
Request Response. A two-way message communication mechanism where the
client expects to receive a response for every message sent.

Data
Consistency

Atomic Transactions. Transactions that are scoped to a single service
operation.
Cross-service Transactions. Transactions that can span multiple services.
Long-running Transactions. Transactions that are part of a workflow
process.

Message
Construction

Command Message. A message structure used to support commands.
Document Message. A structure used to reliably transfer documents or a data
structure between applications.
Event Message. A structure that provides reliable asynchronous event notifica-
tion between applications.
Request-Reply. Use separate channels to send the request and the reply.

(continued)

.NET Application Architecture Guide, 2nd Edition376

Category Relevant patterns
Message
Endpoint

Competing Consumer. Set multiple consumers on a single message queue
and have them compete for the right to process the messages, which allows the
messaging client to process multiple messages concurrently.
Durable Subscriber. In a disconnected scenario, messages are saved and then
made accessible to the client when it connects to the message channel in order
to provide guaranteed delivery.
Idempotent Receiver. Ensure that a service will handle a message only once.
Message Dispatcher. A component that sends messages to multiple consumers.
Messaging Gateway. Encapsulate message-based calls into a single interface
in order to separate it from the rest of the application code.
Messaging Mapper. Transform requests into business objects for incoming
messages, and reverse the process to convert business objects into response
messages.
Polling Consumer. A service consumer that checks the channel for messages
at regular intervals.
Service Activator. A service that receives asynchronous requests and invokes
operations in business components.
Selective Consumer. The service consumer uses filters to receive messages
that match specific criteria.
Transactional Client. A client that can implement transactions when interacting
with a service.

Message
Protection

Data Confidentiality. Use message-based encryption to protect sensitive data
in a message.
Data Integrity. Ensure that messages have not been tampered with in transit.
Data Origin Authentication. Validate the origin of a message as an advanced
form of data integrity.
Exception Shielding. Prevent a service from exposing information about its
internal implementation when an exception occurs.
Federation. An integrated view of information distributed across multiple ser-
vices and consumers.
Replay Protection. Enforce message idempotency by preventing an attacker
from intercepting a message and executing it multiple times.
Validation. Check the content and values in messages to protect a service from
malformed or malicious content.

Message
Transformation

Canonical Data Mapper. Use a common data format to perform translations
between two disparate data formats.
Claim Check. Retrieve data from a persistent store when required.
Content Enricher. A component that enriches messages with missing informa-
tion obtained from an external data source.
Content Filter. Remove sensitive data from a message and reduce network traf-
fic by removing unnecessary data from a message.
Envelope Wrapper. A wrapper for messages that contains header information
used, for example, to protect, route, or authenticate a message.
Normalizer. Convert or transform data into a common interchange format when
organizations use different formats.

Chapter 25:  Designing Service Applications 377

Category Relevant patterns
REST Behavior. Applies to resources that carry out operations. These resources gen-

erally contain no state of their own, and only support the POST operation.
Container. Builds on the entity pattern by providing the means to dynamically
add and/or update nested resources.
Entity. Resources that can be read with a GET operation, but can only be
changed by PUT and DELETE operations.
Store. Allows entries to be created and updated with the PUT operation.
Transaction. Resources that support transactional operations.

Service
Interface

Façade. Implement a unified interface for a set of operations in order to provide
a simplified interface and reduce coupling between systems.
Remote Façade. Create a high level unified interface to a set of operations or
processes in a remote subsystem to make that subsystem easier to use, by
providing a course-grained interface over fine-grained operations to minimize
calls across the network.
Service Interface. A programmatic interface that other systems can use to
interact with the service.

SOAP Data Contract. A schema that defines data structures passed with a service
request.
Fault Contract. A schema that defines errors or faults that can be returned from
a service request.
Service Contract. A schema that defines operations that the service can perform.

For more information on the Duplex and Request Response patterns, see “Designing
Service Contracts” at http://msdn.microsoft.com/en-us/library/ms733070.aspx.

For more information on the Request-Reply pattern, see “Request-Reply” at
http://www.eaipatterns.com/RequestReply.html.

For more information on the Atomic and Cross-service Transaction patterns, see
“WS-* Specifications” at http://www.ws-standards.com/ws-atomictransaction.asp.

For more information on the Command, Document Message, Event Message,
Durable Subscriber, Idempotent Receiver, Polling Consumer, and Transactional
Client patterns, see “Messaging Patterns in Service-Oriented Architecture, Part I” at
http://msdn.microsoft.com/en-us/library/aa480027.aspx.

For more information on the Data Confidentiality and Data Origin
Authentication patterns, see “Chapter 2: Message Protection Patterns” at
http://msdn.microsoft.com/en-us/library/aa480573.aspx.

For more information on the Replay Detection, Exception Shielding, and
Validation patterns, see “Chapter 5: Service Boundary Protection Patterns” at
http://msdn.microsoft.com/en-us/library/aa480597.aspx.

For more information on the Claim Check, Content Enricher, Content Filter, and
Envelope Wrapper patterns, see “Messaging Patterns in Service Oriented Architecture,
Part 2” at http://msdn.microsoft.com/en-us/library/aa480061.aspx.

http://msdn.microsoft.com/en-us/library/ms733070.aspx
http://www.eaipatterns.com/RequestReply.html
http://www.ws-standards.com/ws-atomictransaction.asp
http://msdn.microsoft.com/en-us/library/aa480027.aspx
http://msdn.microsoft.com/en-us/library/aa480573.aspx
http://msdn.microsoft.com/en-us/library/aa480597.aspx
http://msdn.microsoft.com/en-us/library/aa480061.aspx

.NET Application Architecture Guide, 2nd Edition378

For more information on the Remote Façade pattern, see “P of EAA: Remote Façade” at
http://martinfowler.com/eaaCatalog/remoteFacade.html.

For more information on REST patterns such as Behavior, Container, and Entity, see
“REST Patterns” at http://wiki.developer.mindtouch.com/REST/REST_Patterns.

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 For more information on distributed systems, see “Enterprise Solution

Patterns Using Microsoft .NET - Distributed Systems Patterns” at
http://msdn.microsoft.com/en-us/library/ms998483.aspx.

l	 For more information on Enterprise Service Bus scenarios, see “Microsoft BizTalk
ESB Toolkit” at http://msdn.microsoft.com/en-us/library/dd897973.aspx.

l	 For more information on integration patterns, see “Prescriptive Architecture Integration
Patterns” at http://msdn.microsoft.com/en-us/library/ms978729.aspx.

l	 For more information on service patterns, see “Enterprise Solution
Patterns Using Microsoft .NET - Services Patterns” at
http://msdn.microsoft.com/en-us/library/ms998508.aspx.

l	 For more information on Web services security patterns, see “Web Service Security”
at http://msdn.microsoft.com/en-us/library/aa480545.aspx.

http://martinfowler.com/eaaCatalog/remoteFacade.html
http://wiki.developer.mindtouch.com/REST/REST_Patterns
http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/ms998483.aspx
http://msdn.microsoft.com/en-us/library/dd897973.aspx
http://msdn.microsoft.com/en-us/library/ms978729.aspx
http://msdn.microsoft.com/en-us/library/ms998508.aspx
http://msdn.microsoft.com/en-us/library/aa480545.aspx

26
Designing Hosted and Cloud
Services

Overview
This chapter looks at the new and emerging technologies and approaches for building
and consuming services and applications that are hosted remotely. These kinds of
services and applications are accessed over the Internet and run in what is usually
termed the cloud, hence the commonly used description cloud computing. Cloud solu-
tion hosters and vendors will generally provide prebuilt service applications with
varying levels of configurability and customization. Alternatively, you may prefer
to create your own application in-house and host it either internally on your own
systems, or externally in the cloud at a hosting provider.

The concept of building or consuming services and applications that are hosted off-
premises is becoming more attractive both to independent software vendors (ISVs)
and to enterprises as a way to reduce costs, maximize efficiency, and extend capabili-
ties. This chapter will help you to understand the nature and use of cloud-hosted
services and applications. It describes the benefits and the typical design issues, and
the constraints and technology considerations often encountered when building and
consuming these kinds of applications.

Cloud Computing
In many ways, cloud computing represents the converging evolution of computing
infrastructure and application models for building and consuming scalable distrib-
uted solutions. As techniques for building these kinds of applications have advanced,
so too have the capabilities of the infrastructure on which they run. This synergistic
evolution allows the infrastructure to be provisioned and maintained largely inde-
pendently of the applications that it hosts. This in turn allows applications to take
advantage of supporting infrastructure services and capabilities while they focus on
their specific business functionality.

	 Contents

26	 379

Designing Hosted and Cloud
Services	 379
Overview. 379

Cloud Computing. 379
Common Vocabulary for Hosted and Cloud Services. 381

Benefits of Cloud Applications . 382
Benefits for ISVs and Service Hosts. 382
Benefits for Enterprise Service Consumers. 383

Design Issues. 384
Data Isolation and Sharing. 384
Data Security . 386
Data Storage and Extensibility. 387
Identity Management. 389
Multi-tenancy. 392
On-premises or Off-premises, Build or Buy. 393
Performance. 394
Service Composition. 395
Service Integration . 397
Service Management. 399

Relevant Design Patterns . 400
Additional Resources. 401

.NET Application Architecture Guide, 2nd Edition380

Many organizations have been able to realize the joint benefits of scalable applica-
tion models and supporting infrastructure internally on-premises in their own data
centers. However, it is the ability to leverage an off-premises outsourced application
hosting infrastructure that is behind much of the excitement around cloud comput-
ing. The infrastructure provider focuses on hardware, networking, power, cooling,
and the operating environment that supports application manageability, reliability,
and scalability; leaving the organization free to focus on their application’s business
functionality. This provides many benefits in terms of reduced capital outlay and
operating costs; and increased capacity, scalability and availability.

To leverage these benefits, cloud-hosted applications typically must be architected
to follow a specific application model. This allows the cloud-hosting provider to
generalize and optimize their operating environment support for application man-
ageability, reliability, or scalability.

Different cloud-hosting providers have different application model requirements.
Some adopt a virtual machine approach, where the application is developed and
packaged along with its operating system image and the dependent runtime frame-
works. Others utilize an application model that provides higher level abstractions for
data access and storage (as described later in this chapter), and for computation and
communication. Still others provide higher level application models based on highly
configurable applications that focus on specific vertical application functionality,
such as Enterprise Resource Planning (ERP) or Customer Relationship Management
(CRM). Each of these approaches provides distinct advantages and disadvantages.

Furthermore, some off-premises hosted applications are self-contained and designed
for users who interact with the application through a dedicated UI. Some of these
applications are service-enabled, and provide both a UI and expose their function-
ality through an API (often exposed through standards such as REST or SOAP) so
that they can be integrated into other applications, which themselves can be hosted
either on-premises or off-premises. Some off-premises hosted services are specifically
designed to provide functionality for integration into other applications, and provide
no UI at all.

Cloud-based services generally fall into categories such as storage/compute,
business services, and retail/wholesale services. Some common examples of
these remote services are:
l	 Business services such as stocks and shares information, invoicing and payment

systems, data interchange facilities, merchant services, and business information
portals.

l	 Retail/wholesale services such as catalogues, stock query and ordering systems,
weather and traffic information, mapping services, and shopping portals.

l	 Storage/compute services such as data storage and processing, data backup,
source control systems, and technical or scientific processing services.

Chapter 26:  Designing Hosted and Cloud Services 381

These remote services can be consumed by software that runs on-premises, in an
organization’s data center or on a user’s machine, which may be a desktop computer
or any other Internet-enabled device. This typically involves a mix of technologies
and techniques that are referred to as Software plus Services (S+S). S+S refers to an
approach to application development that combines hosted services with locally
executed software. The combination of the remote services and the software running
locally, with rich seamlessly integrated interfaces and user experience, can provide a
more comprehensive and efficient solution than traditional on-premises silo applica-
tions. S+S is an evolution of several other technologies including Service Oriented
Architecture (SOA), Software as a Service (SaaS), Platform as a Service (PaaS), and
Web 2.0 community-oriented architectural approaches.

Note:  Cloud computing is an emerging area. This chapter outlines some of the benefits of cloud com-
puting and the high level architectural considerations that you must take into account when building
or consuming cloud-hosted applications and services. It is likely that frameworks, tools, and hosting
environment improvements will become increasingly available in the near future, which will help to
addresses these challenges.

Common Vocabulary for Hosted and Cloud Services
Some of the terms commonly encountered in this chapter and in cloud and hosted
service scenarios are the following:
l	 Building block service.  A service designed to be consumed by or integrated

with other applications or services. An example is a storage service or a hosted
Security Token Service (STS) such as the Access Control Service in the Azure
Services Platform.

l	 Cloud-hosting environment.  An environment that provides a core runtime for
hosting applications; and, optionally, building block services, business services,
social network services, and hosting services such as metering, billing, and
management.

l	 Home-built application.  An application that you create in-house, usually
specifically targeted at some task, scenario, or process you require; it will often
address a need that cannot be sourced from a third party.

l	 Hosted application.  An application (packaged or home-built) hosted as a service.
It may be hosted internally on your own system, or hosted externally by a partner
or hoster.

l	 Packaged application.  An application created by a third party or vendor that
may provide only limited customization capabilities based on configuration or
plug-ins.

.NET Application Architecture Guide, 2nd Edition382

l	 Platform as a Service (PaaS).  A core hosting operating system, and optional plug-in
building block services, that allow you to run your own applications or third-party
applications obtained from vendors, in a remote cloud hosting environment.

l	 Software as a Service (SaaS).  Applications that perform comprehensive business
tasks, or accomplish business services, and allow you to consume them as services
with no internal application requirements other than composition and UI.

Benefits of Cloud Applications
Cloud-hosted applications and services may be very beneficial to ISVs, and to service
delivery or hosting companies that build, host and deliver services. They also offer
benefits to large enterprises that generally consume hosted and cloud-based solutions.

Benefits for ISVs and Service Hosts
The key advantages for ISVs and service hosting companies building and offering
cloud-based solutions are the following:
l	 Architectural Flexibility.  Vendors can offer their customers a range of deployment

options, including hosting for the services they require, and allow users to choose
from a range of prebuilt features or choose which features of the application they
will implement themselves. This can reduce the architectural liabilities for end users
who are developing services.

l	 Rich User Experience.  ISVs and service providers can offer richer experiences to
their customers by leveraging existing specialized services (such as Virtual Earth).
Hosters can combine their offerings with other cloud services obtained elsewhere
to offer additional value propositions, and make it easier for end users to integrate
services.

l	 Ubiquitous Access.  Services in the cloud persist user data and state, and resyn-
chronize when the user reconnects from any location. This supports both offline
and occasionally connected scenarios, which is especially useful for mobile
devices where a constant connection or bandwidth cannot be guaranteed.

ISVs and service hosts may also consider entering the market for commercial reasons
to take advantage of monetization opportunities. The following are some examples:
l	 Vendors may wish to take advantage of an untapped market opportunity by offering

a product that is not currently or easily available elsewhere, or use the cloud to offer
lower end versions of their products to protect a high end franchise.

Chapter 26:  Designing Hosted and Cloud Services 383

l	 Startup companies may use the cloud-hosted approach to minimize initial capital
expenditure, and to take advantage of properties of the cloud such as elasticity
(the capability to grow as required without high initial cost commitment).

l	 Vendors and users can create applications that generate income more quickly by
taking advantage of ancillary services that are already available. For example, they
can take advantage of payment and accounting systems in the cloud. Users can
even build virtual stores without requiring large investments in IT equipment
and networking capabilities.

Benefits for Enterprise Service Consumers
The key advantages for enterprises that consume cloud-based solutions are the
following:
l	 Architectural Flexibility.  In-house developers can create complete solutions that

compose services in the cloud with local application code and their own services.
IT departments can choose which features of the application they will implement
themselves, and buy in other services that they require.

l	 Cost and Time Savings.  IT departments can select the best cloud-based service
for each task, and combine them to expose fully functional applications with
shorter development times, and at a reduced cost. In addition, the reduction in
the requirements for in-house IT infrastructure simplifies management, security,
and maintenance costs.

l	 Economies of Scale.  Companies can leverage economies of scale for industry aver-
age capabilities, and focus on their core activities. The economies of scale available
from hosted applications arise from a range of factors, including reduced in-house
infrastructure costs to better utilization of hardware that offers opportunities for
reduced running costs. However, the gains in economies of scale must be balanced
with the loss of control inherent with moving from on-premises to fully hosted
applications.

l	 Offline Capability.  The cloud can act as hub for roaming users. User data and
state can be stored in the cloud and resynchronized when the user reconnects.
Users can move between desktop and mobile clients seamlessly with fewer
network configurations.

.NET Application Architecture Guide, 2nd Edition384

Design Issues
Several common issues are of concern to both ISVs and enterprise customers. While
they cover a range of different aspects of hosted and cloud-based scenarios, these
issues can be categorized into specific areas. Consider the following as your develop
your strategy for hosted and cloud-based services:
l	 Data Isolation and Sharing
l	 Data Security
l	 Data Storage and Extensibility
l	 Identity Management
l	 Multi-tenancy
l	 On-premises or Off-premises, Build or Buy
l	 Performance
l	 Service Composition
l	 Service Integration
l	 Service Management

Data Isolation and Sharing
Hosters can implement isolation and sharing for databases and for database schemas.
There are three basic models:
l	 Separate Databases.  Each tenant has a separate database containing their own

data schemas. This has the advantage of being easy to implement, but the number
of tenants per database server might be relatively low, with subsequent loss of
efficiency, and the infrastructure cost of providing services can rise rapidly. It is
most useful when tenants have specific data isolation or security requirements for
which you can charge a supplement.

l	 Shared Databases, Separate Schemas.  All tenants use the same database, but
have separate sets of predefined fields available. This approach is also easy to
implement, maximizes the number of tenants per database server, and improves
database efficiency. However, it usually results in sparsely populated tables in
the database. It is most useful when storing data for different tenants in the same
tables (commingling) is acceptable in terms of security and isolation, and when
you can anticipate the predefined custom fields that will be required.

l	 Shared Databases, Shared Schema.  All tenants use the same database and special
techniques are used to store data extensions. This approach has the advantage that
the number of custom fields you can offer is practically unlimited. However, in-
dexing, searching, querying, and updating processes are more complex. It is most
useful when storing data for different tenants in the same tables (commingling) is
acceptable in terms of security and isolation but it is difficult to predict the range
of predefined custom fields that will be required.

Chapter 26:  Designing Hosted and Cloud Services 385

The following table illustrates the benefits and liabilities for the three isolation and
sharing models described above. Rows nearer the top of the table imply higher cost
and lower development and operational effort. Rows nearer the bottom of the table
imply lower cost and higher development and operational effort.

Benefits Liabilities
Separate
Databases

Easy to implement.
Easy to move the application from on-
premises to a hosted environment.
Simpler back up, restore, and monitor-
ing as most existing tools operate at a
database level.
High data isolation.

Common tables in the domain model are
duplicated across tenant databases.
Higher hardware costs.

Shared
Database,
Separate
Schemas

Lower memory consumption.
Higher density of tenants per server.
Common tables are shared across tenants.
Requires a data access component that
intercepts table names.
Requires tenant-level authorization to
access data.

Lower isolation.
Backup and restore is a challenge that
requires a custom solution.
Monitoring tenant activity is a challenge.

Shared
Database,
Shared
Schemas

Least memory consumption (fewer data-
base objects).
Highest density of tenants per server.

Least isolation—requires additional devel-
opment effort to ensure high isolation.
Tenant’s data is shared amongst tenants.
Back up and restore is a challenge that
requires a custom solution.
Monitoring tenant activity is a challenge.

Applications optimized for a shared database approach may be more complex and in-
volve higher development cost and effort. However, they will generally support more
tenants per server, and may have lower operational costs. Applications optimized for a
shared schema approach are simpler, and will generally reduce operational costs in the
long term, though this reduction is likely to be less than the shared database approach.

If you must create applications quickly, consider the Separate Databases approach
by configuring each tenant with their own database. Using this approach no special
design is required. Also, consider this approach if your individual tenants have par-
ticularly high data security requirements, or will store very large volumes of data, or
have a very large number of concurrent end users. The Separate Databases approach
is also appropriate if you require the application to be easy to move from on-premises
to hosted, or from hosted to on-premises, and it can allow you to more easily scale
out if the need arises.

Higher isolation is also useful if you expect to offer per tenant value-added services,
where you should consider the Separate Databases or the Shared Database, Separate
Schemas approach. However, if you expect to have a very large number of tenants,
each with relatively small amount of data, consider a less isolated approach such as
Shared Database, Separate Schemas or Shared Database, Shared Schemas.

.NET Application Architecture Guide, 2nd Edition386

Data Security
Cloud-hosted applications must implement strong security, using multiple defense
levels that complement one another to provide data protection in different ways, under
different circumstances, and against both internal and external threats. When planning
a security strategy, consider the following guidelines:
l	 Filtering.  Use an intermediate layer between a tenant and a data source that acts as

a sieve so that it appears to the tenant that theirs is the only data in the database. This
is especially important if you use a shared database instance for all of your tenants.

l	 Permissions.  Use access control lists (ACLs) to determine who can access data in
the application, and what they can do with it.

l	 Encryption.  Obscure every tenant's critical data so that it will remain unreadable
to unauthorized parties, even if they manage to access it.

Data Security Patterns
Depending on the multi-tenant model you adopt, consider the following security
patterns:
l	 Trusted Database Connections  (applies to all three multi-tenant models). The appli-

cation always connects to the database using its own application process identity,
independent of the identity of the user, and the server grants the application access
to the database objects that it can read or manipulate. Additional security must be
implemented within the application itself to prevent individual end users from
accessing any database objects that should not be exposed to them. Each tenant
(organization) that uses the application has multiple sets of credentials associated
with their tenant account, and must grant their end users access to the application
using these credentials. These end users access the application using their indi-
vidual credentials associated with the tenant account, but the application accesses
the database using the single set of credentials associated with that application.
This means that a single database access account is required for each application
(one for each tenant). Alternatively, you can use an STS to obtain encrypted login
credentials for the tenant irrespective of the individual user, and use security code
in the application to control which data individual users can access.

l	 Secure Database Tables  (applies to the Separate Database model and the Shared
Database, Separate Schema model). Grant a tenant user account access to a table
or other database object. In the Separate Database model, restrict access on a
database-wide level to the tenant associated with that database. In the Shared
Database, Separate Schema model, restrict access on a per table basis to the
tenant associated with specific tables.

l	 Tenant Data Encryption  (applies to all three multi-tenant models). Secure the
data using symmetric encryption to protect it, and secure the tenant's private
key using asymmetric (public/private key pair) encryption. Use impersonation
to access the database using the tenant's security context, and use the tenant's

Chapter 26:  Designing Hosted and Cloud Services 387

private key to decrypt the data in the database so that it can be used. The disad-
vantage is that you cannot index encrypted columns, which means that there is a
tradeoff between data security and performance. Try to avoid using index fields
that contain sensitive data.

l	 Tenant Data Filter  (applies to the Shared Database\Shared Schema model). Use
SQL views to select subsets of data from tables based on the tenant or user ID, or
the tenant account's security identifier. Grant tenants access to only their views,
and not to the underlying tables. This prevents users from seeing or accessing any
rows belonging to other tenants or users in the shared tables.

Data Storage and Extensibility
Hosted data may be stored in variety of ways. Two different approaches are emerging
for implementing data storage in hosted applications: hosted relational database
management systems (RDBMS) and nonrelational cloud-based storage. Relational
database systems provide storage for structured data, and are more suited to trans-
actional systems or applications that are I/O intensive; they also typically provide
lower latency and advanced query capabilities. In contrast, cloud storage refers to
any type of data storage that resides in the cloud; including services that provide
database-like functionality, unstructured data services (for example, file storage for
digital media), data synchronization services, and network-attached storage (NAS)
services. Data services are often consumed in a pay as you go model, or in this case
a pay per GB model (including both stored and transferred data).

Cloud storage offers a number of benefits, such as the ability to store and retrieve
large amounts of data in any location at any time. Data storage services are fast,
inexpensive, and almost infinitely scalable; however, reliability can be an issue as
even the best services do sometimes fail. Applications that are sensitive to high
latency might also be affected as each interaction with the storage service requires
network transversal. Finally, transaction support can be an issue with cloud-based
storage systems.These systems generally focus heavily on partitioning and avail-
ability, and consistency cannot always be guaranteed.

Microsoft Azure storage (in an early preview release at time of writing) comprises a
number of services that span different storage needs, which you can access using a
REST API:
l	 Table Storage Services provide structured storage in the form of tables, but these

tables have no defined schema; instead, they contain entities, each of which holds a
number of properties. Popular APIs such as LINQ can be used over any combina-
tion of properties. Table Storage Services focuses on providing massively scalable
tables at a very low cost. However, it is not a relational database and lacks many of
the features you would expect to find in an RDBMS such as joins and foreign keys
across multiple tables.

.NET Application Architecture Guide, 2nd Edition388

l	 Blob Storage Services offers storage for binary data stored in user-defined
containers, which organize sets of blobs within a storage account.

l	 Queue Services store messages that may be read using queuing semantics by any
client that has access to the storage account.

A key challenge to solve when using an RDBMS is schema extensibility. This is the
ability to extend a table with custom fields without recompiling or rebuilding
the application. There are four approaches to extending the schemas at runtime:
l	 Fixed Columns.  This pattern models the extension fields as a set of fixed named

columns for each extensible entity (each table). The number of fixed columns will
depend on the nature of the entity and its usage pattern. It requires a data access
layer that encapsulates and abstracts the named fixed columns and metadata
tables. Consider the following factors for the Fixed Columns approach:
l	 Filtering based on extensible columns is a challenge due to the predefined data

types. For example, using variable length data types such as varchar for all the
extensible columns limits the capability to filter numerically using the <, >, and
= operators. Possible solutions are to allocate a fixed number of fields of each
common data type, or to allow the user to mark columns as searchable and use
a separate table to store data type specific fields.

l	 While this is one of the fastest and more scalable approaches to extensibility, it
generally requires a solution for indexed columns that are not string-based.

l	 The way that the database treats null values may result in sparse data distribution
and wasted space. If a tenant extends only one field, while another extends 20
fields, the database and pages in memory will grow. Microsoft SQL Server 2008
provides a modifier for columns named SPARSE that helps to mitigate this issue.

l	 Custom Schemas.  This pattern is used in conjunction with the Separate Schemas
multi-tenancy pattern. Each schema belongs to a tenant, and contains a different
set of extensible strongly typed columns. Consider the following factors for the
Custom Schemas approach:
l	 It requires encapsulation and abstraction of the data access layer, and a query

processor; though O/RM Frameworks such as Microsoft Entity Framework
(EF) or the open source NHibernate framework can assist in implementation.
For more information, see Additional Resources at the end of this chapter.

l	 Each tenant has their own table, and the table schema will change every time
they add or remove a field. The queries will work against the real data type
(the columns are not all string types). However, rolling up database schema
updates will be non-trivial due to excessive duplication between the tenants'
shared fields (as opposed to the Fixed Columns approach, where one or more
tables exist for all tenants).

l	 This approach is faster than the Fixed Columns pattern when filtering based on
extended columns because it uses the primitive data types.

Chapter 26:  Designing Hosted and Cloud Services 389

l	 Name Value Extension Table.  This pattern allows customers to extend the data
model arbitrarily (with an unlimited number of columns), storing custom data in a
separate table and using metadata to define labels and data types for each tenant's
custom fields. Consider the following factors for the Name Value Extension Table
approach:
l	 It adds a level of complexity for database functions, such as indexing, querying,

and updating records. For example, retrieving data requires multiple joins, and
filtering and grouping is a challenge.

l	 There is only a single database to manage. However, if a growing user base
causes the database to grow, it could be scaled horizontally with tenant parti-
tioning to use separate databases.

l	 This approach will be slower than the other approaches because data retrieval
requires multiple joins.

l	 XML Columns.  This pattern allows customers to extend the data model arbitrarily
with an unlimited number of extensions by storing the extension data in an XML
column. Consider the following factors for the XML Columns approach:
l	 While this approach may seem to be a natural choice for extensibility, it has

lower scalability (the capability to add more records) and lower performance
(query response time) compared to other approaches.

l	 While the use of XML columns in the database leads to relatively simple
implementations, ISVs and developers will require additional skills to
manipulate XML in the database.

l	 It is possible to define indexes for XML columns, but this adds additional
complexity and requires extra storage space.

Identity Management
All applications and services must manage user identity. This is particularly important
in hosted and cloud-based scenarios that can potentially serve a very large number
of customers, and each of these customers may have their own identity framework.
A common approach is for the hoster to delegate the responsibility for managing its
own user accounts to each customer. The ideal is a solution that takes advantage of the
customer’s existing on-premises or federated directory service to enable single sign on
(SSO) across their local and all external hosted services. This reduces the development
effort of building individual and separate identity management systems. Customers
can configure access to the application using familiar tools, and SSO allows users to
access the application or service using their existing credentials.

To enable such a scenario, you must adopt a solution based on industry standards
that interoperate across platforms and organizational boundaries. In general, you
should consider a claims-based identity model based on a federated identity service,
as illustrated in Figure 1. This helps to decouple applications and services from the
authentication mechanism.

.NET Application Architecture Guide, 2nd Edition390

Figure 1
Claims-based identity model based on a federated identity service

Chapter 26:  Designing Hosted and Cloud Services 391

The customer’s existing identity system sends a cryptographically signed security
token that contains a set of claims about each user with every request they make
to an application. Hosting companies that trust the customer’s identity system can
design applications and services to focus just on authorizing relevant claims. The
customer identity system must implement an STS that authenticates users, creates
and signs security tokens using a standard format, and exposes a service to issue
these tokens based on industry standards such as WS-Trust and WS-Federation.
The Microsoft Geneva Framework and Geneva Server provide much of the infra-
structure required to implement these requirements. When implementing a claims-
based identity model, consider the following issues:
l	 If there is a suitable identity store available, consider using this to provide a single

sign on experience across local applications, hosted Web applications, and other
hosted services.

l	 For small or consumer-focused applications where there is no existing identity
store available, consider using a service such as .NET Services Access Control
federating against Windows Live, or an online solution from a third party.

l	 You may need to perform transformations on claims generated from a local
STS to match the requirements of the hoster. Alternatively, hosters may need
to implement transformation systems for different customer STS mechanisms.
Consider using the .NET Access Control Service to provide a transformation
layer or use the Geneva Framework for implementing your own. For more
information about the Geneva Framework, see http://msdn.microsoft.com/
en-us/security/aa570351.aspx.

l	 There may be minor differences in the way that standards-based products from
different vendors are implemented. Compatibility and interoperability issues may
arise if these products do not strictly adhere to the complex standards, or they
provide a slightly different implementation.

l	 If you decide to design your own STS, ensure that it is secure against attack.
As it contains all of the authentication information, vulnerabilities could leave
all applications open to exploit. Also, ensure that your STS implementation is
robust and reliable, and can serve all foreseeable volumes of requests. Failure
of the STS will prevent users accessing all of the applications that depend it.

http://msdn.microsoft.com/

.NET Application Architecture Guide, 2nd Edition392

Multi-tenancy
Individual tenants share the use of the hoster’s hardware and infrastructure, as well
as sharing databases and database systems (each tenant is an organization that may
each have more than one user). Service suppliers must provide a platform with appro-
priate capacity and performance for hosted services. They must also consider how
to keep the cost structure under control, and how they will provide customization
through configuration. There are four common stages in moving towards an efficient
multi-tenancy architecture with user-enabled configuration. The following sections
describe these stages.
l	 Custom.  Each customer runs a separate copy of the software assigned only to

that customer, and the only way to support multiple customers is to serve them
with different copies of the software. Furthermore, because little is done to allow
customization through configuration, each copy includes specific customer cus-
tomizations in the form of custom extension code, custom processes, and/or
custom data extensions. Although the software is, technically, delivered as a
service (it does not run on the customer’s premises), economy of scale cannot
be achieved because each customer runs a different instance of the software.
Although this could be a useful starting point to validate the business model,
it must be avoided once the volume of customers increases. It is impractical to
manage thousands of customers using this model.

l	 Configurable.  The software can be tailored for each tenant through configura-
tion and by avoiding the use of custom code. All the tenants run the same code;
however, the architecture is still not multi-tenant and each customer runs their
own copy of the code, even though the copies are identical. The separation can be
either virtual (virtual machines on a same server) or physical (running on separate
machines). Although this model is a considerable improvement over the custom
model described above, the architecture still allows customization through config-
uration, and the computing power is not shared among the instances. Therefore,
the provider cannot achieve economy of scale.

l	 Multi-tenant.  The UI can be customizable per tenant, as can the business rules
and the data model. The customization per tenant is entirely through configu-
ration using a self service tool, which removes the requirement for the service
provider to perform configuration. This level is almost the SaaS perfect case; the
exception is any capacity to scale out. At this level, data partitioning means that
growth can only be achieved by scaling up.

Chapter 26:  Designing Hosted and Cloud Services 393

l	 Scalable.  The architecture supports multi-tenancy and configuration, plus the
capability to scale out the application. New instances of the software can be trans-
parently added to the instance pool to dynamically support the increasing load.
Appropriate data partitioning, stateless component design, and shared metadata
access are part of the design. At this level, a Tenant Load Balancer (implemented
using a round robin or a rule based mechanism) is introduced, maximizing the
utilization of hosting resources such as CPU and storage. This means that the
total load is distributed across the entire available infrastructure. The data is
also reorganized periodically in order to average the data load per instance. The
architecture is scalable, multi-tenant, and customizable through configuration.

On-premises or Off-premises, Build or Buy
Cloud-hosted applications allow ISVs and hosters to realize economies of scale;
and, in a competitive market, they will tend to pass these saving on to enterprise
customers. However, the move to off-premises and hosted scenarios means that en-
terprises must accept some loss of control of applications, data, and service levels.
Enterprises must consider the tradeoffs for moving to such services, in addition to
deciding whether to build their own applications or buy them from a third party.
The following table illustrates the differences between the build and buy scenarios
for hosted applications.

On-premises At Hoster Cloud Service
Build An application that is devel-

oped in-house and runs in
your data center.

An application that is devel-
oped in-house and runs at a
hosting company.

A vendor-hosted develop-
ment and runtime environ-
ment.

Buy A packaged application that
is bought off the shelf and
runs in your data center.

A packaged application that
is bought off the shelf and
runs at a hosting company.

A hosted application that is
bought from a vendor, who
also hosts the application.

Gains from economies of scale must be balanced with the reduction in control inherent
with moving from on-premises to fully hosted applications. Consider the following
guidelines when deciding whether to move to a cloud-based solution, what type of
application development approach to follow, and where to host your application:
l	 Consider on-premises hosting if you require full control of your application and

data, you have security requirements that prevent you from using hosted services,
or laws or national policies prohibit you from using hosted services. When hosting
applications internally on your own infrastructure, you may:
l	 Choose to develop an in-house application when you cannot source a suitable

prebuilt application, or when you want to retain full control of the application
feature set.

l	 Choose a prebuilt packaged application when one is available that is cost
effective and meets all of your requirements.

.NET Application Architecture Guide, 2nd Edition394

l	 Consider at hoster hosting if you are considering optimizing your operations but
still want to retain control of the software. For example, you might decide to deploy
a heavily customized Enterprise Resource Planning (ERP) package at a hoster and
offload to them the management of power, hardware, network, and the operating
system. Typically, a hoster will accommodate very specific requirements of your
organization; for example, setting up a Virtual Private Network (VPN), adding
specialized hardware, and more. When hosting applications at an external hosting
company, you may:
l	 Choose one of the hoster's prebuilt packaged applications if it can meet your

requirements. The availability of prebuilt packaged applications may influence
your choice of hoster.

l	 Choose a home-built application where you cannot locate a hoster that offers a
suitable prebuilt application. In this case, you must factor in the cost and time
required to develop your own application.

l	 Consider the cloud service (vendor-hosted) approach if you are buying an
SaaS application from a hoster or an ISV; you can provide a specification of the
required application; you do not have the resources, time, or in-house skills to
build the application; or you require an existing standard or customized applica-
tion at short notice. Another reason is to take advantage of the intrinsic properties
of cloud based building block services (such as elasticity) if you are building an
application yourself. When purchasing cloud application services from a vendor:
l	 Choose a prebuilt packaged application created by a vendor if it can meet your

short term and long term requirements. This is the SaaS approach.
l	 Choose a vendor-supplied hosting platform to run your home-built applica-

tion where you cannot source a suitable prebuilt application. You must factor
in the cost and time required to develop your own application. This is the
PaaS approach.

Performance
Cloud-hosted applications must be scalable to support increasing numbers of services,
and increasing load for each service and tenant. When designing services, consider the
following guidelines for scaling applications:
l	 Design services and components to be stateless where possible. This minimizes

memory usage for the service, and improves the opportunity to scale out and load
balance servers.

l	 Use asynchronous input and output calls, which allow the applications to do useful
work while waiting for I/O to complete.

Chapter 26:  Designing Hosted and Cloud Services 395

l	 Investigate the capabilities of the hosting platform that can improve performance.
For example, in Microsoft Azure, use queues to manage requests and worker
processes to carry out background processing.

l	 Use resource pooling for threads, network, and database connections.
l	 Maximize concurrency by using locking only where absolutely necessary.

When scaling data storage and applications, consider the following guidelines:
l	 When scaling the data partition, divide subscriber data into smaller partitions to

meet performance goals. Use schemes such as Hashing (to subdivide content) and
Temporal (based on the time or date range in which the data is valid).

l	 Consider implementing dynamic repartitioning to repartition the data automatically
when the database size reaches a specific maximum size.

l	 When scaling data storage and applications investigate standard patterns, and
the specific techniques and implementations provided by the hosting platform—
some examples are data partitioning, load balancing, failover, and geographical
distribution.

Service Composition
Users in enterprise-level organizations require access to many different document
repositories, types of data, sources of information, and applications that perform
specific functions. Traditionally, users interacted directly with each store or applica-
tion, often using specific isolated applications. However, over time, enterprises have
attempted to consolidate systems; often using intranet Web portals or façade-style
applications that connect to the appropriate downstream applications.

With the advent of services and SOA applications, IT departments can expose
applications and data as services, either hosted in-house or bought in as SaaS. The
service portfolios can still expose the combination of traditional local applications,
internally hosted services, and remote services through portals, which hide the
user from the implementations and allow IT departments to adapt the ranges of
services quickly and easily. However, S+S and SaaS designs and technologies allow
IT departments and enterprise customers to integrate services fully. Service integra-
tion can help to achieve the goal of a many to one model where all applications and
services are available to the user through a composition architecture that effectively
exposes them as a single application, as shown in Figure 2. A service integration
mechanism combines the groups of applications in the portfolios and exposes them
though a rich client that can interact with any service or application.

.NET Application Architecture Guide, 2nd Edition396

Figure 2
A service integration mechanism can compose multiple services into a single interface

Enterprise consumers of cloud-hosted services will usually need to create composition
systems that use the raw services exposed by hosters, and expose them through in-house
portals and portfolios. Effective consumer composition architecture can integrate
information from many sources for end users; which reduces redundant data entry,
enhances human collaboration, and heightens awareness of outstanding tasks and
their status. It also improves the visibility of interrelated business information and help
users to make informed business decisions. Composition of a unified solution that uses
cloud-hosted services usually incorporates the following three layers:
l	 Input source layer.  The input sources include cloud-hosted services, internal appli-

cations, internal databases, Web services, flat files, and more. Internal resources may
be exposed though IT service portfolios.

l	 Composition layer.  This is where the raw data is aggregated and provided to the
user in a new, unified form. Its function is to transform data into business infor-
mation and process intelligence. This layer will usually incorporate the following:
l	 Components that manage access, data, workflow, and rules.
l	 Service agents that negotiate and exchange messages with applications,

databases, Web services, and other resources.

Chapter 26:  Designing Hosted and Cloud Services 397

l	 Identity management components that authenticate and authorize users, and
manage credentials for Web service communication.

l	 Data aggregation components that transform data to match the application
entity model.

l	 User-centric layer.  This layer presents the composite data to the user in a central,
integrated, task-focused user interface.

Consuming cloud-hosted services as part of a composite user interface usually requires
workflow or step-by-step processes to achieve integration of external and internal
services. A common solution is an integration broker that consists of a modularized
pluggable pipeline and associated metadata services to control message movement and
routing. Typical operations in an integration broker pipeline include the following:
l	 Security.  A security module authenticates the data source or digital signature,

decrypts the data, and examines it for security risks such as viruses. Security
operations can be coordinated with existing security policies to control access.

l	 Validation.  A validation module compares the data to relevant schemas and
rejects non-conforming data.

l	 Transformation.  A transformation module converts the data to the correct format.
l	 Synchronization workflow.  A synchronization module uses workflows and rules

to determine the logical destinations and order for propagating messages to the
appropriate destinations. It can also manage workflow process transactions to
guarantee data consistency.

l	 Routing.  A routing module uses routing rules that define the physical destinations,
and transmits the data messages to the specific target. It may use information in the
message to determine destinations based on the content.

Service Integration
Cloud-hosted solutions can help to mitigate some of the challenges encountered with
traditional software, but add new and different challenges for the consumer of these
services. Consider the following the challenges when moving to hosted cloud services
and applications:
l	 Identity Management.  Enterprise procedures for adding, updating, and removing

users must be extended to the remote services. If the external service depends
on user identity, which is very likely for SaaS and for S+S, the provisioning and
deprovisioning processes must be extended. In addition, translation of in-house
user identity into specific roles may be required, possibly through a federated
service, to minimize the migration or duplication of individual user identities at
the remote service host. Enterprise user account policies such as password com-
plexity and account lockouts must also be compatible with those of the remote
service supplier. If no SSO facility is available, there can be increased liabilities,
maintenance costs, and operational inefficiencies.

.NET Application Architecture Guide, 2nd Edition398

l	 Data.  Requirements of data operations, such as Extract, Transform, and Load (ETL)
and data integration, must be analyzed for compatibility with service capabilities.
Hosted services may not support complex data storage patterns, which may affect
the design of data entities and application architecture. In addition, data may need
to be protected more securely to counterbalance the lack of physical security avail-
able when hosting in-house. However, applications can store sensitive or private
data locally, and use the cloud services only for nonsensitive data. You must also
plan for how you will migrate data to the service provider, and how you will
migrate it away and to a different provider should the need arise.

l	 Operations.  In-house integration services and client applications may not be com-
patible with services exposed by the service supplier, even when using industry
standard protocols. You must also ensure that the service provider can generate
appropriate reporting information, and determine how you will integrate this with
your own management and reporting systems. In terms of service levels, Service
Level Agreements (SLAs) may require revision to ensure that they can still be met
when depending on the service provider for escalated support. Enterprises must
also be prepared to implement help desk facilities that act as the first contact point
for users, and define procedures for escalating issues with the service provider.

l	 Security.  Enterprise privacy policies must be compatible with those of the service
provider, and rules for actions that users can execute, such as limits on transaction
size and other business rules, must be maintained—even if these are not part of the
remote service capabilities. This may make the service integration infrastructure
more complex. Procedures and policies for maintaining the security and integrity of
data in the event of service or interconnectivity failure will also be required. Authen-
tication, encryption, and the use of digital signatures will require the purchase of
certificates from certified providers, and may require implementation of a Public
Key Infrastructure (PKI). In addition, integration may require changes to firewall
rules, and updates to firewall hardware and software may need to be required to
provide filtering for application data and XML Schema validation.

l	 Connectivity.  Some types of cloud-based applications rely on good quality
broadband Internet connections to function well. Examples are online trans-
action processing and real time services such as voice over IP (VoIP) and Microsoft
Office Communications Server. In some areas and some countries, this may not
be available. In addition, services that require large data transfers such as backup
services and file delivery services will generally run more slowly over an Internet
connection compared to a local or in-house implementation, which may be an issue.
However, messaging and other similar services may not be as dependent on con-
nection bandwidth or severely affected by occasional loss of connectivity.

Chapter 26:  Designing Hosted and Cloud Services 399

l	 Service Level Agreements.  Skills and expertise will be required to assess suppliers
more comprehensively, and make choices regarding service acquisition and con-
tracts. SLAs may also require revision to ensure that they can still be met when
depending on the services hosted by a remote provider.

l	 Compliance and Legal Obligations.  Compliance with legal and corporate
directives may be affected by the performance of the service supplier, or these
compliance directives and legal obligations may conflict if the service provider
is located in another country or region. There may also be costs associated with
obtaining compliance reports from the service supplier. Local laws and policies
may prevent some types of applications, such as banking applications, from
running in hosted scenarios.

Service Management
Cloud service providers face certain challenges when hosting and offering services
that run in the cloud, specifically around service delivery and support. Some ISVs
may build applications that are hosted elsewhere while others may build and host
their applications themselves, and there are several challenges that you must con-
sider when contemplating developing hosted services. Some will apply to ISVs that
host their own services, while others apply only to hosting companies. The following
sections summarize these challenges:
l	 Service Level Management.  Enterprise users may each demand variations to

the hoster’s standard SLAs, with can make it difficult to meet all demands for all
customers. Customers may choose a cloud-hosted solution as a way of increasing
availability and performance, and so expectations may generally be higher than
for an in-house application. Managing and satisfying these expectations could
be a complex task because it usually demands managing dependencies (such as
network and power providers) and different demands from geographically dis-
tributed customers. Maintenance and service downtime should also be carefully
planned when hosting services for many different enterprises, especially if they
are located in different time zones or have usage that peaks at different times
during the day or week.

l	 Capacity and Continuity Management.  Service providers will not have the same
insight into upcoming changes to customer's capacity requirements as in-house
teams will, which may result in unexpected peaks in usage that require extra
capacity to be available. Advance planning is difficult as each customer's growth
and usage patterns will differ with little or no advance warning. Implementing
and adapting services that match customer requirements is more difficult when
there are many customers to satisfy. Short term decisions on capacity are likely
to prove more expensive in the long run than a staged capacity growth plan, but
long term planning without growth estimates from consumers is more difficult.

.NET Application Architecture Guide, 2nd Edition400

l	 Customer Support.  Help desk staff may need to be aware of and take into ac-
count the requirements and usage scenarios of customers to offer optimum sup-
port. With many customers for each service, failures or issues with that service
will prompt large volumes of calls that may overload the help desk. Help desk
staff may need to be able to quantify incurred costs on a per user basis, especially
for models where support is a chargeable extra. Ideally, the hosted cloud solution
should offer proactive support where the provider will be made aware of issues
by monitoring the health of the solution and proactively initiate resolution of the
problem with the customer. Self-service support mechanisms may also be utilized
to provide the customer with a streamlined, dedicated issue tracking system.

Relevant Design Patterns
Key patterns are organized into categories such as Data Availability, Data Transfer,
Data Transformation, Integration and Composition, Performance and Reliability,
and User Experience; as shown in the following table. Consider using these patterns
when making design decisions for each category.

Category Relevant patterns
Data
Availability

Polling. One source queries the other for changes, typically at regular intervals.
Push. A source with changed data communicates changes to the data sink every
time data in a data source changes, or only at regular intervals.
Publish/Subscribe. A hybrid approach that combines aspects of both polling and
pushing. When a change is made to a data source, it publishes a change notifica-
tion event, to which the data sink can subscribe.

Data
Transfer

Asynchronous Data Transfer. A message-based method where the sender and
receiver exchange data without waiting for a response.
Synchronous Data Transfer. An interface-based method where the sender and
receiver exchange data in real time.

Data
Transformation

Shared Database. All applications that you are integrating read data directly from
the same database.
Maintain Data Copies. Maintain copies of the application’s database so that other
applications can read the data (and potentially update it).
File Transfer. Make the data available by transporting a file that is an extract
from the application’s database so that other applications can load the data
from the files.

Integration
and
Composition

Broker. Hide the implementation details of remote service invocation by encapsu-
lating them into a layer other than the business component itself.
Composition. Combine multiple services, applications, or documents into an
integrated interface while performing security, validation, transformation, and
related tasks on each data source.
Portal Integration. Create a portal application that displays the information
retrieved from multiple applications within a unified UI. The user can then perform
the required tasks based on the information displayed in this portal.

Chapter 26:  Designing Hosted and Cloud Services 401

Performance
and Reliability

Server Clustering. Design your application infrastructure so that your servers
appear to users and applications as virtual unified computing resources to
enhance availability, scalability, or both.
Load-Balanced Cluster. Install your service or application onto multiple servers
that are configured to share the workload. The load-balanced hosts concurrently
respond to different client requests, even multiple requests from the same client.
Failover Cluster. Install your application or service on multiple servers that are
configured to take over for one another when a failure occurs. Each server in the
cluster has at least one other server in the cluster identified as its standby server.

User
Experience

Universal Web. Maximum reach combined with deployment simplicity, and works
on Web browsers with the commonly installed extensions.
Experience First. Maximize the quality of the user experience by taking advan-
tage of optimized computer and device capabilities.

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.

For more information on Microsoft Azure, see “Azure Services Platform” at
http://www.microsoft.com/azure/default.mspx.

For more information on Microsoft “Geneva” identity management,
see “Geneva Simplifies User Access to Applications and Services” at
http://msdn.microsoft.com/en-us/security/aa570351.aspx.

For more information on Software plus Services, see the following MSDN Developer
Center resources:
l	 “Multi-Tenant Data Architecture” at

http://msdn.microsoft.com/en-us/architecture/aa479086.aspx.
l	 "Software + Services (S+S)” at

http://msdn.microsoft.com/en-us/architecture/aa699384.aspx.
l	 "Software + Services for Architects” WebCast by Gianpaolo Carraro at

http://www.microsoft.com/feeds/msdn/en-us/architecture/media/SaaS/
ssForArchitects.asx.

http://www.microsoft.com/architectureguide
http://www.microsoft.com/azure/default.mspx
http://msdn.microsoft.com/en-us/security/aa570351.aspx
http://msdn.microsoft.com/en-us/architecture/aa479086.aspx
http://msdn.microsoft.com/en-us/architecture/aa699384.aspx
http://www.microsoft.com/feeds/msdn/en-us/architecture/media/SaaS/

.NET Application Architecture Guide, 2nd Edition402

For more information on Software plus Services architecture, see the following
resources from the MSDN Architecture Journal:
l	 “A Planet Ruled by Software Architectures” at

http://msdn.microsoft.com/en-us/architecture/bb906059.aspx.
l	 "Head in the Cloud, Feet on the Ground” at

http://msdn.microsoft.com/en-us/library/dd129910.aspx
l	 "Enterprise Mash Ups” at

http://msdn.microsoft.com/en-us/architecture/bb906060.aspx.
l	 "Implications of Software + Services Consumption for Enterprise IT” at

http://msdn.microsoft.com/en-us/architecture/bb906061.aspx.
l	 "Microsoft Office as a Platform for Software + Services” at

http://msdn.microsoft.com/en-us/architecture/bb906062.aspx.
l	 "The Internet Service Bus” at

http://msdn.microsoft.com/en-us/architecture/bb906065.aspx.

For more information on the open source NHibernate framework, see “NHibernate
Forge” at http://nhforge.org/Default.aspx.

http://msdn.microsoft.com/en-us/architecture/bb906059.aspx
http://msdn.microsoft.com/en-us/library/dd129910.aspx
http://msdn.microsoft.com/en-us/architecture/bb906060.aspx
http://msdn.microsoft.com/en-us/architecture/bb906061.aspx
http://msdn.microsoft.com/en-us/architecture/bb906062.aspx
http://msdn.microsoft.com/en-us/architecture/bb906065.aspx
http://nhforge.org/Default.aspx

27
Designing Office Business
Applications

Overview
This chapter introduces Office Business Applications (OBAs), and shows a typical
OBA architecture with the relevant components. It also describes typical scenarios
where OBAs are a suitable choice, and provides guidance on design considerations
and important patterns for OBAs. Additionally, it provides information on integra-
tion of OBA with Microsoft Office SharePoint Server (MOSS) and line-of-business
(LOB) applications.

OBAs are a class of enterprise composite application. They provide solutions that
integrate the core capabilities of networked business systems with the widely
deployed and widely used business productivity services and applications that
constitute the Microsoft Office System. OBAs implement business logic that is
maintained through end user forms, providing a rich user experience that can
help to improve business insight and assist in integrating existing internal or
external systems.

OBAs usually integrate with new and existing LOB applications. They leverage
the rich UI and automation capabilities of the Office clients to simplify complex
processes that require user interaction, and help to minimize errors and improve pro-
cesses. Effectively, OBAs use the Office client applications to fill the gaps between
existing LOB systems and users. Figure 1 illustrates the key components and layers
of an OBA. One thing to note is that this diagram includes a layer named Productivity
between the Presentation and Application Services Layers. The Productivity layer
contains components used to store and manage collaborative work streams in a
document-centric manner.

	 Contents

27	 403

Designing Office Business
Applications	 403
Overview. 403

Components of an Office Business Application . 404
Key Scenarios for Office Business Applications. 405

Enterprise Content Management . 406
Business Intelligence . 407
Unified Messaging. 407

Common OBA Patterns . 408
Extended Reach Channel. 408
Document Integration. 410
Document Workflow . 413
Composite UI. 414
Data Consolidation (Discovery Navigation) . 415
Collaboration. 417
Notifications and Tasks. 417

General Design Considerations . 418
Security Considerations. 419
Deployment Considerations . 420
Relevant Design Patterns . 420
Additional Resources. 422

.NET Application Architecture Guide, 2nd Edition404

Figure 1
Key components of an OBA

Components of an Office Business Application
An OBA is made up of a variety of applications and services that interact to provide
an end-to-end solution to a business problem. It may contain or be created using any
or all of the following items:
l	 Microsoft Office client applications.  The client applications include Outlook®

messaging and collaboration client, Word, Excel, InfoPath® information gathering
program, and PowerPoint® presentation graphics program. Custom forms in Outlook
can be used to host UI controls with the ability to integrate business logic and data
from various sources. Word and Excel offer programmability in the form of the Task
Pane, Smart Tags, and the Ribbon. This makes it possible to combine natural docu-
ment interactions with structured business data and processes. Smart Tags use regular
expression pattern matching to recognize identifiers such as telephone numbers,
government identification numbers, or custom account numbers within the text of a
document. Relevant actions can be presented in the document alongside the data.

Chapter 27:  Designing Office Business Applications 405

l	 Windows SharePoint Services (WSS).  Built upon Windows Server, WSS provides
content management and collaboration features that can help to improve business
processes and team productivity. OBAs can use WSS to store and share documents,
forms, and lists; and support offline synchronization and task management.

l	 MOSS.  MOSS extends the capabilities provided by WSS to offer enterprise-wide
functionality for content management, workflow, search, portals, and personal-
ized sites. OBAs can use MOSS for these features, as well as using Excel Services
for reporting, the Business Data Catalog (BDC) for LOB access, and a security
framework for single sign on (SSO) capabilities.

l	 Technologies and services.  Excel Services allow documents to be authored by
clients using Excel in the usual way, and then saved to SharePoint Server. End
users can view and interact with the documents in a Web browser, and software
developers can programmatically invoke business logic stored within the docu-
ments. OBAs can also use Windows Workflow Foundation (WF) functionality
that is built into MOSS to capture a process, such as a purchase order approval,
and reduce user errors and associated delays. In addition, they can use ASP.NET
Web Page and Web Part rendering to create customized Web sites that reflect the
company’s requirements.

l	 Collaboration features.  Collaboration can be managed by Microsoft Office
Communications Server (OCS), Microsoft Office Groove® software, and
Microsoft Exchange Server.

l	 Development tools.  These include SharePoint Central Administration, SharePoint
Designer, Visual Studio, and Visual Studio Tools for Office.

Key Scenarios for Office Business Applications
OBAs are designed to interoperate using open standards, standard file formats, and
Web services. The metadata definitions of OBA solution objects are based on XML
schemas. All Microsoft Office products are service-enabled at all levels, and use
interoperable OpenXML file formats as the default schemas for business documents
they create. OBAs generally fall into one of three categories that implement key
scenarios. These categories, described in the following sections, are:
l	 Enterprise content management, which allows people to find and use information

based on their role.
l	 Business intelligence, which enables business insight through capabilities such as

server-based Excel solutions.
l	 Unified messaging, which enables communication and collaboration to simplify

team management.

.NET Application Architecture Guide, 2nd Edition406

Enterprise Content Management
Enterprise content management scenarios allow people to find and use information
based on their business role or task requirements by using Office client applications.
These applications may interact directly with the LOB system that provides the
data. However, as shown in Figure 2, one of the more common scenarios in busi-
ness environments is the use of MOSS or WSS as a content-management tool for
Office client documents.

Figure 2a
Office client interacting directly with a LOB system

Figure 2b
Office client interacting with LOB system through a SharePoint intermediary

Chapter 27:  Designing Office Business Applications 407

With the SharePoint solution, you can implement versioning and workflow on the
files associated with Office client applications. In addition, many of the files can be
modified within the SharePoint environment, and features included with MOSS use
Excel to create and display reports. As a result, many of the key scenarios are based
on using SharePoint with Office client applications. The following OBA patterns,
described in detail later in this chapter, are useful for implementing enterprise
content management scenarios:
l	 The Extended Reach Channel pattern extends LOB application functionality to a

broader user base using Office applications as the channel.
l	 The Document Workflow pattern enables control and monitoring of document-

centric processes, and can infuse best practices and enhance underlying business
processes.

l	 The Collaboration pattern augments structured business processes with unstructured
human collaboration.

Business Intelligence
Business intelligence scenarios enable business insight through capabilities such as
server-based Excel solutions. The following OBA patterns, described in detail later in
this chapter, are useful for implementing business intelligence scenarios:
l	 The Document Integration pattern enables the generation of Office documents from

LOB applications; enables information workers to embed LOB data in Office docu-
ments by interacting with LOB data while authoring the document; and enables
server-side processing of documents containing LOB data.

l	 The Composite UI pattern supports composition of multiple application UIs in an
Office document or a SharePoint Web page.

l	 The Data Consolidation pattern enables a more natural way of interacting with
LOB data by allowing users to discover data using searches across multiple LOB
applications, and then act on the results. Data Consolidation uses the Discovery
Navigation pattern.

Unified Messaging
Unified messaging scenarios support communication and collaboration, which simpli-
fies team management. The Notification and Tasks pattern, described in detail later in
this chapter, is useful for implementing unified messaging scenarios. The Notification
and Tasks pattern uses Outlook as a primary UI to receive and act on LOB application–
generated tasks and alerts.

.NET Application Architecture Guide, 2nd Edition408

Common OBA Patterns
OBAs can vary from the very simple to extremely complex custom solutions. OBAs
generally incorporate one or more of the common patterns, which are described in
the following sections:
l	 Extended Reach Channel
l	 Document Integration
l	 Document Workflow
l	 Composite UI
l	 Data Consolidation (Discovery Navigation)
l	 Collaboration
l	 Notifications and Tasks

Extended Reach Channel
Extended Reach Channel applications extend LOB application functionality to a
broader user base using Office applications as the channel. The Extended Reach
Channel pattern is useful for implementing the following scenarios:
l	 Eliminating duplication of effort that currently exists in your enterprise, such as

an Outlook feature for consultants to assign time for meetings to billable projects.
l	 Extending LOB functionality to a broader set of end users, such as a self-service

application that allows employees to update their personal information.
l	 Improving the use of an existing system that users currently avoid because of

duplication of effort or lack of training.
l	 Collecting information from users through e-mail and automatically updating the

system.

The Extended Reach Channel approach supports two different integration patterns:
the Direct Integration pattern and the Mediated Integration pattern. The following
sections describe these patterns.

Direct Integration Pattern

The Direct Integration pattern describes how Office client applications can expose
LOB functionality directly to a broader set of users. In this pattern, access to LOB
interfaces is projected directly into an Office client or is extended to an existing
behavior such as calendaring. The client application may access the LOB data
through a Web service, or may simply display output (such as HTML) generated
by the LOB system, as shown in Figures 3a and 3b.

Chapter 27:  Designing Office Business Applications 409

Figure 3a
The Direct Integration pattern using Web services

Figure 3b
The Direct Integration pattern using HTML

Mediated Integration Pattern

The Mediated Integration pattern describes how metadata stores such as the BDC
can be used to provide an additional level of abstraction that provides common
approaches to managing LOB documents, including security with a SSO mecha-
nism based on a credentials mapping. This pattern provides more opportunities
for composing services and data into a composite UI. A mediator, which could be
the BDC, collects data from disparate sources and exposes it in Office-compatible
formats and services that client applications can consume. Figure 4 illustrates the
Mediated Integration pattern.

.NET Application Architecture Guide, 2nd Edition410

Figure 4
The Mediated Integration pattern

Document Integration
Document Integration applications enable the generation of Office documents from
LOB applications; enable information workers to embed LOB data in Office documents
by interacting with LOB data while authoring the document; and enable server-side
processing of documents containing LOB data. The Document Integration pattern is
useful for implementing the following scenarios:
l	 Reducing duplication of LOB data that is stored in individual Office documents

located on user desktop systems.
l	 Exposing specific subsets of LOB data to Office applications for tasks such as mail

merge or reporting.
l	 Generating Office documents that include items of LOB data in the appropriate

format, automatically refreshed as the data changes. Manual creation of common
layouts should be avoided; the Office applications should create them using tem-
plates where applicable.

Chapter 27:  Designing Office Business Applications 411

l	 Generating documents that require custom server-side processing of LOB data.
Open standards should be used for embedding this data.

l	 Accepting inbound documents, processing the embedded data, and applying it to
the LOB system.

The Document Integration approach supports four different integration patterns that
use XML to pass information to and from LOB systems. The simplest is the Application
Generated Documents pattern. In addition, there are three intelligent document inte-
gration patterns: the Embedded LOB Information pattern, the Intelligent Documents/
Embedded LOB Template pattern, and the Intelligent Documents/LOB Information
Recognizer pattern. The following sections describe these patterns.

Application Generated Documents Pattern
The Application Generated Documents pattern describes how the LOB system can
merge business data with an Office document using batch-oriented server-side pro-
cessing, although client-side generation is also feasible. Common examples include
exporting data to Excel spreadsheets, or generating reports and letters in Word. This
is the most commonly used pattern for document data integration.

Figure 5
The Application Generated Documents pattern

Intelligent Documents/Embedded LOB Information Pattern
The Intelligent Documents/Embedded LOB Information pattern describes how LOB
data can be embedded directly within the body of an Office document, or embedded
as an XML document part and exposed through a content control. Alternatively, the
Office application can use the Office Custom Task Pane (CTP) to display LOB data
that an information worker can browse or search, and embed into a document.
Figure 6 illustrates the Embedded LOB Information pattern.

.NET Application Architecture Guide, 2nd Edition412

Figure 6
The Intelligent Documents/Embedded LOB Information pattern

Intelligent Documents/Embedded LOB Template Pattern
The Intelligent Documents/Embedded LOB Template pattern describes how a tem-
plate can be used to combine metadata from a LOB system with document markup,
such as content controls, XML schemas, bookmarks, named ranges, and smart tags.
At run time, the template is merged with appropriate instances of the LOB data to
create a document. The merging can take place through an add-in within the Office
client application, or on the server.

Figure 7
The Intelligent Documents/Embedded LOB Template pattern

Chapter 27:  Designing Office Business Applications 413

Intelligent Documents/LOB Information Recognizer Pattern
The Intelligent Documents/LOB Information Recognizer pattern describes how
metadata and document markup, such as content controls, XML schemas, book-
marks, named ranges, or smart tags can contain data recognized by the LOB
system. The application can use this data to update the LOB system, or to provide
extra functionality for users. On the server side, the application may start a workflow
using the information. On the client, the application might present context-sensitive
information, such as the details of a customer whose name is recognized in a Word
document.

Document Workflow
Document Workflow applications enable control and monitoring of document-centric
processes, and can infuse best practices and enhance underlying business processes.
The Document Workflow pattern is useful for implementing the following scenarios:
l	 Applications that exchange information, often via e-mail, to perform multistep

tasks such as forecasting, budgeting, and incident management.
l	 Applications where specific legal or corporate compliance procedures must be

followed, and audit information maintained.
l	 Applications that carry out complex document handling and conditional routing

tasks, or must implement best practice-based on rules.

You must consider workflow requirements when implementing this pattern. However,
avoid building custom workflow components where possible; instead use the work-
flow capabilities within SharePoint. The Document Workflow approach supports two
different integration patterns that initiate workflows:
l	 LOB Initiated Document Workflow pattern.  Documents are passed to a

SharePoint document workflow automatically by an action such as saving
them to a SharePoint document library or submitting an InfoPath form. The
workflow might send the document to the next recipient in a list, store copies,
or perform processes on the document depending on the requirements of the
application.

l	 Cooperating Document Workflow pattern.  There may be a series of interactions
between documents and LOB systems that must follow certain rules or prevent
certain actions; for example, preventing edits to a submitted document at a
specific stage of the process, extracting specific information, and publishing
this information back to the LOB system. This pattern will usually use a
SharePoint cooperating workflow that provides the flow logic, while the
intelligent document provides the LOB interaction mechanisms. In complex
scenarios, the LOB system may also update the document as it passes through
the workflow.

.NET Application Architecture Guide, 2nd Edition414

Composite UI
Composite UI applications support composition of multiple application UIs within
an Office document or a SharePoint Web page. The Composite UI pattern is useful
for implementing the following scenarios:
l	 Applications that collect and display several different types of information in a

single UI page or screen.
l	 Applications that use data exposed by multiple networked systems, and display

it in a single UI page or screen.
l	 Applications that must provide a customizable composite interface that users

modify to best suit their requirements.

When implementing this pattern, ensure you follow Office standards, and avoid
creating custom components when Web Parts that provide the required functional-
ity are available. The Composite UI approach supports several different integration
patterns that combine information into a composite UI:
l	 Context Driven Composite User Interface pattern.  Contextual information

determines the UI composition. The contextual information can be static (such
as the application configuration, or a tab added to an Outlook view) or dynamic
(such as hiding or showing tab-based data in the source document). Each region
of the composite UI presents information through an Office client component.
However, users cannot dynamically change the linking at run time between the
document components and the source data located in the LOB system.

l	 Mesh Composite View pattern.  The UI contains components such as ASP.NET
Web Parts or MOSS components that cooperatively interact to expose data from
the same or different LOB systems. For example, a part that represents a view
of a customer from a customer relationship management (CRM) system might
be connected at the time the view is constructed to a part that represents a list of
open orders in an enterprise resource planning (ERP) system. When a customer
is selected in the CRM part, it raises an event and provides the information on the
selected customer identity to the open orders part so that it can show the status of
that order.

Chapter 27:  Designing Office Business Applications 415

l	 RSS and Web Services Composition pattern.  A specialized version of the Mesh
Composite View pattern that combines data published as RSS feeds or through
Web services. Multiple SharePoint Data View Web Parts (or custom parts) format
and present the published data within the UI. An example is a composite view of
the catalogs of several suppliers, where each published item provides a link to a
page on the supplier’s Web site that contains extra information.

l	 Analytics pattern.  A specialized version of the Mesh Composite View pattern that
presents a data analysis dashboard to the end user. It can use Excel Services and
the Excel Services Web Part provided by MOSS 2007 to display data and charts,
or other parts to display custom data and information from the LOB system, and
from other sources, within the composite UI. A useful part provided by MOSS for
dashboards is the Key Performance Indicator (KPI) Web Part that allows users to
define KPIs based on data in any SharePoint list, including a BDC list.

Data Consolidation (Discovery Navigation)
Data Consolidation applications enable a more natural way of interacting with
LOB data by allowing users to discover data using searches across multiple LOB
applications, and then act on the results. They rely on sufficient LOB entity data
being available for the Office applications to act upon. Data Consolidation uses
the Discovery Navigation pattern, and is useful for implementing the following
scenarios:
l	 Applications that provide search capabilities for a single LOB system.
l	 Applications that provide search capabilities across multiple LOB systems.
l	 Applications that provide search capabilities across a diverse range of LOB systems

and other data sources.

Data Consolidation Pattern
The Data Consolidation pattern provides a consistent search experience for infor-
mation workers by combining the results of searches over one or more sources into
a single result set, and presenting not only Uniform Resource Identifiers (URIs)
that link to the results, but also actions associated with the found items. Figure 8
illustrates the Data Consolidation pattern creating a content index.

.NET Application Architecture Guide, 2nd Edition416

Figure 8
The content index contains information collated from a range of sources

Launching a LOB Process

A subpattern of the Data Consolidation pattern uses action links that can initiate a
LOB operation, such as starting a workflow or performing a process on a document,
as illustrated in Figure 9.

Figure 9
Launching a LOB process based on an action for an item in the search results

Chapter 27:  Designing Office Business Applications 417

Collaboration
Collaboration applications augment structured business processes with unstructured
human collaboration. The Collaboration pattern is useful for implementing the
following scenarios:
l	 Applications that involve human interaction that leads to interaction with a LOB

system, such as discussion of a sales opportunity before committing an order.
l	 LOB applications that collate content and user contributions in an unstructured

form, and the later must expose it in a structured format.
l	 Applications that provide information in an unstructured form that users may be

able to edit, such as a wiki or discussion site.

The Collaboration pattern uses MOSS Team Site templates that allow users to col-
laborate around a specific business problem using document libraries, discussion
and task lists, team calendars, and simple project management features. The site can
be provisioned and populated using LOB data, and exposes links to LOB processes
within the appropriate libraries and lists. Access can be through Office documents,
or a Web browser.

Notifications and Tasks
Applications that must support notifications and tasks can use Outlook as a primary
UI to receive and act upon LOB application-generated tasks and alerts. In addition to
Outlook, SharePoint provides notification and task services that can interact with most
e-mail systems using the Simple Mail Transfer Protocol (SMTP). The Notifications and
Tasks pattern is useful for implementing the following scenarios:
l	 Applications that assign tasks and generate notifications for end users.
l	 Applications that integrate multiple LOB operations and must notify users of

status or process requirements.

The e-mail–based Notifications and Tasks approach supports several different integra-
tion patterns that can notify users of tasks and status:
l	 Simple Task and Notification Delivery pattern.  The LOB system delivers tasks

and notifications to users as Outlook tasks and e-mail messages in a one-way flow
of information. Details of the task or the notification are embedded in the body of
the task and e-mail message, but changes are not reflected back in the LOB system.
Options for delivering tasks and notifications include delivering them to Microsoft
Exchange Server (the push model), using an add-in on Outlook that fetches them
(the pull model), or publishing an RSS feed to which users can subscribe.

l	 Direct Task Synchronization pattern.  The LOB system sends tasks to users via
Exchange or Outlook in a synchronized bidirectional flow of information. Users
and the LOB can update tasks at any time, and the changes are propagated to the
LOB system. The task may be part of a LOB workflow.

.NET Application Architecture Guide, 2nd Edition418

l	 Mediated Task Synchronization pattern.  A variant of the Direct Task Synchroniza-
tion pattern, where MOSS acts as a mediator between the LOB system and Outlook
in order to synchronize tasks. The LOB system publishes tasks to a SharePoint Task
List, which is synchronized with Outlook Tasks by using Outlook’s native synchro-
nization mechanism. Updates to the task in Outlook are automatically pushed back
to SharePoint, which raises an event indicating that the change has occurred and
allows custom code to update the LOB system.

l	 Intelligent Tasks and Notifications pattern.  Action links located in the Outlook
CTP allow users to initiate specific actions based on the tasks or notifications sent
by the LOB system. Common tasks involve automatically logging on to the LOB
system, finding the right information, and updating it. An example is a manager
viewing an e-mail message sent by Human Resources to approve a vacation request
for an employee, where the CTP contains action links that allow the manager to
approve or reject the request by updating the LOB system.

l	 Form-based Tasks and Notifications pattern.  A variant of the Intelligent Tasks
and Notification pattern, where the e-mail message contains an attached InfoPath
form prepopulated by the LOB system. The user can open the e-mail message, fill
out the form, and submit it to the LOB system. InfoPath provides data validation,
custom calculations, and logic to assist the user when filling out the form. The
InfoPath CTP can provide additional information, extracted from the LOB system,
to assist the user. A variant of this pattern uses MOSS InfoPath Forms Services to
allow users to fill out forms in a Web browser without requiring InfoPath to be
installed.

General Design Considerations
The design of a suitable OBA is based on the scenarios you must support, and the types
of Office client applications suitable for those scenarios. In addition to considering the
base patterns shown in the previous section, consider the following guidelines when
designing your OBA:
l	 Consider using a mediated integration pattern over direct integration.  When

designing an OBA as an extended reach channel, you can implement interfaces
directly within documents. For example, an Excel spreadsheet can contain custom
input forms. However, this approach requires custom code and limits your ability
to reuse functionality. With a mediated integration pattern, you can take advantage
of applications such as SharePoint and the Business Data Catalog to decouple the
interfaces from the physical documents.

l	 Use OpenXML-based schemas for embedding LOB data in documents.  OpenXML
is a European Computer Manufacturers Association (ECMA) international standard
that is supported by Office 2007 applications, as well as by many independent
vendors and platforms. By using OpenXML, you can share data between Office
applications and applications developed for other platforms.

Chapter 27:  Designing Office Business Applications 419

l	 Create LOB document templates for common layouts that will be reused.  A LOB
template contains markup and metadata associated with the LOB that can be bound
to specific LOB data instances at a later time. In other words, new documents can
be generated by merging LOB data with document templates. End users can create
custom documents without developer involvement, and complex documents can be
generated using server-side batch processing.

l	 Use MOSS to control the review and approval process for documents.  MOSS
provides out of the box features that support a basic workflow process for the
review and approval of documents. For more complex processing requirements,
WF can be used to extend the workflow capabilities found in SharePoint.

l	 Use the Collaboration pattern for human collaboration.  Most LOB applications
are good at handling structured business processes. However, they are not good at
handling the unstructured nature of human interaction with business processes. A
site implementing the collaboration pattern addresses this issue by providing an
interface geared toward collaboration with other users. The SharePoint Team Site
template implements this pattern.

l	 Consider remote data synchronization requirements.  Documents that are created,
updated, or distributed should be synchronized with the LOB system and then
stored for future use. Even though LOB systems are quite useful for handling
transaction oriented activities, they are not suited to capturing the significant
work that occurs between activities.

Security Considerations
Security is important in Office Business Applications that expose data and function-
ality through several types of client applications, and have access to corporate LOB
data. It is important to secure all access to resources, and to protect data passing over
the network. Consider the following guidelines for security when creating OBAs:
l	 Consider implementing SSO so that users access the client applications and the

networked functionality using their current logon credentials, or credentials
validated through a federated service such as Active Directory or SharePoint.

l	 Consider encrypting messages that pass outside of your secure network where
possible. You can use channel encryption mechanisms such as Internet Protocol
Security (IPSec) to protect the network connection between servers and clients.

l	 Consider using the trusted subsystem model for data access using role credentials
to minimize the number of connections required. See Chapter 19, “Physical Tiers
and Deployment” for more information about the trusted subsystem model.

l	 Consider filtering data at the server to prevent exposure of sensitive data in client
applications where this is not necessary.

.NET Application Architecture Guide, 2nd Edition420

Deployment Considerations
You can deploy OBA solutions using either a Windows Installer package or the Click
Once technology:
l	 Click Once  installation requires little user interaction, provides automated updates,

and requires little effort for the developer. However, it can only be used to deploy a
single solution that is not part of a larger solution; it cannot deploy additional files
or registry keys; it cannot interact with the user to configure the installation; and it
cannot provide a branded installation.

l	 Windows Installer  installation can deploy additional components and registry
settings; can interact with the user to configure the installation; and supports
custom branding of the installation. However, it requires advanced configuration,
more developer effort, and cannot provide automated updates.

Relevant Design Patterns
Key patterns are organized into categories such as Collaboration, Composite UI,
Data Consolidation Document Integration, Document Workflow, Extended Reach
Channel, and Tasks and Notifications; as shown in the following table. Consider
using these patterns when making design decisions for each category.

Category Relevant patterns
Collaboration Collaboration. Use unstructured human collaboration to augment structured

business processes.
Composite UI Analytics. A specialized version of the Mesh Composite View pattern that presents

a data analysis dashboard to the end user.
Context Driven Composite User Interface. Use contextual information to deter-
mine the composition of the UI.
Mesh Composite View. Use components in the UI, such as ASP.NET Web Parts or
MOSS components, which cooperatively interact to expose data from the same or
different LOB systems.
RSS and Web Services Composition. A specialized version of the Mesh Composite
View pattern that combines data published as RSS feeds or through Web services.

Data
Consolidation

Discovery Navigation. Allow users to discover data by searching across multiple
LOB applications, and then act on the results.

Chapter 27:  Designing Office Business Applications 421

Category Relevant patterns
Document
Integration

Application Generated Documents. The LOB system merges business data with
an Office document using batch oriented server-side processing.
Embedded LOB Information. LOB data is embedded directly in the body of the
Office document, or embedded as an XML document part and exposed through a
content control.
Embedded LOB Template. A template combines metadata from a LOB system with
document markup, such as content controls, XML schemas, bookmarks, named
ranges, and smart tags.
LOB Information Recognizer. Metadata and document markup—such as content
controls, XML schemas, bookmarks, named ranges, or smart tags—contain data
recognized by the LOB system.

Document
Workflow

Cooperating Document Workflow. A series of interactions between documents
and LOB systems that must follow certain rules or prevent certain actions.
LOB Initiated Document Workflow. Documents are passed to a SharePoint docu-
ment workflow automatically by an action such as saving them to a SharePoint
document library, or submitting an InfoPath form.

Extended
Reach
Channel

Direct Integration. Access to LOB interfaces is projected directly into an Office
client, or is extended to an existing behavior such as calendaring.
Mediated Integration. A mediator, which could be the BDC, collects data from
disparate sources and exposes it in Office-compatible formats and services that
client applications can consume.

Tasks &
Notifications

Direct Task Synchronization. The LOB system sends tasks to users via Exchange
or Outlook as a synchronized bidirectional flow of information.
Form-based Tasks and Notifications. A variant of the Intelligent Tasks and
Notification pattern, where the e-mail message contains an attached InfoPath
Form prepopulated by the LOB system.
Intelligent Tasks and Notifications. Action links located in the Outlook CTP allow
users to initiate specific actions based on the tasks or notifications sent by the
LOB system.
Mediated Task Synchronization. A variant of the Direct Task Synchronization
pattern, where MOSS acts as a mediator between the LOB system and Outlook in
order to synchronize tasks.
Simple Task and Notification Delivery. The LOB system delivers tasks and
notifications to users as Outlook tasks and e-mail messages in a one-way flow of
information.

For more information on OBA patterns, see Barker, Rob, Joanna Bichsel, Adam
Buenz, Steve Fox, John Holliday, Bhushan Nene, and Karthik Ravindran. 6 Microsoft®
Office Business Applications for Office SharePoint® Server 2007. Microsoft Press, 2008.
Additionally, you can refer to the excerpt from the book “Getting Started with Office
Business Applications” at http://msdn.microsoft.com/en-us/library/bb614539.aspx

http://msdn.microsoft.com/en-us/library/bb614539.aspx

.NET Application Architecture Guide, 2nd Edition422

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 “Automating Public Sector Forms Processing and Workflow with Office

Business Application” at
http://blogs.msdn.com/singaporedpe/archive/tags/OBA/default.aspx.

l	 “Getting Started with Office Business Applications” at
http://msdn.microsoft.com/en-us/library/bb614538.aspx.

l	 “OBA (Reference Application Pack) RAP for E-Forms processing” at
http://msdn2.microsoft.com/en-us/architecture/bb643796.aspx.

l	 PowerPoint slides and source code at
http://msdn2.microsoft.com/en-us/architecture/bb643796.aspx.

l	 “OBA Central” at http://www.obacentral.com/.
l	 “Integrating LOB Systems with the Microsoft Office System” at

http://msdn.microsoft.com/en-us/architecture/bb896607.aspx.
l	 “Understanding Office Development” at

http://msdn.microsoft.com/en-us/office/aa905371.aspx.

http://www.microsoft.com/architectureguide
http://blogs.msdn.com/singaporedpe/archive/tags/OBA/default.aspx
http://msdn.microsoft.com/en-us/library/bb614538.aspx
http://msdn2.microsoft.com/en-us/architecture/bb643796.aspx
http://msdn2.microsoft.com/en-us/architecture/bb643796.aspx
http://www.obacentral.com/
http://msdn.microsoft.com/en-us/architecture/bb896607.aspx
http://msdn.microsoft.com/en-us/office/aa905371.aspx

28
Designing SharePoint LOB
Applications

Overview
In this chapter, you will learn about the architecture for a typical SharePoint line-of-
business (LOB) application, and the components it contains. You will see the key
scenarios and the important design considerations for SharePoint LOB applications.
You will also learn about deployment, key patterns, and the technology consider-
ations for designing SharePoint LOB applications.

Microsoft Windows Server® is the core operating system on which SharePoint LOB
applications run. SharePoint integrates tightly with the broader Microsoft platform,
using Internet Information Services (IIS) as a front-end Web server to host Web sites,
and SQL Server as the networked store for site definitions, content type definitions,
published content, and configuration data. SharePoint LOB applications can be con-
figured to publish Internet-facing content through Web sites that can scale out with
Web farm deployment to service large numbers of users, and integrate with ASP.NET
to provide LOB data presentation for these sites. They can use ASP.NET Web Parts,
styles, themes, templates, server controls, and user controls for the UI. Figure 1
shows the key features and layers of a SharePoint LOB application.

	 Contents

28	 423

Designing SharePoint LOB
Applications	 423
Overview. 423

Logical Layers of a SharePoint LOB Application. 424
Physical Tier Deployment. 425

Key Scenarios and Features. 426
General Design Considerations . 427
Specific Design Issues. 428

Business Data Catalog. 428
Document and Content Storage. 429
Excel Services. 430
InfoPath Form Services. 430
SharePoint Object Model . 431
Web Parts . 431
Workflow . 432

Technology Considerations. 433
Deployment Considerations . 433
Relevant Design Patterns . 434
Additional Resources. 434

.NET Application Architecture Guide, 2nd Edition424

Figure 1
Key features of a SharePoint LOB application

Office Business Applications (OBAs), described in Chapter 27, can also integrate
LOB processes to provide rich user experiences for data access, data analysis, and
data manipulation by using role tailored business portals built on top of Windows
SharePoint Services (WSS) and the Microsoft Office SharePoint Server (MOSS).

Logical Layers of a SharePoint LOB Application
The following list describes each of the layers of a SharePoint LOB application:
l	 Presentation layer.  This is the UI of the application. Users connect through a Web

browser to the SharePoint Server Portal, which is composed of Web pages. These
Web pages can be assembled by using Web Parts, which provide rich composition at
the presentation level. Web Parts for Office client applications are also available, and
you can build custom Web Parts to implement application-specific functionality.

Chapter 28:  Designing SharePoint LOB Applications 425

l	 Productivity layer.  Office documents, such as Excel spreadsheets, are stored
in document libraries. Forms that automate tasks in the Office applications are
stored in forms libraries. The productivity layer also implements features for
creating and publishing reports, in the form of either SharePoint lists or Excel
spreadsheets. It can also generate output in the form of a dashboard composed
of information drawn from multiple services. In addition, as described in previ-
ous chapter, Office client applications can be used for information processing
and collaboration.

l	 Application services layer.  This is a reusable layer within the application that
exposes services used by the productivity and presentation layers. It includes
Excel Services for reporting, workflows that use Windows Workflow Foundation
(WF) to implement business processes or document life-cycle management, and
other business Web services. Additionally, clients can access data using the
Business Data Catalog (BDC).

l	 Data layer.  This layer encapsulates the mechanisms for storing and accessing all
of the different types of data required by the application. This includes roles and
identities, as well as the operations data and data warehouses that contain the
LOB data.

Physical Tier Deployment
The previous section describes the logical grouping of components or functionality
of a SharePoint LOB application into separate layers. You must also understand the
physical distribution of components on separate servers of your infrastructure.
The following list describes the common scenarios and guidelines:
l	 Deploy the databases for SharePoint on a separate database server or database

cluster for maximum reliability and performance.
l	 In a nondistributed scenario, deploy the presentation, productivity, and application

services layers on the same Web server or a Web farm.
l	 In a distributed scenario, you can deploy the components of the presentation

layer (portals, sites, pages, and Web Parts) on a Web server or a Web farm, and
the remaining layers and components on a separate application server or appli-
cation farm.

l	 For maximum performance under severe load, you might decide to deploy the
components for the application services layer on a separate application server or
application farm.

.NET Application Architecture Guide, 2nd Edition426

Key Scenarios and Features
SharePoint LOB applications are designed to interoperate using open standards,
standard file formats, and Web services. The metadata definitions of SharePoint LOB
solution objects are based on XML schemas. All Office System products are service
enabled at all levels, and use interoperable OpenXML file formats as the default
schemas for business documents they create.

MOSS assists in providing content management features and implementing business
processes in SharePoint LOB applications. SharePoint sites support specific content
publishing, content management, records management, and business intelligence
requirements. You can also conduct effective searches for people, documents, and
data; participate in forms-driven business processes; and access and analyze large
volumes of business data. The following list describes the features of SharePoint
LOB applications:
l	 Workflow.  MOSS is integrated with WF, and allows developers to create

simple workflows and attach them to the document libraries in SharePoint.
Users can also create custom workflows using the SharePoint designer.

l	 Business intelligence.  MOSS provides users with interactive Business Intelligence
portals that support substantial data manipulation and analysis. Users can create
dashboards from multiple data sources without writing code. Key Performance
Indicators (KPIs) can be defined from Excel Services, SharePoint lists, SQL Server
Analysis Services cubes, and a variety of other sources. Because this data is hosted
within SharePoint, it can be an active participant in other SharePoint services such
as search and workflow.

l	 Content management.  Functionality from Microsoft Content Management Server
(MCMS) has been rolled into MOSS, allowing it to take advantage of comprehen-
sive Web content management features available directly from the SharePoint
platform.

l	 Search.  Enterprise Search in MOSS is a shared service that provides extensive
and extensible content gathering, indexing, and querying facilities, and supports
full text and keyword searches.

l	 Business Data Catalog.  The BDC allows enterprise data to be exposed to Web
Parts, InfoPath Forms Server, and search functions. Developers can use the BDC
to build applications that allow users to interact with LOB data using familiar
interfaces.

l	 OpenXML file format.  Adoption of the OpenXML file format across the Office
System applications facilitates rich server-side document manipulation.

Chapter 28:  Designing SharePoint LOB Applications 427

General Design Considerations
While SharePoint provides many of the basic features you will use when interfacing
with a LOB application, there are several key design issues that you must consider.
These include user experience and the choice of client interface, as well as opera-
tional and maintenance issues. Consider the following guidelines when designing a
SharePoint LOB application:
l	 Enable a user experience tailored to the user’s role.  Provide different UI

options based on the user’s role. SharePoint contains functionality that allows
you to automatically tailor the display based on user roles and groups. Utilize
security groups or audience targeting to provide only the relevant options to
users.

l	 Integrate LOB systems with Office client applications.  Choose patterns,
such as the Direct Access pattern or Mediated pattern, to integrate LOB sys-
tems with Office client applications that are specific to the solution and the
functional requirements. Consider ADO.NET or Web services for the Direct
Access pattern. Consider using MOSS as a middle-tier application server for
the Mediated pattern. For details of these patterns, see Chapter 27, “Designing
Office Business Applications.”

l	 Avoid tight coupling between layers.  Use Web services to resolve dependencies
and avoid tight coupling between the layers.

l	 Consider remote data synchronization requirements.  All documents that are
created, updated, or distributed should be synchronized with the LOB system
and then stored for future use. Even though LOB systems are quite useful for
handling transaction-oriented activities, they are not suited to capturing the
significant work that occurs between activities.

l	 Expose back-end LOB data through services for use in SharePoint and
OBAs.  Exposing your networked data system via services allows SharePoint
and OBA extensions to request, manipulate, and reformat data for the user.
In this way, SharePoint can be used to extend networked system behavior
without extensive code development.

.NET Application Architecture Guide, 2nd Edition428

Specific Design Issues
There are several common issues that you must consider as you develop your
design. These issues can be categorized into specific areas of the design. The
following sections contain guidelines to help you resolve the common issues
in each area:
l	 Business Data Catalog
l	 Document and Content Storage
l	 Excel Services
l	 InfoPath Form Services
l	 SharePoint Object Model
l	 Web Parts
l	 Workflow

Business Data Catalog
The BDC allows enterprise data to be exposed to Web Parts, InfoPath Forms Server,
and search functions. Developers can use the BDC to build applications that allows
users to interact with LOB data using familiar interfaces. Consider the following
guidelines when developing BDC-based applications:
l	 Review the structure of data sources to ensure that they are suitable for direct

consumption by the BDC, and determine how the data will be used; for example,
search, user profiles, or simple display. Ensure that you define an appropriate search
scope to avoid over exposing data. Also, check that you are using the most recent
data access drivers for the data sources to maximize performance.

l	 Ensure that you authenticate users, and authenticate processes when connecting
to data sources. Consider using the enterprise single sign on (SSO) features pro-
vided by SharePoint to authenticate to networked data sources.

l	 Consider using the BDC Definition Editor from the Office Server SDK to minimize
errors when creating the Application Definition File (ADF). If you manually edit
the ADF, consider loading the BDCMedata.xsd schema into Visual Studio to mini-
mize errors.

l	 Consider using the BDC Security Trimmer for custom security trimming of entity
instances, if required.

l	 Avoid overloading the staging area.

Chapter 28:  Designing SharePoint LOB Applications 429

Document and Content Storage
Office documents, such as Excel spreadsheets, are stored in document libraries.
You can use Office desktop applications to consolidate diverse content from mul-
tiple data sources. Consider the following guidelines when storing content in
SharePoint:
l	 When storing documents in document libraries, use content types and their inheri-

tance capabilities to define additional centralized metadata for each document type.
Content types created at root sites can be used in child sites automatically. In addi-
tion, new content types can be derived and extended, starting from existing content
types. Rather than manage each content type individually, use this behavior to
simplify the maintenance of content types.

l	 Identify and plan the content types you will need, and define unique metadata
field names and their associations, document templates, and custom forms with
the content types. Create the content type at the site level if it must be available
on any child site. Create the content type at the list level only if it must be avail-
able to just that list.

l	 Consider customizing the Document Information Panel to collect content type
metadata in order to track and edit metadata for documents. You can add busi-
ness logic or data validation to the Document Information Panel.

l	 Consider storing user-configurable reference data or nontransient data in lists.
However, do not treat SharePoint Lists as database tables. Use a database to
store transient or transactional data. Consider caching the contents of a list
in a DataTable or DataSet if the list will be queried multiple times in your
application.

l	 Do not replace file systems with SharePoint document libraries, or attempt to
use SharePoint document libraries as a source code control mechanism or as a
platform for development team members to collaborate on source code. Use
a document library only to store documents that require collaboration and
management.

l	 Consider the restriction of a maximum of 2000 items per list container in docu-
ment libraries and lists. Consider writing your own UI to retrieve items in lists
when the list container exceeds 2000 items.

l	 Consider organizing documents into folders as opposed to using filtered views.
This can provide faster retrieval.

.NET Application Architecture Guide, 2nd Edition430

Excel Services
Excel Services consists of three main components: Excel Calculation Services loads
the workbook, performs calculations, refreshes external data, and maintains sessions.
Excel Web Access is a Web Part that displays and enables interaction with the Excel
workbook in a browser. Excel Web Services is a Web service hosted in SharePoint
that provides methods that developers can use to build custom applications based
on the Excel workbook. Consider the following guidelines when designing to use
Excel Services:
l	 Ensure that you authenticate all users, and secure your Open Data Connection

files. Consider configuring Kerberos authentication or SSO for Excel Services to
authenticate to SQL Server databases located on other servers.

l	 Configure the trusted file locations and trusted data connection libraries before
publishing workbooks, and publish only the information that is required.

l	 Ensure that the Excel workbooks are saved to the trusted file locations before
publishing, and ensure that Office Data Connection files are uploaded to the
trusted data connection libraries before publishing workbooks.

InfoPath Form Services
InfoPath Form Services provides users with the capability to use browser-based
forms built on templates stored in SharePoint and exposed to the user through
InfoPath. When deployed to a server running InfoPath Form Services, forms based
on browser-compatible templates (.xsn) can be opened in a Web browser from
computers that do not have Office InfoPath 2007 installed, but they will open in
Office InfoPath 2007 when it is installed. Consider the following guidelines when
designing to use InfoPath Forms for Form Services:
l	 Consider creating symmetrical forms, which look and operate exactly the same

way whether they are displayed in the SharePoint Server Web interface, or within
an Office system client application such as Word, Excel, or PowerPoint.

l	 Use the Design Checker task pane of InfoPath to check for compatibility issues in
browser forms. Also, consider selecting the “Enable browser-compatible features
only” option when designing forms for the browser in order to hide unsupported
controls.

l	 Consider using multiple views, instead of a single view with hidden content, to
improve the performance and responsiveness of your forms. However, do not
rely on the apparent security obtained by hiding information using views.

l	 Consider enabling protection to preserve the integrity of form templates and to
prevent users from making changes to the form template. When exposing forms to
public sites, ensure that form templates cannot be accessed by scripts or automated
processes in order to prevent Denial of Service (DoS) attacks. Also, ensure that public
forms do not include sensitive information such as authentication information, or
server and database names.

Chapter 28:  Designing SharePoint LOB Applications 431

l	 Do not use InfoPath Form Services when designing reporting solutions that require
a large volume of data.

l	 Consider submitting the form data to a database when reporting is required, and
store any sensitive information that is collected by the forms in a database.

l	 Consider using Universal Data Connection (UDC) files for flexible management
of data connections and reusability.

l	 Consider using Form View when configuring session state for InfoPath Forms
Services.

SharePoint Object Model
SharePoint exposes an object model that allows you to write code that automates
processes. For example, you can implement custom versioning for documents, or
enforce custom check-in policies. Consider the following guidelines when writing
custom code using the SharePoint object model:
l	 Dispose of the SharePoint objects that you have created after use to release

unmanaged resources. Also, ensure that you dispose of the SharePoint objects
appropriately in exception handlers.

l	 Choose an appropriate caching approach, and avoid caching sensitive or vola-
tile data. Consider loading the data from SharePoint objects into a DataSet or
DataTable if caching is required. However, you must consider thread synchroni-
zation and thread safety if you do cache SharePoint objects.

l	 When elevating privileges, note that only new SharePoint objects created after
elevation will use the elevated privileges.

Web Parts
Web Parts allow you to provide rich composition at the presentation level. You can
build custom Web Parts to implement application-specific functionality, and use Web
Parts provided with SharePoint and other environments such as ASP.NET. You can use
Web Parts to interact with networked LOB applications or Web services, and to create
composite customizable interfaces that support personalization in your SharePoint
LOB applications. If you must provide extra permissions for your Web Parts over and
above the permissions available to ASP.NET, consider creating a custom code access
security policy. Consider the following guidelines when developing Web Parts:
l	 Identify suitable functionality that you would like to implement in Web Parts,

and identify any data sources with which the Web Parts will interact. Consider
using Web Part verbs to allow users to perform discrete actions, and categorize
your properties to distinguish them from Web Part properties.

l	 Design Web Parts using layering guidelines to partition your presentation, busi-
ness, and data logic in order to improve maintainability. Design each Web Part to
perform only a single function in order to improve reuse, and design them to be
configurable or customizable by users where this is appropriate.

.NET Application Architecture Guide, 2nd Edition432

l	 Implement suitable security measures in Web Parts. Only deploy Web Parts to the
global assembly cache where individual user security is not required.

l	 Use Web Part Zones to host Web Parts that users can manage themselves at run
time. If you are using an ASP.NET Master Page, include a Web Part Manager
in master pages that Web Part pages will use. Avoid specifying style attributes
directly on controls contained within Web Parts.

l	 Properly dispose any SharePoint objects and unmanaged resources that you create
in your Web Parts.

Workflow
SharePoint allows developers to create simple workflows and attach them to the
document libraries in SharePoint. Users can also create custom workflows using
the SharePoint Designer, or you can create custom workflows using Visual Studio.
Consider the following guidelines when designing workflows:
l	 Be clear on what business process or part of a business process is being automat-

ed. Ensure that existing business processes are accurate and documented before
physically implementing the workflows, and consider consulting a subject matter
expert or business analyst to review existing business processes.

l	 Choose the appropriate workflow technology to meet the business requirements. For
example, use out of the box SharePoint workflows if business requirements are simple;
such as document approval. Consider using the SharePoint Designer to create work-
flows when out of the box workflows cannot fulfill business requirements.

l	 Consider using Visual Studio to develop custom workflows when business require-
ments require complex workflows or integration with LOB systems, or to create
workflow activities that can be registered with SharePoint Designer in order to
empower information workers.

l	 When developing custom workflows, choose the workflow type that is appropri-
ate for your scenario. Consider state-based and sequential models. Also, consider
implementing comprehensive instrumentation within your code to aid debugging.

l	 When debugging custom workflows, consider setting the logging level to verbose.
l	 Consider versioning your workflow assemblies and changing the solution Globally

Unique Identifier (GUID) when upgrading your old workflows. Also, consider
the effect on existing workflow instances that are running when deploying newer
versions.

l	 Consider creating separate workflow history lists and tasks list for workflows
created by end users.

l	 Consider assigning workflows to content types in order to improve manageability.
Assigning a workflow to a type means that you can use the workflow in many dif-
ferent content libraries, but you need to maintain it in only one place (this func-
tionality is available for out of the box and Visual Studio workflows, but not for

Chapter 28:  Designing SharePoint LOB Applications 433

SharePoint Designer workflows). Bear in mind that there can only be one running
workflow instance of the same type per list item; and that workflow instances will
only start on list items, and not the list itself.

Technology Considerations
The following guidelines will help you to choose an appropriate implementation
technology for your SharePoint workflow, and provide guidance on creating Web
Parts for custom SharePoint interfaces:
l	 If you require workflows that automatically support secure, reliable, transacted

data exchange, a broad choice of transport and encoding options, and that provide
built-in persistence and activity tracking, consider using WF.

l	 If you require workflows that implement complex orchestrations and support
reliable store and forward messaging capabilities, consider using BizTalk Server.

l	 If you must interact with non-Microsoft systems, perform electronic data inter-
change (EDI) operations, or implement Enterprise Service Bus (ESB) patterns,
consider using the Microsoft BizTalk ESB Toolkit.

l	 If your business layer is confined to a single SharePoint site and does not require
access to information in other sites, consider using MOSS. MOSS is not suitable
for multiple-site scenarios.

l	 If you create ASP.NET Web Parts for your application, consider inheriting from the
class System.Web.UI.WebControls.WebParts.WebPart unless you require back-
ward compatibility with SharePoint 2003. If you must support SharePoint 2003,
consider inheriting from the class Microsoft.SharePoint.WebPartPages.WebPart.

Deployment Considerations
SharePoint LOB applications rely on SharePoint itself to provide much of the function-
ality. However, you must deploy the additional artifacts, such as components, in such a
way that SharePoint can access and use them. Consider the following guidelines when
designing a deployment strategy for your SharePoint LOB applications:
l	 Determine the scope for your features, such as farm, Web application, site collection,

or site.
l	 Consider packaging your features into solutions.
l	 Consider deploying your assemblies to the BIN folder instead of the global assembly

cache in order to take advantage of the low level code access security mechanism.
l	 Test your solution after deployment using a nonadministrator account.

.NET Application Architecture Guide, 2nd Edition434

Relevant Design Patterns
Key patterns are shown in the following table. Consider using these patterns when
making design decisions for your SharePoint L OB applications.

Category Relevant patterns
Workflows Data-driven Workflow. A workflow that contains tasks whose sequence is determined

by the values of data in the workflow or the system.
Human Workflow. A workflow that involves tasks performed manually by humans.
Sequential Workflow. A workflow that contains tasks that follow a sequence, where
one task is initiated after completion of the preceding task.
State-driven Workflow. A workflow that contains tasks whose sequence is deter-
mined by the state of the system.

For more information on the Data-Driven Workflow, Human Workflow, Sequential
Workflow, and State-Driven Workflow patterns, see:
l	 “Windows Workflow Foundation Overview” at

http://msdn.microsoft.com/en-us/library/ms734631.aspx.
l	 “Workflow Patterns” at http://www.workflowpatterns.com/.

Additional Resources
To more easily access Web resources on using MOSS and WSS to build
SharePoint LOB Applications, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 “Developing Workflow Solutions with SharePoint Server 2007 and Windows Workflow

Foundation” at http://msdn.microsoft.com/en-us/library/cc514224.aspx.
l	 “Best Practices: Common Coding Issues When Using the SharePoint Object Model” at

http://msdn.microsoft.com/en-us/library/bb687949.aspx.
l	 “Best Practices: Using Disposable Windows SharePoint Services Objects” at

http://msdn.microsoft.com/en-us/library/aa973248.aspx.
l	 “InfoPath Forms Services Best Practices” at

http://technet.microsoft.com/en-us/library/cc261832.aspx.
l	 “White paper: Working with large lists in Office SharePoint Server 2007” at

http://technet.microsoft.com/en-us/library/cc262813.aspx.

http://msdn.microsoft.com/en-us/library/ms734631.aspx
http://www.workflowpatterns.com/
http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/cc514224.aspx
http://msdn.microsoft.com/en-us/library/bb687949.aspx
http://msdn.microsoft.com/en-us/library/aa973248.aspx
http://technet.microsoft.com/en-us/library/cc261832.aspx
http://technet.microsoft.com/en-us/library/cc262813.aspx

Appendices

This section of the guide contains appendices that provide an overview of the
Microsoft application platform; and technology matrices covering topics such as
presentation, data access, integration, and workflow that will help you evaluate and
choose appropriate technologies for your application scenario. Additionally, it walks
you through the features in the Microsoft patterns & practices Enterprise Library,
which can help to accelerate the design and creation of application by addressing
common crosscutting concerns. The appendices also include the Microsoft patterns
& practices pattern catalog, which lists key patterns that you will find useful when
designing your architecture.

The appendices included in this guide are:
l	 Appendix A: The Microsoft Application Platform
l	 Appendix B: Presentation Technology Matrix
l	 Appendix C: Data Access Technology Matrix
l	 Appendix D: Integration Technology Matrix
l	 Appendix E: Workflow Technology Matrix
l	 Appendix F: patterns & practices Enterprise Library
l	 Appendix G: patterns & practices Pattern Catalog

	 Contents

Appendices	 435

Appendix A
The Microsoft Application
Platform

Overview
This appendix starts with a summary of the features of the Microsoft platform that
will help you to find your way around the technologies if you are not familiar with
building applications that target the .NET Framework and Microsoft server tech-
nologies. The next section, “Finding Information and Resources,” will help you to
find information more easily when visiting the many sites that make up Microsoft’s
vast Web presence.

Next are an overview of the .NET Framework and the Common Language Runtime
(CLR), followed by a series of sections that discuss the range of Microsoft application
platform technologies available for a range of application types, collaboration, inte-
gration, data access, and workflow. Then the chapter provides an overview of several
product technologies such as SQL Server, IIS (Web server) and development tools
such as Visual Studio, and external libraries.

The Microsoft application platform is composed of products, infrastructure
components, run-time services, and the .NET Framework, as detailed in the
following table.

	 Contents

Appendix A	 437

The Microsoft Application
Platform	 437
Overview. 437
Finding Information and Resources. 438

How Microsoft Organizes Technical Information on the Web. 438
Microsoft Developer Network . 439
Microsoft TechNet. 440

The .NET Framework. 440
Common Language Runtime . 440
Data Access. 440
Mobile Applications. 442
Rich Client . 442
Rich Internet Application. 443
Services . 443
Workflow. 444
Web Applications. 445
Web Server – Internet Information Services . 445
Database Server – SQL Server. 446
Visual Studio Development Environment. 446
Other Tools and Libraries . 447

patterns & practices Solution Assets. 447
Additional Resources. 448

.NET Application Architecture Guide, 2nd Edition438

Category Technologies
Application
Infrastructure

Common Language Runtime (CLR)
.NET Framework

Collaboration /
Integration /
Workflow

Windows Workflow Foundation (WF)
Microsoft Office SharePoint Server (MOSS)
Microsoft BizTalk Server

Data Access ADO.NET Core
ADO.NET Data Services Framework
ADO.NET Entity Framework
ADO.NET Sync Services
Language Integrated Query (LINQ)

Database Server Microsoft SQL Server
Development Tools Microsoft Visual Studio

Microsoft Expression® Studio design software
Mobile .NET Compact Framework

ASP.NET Mobile
Silverlight Mobile

Rich Client Windows Forms
Windows Presentation Foundation (WPF)

Rich Internet
Application (RIA)

Microsoft Silverlight

Services ASP.NET Web Services (ASMX)
Windows Communication Foundation (WCF)

Web ASP.NET
Web Server Internet Information Services (IIS)

Finding Information and Resources
This guide provides a road map for architecture, and describes the best practices you
should consider when designing applications for the .NET Framework and Microsoft
application platform. While the guide contains a wealth of information, including
step-by-step topics for many of the most common scenarios, it cannot provide full
details of every conceivable topic. However, Microsoft maintains a library of wide
ranging yet deep guidance on all of its technologies, products, and services as
described in the following section.

How Microsoft Organizes Technical Information on the Web
If you are just starting out trying to navigate Microsoft’s rather large collection of
technical documentation, there are a few things that you need to know, which will
help to find what you are looking for more quickly.

Appendix A: The Microsoft Application Platform 439

First, Microsoft has several large Web sites, each with a different function. First Microsoft’s
corporate Web site (http://www.microsoft.com) contains all of Microsoft’s product
marketing information, including a substantial amount of technical marketing. For
example, if you want to know what Microsoft’s official position is on a topic such
as Service Oriented Architecture (SOA), you could find that by simply navigating to
Microsoft.com and searching for “SOA.” In general, Microsoft tries to keep Microsoft.
com focused on presenting the corporate image and explaining the benefits of the
products, and locates technical information on other dedicated Web sites.

While the technical content is kept elsewhere, you can easily find the links to it
from the Microsoft.com home page. If you examine the home page, you will notice
categories of content such as “Highlights,” “Latest Releases,” “Using Your Computer,”
“For Business,” and two categories of technical content, “For IT Professionals” and “For
Developers.” Microsoft makes a distinction between software developers, and all
other types of IT Professionals. This is primarily because there is so much content for
developers, and because developers have significantly different information needs
than, say, network administrators or operations personnel. While many of the links
in these categories change frequently, the primary Web sites for technical informa-
tion do not change. Technical information for developers is found on the Microsoft
Developer Network (MSDN) site at http://msdn.microsoft.com. The primary site
for technical information for all other IT professionals is Microsoft TechNet found at
http://technet.microsoft.com.

Microsoft Developer Network
Once on MSDN, you will notice that it is divided into several areas including
Developer Centers (typically one for each major development tool, language,
technology, and technical domain), the Library (a huge repository of searchable
content), Downloads, Support Forums, and Communities (where you can see
what others are thinking and writing about, and participate should you choose).

There are also a couple of other important special subsites. Channel9
(http://channel9.msdn.com) features informal videos, usually of Microsoft
product group software engineers or architects explaining the technologies
they are working on, and often discussing the future plans of developer tools
or technologies. CodePlex (http://codeplex.com) is Microsoft’s open source
project hosting site. There you can browse projects that other people are work-
ing on in public communities, or even spin up your own project. The Microsoft
patterns & practices team develops all of their offerings in public CodePlex com-
munities, providing the community at large to provide feedback on the project
throughout the development cycle.

MSDN also provides technical chats and events such as Webcasts that can be very
helpful in learning about a new technology area, or emerging technology.

http://www.microsoft.com
http://msdn.microsoft.com
http://technet.microsoft.com
http://channel9.msdn.com
http://codeplex.com

.NET Application Architecture Guide, 2nd Edition440

Microsoft TechNet
Likewise, Microsoft TechNet offers a similar set of information and opportunities. On
TechNet, not surprisingly, you will find TechCenters instead of Developer Centers.
Other than that, the only significant difference is that TechNet contains the technical
content for topics such as network infrastructure design, deployment, operations,
and guidance for installing and managing Microsoft’s products.

The .NET Framework
At a high level, the .NET Framework is composed of a virtual run-time engine, a
library of classes, and run-time services used in the development and execution of
.NET applications. The .NET Framework was initially released as a run-time engine
and core set of classes used to build applications.

The Base Class Library (BCL) provides a core set of classes that cover a wide range of
programming requirements in a number of areas, including UI, data access, database
connectivity, cryptography, numeric algorithms, and network communications.

Overlaying the BCL are core technologies for developing .NET applications. These
technologies include class libraries and run-time services that are grouped by appli-
cation features, such as rich client and data access. As the Microsoft .NET Platform
evolves, new technologies are added on top of the core technologies, such as WCF,
WPF, and WF.

Common Language Runtime
The .NET Framework includes a virtual environment that manages the program’s run-
time requirements. This environment is called the CLR and provides the appearance of
a virtual machine so that programmers do not need to consider the capabilities of the
specific CPU or other hardware that will execute the program. Applications that run
within the CLR are referred to as managed applications. Microsoft .NET Framework
applications are developed using managed code (code that will execute within the
CLR), although some features (such as device drivers that need to use kernel APIs)
are often developed using unmanaged code. The CLR also provides services such as
security, memory management, and exception handling.

Data Access
The following data access technologies are available on the Microsoft platform:
l	 ADO.NET Core.  ADO.NET Core provides facilities for the general retrieval, update,

and management of data. It includes providers for SQL Server, OLE DB, Open
Database Connectivity (ODBC), SQL Server Compact Edition, and Oracle databases.

Appendix A: The Microsoft Application Platform 441

l	 ADO.NET Data Services Framework.  This framework exposes data from any
Linq enabled data source, typically an Entity Data Model, through RESTful Web
services accessed over HTTP. The data can be addressed directly using Uniform
Resource Identifiers (URIs). The Web service can be configured to return the data
as plain Atom and JavaScript Object Notation (JSON) formats.

l	 ADO.NET Entity Framework.  This framework gives you a strongly typed data
access experience over relational databases. It moves the data model from the
physical structure of relational tables to a conceptual model that accurately reflects
common business objects. The Entity Framework introduces a common Entity
Data Model within the ADO.NET environment, allowing developers to define
a flexible mapping to relational data. This mapping helps to isolate applications
from changes in the underlying storage schema. The Entity Framework also
supports LINQ to Entities, which provides LINQ support for business objects
exposed through the Entity Framework. When used as an Object/Relational
Mapping (O/RM) product, developers use LINQ to Entities against business
objects, which Entity Framework will convert to Entity SQL that is mapped
against an Entity Data Model managed by the Entity Framework. Developers
also have the option of working directly with the Entity Data Model and using
Entity SQL in their applications.

l	 ADO.NET Sync Services.  ADO.NET Sync Services is a provider included in
the Microsoft Sync Framework, and is used to implement synchronization for
ADO.NET-enabled databases. It enables data synchronization to be built into
occasionally connected applications. It periodically gathers information from
the client database and synchronizes it with the server database.

l	 Language Integrated Query (LINQ).  LINQ provides class libraries that extend
C# and Visual Basic with native language syntax for queries. It is primarily a
query technology supported by different assemblies throughout the .NET Frame-
work; for example, LINQ to Entities is included with the ADO.NET Entity
Framework assemblies, LINQ to XML is included with the System.Xml assem-
blies, and LINQ to Objects is included with the .NET Framework core system
assemblies. Queries can be performed against a variety of data formats, including
DataSet (LINQ to DataSet), XML (LINQ to XML), in-memory objects (LINQ to
Objects), ADO.NET Data Services (LINQ to Data Services), and relational data
(LINQ to Entities).

l	 LINQ to SQL.  LINQ to SQL provides a lightweight, strongly typed query
solution against SQL Server. LINQ to SQL is designed for easy, fast object
persistence scenarios where the classes in the mid-tier map very closely to
database table structures. Starting with .NET Framework 4.0, LINQ to SQL
scenarios will be integrated and supported by the ADO.NET Entity Framework;
however, LINQ to SQL will continue to be a supported technology. For more
information, see the ADO.NET team blog at http://blogs.msdn.com/adonet/
archive/2008/10/31/clarifying-the-message-on-l2s-futures.aspx.

http://blogs.msdn.com/adonet/

.NET Application Architecture Guide, 2nd Edition442

Mobile Applications
The .NET platform provides the following technology options for mobile applications:
l	 Microsoft .NET Compact Framework.  This is a subset of the Microsoft .NET

Framework designed specifically for mobile devices. Use this technology for
mobile applications that must run on the device as a stand-alone or occasionally
connected application.

l	 ASP.NET for Mobile.  This is a subset of ASP.NET, designed specifically for
mobile devices. ASP.NET Mobile applications can be hosted on a normal IIS Web
server. Use this technology for mobile Web applications when you must support
a large number of mobile devices and browsers that can rely on a guaranteed net-
work connection.

l	 Silverlight for Mobile.  This subset of the Silverlight client requires the Silverlight
plug-in to be installed on the mobile device. Use this technology to port existing
Silverlight applications to mobile devices, or if you want to create a richer UI than
is possible using other technologies.

Rich Client
Windows-based applications are executed by the .NET Framework. The .NET
Framework provides the following technology options for rich client applications:
l	 Windows Forms.  This is the standard UI design technology for the .NET

Framework. Even with the availability of WPF, Windows Forms is still a good
choice for UI design if your team already has technical expertise with Windows
Forms, and the application does not have a requirement for a highly graphical or
streaming media UI.

l	 Windows Presentation Foundation (WPF) application.  WPF applications sup-
port more advanced graphics capabilities, such as 2-D and 3-D graphics, display
resolution independence, advanced document and typography support, animation
with timelines, streaming audio and video, and vector-based graphics. WPF uses
Extensible Application Markup Language (XAML) to implement the UI, data
binding, and event definitions. WPF also includes advanced data binding and
template capabilities. WPF applications can be deployed to the desktop or within
a browser using a XAML browser application (XBAP). WPF applications support
developer/designer interaction—developers can focus on the business logic,
while designers can control the appearance and behavior.

l	 Windows Forms with WPF user controls.  This approach allows you to take
advantage of the more powerful UI capabilities provided by WPF controls. You
can add WPF to your existing Windows Forms application. Keep in mind that
WPF controls tend to work best on higher-powered client machines.

Appendix A: The Microsoft Application Platform 443

l	 WPF with Windows Forms User Controls.  This technology allows you to
supplement WPF with controls that are not provided with WPF. You can use
the WindowsFormsHost control provided in the WindowsFormsIntegration
assembly to add Windows Forms controls. However, there are some restrictions
and inconsistencies related to overlapping controls, interface focus, and rendering
techniques used by the different technologies.

l	 XAML Browser Application (XBAP) using WPF.  This technology hosts a
sandboxed WPF application in Microsoft Internet Explorer or Mozilla Firefox
on Windows. Unlike Silverlight, you can use most of the WPF framework,
but there are some limitations related to accessing system resources from the
partial-trust sandbox. XBAP requires Windows Vista or both .NET Framework
3.5 and the XBAP browser plug-in on the client desktop. XBAP is a good choice
when the required features are not available in Silverlight, and you can specify
the client platform and trust requirements.

Rich Internet Application
The Microsoft application platform includes the Silverlight technology for building
rich Internet applications. RIAs must be hosted on a Web server such as Windows
Server Internet Information Services (IIS). The following options are available for
building RIAs:
l	 Silverlight.  This is a browser-optimized subset of WPF that works cross-platform

and cross-browser. Compared to XBAP, Silverlight is a smaller, faster install but
does not support 3-D graphics and text-flowable documents. Due to its small
footprint and cross-platform support, Silverlight is a good choice for WPF
applications that do not require premium WPF graphics support.

l	 Silverlight with AJAX.  Silverlight natively supports Asynchronous JavaScript
and XML (AJAX) and exposes its object model to JavaScript located in the Web
page. You can use this capability to allow background interaction between your
page components and the server to provide a more responsive user interface.

Services
The .NET platform provides the following technologies for creating service-based
applications:
l	 Windows Communication Foundation (WCF).  WCF is designed to offer a man-

ageable approach to distributed computing and provide broad interoperability,
and includes direct support for service orientation. It supports a range of proto-
cols including HTTP, TCP, Microsoft Message Queuing, and named pipes.

l	 ASP.NET Web services (ASMX).  ASMX offers a simpler approach to distributed
computing and interoperability, but supports only the HTTP protocol.

.NET Application Architecture Guide, 2nd Edition444

Workflow
The .NET platform provides the following technology options for implementing
workflows:
l	 Windows Workflow Foundation (WF).  WF is a foundational technology that

allows you to implement workflow. A toolkit for professional developers and
independent software vendors (ISVs) who want to build a sequential or state-
machine based workflow, WF supports the following types of workflow:
Sequential, State-Machine, Data Driven, and Custom. You can create work-
flows using the Windows Workflow Designer in Visual Studio.

l	 Workflow Services.  Workflow Services provides integration between WCF and WF
to provide WCF-based services for workflow. Starting with Microsoft .NET Frame-
work 3.5, WCF has been extended to provide support for workflows exposed as
services and the ability to call services from within workflows. In addition, Visual
Studio 2008 includes new templates and tools that support workflow services.

l	 Microsoft Office SharePoint Services (MOSS).  MOSS is a content-management
and collaboration platform that provides workflow support based on WF. MOSS pro-
vides a solution for human workflow and collaboration in the context of a SharePoint
server. You can create workflows for document approval directly within the MOSS
interface. You can also create workflows using either the SharePoint Designer or the
Windows Workflow Designer in Visual Studio. For workflow customization, you can
use the WF object model within Visual Studio.

l	 Microsoft BizTalk Server.  BizTalk currently has its own workflow engine that is
geared toward orchestration, such as enterprise integration with system-level work-
flows. A future version of BizTalk may use WF as well as XLANG (an extension of
the Web Service Definition Language used to model service orchestration and col-
laboration), which is the existing orchestration technology in BizTalk. You can define
the overall design and flow of loosely coupled, long-running business processes by
using BizTalk Orchestration Services within and between applications.

Note:  MOSS and BizTalk server are not part of the .NET Framework or Visual Studio; these are inde-
pendent products, but part of the overall Microsoft platform.

Appendix A: The Microsoft Application Platform 445

Web Applications
The .NET platform includes ASP.NET for building Web applications and simple Web
services. ASP.NET applications must be hosted within a Web server such as IIS. The
following technologies are available for building Web applications using ASP.NET:
l	 ASP.NET Web Forms.  This is the standard UI design and implementation technol-

ogy for .NET Web applications. An ASP.NET Web Forms application needs only to
be installed on the Web server, with no components required on the client desktop.

l	 ASP.NET Web Forms with AJAX.  Use AJAX with ASP.NET Web Forms to process
requests between the server and client asynchronously to improve responsiveness,
provide richer experience to the client, and reduce the number of post backs to the
server. AJAX is an integral part of ASP.NET in .NET Framework 3.5 and later.

l	 ASP.NET Web Forms with Silverlight Controls.  If you have an existing ASP.NET
application, you can use Silverlight controls to improve the user experience and
avoid the requirement to write a whole new Silverlight application. This is a good
approach for creating islands of Silverlight content in an existing application.

l	 ASP.NET MVC.  This technology allows you to use ASP.NET to build applications
based on the Model-View-Controller (MVC) pattern. ASP.NET MVC supports test-
driven development and clear separation of concerns between UI processing and
UI rendering. This approach helps to avoid mixing presentation information with
logic code.

l	 ASP.NET Dynamic Data.  This technology allows you to create data-driven ASP.
NET applications that leverage LINQ to Entities functionality. It provides a rapid
development model for line-of-business (LOB)-style data-driven applications,
supporting both simple scaffolding and full customization capabilities.

Web Server – Internet Information Services
The Microsoft platform includes IIS, which provides full-scale support for Internet
publishing, including transport services, client applications, administrative tools,
database and application connectivity, and encrypted communication. IIS supports
the following services:
l	 World Wide Web Service.  This service provides all the features required for

hypertext document publishing, and delivering other types of content that use
HTTP. It provides high performance, compression, extensive configurability, and
supports a range of security and authentication options.

l	 File Transfer Protocol (FTP) Service.  This service allows you to receive and
deliver files using FTP. However, authentication is limited to the Basic method.

.NET Application Architecture Guide, 2nd Edition446

l	 Gopher Service.  This service supports a distributed document search and retrieval
network protocol. It is rarely used today.

l	 Internet Database Connector.  This is an integrated gateway and template scripting
mechanism for the World Wide Web service to access Open Database Connectivity
(ODBC) databases. Generally superseded by new data-access and scripting tech-
nologies such as ASP.NET and ASP.NET Data Services.

l	 Secure Sockets Layer (SSL) Client/Server.  This provides a mechanism to support
encrypted communication over HTTP, allowing clients and servers to communicate
more securely than when sending content as plain text.

l	 Internet Service Manager Server.  This is an administration console and associated
tools that provide local and remote administration features for IIS.

l	 Integration with ASP.NET.  IIS 7.0 and later is specifically designed to integrate
closely with ASP.NET to maximize performance and minimize server load when
using ASP.NET to create and deliver content.

Database Server – SQL Server
A relational database is a common approach for storing and accessing data in an
enterprise application. The Microsoft application platform provides SQL Server as
the database engine for your applications. SQL Server is available in several variants,
from a single-instance, local database (SQL Server Express) scaling to enterprise-level
applications through SQL Server Enterprise Edition.

The data access technologies that are part of the .NET Framework allow you to access
data in any version of SQL Server, so you do not need to modify your application if
you want to scale up to a more powerful version.

Visual Studio Development Environment
The .NET platform provides a comprehensive development environment known as
the Visual Studio Team System. Microsoft Visual Studio is the primary environment
for developing .NET applications, and is available in several different versions that
target specific groups involved in the full life cycle of application development.

You can use the language of your choice within Visual Studio Team System to write
applications that target the .NET Framework. As an integrated development envi-
ronment (IDE), it provides all the tools you require to design, develop, debug, and
deploy rich client, RIA, Web, mobile, services, and Office-based solutions. You can
install multiple versions side by side to obtain the required combination of features.

Appendix A: The Microsoft Application Platform 447

Other Tools and Libraries
In addition to Visual Studio, other tools and frameworks are available to speed devel-
opment or facilitate operational management. Examples are:
l	 System Center, which provides a set of tools and environments for enterprise-level

application monitoring, deployment, configuration, and management. For more
information, see the “Microsoft System Center” at http://www.microsoft.com/
systemcenter/en/us/default.aspx.

l	 Expression Studio, which provides tools aimed at graphical designers for creating
rich interfaces and animations. For more information, see “Microsoft Expression” at
http://www.microsoft.com/expression/products/Overview.aspx?key=studio.

patterns & practices Solution Assets
For more information on solution assets available from the Microsoft patterns &
practices group, see the following resources:
l	 Composite Client Application Guidance for WPF   for both desktop

and Silverlight makes it easier to create modular applications. For more
information, see “Composite Client Application Guidance” at
http://msdn.microsoft.com/en-us/library/cc707819.aspx.

l	 Enterprise Library  contains a series of application blocks that address
crosscutting concerns. For more information, see “Enterprise Library” at
http://msdn.microsoft.com/en-us/library/cc467894.aspx.

l	 Software Factories  speed development of specific types of application
such as Smart Clients, WPF applications, and Web Services. For more
information, see “patterns & practices: by Application Type” at
http://msdn.microsoft.com/en-gb/practices/bb969054.aspx.

l	 Unity Application Block  for both enterprise and Silverlight scenarios
provides features for implementing dependency injection, service location,
and inversion of control. For more information, see “Unity Application Block” at
http://msdn.microsoft.com/en-us/library/dd203101.aspx.

l	 Detailed guidance  for a wide range of enterprise architecture, design,
development, and deployment scenarios. These include scenarios such as
solution development fundamentals, client development, server development,
and services development. For more information, see the patterns & practices
home page at http://msdn.microsoft.com/en-us/library/ms998572.aspx.

http://www.microsoft.com/
http://www.microsoft.com/expression/products/Overview.aspx?key=studio
http://msdn.microsoft.com/en-us/library/cc707819.aspx
http://msdn.microsoft.com/en-us/library/cc467894.aspx
http://msdn.microsoft.com/en-gb/practices/bb969054.aspx
http://msdn.microsoft.com/en-us/library/dd203101.aspx
http://msdn.microsoft.com/en-us/library/ms998572.aspx

.NET Application Architecture Guide, 2nd Edition448

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.

For more information about the .NET Framework, see the following resources:
l	 “.NET Framework 3.5 Overview” at

http://msdn.microsoft.com/en-us/library/a4t23ktk.aspx.
l	 “Overview of the .NET Framework” at

http://msdn.microsoft.com/en-us/library/zw4w595w(VS.71).aspx.
l	 “Overview of the .NET Compact Framework” at

http://msdn.microsoft.com/en-us/library/w6ah6cw1(VS.80).aspx.

For more information about Web services, see the following resources:
l	 “Windows Communication Foundation” at

http://msdn.microsoft.com/en-us/library/ms735119.aspx.
l	 “XML Web Services Using ASP.NET” at

http://msdn.microsoft.com/en-us/library/ba0z6a33.aspx.

For more information about workflow services, see the following resources:
l	 “Microsoft BizTalk ESB Toolkit” at

http://msdn.microsoft.com/en-us/library/dd897973.aspx.
l	 “Workflows in Office SharePoint Server 2007” at

http://msdn.microsoft.com/en-us/library/ms549489.aspx.
l	 “Windows Workflow Foundation (WF)” at

http://msdn.microsoft.com/en-us/netframework/aa663328.aspx.

For more information about other features of the Microsoft platform, see the following
resources:
l	 For more information on data access, see “Data Platform Development” at

http://msdn.microsoft.com/en-gb/data/default.aspx.
l	 For more information about the IIS Web server, see “A High-Level

Look at Microsoft Internet Information Server” at
http://msdn.microsoft.com/en-us/library/ms993571.aspx.

l	 For more information about SQL Server, see “SQL Server” at
http://msdn.microsoft.com/en-gb/sqlserver/default.aspx.

l	 For more information about Visual Studio Team System, see
“Visual Studio 2008 Overview” at
http://msdn.microsoft.com/en-us/vstudio/products/bb931331.aspx.

http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/a4t23ktk.aspx
http://msdn.microsoft.com/en-us/library/zw4w595w
http://msdn.microsoft.com/en-us/library/w6ah6cw1
http://msdn.microsoft.com/en-us/library/ms735119.aspx
http://msdn.microsoft.com/en-us/library/ba0z6a33.aspx
http://msdn.microsoft.com/en-us/library/dd897973.aspx
http://msdn.microsoft.com/en-us/library/ms549489.aspx
http://msdn.microsoft.com/en-us/netframework/aa663328.aspx
http://msdn.microsoft.com/en-gb/data/default.aspx
http://msdn.microsoft.com/en-us/library/ms993571.aspx
http://msdn.microsoft.com/en-gb/sqlserver/default.aspx
http://msdn.microsoft.com/en-us/vstudio/products/bb931331.aspx

Appendix B
Presentation Technology Matrix

Overview
This appendix will help you to understand the tradeoffs you must make when
choosing a presentation technology. It will help you to understand the design
impact of choosing a particular technology, and assist when choosing a presenta-
tion technology for your scenario and application type.

Your choice of presentation technology will be related to both the application type you
are developing and the type of user experience you plan to deliver. Use the Presentation
Technologies Summary to understand the technology choices available for each appli-
cation type. Use the Benefits and Considerations Matrix to make an informed choice of
presentation technology based on the advantages and considerations of each one. Use
the Common Scenarios and Solutions to map your application scenario to common
presentation technology solutions.

Presentation Technologies Summary
The following sections describe the Microsoft technologies available for each of
the four basic application archetypes: mobile, rich client, rich Internet application
(RIA), and Web.

Mobile Applications
The following presentation technologies are suitable for use in mobile applications:
l	 Microsoft .NET Compact Framework.  This is a subset of the Microsoft .NET

Framework designed specifically for mobile devices. Use this technology for
mobile applications that must run on the device as a stand-alone or occasionally
connected application.

	 Contents

Appendix B	 449

Presentation Technology Matrix	 449
Overview. 449
Presentation Technologies Summary. 449

Mobile Applications. 449
Rich Client Applications . 450
Rich Internet Applications. 451
Web Applications. 451

Benefits and Considerations Matrix. 452
Mobile Applications. 452
Rich Client Applications . 453
Rich Internet Applications. 454
Web Applications. 455

Common Scenarios and Solutions. 456
Mobile Applications. 456
Rich Client Applications . 456
Rich Internet Applications. 457
Web Applications. 458

Additional Resources . 459

.NET Application Architecture Guide, 2nd Edition450

l	 ASP.NET for Mobile.  This is a subset of ASP.NET, designed specifically for mobile
devices. ASP.NET Mobile applications can be hosted on a normal Web server. Use
this technology for mobile Web applications when you must support a large number
of mobile devices and browsers that can rely on a guaranteed network connection.

l	 Microsoft Silverlight for Mobile.  This subset of the Silverlight client requires the
Silverlight plug-in to be installed on the mobile device. Use this technology to port
existing Silverlight applications to mobile devices, or if you want to create a richer
UI than is possible using other technologies.

Rich Client Applications
The following presentation technologies are suitable for use in rich client applications:
l	 Windows Forms.  This is the standard UI design technology for the .NET

Framework. Even with the availability of WPF, Windows Forms is still a good
choice for UI design if your team already has technical expertise with Windows
Forms, and the application does not have a requirement for a highly graphical
or streaming media UI.

l	 Windows Presentation Foundation (WPF) application.  WPF applications sup-
port more advanced graphics capabilities, such as 2-D and 3-D graphics, display
resolution independence, advanced document and typography support, anima-
tion with timelines, streaming audio and video, and vector-based graphics. WPF
uses Extensible Application Markup Language (XAML) to implement the UI, data
binding, and event definitions. WPF also includes advanced data binding and
template capabilities. WPF applications can be deployed to the desktop or within
a browser using a XAML browser application (XBAP). WPF applications support
developer/designer interaction—developers can focus on the business logic,
while designers can control the appearance and behavior.

l	 Windows Forms with WPF user controls.  This approach allows you to take
advantage of the more powerful UI capabilities provided by WPF controls. You
can add WPF to your existing Windows Forms application. Keep in mind that
WPF controls tend to work best on higher-powered client machines.

l	 WPF with Windows Forms User Controls.  This technology allows you to
supplement WPF with controls that are not provided with WPF. You can use
the WindowsFormsHost control provided in the WindowsFormsIntegration
assembly to add Windows Forms controls. However, there are some restrictions
and inconsistencies related to overlapping controls, interface focus, and render-
ing techniques used by the different technologies.

l	 XAML Browser Application (XBAP) using WPF.  This technology hosts a sand-
boxed WPF application in Microsoft Internet Explorer or Mozilla Firefox on Win-
dows. Unlike Silverlight, you can use most of the WPF framework, but there are
some limitations related to accessing system resources from the partial-trust sand-
box. XBAP requires Windows Vista or both .NET Framework 3.5 and the XBAP

Appendix B: Presentation Technology Matrix 451

browser plug-in on the client desktop. XBAP is a good choice when the required
features are not available in Silverlight, and you can specify the client platform
and trust requirements.

Rich Internet Applications
The following presentation technologies are suitable for use in RIAs:
l	 Silverlight.  This is a browser-optimized subset of WPF that works cross-platform

and cross-browser. Compared to XBAP, Silverlight is a smaller, faster install but
does not support 3-D graphics and text-flowable documents. Due to its small foot-
print and cross-platform support, Silverlight is a good choice for WPF applications
that do not require premium WPF graphics support.

l	 Silverlight with AJAX.  Silverlight natively supports Asynchronous JavaScript and
XML (AJAX) and exposes its object model to JavaScript located in the Web page.
You can use this capability to allow interaction between your page components and
the server, and provide a more responsive and interactive user interface.

Web Applications
The following presentation technologies are suitable for use in Web applications:
l	 ASP.NET Web Forms.  This is the standard UI design and implementation technol-

ogy for .NET Web applications. An ASP.NET Web Forms application needs only to
be installed on the Web server, with no components required on the client desktop.

l	 ASP.NET Web Forms with AJAX.  Use AJAX with ASP.NET Web Forms to process
requests between the server and client asynchronously to improve responsiveness,
provide richer experience to the client, and reduce the number of postbacks to the
server. AJAX is an integral part of ASP.NET in .NET Framework 3.5 and later.

l	 ASP.NET Web Forms with Silverlight Controls.  If you have an existing ASP.NET
application, you can use Silverlight controls to improve the user experience and
avoid the requirement to write a whole new Silverlight application. This is a good
approach for creating islands of Silverlight content in an existing application.

l	 ASP.NET MVC.  This technology allows you to use ASP.NET to build applications
based on the Model-View-Controller (MVC) pattern. ASP.NET MVC supports test-
driven development and clear separation of concerns between UI processing and
UI rendering. This approach helps to avoid mixing presentation information with
logic code.

l	 ASP.NET Dynamic Data.  This technology allows you to create data-driven ASP.NET
applications that leverage Language-Integrated Query (LINQ) to Entities func-
tionality. It provides a rapid development model for line-of-business (LOB)-style
data-driven applications, supporting both simple scaffolding and full customiza-
tion capabilities.

.NET Application Architecture Guide, 2nd Edition452

Benefits and Considerations Matrix
The following tables contain lists of benefits and liabilities for each of the presentation
technologies described in the previous sections.

Mobile Applications

Technology Benefits Considerations
.NET
Compact
Framework

Runs on the client machine for improved
performance and responsiveness.
Does not require 100% network connec-
tivity.
Has a familiar programming model if you
are used to Windows Forms.
Visual Studio provides designer support.
Is usually installed in ROM on the device.

Has a limited API compared to a desktop
Windows Forms application.
Requires more client-side resources than
an ASP.NET for Mobile application.
Is not as easy to deploy over the Web as
an ASP.NET for Mobile application.

ASP.NET
Mobile

Supports a wide range of devices,
including anything that has a Web
browser.
Does not have a footprint on the
device because no application must
be installed.
Has a familiar programming model if
you are used to ASP.NET Web Forms.
Templates for designer support in
Visual Studio can be downloaded from
the Web.

Design support has been removed from
Visual Studio 2008, but the controls will
still render on devices.
Requires 100% network connectivity
to run.
Performance and responsiveness are
dependent on network bandwidth and
latency.
Many devices now support full HTML
support, so standard ASP.NET applica-
tions may be suitable.

Silverlight
Mobile

Offers rich UI and visualization, includ-
ing 2-D graphics, vector graphics, and
animation.
Silverlight code running on desktops can
run on Silverlight for Mobile.
Isolated storage is available to maintain
objects outside of the browser cache.

Uses more device resources than a Web
application.
Desktop Silverlight applications running
on mobile may require optimization to
account for reduced memory and slower
hardware.
Requires the Silverlight plug-in to be
installed.
May not run on as many types of devices
as Web applications because of plug-in
installation requirement.

Appendix B: Presentation Technology Matrix 453

Rich Client Applications

Technology Benefits Considerations
Windows
Forms

Has a familiar programming model.
Microsoft Visual Studio provides
designer support.
Offers good performance on a wide
range of client hardware.

Does not support 3-D graphics,
streaming media, flowable text; or other
advanced UI features available in WPF
such as UI styling and templates.
Must be installed on the client.

Windows
Forms with
WPF User
Controls

Allows you to add a rich UI to existing
Windows Forms applications.
Provides a transition strategy to full WPF
applications.

Depending on the complexity of your UI,
it may require higher powered graphics
hardware.
You cannot overlay Windows Forms and
WPF controls.

WPF
application

Provides rich UI and visualization includ-
ing 2-D and 3-D graphics, display resolu-
tion independence, vector graphics,
flowable text, and animation.
Supports variable-bandwidth streaming
media (Adaptive Media Streaming).
XAML makes it easier to define the UI,
data binding, and events.
Supports separate developer/designer
integration.

Depending on the complexity of your UI,
it may require higher powered graphics
hardware.
Your design team may be less familiar
with Expression Blend compared to
Visual Studio.
WPF ships with fewer built-in controls
than Windows Forms.

WPF with
Windows
Forms
Controls

Allows you to supplement WPF with
controls that are not provided with WFP;
for example, WPF does not provide a grid
control.

Requires a WindowsFormsHost.
It may be difficult to get focus and input
to transition across boundaries.
You cannot overlap WPF and Windows
Forms controls.
WPF and Windows Forms controls use
different rendering techniques, which
can cause inconsistencies in how they
appear on different platforms.

XBAP using
WPF

Allows you to deploy a WPF application
over the Web.
Provides all the rich visualization and UI
benefits of WPF.
Is easier to deploy and update than a
WPF or Windows Forms application.

Only works on Vista or on a client with
.NET Framework 3.5 and the XBAP
browser plug-in installed.
Only works in Internet Explorer and
Mozilla Firefox browsers, and there may
be some limitation on resource access
on the client.

.NET Application Architecture Guide, 2nd Edition454

Rich Internet Applications

Technology Benefits Considerations
Silverlight Provides a lightweight install for client

machines.
Provides most of the UI and visualiza-
tion power of WPF, such as media
streaming, 2-D graphics, vector
graphics, animation, and resolution
independence.
Isolated storage provides an application
cache independent from the browser
cache.
Supports high definition video.
Client-side processing provides improved
user experience and responsiveness
compared to a Web application.
Supports a wide variety of languages
such as C#, Visual Basic .NET, Ruby,
and Python.
Supports windowless background pro-
cessing as a replacement for JavaScript.
Provides cross-platform support,
including Mac and Linux.
Provides cross-browser support,
including Firefox and Safari.

Requires a Silverlight plug-in to be
installed on the client.
Your team may be less familiar with
Expression Blend compared to Visual
Studio.
Lacks the advanced 3-D graphics and
flowable text support of WPF.
Is not easy to transition from WPF or
XBAP due to differences in the XAML
and controls.

Silverlight
with AJAX

Allows you to use existing AJAX libraries
and routines from your Silverlight
application.
Allows Silverlight objects to be dynami-
cally created and destroyed through
communication with the server as the
user interacts with the application,
which can provide additional opportu-
nities for responsive and interactive
interfaces.

May be an unfamiliar programming
model if your team is used to pure ASP.
NET or Silverlight.

Appendix B: Presentation Technology Matrix 455

Web Applications

Technology Benefits Considerations
ASP.NET
Web Forms

Brings a development experience similar
to Windows Forms to the Web.
Has no client dependency.
Requires no installation on the client.
Provides cross-platform and cross-
browser support.
Provides Visual Studio design support.
A wide range of controls are available.

UI is limited to HTML and Dynamic HTML
(DHTML) support.
Client-side storage is limited to cookies
and View state.
Updating page contents requires a full
postback and page refresh.
Has limited UI responsiveness because
all processing occurs on the server.

ASP.NET
Web Forms
with AJAX

Provides improved UI responsiveness
and a richer experience.
Supports lazy loading.
Allows partial page refreshes.
An integral part of ASP.NET 3.5.

May be an unfamiliar programming
model if your team is used to pure
ASP.NET.
Does not work if JavaScript is disabled
on the client.

ASP.
NET Web
Forms with
Silverlight
Controls

Allows you to add Silverlight rich visu-
alization and UI to existing ASP.NET
applications.
Provides a strategy for transition to full
Silverlight applications.

Requires the Silverlight plug-in to be
installed on the client.
Your team may be less familiar with
Expression Blend compared to Visual
Studio.

ASP.NET
MVC

Supports test-driven development.
Enforces separation between UI pro-
cessing and UI rendering.
Allows you to create user friendly and
search engine friendly URLs.
Provides full control over markup.
Provides full control over how content is
rendered.
Navigation is controlled by configuration
to greatly reduce the amount of code
required.

Does not support View state.
No support for control events.

ASP.NET
Dynamic
Data

Allows the creation of fully data-driven
sites that render automatically.
Has built-in support for LINQ querying
languages.
Has built-in support for the ADO.NET
Entity Framework.
LINQ allows you to model your database
to create object-to-data mappings.

Currently there are only a few controls
that support the technology.

.NET Application Architecture Guide, 2nd Edition456

Common Scenarios and Solutions
The following sections provide guidance on choosing the appropriate type of presen-
tation technology for the four basic application archetypes: mobile, rich client, RIA,
and Web.

Mobile Applications
For mobile applications, consider the following guidelines when choosing a
presentation technology:

Consider using the .NET Compact Framework if:
l	 You are building a mobile application that must support occasionally connected

or offline scenarios.
l	 You are building a mobile application that will run on the client to maximize

performance and responsiveness.

Consider using ASP.NET for Mobile if:
l	 Your team has ASP.NET expertise and you want to target the widest possible

range of devices.
l	 You are building an application that must have no client-side installation or

plug-in dependencies.
l	 You are building an application that can rely on 100% network connectivity.
l	 You must use as few device resources or have the smallest footprint on the device

as possible.

Consider using Silverlight for Mobile if:
l	 You are building a mobile Web application and want to leverage the rich visual-

ization and UI capabilities of Silverlight.
l	 The devices you are targeting have easy access to or already have the Silverlight

plug-in installed.

Rich Client Applications
For rich client applications, consider the following guidelines when choosing a
presentation technology:

Consider using Windows Forms if:
l	 Your team already has experience building Windows Forms applications and you

cannot afford to change to another technology.
l	 You are extending or modifying an existing Windows Forms application.
l	 You do not require rich media or animation support.

Appendix B: Presentation Technology Matrix 457

Consider using WPF if:
l	 You are building a rich client application and want to leverage the rich visualization

and UI capabilities of WPF.
l	 You are building a rich client application that you may want to deploy to the Web

using XBAP.

Consider using Windows Forms with WPF user controls if:
l	 You already have a Windows Forms application and want to take advantage of

WPF capabilities such as advanced graphics, flowable text, streaming media, and
animations.

l	 Consider using WPF with Windows Forms controls if:
l	 You are building a rich client application using WPF and want to use a control not

provided by WPF.

Consider using XBAP if:
l	 You already have a WPF application that you want to deploy to the Web.
l	 You want to leverage rich visualization and UI capabilities of WPF that are not

available in Silverlight.

Rich Internet Applications
For RIA implementations, consider the following guidelines when choosing a
presentation technology:

Consider using Silverlight if:
l	 You want to leverage the rich visualization, streaming media, and UI capabilities

of Silverlight.
l	 You are building an application that requires seamless deployment and the

capability to delay load the individual modules it uses.
l	 You are targeting a range of browsers across different platforms.

Consider using Silverlight with AJAX if:
l	 You want to be able to dynamically manage the object instances in the Silverlight

object model from your Web page.
l	 You want to manipulate Silverlight controls based on user interaction within your

Web page.

.NET Application Architecture Guide, 2nd Edition458

Web Applications
For Web applications, consider the following guidelines when choosing a presentation
technology:

Consider using ASP.NET Web Forms if:
l	 Your team already has experience building ASP.NET Web Forms.
l	 You have an existing ASP.NET Web Forms application that you want to extend

or modify.
l	 You want to run on the widest possible range of client machines.
l	 You do not want to install anything on the client.
l	 You want to design simple functionality such as Create, Read, Update, and Delete

(CRUD) operations without a rich UI or animation.

Consider using ASP. NET Web Forms with AJAX if:
l	 You want to create ASP.NET Web Forms with a more responsive and richer user

experience.
l	 You want to support lazy loading and partial page refreshes.

Consider using ASP.NET Web Forms with Silverlight controls if:
l	 You already have an ASP.NET Web Forms application and want to leverage the

rich visualization and UI capabilities of Silverlight.
l	 You are planning to transition your Web application to Silverlight.

Consider using ASP.NET MVC if:
l	 You want to implement the Model-View-Controller (MVC) pattern.
l	 You want full control over the markup.
l	 You want to implement a clear separation of concerns between UI processing and

UI rendering.
l	 You want to follow test-driven development practices.

Consider using ASP.NET Dynamic Data if:
l	 You want to build a data-driven application rapidly.
l	 You want to use the LINQ query language or the Entity Framework data model.
l	 You want to use the built-in modeling capabilities of LINQ to map your objects to

data more easily.

Appendix B: Presentation Technology Matrix 459

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 For information on Silverlight, see the official Silverlight Web site at

http://silverlight.net/default.aspx.
l	 For information on “Islands of Richness”, see

http://blogs.msdn.com/brada/archive/2008/02/18/
islands-of-richness-with-silverlight-on-an-asp-net-page.aspx.

http://www.microsoft.com/architectureguide
http://silverlight.net/default.aspx
http://blogs.msdn.com/brada/archive/2008/02/18/

Appendix C
Data Access Technology Matrix

Overview
This appendix will help you to understand the tradeoffs you have to make when
choosing a data access technology. It will help you to understand the design impact
of each technology, and assist when choosing a data access technology for your
scenario and application type.

Your choice of data access technology will be related to both the application
type you are developing and the type of business entities you use. Use the Data
Access Technologies Summary to review each technology and its description. Use
the Benefits and Considerations Matrix to understand the range of technologies
available for data access. Use the Common Scenarios and Solutions section to
map your application scenarios to common data-access technology solutions.

Data Access Technologies Summary
The following data access technologies are available on the Microsoft platform:
l	 ADO.NET Core.  ADO.NET Core provides facilities for the general retrieval,

update, and management of data. It includes providers for SQL Server, OLE DB,
Open Database Connectivity (ODBC), SQL Server Compact Edition, and Oracle
databases.

l	 ADO.NET Data Services Framework.  This framework exposes data using the
Entity Data Model, through RESTful Web services accessed over HTTP. The data
can be addressed directly using Uniform Resource Identifiers (URIs). The Web
service can be configured to return the data as plain Atom and JavaScript Object
Notation (JSON) formats.

	 Contents

Appendix C	 461

Data Access Technology Matrix	 461
Overview. 461
Data Access Technologies Summary. 461
Benefits and Considerations Matrix. 463

Object-Relational Data Access. 463
Disconnected and Offline. 464
SOA/Service Scenarios. 464
N-Tier and General . 465

General Recommendations. 466
Common Scenarios and Solutions. 467
LINQ to SQL Considerations . 468
Mobile Considerations. 469
Additional Resources . 469

.NET Application Architecture Guide, 2nd Edition462

l	 ADO.NET Entity Framework.  This framework gives you a strongly typed data access
experience over relational databases. It moves the data model from the physical
structure of relational tables to a conceptual model that accurately reflects common
business objects. The Entity Framework introduces a common Entity Data Model
within the ADO.NET environment, allowing developers to define a flexible map-
ping to relational data. This mapping helps to isolate applications from changes
in the underlying storage schema. The Entity Framework also supports LINQ to
Entities, which provides LINQ support for business objects exposed through the
Entity Framework. When used as an Object/Relational Mapping (O/RM) product,
developers use LINQ to Entities against business objects, which Entity Framework
will convert to Entity SQL that is mapped against an Entity Data Model managed by
the Entity Framework. Developers also have the option of working directly with the
Entity Data Model and using Entity SQL in their applications.

l	 ADO.NET Sync Services.  ADO.NET Sync Services is a provider included in the
Microsoft Sync Framework, and is used to implement synchronization for ADO.
NET-enabled databases. It enables data synchronization to be built into occasion-
ally connected applications. It periodically gathers information from the client
database and synchronizes it with the server database.

l	 Language Integrated Query (LINQ).  LINQ provides class libraries that extend C#
and Visual Basic with native language syntax for queries. It is primarily a query tech-
nology supported by different assemblies throughout the .NET Framework; for
example, LINQ to Entities is included with the ADO.NET Entity Framework assem-
blies, LINQ to XML is included with the System.Xml assemblies, and LINQ to
Objects is included with the .NET Framework core system assemblies. Queries can
be performed against a variety of data formats, including DataSet (LINQ to DataSet),
XML (LINQ to XML), in-memory objects (LINQ to Objects), ADO.NET Data Services
(LINQ to Data Services), and relational data (LINQ to Entities).

l	 LINQ to SQL.  LINQ to SQL provides a lightweight, strongly typed query solu-
tion against SQL Server. LINQ to SQL is designed for easy, fast object persistence
scenarios where the classes in the mid-tier map very closely to database table
structures. Starting with .NET Framework 4.0, LINQ to SQL scenarios will be
integrated and supported by the ADO.NET Entity Framework; however, LINQ
to SQL will continue to be a supported technology. For more information, see the
ADO.NET team blog at http://blogs.msdn.com/adonet/archive/2008/10/31/
clarifying-the-message-on-l2s-futures.aspx.

http://blogs.msdn.com/adonet/archive/2008/10/31/

Appendix C: Data Access Technology Matrix 463

Benefits and Considerations Matrix
The following tables contain lists of benefits and liabilities for the data access technol-
ogies described in the previous sections. The individual tables cover a range of usage
scenarios: object-relational data access, disconnected and offline data access, SOA
and service scenarios, and n-tier and general scenarios. Some general recommenda-
tions for the data access technologies discussed in this appendix follow the tables.

Object-Relational Data Access

Technology Benefits Considerations
ADO.NET
Entity
Framework
(EF)

Decouples the underlying database
structure from the logical data model.
Entity SQL provides a consistent query
language across all data sources and
database types.
Separates metadata into well-defined
architectural layers.
Allows business logic developers to
access the data without knowing data-
base specifics.
Provides rich designer support in Visual
Studio to visualize data entity structure.
Use of a provider model allows it to be
mapped to many databases.

Requires you to change the design of
your entities and queries if you are
coming from a more traditional data
access method.
Uses separate object models.
Has more layers of abstraction than LINQ
to DataSet.
Can be used with or without LINQ to
Entities.
If your database structure changes, you
must regenerate the Entity Data Model
and re-deploy the EF libraries.

LINQ to
Entities

A LINQ-based solution for relational data
in the ADO.NET Entity Framework.
Provides strongly typed LINQ access to
relational data.
Supports LINQ-based queries against
objects built on top of the EF Entity Data
Model.
Processing occurs on the server.

Requires the ADO.NET Entity Framework.

LINQ to SQL Simple way to read/write objects when
the data object model matches the
physical database model.
Provides strongly typed LINQ query
access to SQL data.
Processing occurs on the server.

Functionality integrated into the Entity
Framework as of .NET Framework 4.0.
Maps LINQ queries directly to the data-
base instead of through a provider, and
therefore works only with Microsoft SQL
Server.

.NET Application Architecture Guide, 2nd Edition464

Disconnected and Offline

Technology Benefits Considerations
LINQ to
DataSet

Allows full-featured queries against a
DataSet.

All processing occurs on the client.

ADO.NET
Sync
Services

Enables synchronization between
databases, collaboration, and offline
scenarios.
Synchronization can execute in the
background.
Provides a hub-and-spoke type of
architecture for collaboration between
databases.

You must implement your own change
tracking.
Exchanging large chunks of data during
synchronization can reduce performance.

SOA/Service Scenarios

Technology Benefits Considerations
ADO.
NET Data
Services
Framework

Data can be addressed directly via a URI
using a REST-like scheme.
Data can be returned in either Atom or
JSON formats.
Includes a lightweight versioning scheme
to simplify the release of new service
interfaces.
The .NET Framework, Silverlight, and
AJAX client libraries allow developers to
work directly with objects and provide
strongly typed LINQ access to ADO.NET
Data Services.
The .NET Framework, Silverlight, and
AJAX client libraries provide a familiar
API surface to Windows Azure Tables,
SQL Data Services, and other Microsoft
services.

Is only applicable to service-oriented
scenarios.

LINQ to
Data Ser-
vices

Allows you to create LINQ-based queries
against client-side data returned from
ADO.NET Data Services.
Supports LINQ-based queries against
REST data.

Can only be used with the ADO.NET Data
Services client-side framework.

Appendix C: Data Access Technology Matrix 465

N-Tier and General

Technology Benefits Considerations
ADO.NET
Core

Includes .NET managed code providers
for connected access to a wide range of
data stores.
Provides facilities for disconnected data
storage and manipulation.

Code is written directly against specific
providers, thereby reducing reusability.
The relational database structure may
not match the object model, requiring
you to create a data-mapping layer.

ADO.
NET Data
Services
Framework

Data can be addressed directly via a URI
using a REST-like scheme.
Data can be returned in either Atom or
JSON formats.
Includes a lightweight versioning scheme
to simplify the release of new service
interfaces.
Provider model allows any IQueryable
data source to be used.
The .NET Framework, Silverlight, and
AJAX client libraries provide a familiar
API surface to Windows Azure Tables,
SQL Data Services, and other Microsoft
services.

Is only applicable to service-oriented
scenarios.
Provides a resource-centric service that
maps well to data-heavy services, but
may require more work if a majority of
the services are operation-centric.

ADO.NET
Entity
Framework

Separates metadata into well-defined
architectural layers.
Supports LINQ to Entities for querying
complex object models.
Use of a provider model allows it to be
mapped to many database types.
Allows you to build services that have
well defined boundaries, and data/
service contracts for sending and
receiving well defined entities across
the service boundary.
Instances of entities from your Entity
Data Model are directly serializable and
consumable by Web services.
Full flexibility in structuring the payload—
send individual entities, collections of
entities, or an entity graph to the server.
Eventually will allow for true persistence-
ignorant objects to be shipped across
service boundaries.

Requires you to change the design
of your entities and queries if you are
coming from a more traditional data
access method.
Entity objects can be sent across a net-
work, or you can use the Data Mapper
pattern to transform entities into objects
that are more generalized DataContract
types. The planned POCO support will
eliminate the need to transform objects
when sending them over a network.
Building service endpoints that receive
a generalized graph of entities is less
service oriented than endpoints that
enforce stricter contracts on the types of
payload that might be accepted.

(continued)

.NET Application Architecture Guide, 2nd Edition466

Technology Benefits Considerations
LINQ to
Objects

Allows you to create LINQ-based queries
against objects in memory.
Represents a new approach to retrieving
data from collections.
Can be used directly with any collec-
tions that support IEnumerable or
IEnumerable<T>.
Can be used to query strings, reflection-
based metadata, and file directories.

Works only with objects that implement
the IEnumerable interface.

LINQ to XML Allows you to create LINQ-based queries
against XML data.
Is comparable to the Document Object
Model (DOM), which brings an XML docu-
ment into memory, but is much easier
to use.
Query results can be used as parameters
to XElement and XAttribute object
constructors.

Relies heavily on generic classes.
Is not optimized to work with untrusted
XML documents, which require different
security mitigation techniques.

LINQ to SQL Provides a simple technique for retrieving
and updating data as objects when the
object model and the database model are
the same.

As of .NET Framework 4.0, the Entity
Framework will be the recommended
data access solution for LINQ-to-rela-
tional scenarios.
LINQ to SQL will continue to be support-
ed and will evolve based on feedback
received from the community.

General Recommendations
Consider the following general recommendations when choosing a data access
technology:
l	 Flexibility and performance.  If you need maximum performance and flexibility, con-

sider using ADO.NET Core. ADO.NET Core provides the most capabilities and is
the most server-specific solution. When using ADO.NET Core, consider the tradeoff
of additional flexibility versus the need to write custom code. Keep in mind that
mapping to custom objects will reduce performance. If you require a thin frame-
work that uses the ADO.NET providers and supports database changes through
configuration, consider the Enterprise Library Data Access Application Block.

l	 Object relational mapping (O/RM).  If you are looking for an O/RM-based solution
and/or must support multiple databases, consider the Entity Framework. This is
ideal for implementing Domain Model scenarios.

l	 Offline scenario.  If you must support a disconnected scenario, consider using
DataSets or the Sync Framework.

Appendix C: Data Access Technology Matrix 467

l	 N-Tier scenario.  If you are passing data across layers or tiers, available options
include passing entity objects, Data Transfer Objects (DTO) that are mapped to
entities, DataSets, and custom objects. If you are building resource-centric services
(REST), consider ADO.NET Data Services. If you are building operation-centric
services (SOAP), consider Windows Communication Foundation (WCF) services
with explicitly defined service and data contracts.

l	 SOA and services scenarios.  If you expose your database as a service, consider
ADO.NET Data Services. If you want to store your data in the cloud, consider SQL
Data Services.

l	 Microsoft Windows Mobile.  Many data technologies are too heavy for the limited
memory capabilities of most Windows Mobile devices. Consider using SQL Server
Compact Edition database and ADO.NET Sync Services to maintain data on a mobile
device and synchronize it with a server-based database system. Features such as
merge replication can also be useful in Windows Mobile scenarios.

Common Scenarios and Solutions
The following sections provide guidance on choosing the appropriate type of data
access technology for your application.

Consider using ADO.NET Core if:
l	 You must use low-level APIs for full control over data access in your application.
l	 You want to leverage the existing investment in ADO.NET providers.
l	 You are using traditional data access logic against the database.
l	 You do not need the additional functionality offered by the other data access

technologies.
l	 You are building an application that must support a disconnected data access

experience.

Consider using ADO.NET Data Services Framework if:
l	 You want to access data that is exposed as a service using REST-like URIs.

Consider using ADO.NET Entity Framework if:
l	 You must share a conceptual model across applications and services.
l	 You must map a single class to multiple tables via inheritance.
l	 You must query relational stores other than the Microsoft SQL Server family of

products.
l	 You have an object model that you must map to a relational model using a flexible

schema.
l	 You need the flexibility of separating the mapping schema from the object model.

.NET Application Architecture Guide, 2nd Edition468

Consider using ADO.NET Sync Services if:
l	 You must build an application that supports occasionally connected scenarios.
l	 You are using Windows Mobile and want to synchronize with a central database

server.

Consider using LINQ to Data Services if:
l	 You are using data returned from ADO.NET Data Services in a client.
l	 You want to execute queries against client-side data using LINQ syntax.
l	 You want to execute queries against REST data using LINQ syntax.

Consider using LINQ to DataSets if:
l	 You want to execute queries against a Dataset, including queries that join tables.
l	 You want to use a common query language instead of writing iterative code.

Consider using LINQ to Entities if:
l	 You are using the ADO.NET Entity Framework.
l	 You must to execute queries over strongly typed entities.
l	 You want to execute queries against relational data using the LINQ syntax.

Consider using LINQ to Objects if:
l	 You must execute queries against a collection.
l	 You must execute queries against file directories.
l	 You must execute queries against in-memory objects using the LINQ syntax.

Consider using LINQ to XML if:
l	 You are using XML data in your application.
l	 You want to execute queries against XML data using the LINQ syntax.

LINQ to SQL Considerations
LINQ to Entities is the recommended solution for LINQ to relational database
scenarios. LINQ to SQL will continue to be supported but will not be a primary
focus for innovation or improvement. If you are already relying on LINQ to SQL,
you can continue using it. For new solutions, consider using LINQ to Entities in-
stead. For more information, see the ADO.NET team blog at
http://blogs.msdn.com/adonet/.

http://blogs.msdn.com/adonet/

Appendix C: Data Access Technology Matrix 469

Mobile Considerations
A number of the technologies listed above are not available on the Windows Mobile
operating system. The following technologies are not available on Windows
Mobile at the time of publication:
l	 ADO.NET Entity Framework
l	 ADO.NET Data Services Framework
l	 LINQ to Entities
l	 LINQ to SQL
l	 LINQ to Data Services
l	 ADO.NET Core; Windows Mobile supports only SQL Server and SQL Server

Compact Edition

Be sure to check the product documentation to verify availability for later versions.

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 “ADO.NET” at

http://msdn.microsoft.com/en-us/library/e80y5yhx(vs.80).aspx.
l	 “ADO.NET Data Services” at

http://msdn.microsoft.com/en-us/data/bb931106.aspx.
l	 “ADO.NET Entity Framework” at

http://msdn.microsoft.com/en-us/data/aa937723.aspx.
l	 “Language-Integrated Query (LINQ)” at

http://msdn.microsoft.com/en-us/library/bb397926.aspx.
l	 “SQL Server Data Services (SSDS) Primer” at

http://msdn.microsoft.com/en-us/library/cc512417.aspx.
l	 “Introduction to the Microsoft Sync Framework Runtime” at

http://msdn.microsoft.com/en-us/sync/bb821992.aspx.

http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/e80y5yhx
http://msdn.microsoft.com/en-us/data/bb931106.aspx
http://msdn.microsoft.com/en-us/data/aa937723.aspx
http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://msdn.microsoft.com/en-us/library/cc512417.aspx
http://msdn.microsoft.com/en-us/sync/bb821992.aspx

Appendix D
Integration Technology Matrix

Overview
This appendix will help you to understand the tradeoffs you must make when
choosing an integration technology. It will help you to understand the design
impact of choosing a particular technology, and assist when choosing an integra-
tion technology for your scenario and application type.

Your choice of integration technology will be related to the kinds of applications you are
developing. Use the Integration Technologies Summary to review each technology and
its description. Use the Benefits and Considerations Matrix to understand the range of
technologies available for integration. Use the Common Scenarios and Solutions to map
your application scenario to common integration technology solutions.

Integration Technologies Summary
The following list describes the Microsoft technologies available for application
integration:
l	 Microsoft BizTalk® Server.  BizTalk Server provides a complete stack of adapters,

orchestration, messaging, and protocols for building Enterprise Application
Integration (EAI)–enabled systems.

l	 Microsoft Host Integration Server.  Host Integration Server provides a platform
for connecting applications with IBM zSeries and iSeries applications. In addition,
Host Integration Server supports data connections between Microsoft Message
Queuing and IBM WebSphere MQ.

	 Contents

Appendix D	 471

Integration Technology Matrix	 471
Overview. 471
Integration Technologies Summary . 471
Benefits and Considerations Matrix. 472
Common Scenarios and Solutions. 474
Additional Resources. 475

.NET Application Architecture Guide, 2nd Edition472

l	 Microsoft Message Queuing.  Message queuing allows you to connect applications
using queued messaging. Message queuing provides guaranteed message delivery,
priority-based messaging, and security. It can support integration with systems that
may be occasionally connected or temporarily offline. Message queuing also sup-
ports both synchronous and asynchronous messaging scenarios.

l	 Microsoft BizTalk ESB Toolkit.  This is a series of entities that provides a loosely-
coupled messaging architecture built on top of the services provided by BizTalk
Server. It exploits the underlying BizTalk Server features to provide a flexible and
extensible architecture that includes capabilities such as transformation, delivery
assurance, message security, service registry, intelligent routing, and unified ex-
ception handling.

Benefits and Considerations Matrix
The following table lists the benefits and considerations for each integration technology.

Technology Benefits Considerations
BizTalk
Server

Enables electronic document exchange rela-
tionships between companies using Electronic
Data Interchange (EDI) and/or Extensible
Markup Language (XML) formats.
Integrates with non-Microsoft systems.
Easily extended to provide ESB capabilities.
Windows Communication Foundation (WCF)
line-of-business (LOB) adapters enable devel-
opment of custom adapters for use inside or
outside BizTalk.
Includes adapters for integration with systems
such as SAP, Oracle, and SQL databases.
Provides a SOAP adapter to help you to work
with Web services.

Might lead to a tightly-coupled
infrastructure.
Requires customization to achieve
ESB capabilities.

Appendix D: Integration Technology Matrix 473

Technology Benefits Considerations
Host
Integration
Server

Supports network integration between Win-
dows Server and IBM mainframe or AS/400
computers.
Provides secure host access and identity
management with support for Secure Sockets
Layer (SSL)/Transport Layer Security (TLS),
single sign on (SSO), and password synchro-
nization.
Provides data integration with support for
Message Queuing and XML-based Web
services.
Includes a data access tool for creating and
managing connections with IBM DB2 data-
bases.
Supports enterprise scalability and perfor-
mance with simultaneous host sessions, load
balancing, and hot failover.
BizTalk adapters for Host Systems are avail-
able to support BizTalk integration with DB2,
IBM WebSphere MQ, Host Applications, and
Host Files.

Must be installed in a Windows
Server environment.
Requires Microsoft Visual Studio
2005 or greater.
Requires Message Queuing with
routing support.

Microsoft
Message
Queuing

Enables applications to communicate with
each other across heterogeneous networks
using message-based methods.
Supports reliable messaging between applica-
tions inside and outside of an enterprise.
Supports transactional capabilities, such as
ensuring that messages are only delivered
once, that messages are delivered in order,
and confirmation that messages were re-
trieved from destination queues.
Provides message routing based on network
topology, transport connectivity, and session
concentration needs.
Allows message delivery over HTTP transport
with support for SOAP Reliable Messaging
Protocol (SRMP).
Supports the distribution of a single message
to multiple destinations.
Is included with Windows Server 2003 and
later.
Supports two deployment modes: domain
mode with access to the Active Directory, and
Workgroup mode.
Includes WCF-provided endpoints for Message
Queuing.

Deployment mode should be
considered prior to installing and
configuring Message Queuing.
When using the Workgroup deploy-
ment mode, messages cannot be
encrypted, internal certificates
cannot be used, and cross-platform
messaging is not supported.
Independent clients should be used
instead of dependent clients.
Message Queuing is optimized for
sending remotely and receiving
locally. As a result, you should avoid
remote queue reads.
You should avoid functions that
query Active Directory.
Asynchronous notifications using
events can become lost.
WCF endpoints require Microsoft
.NET Framework 3.0 or later.

(continued)

.NET Application Architecture Guide, 2nd Edition474

Technology Benefits Considerations
Microsoft
BizTalk ESB
Toolkit

Provides dynamic resolution of service end-
points at run time, which abstracts endpoint
definition.
Decouples the message transformation from
the application.
Integrates closely with WCF to provide secure
and reliable messaging.
Provides fault detection and reporting,
through unified exception handling for both
system and business exceptions.
Includes resolvers for communicating with ser-
vice registries such as Universal Description,
Discovery and Integration (UDDI).
Supports an itinerary-based approach for
routing and transformation.
Supports client-side and server itineraries.
Supports resolver extensibility for creating
custom resolvers.
Supports the BizTalk designer for itinerary
creation.
Provides an exception management portal.
Exposes all key features such as exception
handling, routing, resolution, and more as
Web services.
Provides itinerary tracking using Business
Activity Monitoring (BAM).

Requires BizTalk Server 2006 R2
or later.
May require customization for
specific business scenarios.
By default, there is no tracking
display for ESB Itinerary Tracking
data.

Common Scenarios and Solutions
The following sections provide guidance on choosing the appropriate type of
integration technology for your applications:

Consider using BizTalk Server if:
l	 You want interaction with multiple Web services via an orchestrator as part of a

Service Oriented Architecture (SOA).
l	 You want to support business-to-business processes, including industry standards

such as EDIFACT, ANSCI X12, HL7, HIPAA, or SWIFT.
l	 You want parallel execution of services.
l	 You need a solution that is highly reliable and requires a dedicated scalable server

infrastructure with no code changes required.

Appendix D: Integration Technology Matrix 475

l	 You must be able to measure business Key Performance Indicators (KPIs) by con-
figuring a BAM solution to provide near real time visibility into your application’s
process data.

l	 You must abstract your application business logic into declarative rule policies
that can be changed easily to match dynamic changes of business requirements.

Consider using Host Integration Server if:
l	 You must support interaction with IBM zSeries or iSeries applications.
l	 You want to integrate BizTalk with DB2, WebSphere MQ, Host Applications, or

Host Files.
l	 You want to integrate Message Queuing with WebSphere MQ.

Consider using Microsoft Message Queuing if:
l	 You must support message-based interaction between applications.
l	 You want to integrate with non-Microsoft platforms.
l	 You must support SRMP.

Consider using the Microsoft BizTalk ESB Toolkit if:
l	 You must support an itinerary-based approach.
l	 You must support dynamic resolution and routing.
l	 You want to use dynamic transformations.
l	 You must support robust and unified exception management for your EAI system.

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 For more information on BizTalk, see “BizTalk Server” at

http://msdn.microsoft.com/en-us/biztalk/default.aspx.
l	 For more information on Host Integration Server, see "Host Integration Server” at

http://www.microsoft.com/hiserver/default.mspx.
l	 For more information on MSMQ, see "Microsoft Message Queuing” at

http://www.microsoft.com/windowsserver2003/technologies/msmq/default.mspx.
l	 For best practice information on MSMQ, see "Programming Best Practices with

Microsoft Message Queuing Services (MSMQ)” at
http://msdn.microsoft.com/en-us/library/ms811053.aspx.

l	 For more information, see “Microsoft BizTalk ESB Toolkit” at
http://msdn.microsoft.com/en-us/library/dd897973.aspx.

http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/biztalk/default.aspx
http://www.microsoft.com/hiserver/default.mspx
http://www.microsoft.com/windowsserver2003/technologies/msmq/default.mspx
http://msdn.microsoft.com/en-us/library/ms811053.aspx
http://msdn.microsoft.com/en-us/library/dd897973.aspx

Appendix E
Workflow Technology Matrix

Overview
This appendix will help you to understand the tradeoffs you have to make when
choosing a workflow technology. It will help you to understand the design impact of
each technology, and assist when choosing a workflow technology for your scenario
and application type.

Your choice of workflow technology will be related to the type of workflow you are
developing. Use the Workflow Technologies Summary to review each technology and
its description. Use the Benefits and Considerations Matrix to understand the range
of technologies available for workflow. Use the Common Scenarios and Solutions to
map your application scenario to common workflow technology solutions.

Workflow Technologies Summary
The following workflow technologies are available on the Microsoft platform:
l	 Windows Workflow Foundation (WF).  WF is a foundational technology that allows

you to implement workflow. A toolkit for professional developers and independent
software vendors (ISVs) who want to build a sequential or state-machine based
workflow, WF supports the following types of workflow: Sequential, State-Machine,
Data Driven, and Custom. You can create workflows using the Windows Workflow
Designer in Visual Studio.

l	 Workflow Services.  Workflow Services provides integration between Windows
Communication Foundation (WCF) and WF to provide WCF-based services for
workflow. Starting with Microsoft .NET Framework 3.5, WCF has been extended
to provide support for workflows exposed as services and the ability to call services
from within workflows. In addition, Visual Studio 2008 includes new templates
and tools that support workflow services.

	 Contents

Appendix E	 477

Workflow Technology Matrix	 477
Overview. 477
Workflow Technologies Summary. 477
Human Workflow vs. System Workflow. 478
Benefits and Considerations Matrix. 478
Common Scenarios and Solutions. 480
Additional Resources. 481

.NET Application Architecture Guide, 2nd Edition478

l	 Microsoft Office SharePoint Services (MOSS).  MOSS is a content-management
and collaboration platform that provides workflow support based on WF. MOSS pro-
vides a solution for human workflow and collaboration in the context of a SharePoint
server. You can create workflows for document approval directly within the MOSS
interface. You can also create workflows using either the SharePoint Designer or the
Windows Workflow Designer in Visual Studio. For workflow customization, you can
use the WF object model within Visual Studio.

l	 Microsoft BizTalk Server.  BizTalk currently has its own workflow engine that is
geared toward orchestration, such as enterprise integration with system-level work-
flows. A future version of BizTalk may use WF as well as XLANG (an extension of
the Web Service Definition Language used to model service orchestration and col-
laboration), which is the existing orchestration technology in BizTalk. You can define
the overall design and flow of loosely coupled, long-running business processes by
using BizTalk Orchestration Services within and between applications.

Human Workflow vs. System Workflow
The term workflow applies to two fundamental types of process:
l	 Human workflow.  This is a type of workflow in which a process that includes

human intervention is broken down into a series of steps or events. These events
flow from one step to the next based on conditional evaluation. The majority of
the time, workflow is composed of activities that are carried out by humans.

l	 System workflow.  Sometimes called orchestration, this a specific type of workflow
that is generally used to implement mediation between business services and
business processes. Orchestration does not include any human intervention.

Benefits and Considerations Matrix
The following table lists the key benefits and considerations for each of the workflow
technology.

Technology Benefits Considerations
Windows
Workflow
Foundation
(WF)

A developer-centric solution for creating
workflows.
Supports sequential, state-machine, and
data-driven workflows.
Designer support available in Visual
Studio.
Includes protocol facilities for secure,
reliable, transacted data exchange.
Supports long-running workflows that
can persist across system restarts.

Custom code is required if you want to
host the designer in your application.
Does not provide true parallel execution
support.

Appendix E: Workflow Technology Matrix 479

Technology Benefits Considerations
Workflow
Services

Provides integration between WCF and
WF.
Allows you to expose workflows to client
applications as services.
Supports coordination across multiple
services to complete a business process.
When calling Workflow Services, the WF
runtime is automatically engaged for
new or existing workflow instances.
Provides developer support in Visual
Studio 2008, with new templates and
tools for Workflow Services.

Requires .NET Framework 3.5 or higher.
Extra coding is required when not using
default security credentials.

MOSS 2007
Workflow

The workflow engine is based on WF.
Approval-based workflow can be defined
using the Web interface.
SharePoint Designer can be used to de-
fine conditional or data-driven workflows.
Visual Studio can be used to create
custom workflows using WF components
and services.
Integrates with applications in the
Microsoft Office suite.

Workflows are bound to a single site, and
cannot access information in other sites.
Not well suited for complex line-of-busi-
ness (LOB) integrated workflow solutions.

BizTalk Provides a single solution for business
process management.
Enables electronic document exchange
relationships between companies using
Electronic Data Interchange (EDI) and/
or Extensible Markup Language (XML)
formats.
Contains orchestration capabilities for
designing and executing long-running,
loosely coupled business transactions.
Integrates with non-Microsoft systems.
Easily extended to provide Enterprise
Service Bus (ESB) capabilities.
WCF LOB adapters enable development
of custom adapters for use inside or
outside BizTalk.

Saves the orchestration state to SQL
Server, which can introduce latency while
executing the orchestration.
Current version does not use WF. How-
ever, a future version may support WF.

.NET Application Architecture Guide, 2nd Edition480

Common Scenarios and Solutions
The following sections provide guidance on choosing the appropriate type of
workflow technology for your application.

Consider using WF if:
l	 You must build a custom workflow solution.
l	 You need workflow designer support in Visual Studio.
l	 You want to host the WF designer in your application.

Consider using Workflow Services if:
l	 You must expose workflows as services.
l	 You must call services from within a workflow.
l	 You must coordinate calls across multiple services to complete a business process.

If you are already using SharePoint, consider using MOSS 2007 workflow if:
l	 You must enable workflow for human collaboration.
l	 You must enable workflow on a SharePoint list or library; for example, to support

an approval process.
l	 You need to extend SharePoint workflow to add custom tasks.
l	 You want to use the workflow designer in Visual Studio.

Consider using BizTalk Server if:
l	 You need a workflow solution that works across different applications and systems.
l	 You want a server-hosted system workflow product that enables enterprise

integration.
l	 You are developing an application that must gather data from multiple Web

services as part of a Service Oriented Architecture (SOA).
l	 You are developing an application that has long-running business processes that

may take many days to complete.
l	 You must support business-to-business processes based on industry standards.
l	 You need parallel execution of services.
l	 You must abstract your application business logic into declarative rules that can

be changed easily to match changing business requirements.

Appendix E: Workflow Technology Matrix 481

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 For more information on MOSS 2007 workflows, see “Workflows in Office SharePoint

Server 2007” at http://msdn.microsoft.com/en-us/library/ms549489.aspx.
l	 For more information on WF, see "Windows Workflow Foundation” at

http://msdn.microsoft.com/en-us/netframework/aa663328.aspx.
l	 For more information on Workflow Services, see "Workflow Services” at

http://msdn.microsoft.com/en-us/library/cc825354.aspx.
l	 For more information on BizTalk, see "BizTalk Server” at

http://msdn.microsoft.com/en-us/biztalk/default.aspx.
l	 For more information on enterprise workflows, see "Architecting

Enterprise Loan Workflows and Orchestrations” at
http://msdn.microsoft.com/en-us/library/bb330937.aspx.

http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/ms549489.aspx
http://msdn.microsoft.com/en-us/netframework/aa663328.aspx
http://msdn.microsoft.com/en-us/library/cc825354.aspx
http://msdn.microsoft.com/en-us/biztalk/default.aspx
http://msdn.microsoft.com/en-us/library/bb330937.aspx

Appendix F
patterns & practices Enterprise
Library

Overview
This appendix describes the patterns & practice Enterprise Library, and explains how
you can use it in your applications to quickly and simply implement crosscutting
concerns such as logging, exception handling, and data access.

Goals of Enterprise Library
The goals of Enterprise Library are the following:
l	 Consistency.  All Enterprise Library application blocks feature consistent design

patterns and implementation approaches.
l	 Extensibility.  All application blocks include defined extensibility points that

allow developers to customize the behavior of the application blocks by adding
their own code.

l	 Ease of use.  Enterprise Library offers numerous useful features that include
a graphical configuration tool, a simple installation procedure, and clear and
complete documentation and samples.

l	 Integration.  Enterprise Library application blocks are designed to work well
together and are tested to make sure that they do. It is also possible to use the
application blocks individually.

	 Contents

Appendix F	 483

patterns & practices Enterprise Library	 483
Overview. 483
Goals of Enterprise Library. 483
What’s Included in Enterprise Library. .484

Application Blocks. 485
Caching Application Block. 486

Key Scenarios. 486
When to Use . 486
Considerations . 487

Cryptography Application Block. .488
Key Scenarios. 488
When to Use . 488
Considerations . 488

Data Access Application Block. 489
Key Scenarios. 489
When to Use . 489
Considerations . 489

Exception Handling Application Block . 490
Key Scenarios. 490
When to Use . 490

Logging Application Block. 491
Key Scenarios. 491
When to Use . 491
Considerations . 492

Policy Injection Application Block. 492
Key Scenarios. 492
When to Use . 493
Considerations . 493

Security Application Block. 494
Key Scenarios. 494
When to Use . 494
Considerations . 494

Unity Application Block . 495
Key Scenarios. 495
When to Use . 495
Considerations . 495

Validation Application Block. 496
Key Scenarios. 496
When to Use . 496
Considerations . 496

Additional Resources. 497

.NET Application Architecture Guide, 2nd Edition484

What’s Included in Enterprise Library
Enterprise Library contains:
l	 Application blocks that consist of reusable code you can use to implement solu-

tions for crosscutting concerns such as logging, exception handling, validation,
and data access.

l	 Configuration tools that make it easy to add Enterprise Library blocks to an
application and specify configuration information. The configuration tools include
a stand-alone configuration editor and a configuration tool that integrates with
Visual Studio.

l	 Common utility functions for tasks such as serialization, used in many places
throughout the library and the application blocks and available for developers to
use in their code.

l	 Instrumentation features that allow developers and administrators to monitor the
behavior and performance of the application blocks at run time.

l	 Batch files that build the Enterprise Library source code and copy the assemblies
to the appropriate locations.

l	 Utilities to install the events and performance counter instrumentation exposed by
Enterprise Library.

l	 Utilities to create the sample databases used by the Enterprise Library examples
and QuickStarts.

l	 A full set of QuickStart applications, one for each application block, which demon-
strate how you can use the application blocks. They implement common scenarios
from each application block and provide links to the relevant sections of the guid-
ance documentation.

l	 Full source code for Enterprise Library, including Visual Studio projects and unit
tests that developers can use to extend and modify the library and the application
blocks. Developers make sure applications still meet the design requirements by
running the unit tests and writing new tests.

Appendix F: patterns & practices Enterprise Library 485

Application Blocks
The following table lists and describes the application blocks designed to assist
developers solve common enterprise development challenges.

Application Block Description
Caching
Application
Block

Helps developers to incorporate a local cache in their applications. It supports
both an in-memory cache and, optionally, a backing store that can either be a
database or isolated storage. The block provides all the functionality needed
to retrieve, add, and remove cached data, and supports configurable expira-
tion and scavenging policies.

Cryptography
Application
Block

Simplifies how developers incorporate cryptographic functionality in their
applications. Applications can use the application block for a variety of tasks,
such as encrypting information, creating a hash from data, and comparing
hash values to verify that data has not been altered.

Data Access
Application Block

Simplifies development tasks that implement common data access functional-
ity, such as reading data for display, passing data through application layers,
and submitting changed data back to the database system. The block includes
support for both stored procedures and in-line SQL, and provides access to the
most often used features of ADO.NET in simple to -use classes.

Exception Handling
Application Block

Helps developers and policy makers to create a consistent strategy for process-
ing exceptions that occur in all architectural layers of an enterprise application.
It can log exception information, hide sensitive information by replacing the
original exception with another exception, and maintain contextual information
for an exception by wrapping the original exception inside another exception.

Logging Application
Block

Simplifies the implementation of common logging functions. The block can
write information to the Windows Event Log, an e-mail message, a database,
Windows Message Queuing, a text file, a WMI event, or a custom location.

Policy Injection
Application Block

Helps developers to better manage crosscutting concerns, maximize separa-
tion of concerns, and encapsulate behavior by automatically applying policies
to object instances. Developers define the set of policies for the target classes
and their members through configuration or by applying attributes to individual
members of the target class.

Security
Application
Block

Helps developers implement common authorization-related functionality in
their applications and cache a user’s authorization and authentication data.
Together with the Microsoft .NET Framework 2.0 features, developers can
easily implement common security-related functionality.

Unity
Application
Block

Provides a lightweight, extensible dependency injection (DI) container with
support for constructor, property, and method call injection. Developers can
use it with Enterprise Library to generate both Enterprise Library objects and
their own custom business objects, or as a stand-alone DI mechanism.

Validation
Application
Block

Provides useful features that allow developers to implement structured and
easy to maintain validation scenarios in their applications. It includes a library
of validators for validating .NET Framework data types, such as null string and
number range validators. It also includes composite validators and support for
rule sets.

.NET Application Architecture Guide, 2nd Edition486

Caching Application Block
The Caching Application Block lets you incorporate a local cache in your applications
that uses an in-memory cache and, optionally, a database or isolated storage backing
store. The block provides all the functionality needed to retrieve, add, and remove
cached data, and supports configurable expiration and scavenging policies. You can
also extend it by creating your own pluggable providers or using third party providers;
for example to support distributed caching and other features. Caching can give con-
siderable improvements in performance and efficiency in many application scenarios.

Key Scenarios
The Caching Application Block is suitable if you encounter any of the following
situations:
l	 Repeatedly accessing static data or data that rarely changes.
l	 Performing data access that is expensive in terms of creation, access, or trans-

portation.
l	 Working with data must always be available, even when the source, such as a

server, is not available.

When to Use
The Caching Application Block is optimized for high performance and scalability.
Furthermore, it is both thread safe and exception safe. You can extend it to include
your own expiration policies and your own backing store. It is designed to work
in the most common data caching situation, which is when the application and the
cache exist on the same system. This means that the cache is local and should be used
only by that application. When it operates within these guidelines, the application
block is ideal for addressing the following requirements:
l	 You need a consistent and simple interface and implementation for cache

functionality across different application environment, which does not change
irrespective of the caching store being used. For example, developers can write
similar code to implement caching in application components hosted in Internet
Information Services (IIS), Enterprise Services, and smart client environments.
Also, the same cache configuration options exist for all environments.

l	 You need a configurable and persistent backing store. The block supports both
isolated storage and database backing stores. Developers can create additional
backing store providers and add them to the block using its configuration settings.
The application block can also symmetrically encrypt a cache item's data before it
is persisted to a backing store.

Appendix F: patterns & practices Enterprise Library 487

l	 Changes to the cache configuration settings must not require application source
code changes. Developers first write the code that uses one or more named caches.
System operators and developers can then configure each of these named
caches differently using the Enterprise Library configuration tools.

l	 Cache items require any of the following expiration settings: absolute time,
sliding time, extended time format (for example, every evening at midnight),
file dependency, or never expired.

l	 You want to modify the block source code for extensibility or customization.
l	 You need to use multiple types of cache store (through different cache managers)

in a single application.

You can use the Caching Application Block with any of the following application types:
l	 Windows Forms
l	 Console application
l	 Windows service
l	 COM+ server
l	 ASP.NET Web application or Web service if you need features not included in

the ASP.NET cache

Considerations
The following considerations apply to using the Caching Application Block:
l	 You should deploy the block within a single application domain. Each appli-

cation domain can have one or multiple cache stores, either with or without
backing stores.

l	 Cache stores cannot be shared among different application domains.
l	 Although you can encrypt data cached in the backing stores, the block does not

support encryption of data that is cached in memory.
l	 The block does not support tamper proofing (signing and verifying items in

the cache).

.NET Application Architecture Guide, 2nd Edition488

Cryptography Application Block
The Cryptography Application Block makes it easy to incorporate cryptographic
functionality such as encrypting information, creating a hash from data, and com-
paring hash values to verify that data has not been altered.

Key Scenarios
The Cryptography Application Block is suitable if you encounter any of the following
situations:
l	 Quickly and easily encrypting and decrypting information.
l	 Quickly and easily creating a hash from data.
l	 Comparing hash values to verify that data has not been altered.

When to Use
The Cryptography Application Block is ideal for addressing the following requirements:
l	 You need to reduce the requirement to write boilerplate code to perform standard

data encryption, decryption, and hashing tasks.
l	 You need to maintain consistent cryptography practices, both within an application

and across the enterprise.
l	 You need to simplify learning for developers by using a consistent architectural

security model across the various areas of functionality.
l	 You need to add or extend implementations of cryptography providers.
l	 You need a customizable Key Protection Model.

Considerations
The following considerations apply to using the Cryptography Application Block:
l	 The block supports only symmetric algorithms that use the same key for both

encryption and decryption.
l	 The block does not automatically manage encryption keys and key storage.

Appendix F: patterns & practices Enterprise Library 489

Data Access Application Block
The Data Access Application Block simplifies many common data access tasks
such as reading data for display, passing data through application layers, and
submitting changed data back to the database system. It includes support for
both stored procedures and in-line SQL, and provides access to the most often
used features of ADO.NET in simple-to-use classes.

Key Scenarios
The Data Access Application Block is suitable if you encounter any of the following
situations:
l	 Using a DataReader or DataSet to retrieve multiple rows of data.
l	 Executing a command and retrieve the output parameters or a single-value item.
l	 Performing multiple operations within a transaction.
l	 Retrieving XML data from a SQL Server.
l	 Updating a database with data contained in a DataSet object.
l	 Adding or extend implementations of database providers.

When to Use
The Data Access Application Block is ideal for addressing the following requirements:
l	 You need simplicity and convenience while helping developers use the functionality

provided by ADO.NET with best practices.
l	 You need to reduce the requirement for boilerplate code to perform standard data

access tasks.
l	 You need to maintain consistent data access practices, both within an application

and across the enterprise.
l	 You need to make it easy to change the target database type through configuration,

and reduce the amount of code that developers must write when they port applica-
tions to different types of databases.

l	 You need to relieve developers from learning different programming models for
different types of databases.

Considerations
The following considerations apply to using the Data Access Application Block:
l	 The Data Access Application Block is a complement to ADO.NET; it is not a replace-

ment. If your application must retrieve data in a specialized way, or take advantage
of features specific to a particular database, consider using ADO.NET directly.

.NET Application Architecture Guide, 2nd Edition490

Exception Handling Application Block
The Exception Handling Application Block lets you quickly and easily design and
implement a consistent strategy for processing exceptions that occur in all architectural
layers of your application. It can log exception information, hide sensitive information
by replacing the original exception with another exception, and maintain contextual in-
formation for an exception by wrapping the original exception inside another exception.

Key Scenarios
The Exception Handling Application Block allows developers to encapsulate the
logic contained in catch statements in application components as reusable exception
handlers. It is suitable if you encounter any of the following requirements:
l	 Wrapping an exception. Use the Wrap handler to wrap an exception with a new

exception.
l	 Replacing an exception. Use the Replace handler to replace one exception with

another.
l	 Logging an exception. Use the Logging handler to format exception information,

such as the message and the stack trace, and pass it to the Enterprise Library
Logging Application Block so that it can be published.

l	 Shielding an exception at a WCF service boundary. Use the Fault Contract Exception
handler, which is designed for use at Windows Communication Foundation (WCF)
service boundaries, to generate a new Fault Contract from the exception.

l	 Propagating an exception, displaying user friendly messages, notifying the user,
and assisting support staff. Use a combination of handlers from the block to handle
specific exception types and rethrow them if required.

l	 Localization of exception messages. Use the handlers and their configuration to
specify localized message text for exceptions.

When to Use
The Exception Handling Application Block is ideal for addressing the following
requirements:
l	 You must support exception handling in all architectural layers of an application,

not just at service interface boundaries.
l	 You need exception handling policies to be defined and maintained at the adminis-

trative level through configuration, and the ability to maintain and modify the rules
that govern exception handling without changing the application block code.

l	 You need to provide commonly used exception handling functions, such as the
ability to log exception information, the ability to hide sensitive information by
replacing the original exception with another exception, and the ability to main-
tain contextual information for an exception by wrapping the original exception
inside another exception.

Appendix F: patterns & practices Enterprise Library 491

l	 You need to combine exception handlers to produce the desired response to
an exception, such as logging exception information followed by replacing the
original exception with another.

l	 You need to invoke exception handlers in a consistent manner so that you can
handlers can use them in multiple places within and across applications.

l	 You need to add or extend implementations of exception handlers.
l	 You need to handle exceptions via policies as opposed to simply logging them.

Logging Application Block
The Logging Application Block simplifies the implementation of common logging
functions such as writing information to the Windows Event Log, an email message, a
database, Windows Message Queuing, a text file, a WMI event, or a custom location.

Key Scenarios
The Logging Application Block is suitable if you encounter any of the following
situations:
l	 Populating and logging event information to Windows Event log, an e-mail

message, a database, a message queue, a text file, a Windows Management
Instrumentation (WMI) event, or a custom location.

l	 Modifying and formatting context information within the event using templates.
l	 Tracing application activities and providing identities that can be used to combine

event information.
l	 Preventing unauthorized access to sensitive information using access control lists

(ACLs) to restrict access to flat files, or creating a custom formatter that encrypts
log information.

When to Use
The Logging Application Block is ideal for addressing the following requirements:
l	 You must maintain consistent logging practices, both within an application and

across the enterprise.
l	 You need to ease the learning curve for developers by using a consistent

architectural model.
l	 You need to provide implementations that you can use to solve common

application logging tasks without repeatedly writing custom or boilerplate
code.

l	 You need to add or extend logging implementations and targets.

.NET Application Architecture Guide, 2nd Edition492

Considerations
The following considerations apply to using the Logging Application Block:
l	 The block logging formatters do not encrypt logging information.
l	 Trace listener destinations receive logging information as cleartext.
l	 Some of the Logging Application Block listeners fail while running under

partial trust.

Policy Injection Application Block
The Policy Injection Application Block provides a mechanism for automatically
applying policies to object instances; this helps developers to better manage cross-
cutting concerns, maximize separation of concerns, and encapsulate behavior.
Developers define the set of policies for the target classes and their members
through configuration of the Policy Injection Application Block or by applying
attributes to individual members of the target class.

Key Scenarios
The Policy Injection Application Block is suitable if you encounter any of the following
situations:
l	 Building applications from objects that require encapsulation and separation to

provide the most benefit from independence in operation, and provide the
maximum capability for reuse.

l	 Allowing developers, operators, and administrators to create, modify, remove, and
fine tune interception policies though configuration, generally without requiring
any changes to the code or recompilation of the application. This reduces the chance
of introducing errors into the code, simplifies versioning, and reduces downtime.

l	 Reusing existing object instances. This reduces the requirement for code to
generate new object instances and prepare them by setting properties or calling
methods, while still allowing handler pipelines to be used for specific members
or all members of that class.

l	 Minimizing the work required and the code that the developer must write to
perform common tasks within an application, such as logging, validation,
authorization, and instrumentation.

Appendix F: patterns & practices Enterprise Library 493

When to Use
The Policy Injection Application Block is ideal for addressing the following
requirements:
l	 You need a ready-built solution that is easy to implement in new and existing

applications, particularly in applications that already take advantage of the
features of the Enterprise Library.

l	 You need to manage crosscutting concerns that may otherwise affect the inde-
pendence of objects that require access to common features (such as logging or
validation).

l	 You need to allow the developer and administrator to configure the behavior of
objects in an application through configuration, by adding or removing handlers
that execute common tasks or add custom features.

l	 You need to make it easy for developers to take advantage of features within the
Enterprise Library Core and individual application blocks that implement tasks
commonly required in enterprise applications.

l	 You need to reduce development time and cost, and minimize bugs in complex
applications that use common and shared tasks and services.

Considerations
The following considerations apply to using the Policy Injection Application Block:
l	 It uses interception to enable only preprocessing handlers and post-processing

handlers, rather than inserting code directly into methods.
l	 It does not provide interception for class constructors.
l	 Like all interception technologies, it imposes some extra processing requirements

on applications—although the design of the block minimizes these as much as
possible.

l	 Call handlers only have access to the information within the call message, and
cannot maintain internal state.

l	 Policy injection can only take place for public members of the target class.

.NET Application Architecture Guide, 2nd Edition494

Security Application Block
The Security Application Block lets you easily implement common authorization-
related functionality, such as caching user’s authorization and authentication data
and integrating with the Microsoft .NET Framework security features.

Key Scenarios
The Security Application Block is suitable if you encounter any of the following
situations:
l	 Caching security-related credentials that you use to perform authorization.
l	 Obtaining a temporary token for an authenticated user, and authenticating a user

using a token.
l	 Terminating a user session (expire the token).
l	 Determining whether a user is authorized to perform a task.

When to Use
The Security Application Block is ideal for addressing the following requirements:
l	 You must reduce the requirement for boilerplate code to perform standard security-

related tasks such as caching credentials, and checking authentication.
l	 You must maintain consistent security practices, both within an application and

across the enterprise.
l	 You want to ease the learning curve for developers by using a consistent architec-

tural model across the various areas of functionality provided.
l	 You need to use custom implementations of security providers.

Considerations
The following considerations apply to using the Security Application Block:
l	 The default store for cached security-related information is the Caching

Application Block. Although the Caching Application Block can be configured
to encrypt cache data in backing stores, the application block does not support
encryption of cache data stored in memory. If this threat is significant for your
application, you can use an alternate custom caching store provider that sup-
ports in-memory encryption.

l	 The authorization manager is not supported under partial trust.

Appendix F: patterns & practices Enterprise Library 495

Unity Application Block
Unity is a lightweight, extensible dependency injection container that supports object
interception, constructor injection, property injection, and method call injection. You
can also use it with Enterprise Library to generate both Enterprise Library objects
and your own custom business objects.

Key Scenarios
The Unity Application Block is suitable if you encounter any of the following situations:
l	 Performing dependency injection through a container that supports constructor,

property, and method call injection, and can manage the lifetime of object instances.
l	 Performing dependency injection for classes that have dependencies on other

objects or classes, and these dependencies are complex or require abstraction.
l	 Configuring and changing the dependencies at run time.
l	 Caching or persisting the container across post backs in a Web application.

When to Use
The Unity Application Block is ideal for addressing the following requirements:
l	 You need simplified object creation, especially for hierarchical object structures

and dependencies, which simplifies application code.
l	 You need to abstract requirements by specifying dependencies at run time or in

configuration to simplify management of crosscutting concerns.
l	 You need to increase flexibility by deferring component configuration to the container.
l	 You need a service location capability where clients can store or cache the con-

tainer. This is especially useful in ASP.NET Web applications where the developers
can persist the container in the ASP.NET session or application.

You should not use the Unity Application Block in the following situations:
l	 Your objects and classes have no dependencies on other objects or classes, or your

dependencies are very simple and do not require abstraction.

Considerations
The following considerations apply to using the Unity Application Block:
l	 Dependency injection may have a minor impact on performance.
l	 Dependency injection can increase complexity where only simple dependencies exist.

.NET Application Architecture Guide, 2nd Edition496

Validation Application Block
The Validation Application Block provides a range of features for implementing
structured and easy-to-maintain validation mechanisms using attributes and rule
sets, and integrating with most types of application interface technologies.

Key Scenarios
The Validation Application Block is suitable if you encounter any of the following
situations:
l	 Implementing structured and easy to maintain validation code to validate fields,

properties, and nested objects, and prevent the injection of malicious data into
your application.

l	 Enforcing business rules and to providing responses to user input.
l	 Validating data several times within the same application using the same rules.
l	 Combining the wide range of prebuilt validators to support complex scenarios

and a wide range of capabilities.

When to Use
The Validation Application Block is ideal for addressing the following requirements:
l	 You need to maintain consistent validation practices for almost all standard .NET

data types in ASP.NET, Windows Forms, and WCF applications.
l	 You need to create validation rules using configuration, attributes, and code.
l	 You need to associate multiple rule sets with the same class and with members of

that class.
l	 You need to apply one or more rule sets when you validate an object, and reuse

business validation logic.

Considerations
The following considerations apply to using the Validation Application Block:
l	 Some technologies such as ASP.NET and Windows Forms provide built-in validation

features. Therefore, if your validation logic only needs to be applied within these
technologies you may not need to use the application block unless you need to reuse
the validation logic.

l	 WCF and other applications that use XML data can use XML Schemas to validate
messages at the XML level. If your validation logic only needs to be applied within
these technologies you may not need to use the application block unless you need to
reuse the validation logic.

l	 In very simple cases, when you only need to validate a few objects, you may not
want to incur the overhead of adding the application block.

Appendix F: patterns & practices Enterprise Library 497

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 “Enterprise Library” at

http://msdn.microsoft.com/en-us/library/cc467894.aspx.
l	 "The Caching Application Block” at

http://msdn.microsoft.com/en-us/library/cc511588.aspx.
l	 "The Cryptography Application Block” at

http://msdn.microsoft.com/en-us/library/cc511721.aspx.
l	 "The Data Access Application Block” at

http://msdn.microsoft.com/en-us/library/cc511547.aspx.
l	 "The Exception Handling Application Block” at

http://msdn2.microsoft.com/en-us/library/aa480461.aspx.
l	 "The Logging Application Block” at

http://msdn.microsoft.com/en-us/library/cc511708.aspx.
l	 "The Policy Injection Application Block” at

http://msdn.microsoft.com/en-us/library/cc511729.aspx.
l	 "The Security Application Block” at

http://msdn.microsoft.com/en-us/library/cc511928.aspx.
l	 "The Unity Application Block” at

http://msdn.microsoft.com/en-us/library/cc511654.aspx.
l	 "The Validation Application Block” at

http://msdn.microsoft.com/en-us/library/cc511802.aspx.
l	 "Enterprise Library Frequently Asked Questions” at

http://www.codeplex.com/entlib/Wiki/View.aspx?title=EntLib%20FAQ.

http://www.microsoft.com/architectureguide
http://msdn.microsoft.com/en-us/library/cc467894.aspx
http://msdn.microsoft.com/en-us/library/cc511588.aspx
http://msdn.microsoft.com/en-us/library/cc511721.aspx
http://msdn.microsoft.com/en-us/library/cc511547.aspx
http://msdn2.microsoft.com/en-us/library/aa480461.aspx
http://msdn.microsoft.com/en-us/library/cc511708.aspx
http://msdn.microsoft.com/en-us/library/cc511729.aspx
http://msdn.microsoft.com/en-us/library/cc511928.aspx
http://msdn.microsoft.com/en-us/library/cc511654.aspx
http://msdn.microsoft.com/en-us/library/cc511802.aspx
http://www.codeplex.com/entlib/Wiki/View.aspx?title=EntLib%20FAQ

Appendix G
patterns & practices Pattern
Catalog

Composite Application Guidance for WPF and Silverlight
Category Patterns
Modularity Service Locator. Create a service locator that contains references to the services

and encapsulates the logic to locate them. In your classes, use the service locator
to obtain service instances. See “Service Locator” at http://msdn.microsoft.com/
en-us/library/dd458903.aspx.

Testability Dependency Injection. Do not instantiate the dependencies explicitly in your class.
Instead, declaratively express dependencies in your class definition. Use a Builder
object to obtain valid instances of your object’s dependencies and pass them to your
object during the object’s creation and/or initialization. See “Dependency Injection”
at http://msdn.microsoft.com/en-us/library/dd458879.aspx.
Inversion of Control. Delegate the function of selecting a concrete implementation
type for the classes’ dependencies to an external component or source. See “Inversion
of Control” at http://msdn.microsoft.com/en-us/library/dd458907.aspx.
Separated Presentation. Separate the presentation logic from the business logic into
different artifacts. The Separated Presentation pattern can be implemented in multiple
ways, such as Supervising Presenter or Presentation Model, etc. See “Separated
Presentation” at http://msdn.microsoft.com/en-us/library/dd458859.aspx.
Presentation Model. Separate the responsibilities for the visual display and the user
interface (UI) state and behavior into different classes named, respectively, the view
and the presentation model. The view class manages the controls on the UI, and the
presentation model class acts as a façade on the model with UI-specific state and be-
havior, by encapsulating the access to the model and providing a public interface that
is easy to consume from the view (for example, using data binding). See “Presentation
Model” at http://msdn.microsoft.com/en-us/library/dd458863.aspx.
Supervising Presenter (or Supervising Controller). Separate the responsibilities
for the visual display and the event-handling behavior into different classes named,
respectively, the view and the presenter. The view class manages the controls on
the UI and forwards user events to a presenter class. The presenter contains the
logic to respond to the events, update the model (business logic and data of the appli-
cation), and, in turn, manipulate the state of the view. See “Supervising Presenter” at
http://msdn.microsoft.com/en-us/library/dd490821.aspx.

	 Contents

Appendix G	 499

patterns & practices Pattern
Catalog	 499
Composite Application Guidance for WPF and Silverlight. 499
Data Movement Patterns . 500
Enterprise Solution Patterns. 501
Integration Patterns. 504
Web Services Security Patterns . 506
Additional Resources. 507

http://msdn.microsoft.com/
http://msdn.microsoft.com/en-us/library/dd458879.aspx
http://msdn.microsoft.com/en-us/library/dd458907.aspx
http://msdn.microsoft.com/en-us/library/dd458859.aspx
http://msdn.microsoft.com/en-us/library/dd458863.aspx
http://msdn.microsoft.com/en-us/library/dd490821.aspx

.NET Application Architecture Guide, 2nd Edition500

Data Movement Patterns
Category Patterns
Data
Movement
Patterns

Data Replication. Create a replication set and replication link that move data
between two locations. A high-level pattern that describes the general process
of the more detailed Data Movement Patterns described in this table. See “Data
Replication” at http://msdn.microsoft.com/en-us/library/ms978671.aspx.
Master-Master Replication. Copy data from the source to the target and detect
and resolve any update conflicts that have occurred since the last replication (due
to changes to the same data on the source and target). The solution consists of a
two replication links between the source and the target in opposite directions. Both
replication links transmit the same replication set in both directions. Such a pair of
replication links is referred to as related links. See “Master-Master Replication” at
http://msdn.microsoft.com/en-us/library/ms978735.aspx.
Master-Subordinate Replication. Copy data from the source to the target without
regard to updates that may have occurred to the replication set at the target since the
last replication. See “Master-Subordinate Replication” at http://msdn.microsoft.com/
en-us/library/ms978740.aspx.
Master-Master Row-Level Synchronization. Use a pair of related replication links
between the source and target and a synchronization controller to manage the
synchronization in both directions. To synchronize more than two copies of the
replication set, create the appropriate replication link pair for each additional copy.
See “Master-Master Row-Level Synchronization” at http://msdn.microsoft.com/
en-us/library/ms998434.aspx.
Master-Subordinate Snapshot Replication. Make a copy of the source replication
set at a specific time (this is known as a snapshot), replicate it to the target, and
overwrite the target data. In this way, any changes that might have occurred to the
target replication set are replaced by the new source replication set. See “Master-
Subordinate Snapshot Replication” at http://msdn.microsoft.com/en-us/library/
ms998430.aspx.
Capture Transaction Details. Create additional database objects, such as triggers
and (shadow) tables, and record changes of all tables belonging to the replication
set. See “Capture Transaction Details” at http://msdn.microsoft.com/en-us/library/
ms978709.aspx.
Master-Subordinate Transactional Incremental Replication. Acquire the informa-
tion about committed transactions from the source and replay the transactions in
the correct sequence when they are written to the target. See “Master-Subordinate
Transactional Incremental Replication” at http://msdn.microsoft.com/en-us/library/
ms998441.aspx.
Master-Subordinate Cascading Replication. Increase the number of replication
links between the source and target by adding one or more intermediary targets
between the original source and the end target databases. These intermediaries are
data stores that take a replication set from the source, and thus act as a target in a
first replication link. They then act as sources to move the data to the next replication
link and so on until they reach the cascade end targets. See “Master-Subordinate
Cascading Replication” at http://msdn.microsoft.com/en-us/library/ms978712.aspx.

http://msdn.microsoft.com/en-us/library/ms978671.aspx
http://msdn.microsoft.com/en-us/library/ms978735.aspx
http://msdn.microsoft.com/
http://msdn.microsoft.com/
http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/ms978712.aspx

Appendix G: patterns & practices Pattern Catalog 501

Category Patterns
Pattlets Maintain Data Copies. Synchronously write to the data copies from the originating

application, or synchronously post data to a local cache for later movement by an
asynchronous service. See “Patterns and Pattlets” at http://msdn.microsoft.com/
en-us/library/ms998465.aspx.
Application-Managed Data Copies. When a particular application makes a change
to its copy of the data, it should then also make changes to the other copies. The
application should ensure that copies of the data and/or derived data are updated in
the same transaction that changed the original data. See “Patterns and Pattlets” at
http://msdn.microsoft.com/en-us/library/ms998465.aspx.
Extract-Transform-Load. A type of data movement that may execute complex queries
to acquire data from heterogeneous sources, may apply complex manipulation that
includes aggregation and cleansing, but always makes a simple write that replaces
any changes on the target. See “Patterns and Pattlets” at http://msdn.microsoft.com/
en-us/library/ms998465.aspx.
Topologies for Data Copies. The architectural approaches to deploying data copies
on several platforms. See “Patterns and Pattlets” at http://msdn.microsoft.com/
en-us/library/ms998465.aspx.

Enterprise Solution Patterns
Category Patterns
Deployment
Patterns

Deployment Plan. Create a deployment plan that describes which tier each of the
application’s components will be deployed to. While assigning components to tiers,
if it is found that a tier is not a good match for a component, determine the cost and
benefits of modifying the component to better work with the infrastructure, or of
modifying the infrastructure to better suit the component. See “Deployment Plan” at
http://msdn.microsoft.com/en-us/library/ms978676.aspx.
Layered Application. Separate the components of your solution into layers. The
components in each layer should be cohesive and at roughly the same level of
abstraction. Each layer should be loosely coupled to the layers underneath. See
“Layered Application” at http://msdn.microsoft.com/en-us/library/ms978678.aspx.
Three-Layered Services Application. Base your layered architecture on three layers:
the presentation, business, and data layers to provide decoupling and increase cohe-
siveness. See “Three-Layered Services Application” at http://msdn.microsoft.com/
en-us/library/ms978689.aspx.
Tiered Distribution. Structure your servers and client computers into a set of physical
tiers and distribute your application components appropriately to specific tiers. See
“Tiered Distribution” at http://msdn.microsoft.com/en-us/library/ms978701.aspx.
Three-Tiered Distribution. Structure your application around three physical tiers:
the client, application, and database tiers. See “Three-Tiered Distribution” at
http://msdn.microsoft.com/en-us/library/ms978694.aspx.

(continued)

http://msdn.microsoft.com/
http://msdn.microsoft.com/en-us/library/ms998465.aspx
http://msdn.microsoft.com/
http://msdn.microsoft.com/
http://msdn.microsoft.com/en-us/library/ms978676.aspx
http://msdn.microsoft.com/en-us/library/ms978678.aspx
http://msdn.microsoft.com/
http://msdn.microsoft.com/en-us/library/ms978701.aspx
http://msdn.microsoft.com/en-us/library/ms978694.aspx

.NET Application Architecture Guide, 2nd Edition502

Category Patterns
Distributed
Systems

Broker. Use the Broker pattern to hide the implementation details of remote service
invocation by encapsulating them into a layer other than the business component
itself. See “Broker” at http://msdn.microsoft.com/en-us/library/ms978706.aspx.
Data Transfer Object. Create a data transfer object (DTO) that holds all data that is
required for the remote call. Modify the remote method signature to accept the DTO
as the single parameter and to return a single DTO parameter to the client. After
the calling application receives the DTO and stores it as a local object, the applica-
tion can make a series of individual procedure calls to the DTO without incurring the
overhead of remote calls. See “Data Transfer Object” at http://msdn.microsoft.com/
en-us/library/ms978717.aspx.
Singleton. Singleton provides a global, single instance by making the class create
a single instance of itself, allowing other objects to access this instance through a
globally accessible class method that returns a reference to the instance. Additionally
declare the class constructor as private so that no other object can create a new in-
stance. See “Singleton” at http://msdn.microsoft.com/en-us/library/ms998426.aspx.

Performance
and
Reliability

Server Clustering. A server cluster is the combination of two or more servers that
are interconnected to appear as one, thus creating a virtual resource that enhances
availability, scalability, or both. See “Server Clustering” at http://msdn.microsoft.com/
en-us/library/ms998414.aspx.
Load-Balanced Cluster. Install your service or application onto multiple servers that
are configured to share the workload. This type of configuration is a load-balanced
cluster. Load balancing scales the performance of server-based programs, such as
a Web server, by distributing client requests across multiple servers. Load-balancing
technologies, commonly referred to as load balancers, receive incoming requests
and redirect them to a specific host if necessary. The load-balanced hosts concur-
rently respond to different client requests, even multiple requests from the same
client. See “Load-Balanced Cluster” at http://msdn.microsoft.com/en-us/library/
ms978730.aspx.
Failover Cluster. A failover cluster is a set of servers that are configured so that if
one server becomes unavailable, another server automatically takes over for the
failed server and continues processing. Each server in the cluster has at least one
other server in the cluster identified as its standby server. See “Failover Cluster” at
http://msdn.microsoft.com/en-us/library/ms978720.aspx.

Services
Patterns

Service Interface. Create a component that provides an entry point through which
consumers of the application can interact with the service, and exposes a coarse-
grained interface while decoupling the implementation from the business logic. See
“Service Interface” at http://msdn.microsoft.com/en-us/library/ms998421.aspx.
Service Gateway. Encapsulate the code that implements the consumer portion of
the contract into its own Service Gateway component that acts as a proxy to other
services, encapsulating the details of connecting to the source and performing any
necessary translation. See “Service Gateway” at http://msdn.microsoft.com/en-us/
library/ms998420.aspx.

http://msdn.microsoft.com/en-us/library/ms978706.aspx
http://msdn.microsoft.com/
http://msdn.microsoft.com/en-us/library/ms998426.aspx
http://msdn.microsoft.com/
http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/ms978720.aspx
http://msdn.microsoft.com/en-us/library/ms998421.aspx
http://msdn.microsoft.com/en-us/

Appendix G: patterns & practices Pattern Catalog 503

Category Patterns
Web
Presentation
Patterns

Model-View-Controller. The Model-View-Controller (MVC) pattern separates the
data in the domain, the presentation, and the actions based on user input into
three separate classes. The Model manages the behavior and data of the applica-
tion domain, responds to requests for information about its state (usually from the
View), and responds to instructions to change state (usually from the Controller).
The View manages the display of information. The Controller interprets the mouse
and keyboard inputs from the user, informing the model and/or the view to change
as appropriate. See “Model-View-Controller” at http://msdn.microsoft.com/en-us/
library/ms978748.aspx.
Page Controller. Use the Page Controller pattern to accept input from the page
request, invoke the requested actions on the model, and determine the correct
view to use for the resulting page. Separate the dispatching logic from any view-
related code. Where appropriate, create a common base class for all page control-
lers to avoid code duplication and increase consistency and testability. See “Page
Controller” at http://msdn.microsoft.com/en-us/library/ms978764.aspx.
Front Controller. The Front Controller pattern solves the decentralization problem
present in Page Controller by channeling all requests through a single controller. The
controller itself is usually implemented in two parts: a handler and a hierarchy of
commands. The handler receives the HTTP Post or Get request from the Web server
and retrieves relevant parameters from the request. The handler uses the param-
eters from the request first to choose the correct command and then to transfer
control to the command for processing. The commands themselves are also part
of the controller. The commands represent the specific actions as described in the
Command pattern. See “Front Controller” at http://msdn.microsoft.com/en-us/
library/ms978723.aspx.
Intercepting Filter. Use the Intercepting Filter pattern to create a chain of compos-
able filters to implement common preprocessing and post-processing tasks during
a Web page request. See “Intercepting Filter” at http://msdn.microsoft.com/en-us/
library/ms978727.aspx.
Page Cache. Cache the output generated by the server for pages that are accessed
frequently but change less often in order to reduce the processing load on the server.
See “Page Cache” at http://msdn.microsoft.com/en-us/library/ms978759.aspx.
Observer. Use the Observer pattern to maintain a list of interested dependents (ob-
servers) in a separate object (the subject). Have all individual observers implement
a common Observer interface to eliminate direct dependencies between the subject
and the dependent objects. See “Observer” at http://msdn.microsoft.com/en-us/
library/ms978753.aspx.

http://msdn.microsoft.com/en-us/
http://msdn.microsoft.com/en-us/library/ms978764.aspx
http://msdn.microsoft.com/en-us/
http://msdn.microsoft.com/en-us/
http://msdn.microsoft.com/en-us/library/ms978759.aspx
http://msdn.microsoft.com/en-us/

.NET Application Architecture Guide, 2nd Edition504

Integration Patterns
Category Patterns
Integration
Layer

Entity Aggregation. Introduce an Entity Aggregation layer that provides a logical
representation of the entities at an enterprise level, with physical connections
that support the access and that update to their respective instances in back-end
repositories. See “Entity Aggregation” at http://msdn.microsoft.com/en-us/library/
ms978573.aspx.
Process Integration. Define a business process model that describes the individual
steps that make up the complex business function. Create a separate process
manager component that can interpret multiple concurrent instances of this model
and that can interact with the existing applications to perform the individual steps of
the process. See “Process Integration” at http://msdn.microsoft.com/en-us/library/
ms978592.aspx.
Portal Integration. Create a portal application that displays the information retrieved
from multiple applications in a unified UI. The user can then perform the required
tasks based on the information displayed in this portal. See “Portal Integration” at
http://msdn.microsoft.com/en-us/library/ms978585.aspx.

Integration
Topologies

Message Broker. Extend the integration solution by using the Message Broker
pattern. A message broker is a physical component that handles the communica-
tion between applications. Instead of communicating with each other, applications
communicate only with the message broker. An application sends a message to the
message broker, providing the logical name of the receivers. The message broker
looks up applications registered under the logical name and then passes the mes-
sage to them. See “Message Broker” at http://msdn.microsoft.com/en-us/library/
ms978579.aspx.
Message Bus. Connect all applications through a logical component known as
a message bus. A message bus specializes in transporting messages between
applications. A message bus contains three key elements: a set of agreed upon
message schemas, a set of common command messages, and a shared infra-
structure for sending bus messages to recipients. See “Message Bus” at
http://msdn.microsoft.com/en-us/library/ms978583.aspx.
Publish/Subscribe. Enable classes to publish events that other applications can
subscribe to in order to receive specific messages. A Publish\Subscribe mechanism
sends events or messages to all interested subscribers. See “Publish/Subscribe” at
http://msdn.microsoft.com/en-us/library/ms978603.aspx.

http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/ms978585.aspx
http://msdn.microsoft.com/en-us/library/
http://msdn.microsoft.com/en-us/library/ms978583.aspx
http://msdn.microsoft.com/en-us/library/ms978603.aspx

Appendix G: patterns & practices Pattern Catalog 505

Category Patterns
System
Connections

Data Integration. Integrate applications at the logical data layer by allowing the data
in one application (the source) to be accessed by other applications (the target). See
“Data Integration” at http://msdn.microsoft.com/en-us/library/ms978572.aspx.
Functional Integration. Integrate applications at the business logic layer by allowing
the business function in one application (the source) to be accessed by other applica-
tions (the target). See “Functional Integration” at http://msdn.microsoft.com/en-us/
library/ms978578.aspx.
Service-Oriented Integration. To integrate applications at the business logic layer,
enable systems to consume and provide Extensible Markup Language (XML)-based
Web services. Use Web Services Description Language (WSDL) contracts to describe
the interfaces to these systems. Ensure interoperability by making your implementa-
tion compliant with the Web Services (WS-*) family of specifications. See “Service-
Oriented Integration” at http://msdn.microsoft.com/en-us/library/ms978594.aspx.
Presentation Integration. Access the application’s functionality through the UI by simu-
lating a user’s input and by reading data from the screen display. See “Presentation
Integration” at http://msdn.microsoft.com/en-us/library/ms978588.aspx.

Additional
Integration
Patterns

Pipes and Filters. Implement the transformations by using a sequence of filter
components, where each filter component receives an input message, applies a
simple transformation, and sends the transformed message to the next compo-
nent. Conduct the messages through pipes that connect filter outputs and inputs
and that buffer the communication between the filters. See “Pipes and Filters” at
http://msdn.microsoft.com/en-us/library/ms978599.aspx.
Gateway. Abstracts the access to an external system to a single interface. The
pattern eliminates the need for multiple systems to understand how to connect to
the external system. Therefore, the Gateway pattern simplifies the development
and maintenance processes that are related to accessing external systems. See
“Additional Integration Patterns” at http://msdn.microsoft.com/en-us/library/
ms978722.aspx.

http://msdn.microsoft.com/en-us/library/ms978572.aspx
http://msdn.microsoft.com/en-us/
http://msdn.microsoft.com/en-us/library/ms978594.aspx
http://msdn.microsoft.com/en-us/library/ms978588.aspx
http://msdn.microsoft.com/en-us/library/ms978599.aspx
http://msdn.microsoft.com/en-us/library/

.NET Application Architecture Guide, 2nd Edition506

Web Services Security Patterns
Category Pattern
Authentication Brokered Authentication. The Web service validates the credentials presented by

the client, without the need for a direct relationship between the two parties. An
authentication broker that both parties trust independently issues a security token
to the client. The client can then present credentials, including the security token,
to the Web service. See “Brokered Authentication” at http://msdn2.microsoft.
com/en-us/library/aa480560.aspx. The following three patterns describe specific
implementations of the Brokered Authentication pattern.
Brokered Authentication: Kerberos. Use the Kerberos protocol to broker authenti-
cation between clients and Web services. See “Brokered Authentication: Kerberos”
at http://msdn2.microsoft.com/en-us/library/aa480562.aspx.
Brokered Authentication: X509 PKI. Use brokered authentication with X.509
certificates issued by a certificate authority (CA) in a public key infrastructure
(PKI) to verify the credentials presented by the requesting application. See
“Brokered Authentication: X509 PKI” at http://msdn2.microsoft.com/en-us/
library/aa480565.aspx.
Brokered Authentication: STS. Use brokered authentication with a security token
issued by a Security Token Service (STS). The STS is trusted by both the client and
the Web service to provide interoperable security tokens. See “Brokered Authenti-
cation: STS” at http://msdn2.microsoft.com/en-us/library/aa480563.aspx.
Direct Authentication. The Web service acts as an authentication service to vali-
date credentials from the client. The credentials, which include proof of possession
that is based on shared secrets, are verified against an identity store. See “Direct
Authentication” at http://msdn.microsoft.com/en-us/library/aa480566.aspx.

Authorization Trusted Subsystem. The Web service acts as a trusted subsystem to access ad-
ditional resources. It uses its own credentials instead of the user’s credentials to
access the resource. See “Trusted Subsystem” at http://msdn2.microsoft.com/
en-us/library/aa480587.aspx.

Exception
Management

Exception Shielding. Sanitize unsafe exceptions by replacing them with excep-
tions that are safe by design. Return only those exceptions to the client that have
been sanitized, or exceptions that are safe by design. Exceptions that are safe
by design do not contain sensitive information in the exception message, and
they do not contain a detailed stack trace, either of which might reveal sensitive
information about the Web service’s inner workings. See “Exception Shielding”
at http://msdn2.microsoft.com/en-us/library/aa480591.aspx.

Message
Encryption

Data Confidentiality. Use encryption to protect sensitive data that is contained
in a message. Unencrypted data, which is known as plaintext, is converted to
encrypted data, which is known as ciphertext. Data is encrypted with an algo-
rithm and a cryptographic key. Ciphertext is then converted back to plaintext at
its destination. See “Data Confidentiality” at http://msdn.microsoft.com/en-us/
library/aa480570.aspx.

Message
Replay
Detection

Message Replay Detection. Cache an identifier for incoming messages, and
use message replay detection to identify and reject messages that match
an entry in the replay detection cache. See “Message Replay Detection” at
http://msdn2.microsoft.com/en-us/library/aa480598.aspx.

http://msdn2.microsoft
http://msdn2.microsoft.com/en-us/library/aa480562.aspx
http://msdn2.microsoft.com/en-us/
http://msdn2.microsoft.com/en-us/library/aa480563.aspx
http://msdn.microsoft.com/en-us/library/aa480566.aspx
http://msdn2.microsoft.com/
http://msdn2.microsoft.com/en-us/library/aa480591.aspx
http://msdn.microsoft.com/en-us/
http://msdn2.microsoft.com/en-us/library/aa480598.aspx

Appendix G: patterns & practices Pattern Catalog 507

Category Pattern
Message
Signing

Data Origin Authentication. Use data origin authentication, which enables the
recipient to verify that messages have not been tampered with in transit (data
integrity) and that they originate from the expected sender (authenticity). See
“Data Origin Authentication” at http://msdn2.microsoft.com/en-us/library/
aa480571.aspx.

Message
Validation

Message Validator. The message validation logic enforces a well-defined policy
that specifies which parts of a request message are required for the service to
successfully process it. It validates the XML message payloads against an XML
schema (XSD) to ensure that they are well-formed and consistent with what the
service expects to process. The validation logic also measures the messages
against certain criteria by examining the message size, the message content, and
the character sets that are used. Any message that does not meet the criteria is
rejected. See “Message Validator” at http://msdn2.microsoft.com/en-us/library/
aa480600.aspx.

Deployment Perimeter Service Router. Design a Web service intermediary that acts as a peri-
meter service router. The perimeter service router provides an external interface
on the perimeter network for internal Web services. It accepts messages from
external applications and routes them to the appropriate Web service on the
private network. See “Perimeter Service Router” at http://msdn2.microsoft.com/
en-us/library/aa480606.aspx.

Additional Resources
To more easily access Web resources, see the online version of the bibliography at:
http://www.microsoft.com/architectureguide.
l	 For information on patterns in the Composite Application Library, see Composite

Application Guidance for WPF and Silverlight.
l	 For information on data patterns, see Data Patterns.
l	 For information on enterprise solution patterns, see Enterprise Solution Patterns

Using Microsoft .NET.
l	 For information on integration patterns, see Integration Patterns.
l	 For information on Web Service Security, see Web Service Security Guidance:

Scenarios, Patterns, and Implementation Guidance for Web Services Enhance-
ments (WSE) 3.0.

http://msdn2.microsoft.com/en-us/library/
http://msdn2.microsoft.com/en-us/library/
http://msdn2.microsoft.com/
http://www.microsoft.com/architectureguide

Index

A
2-tier pattern, 246
3-tier pattern, 246–247
4-tier pattern, 247
Active Design Review (ADR), 53
Active Object pattern, 356
Active Record pattern, 112, 356
Active Reviews of Intermediate

Designs (ARID), 53
Adapter pattern, 262
ADO.NET Core, 440, 461

benefits and considerations, 465
ADO.NET Data Services Frame-

work, 441, 461
benefits and considerations,

464–465
ADO.NET Entity Framework (EF),

441, 462
benefits and considerations,

463, 465
ADO.NET Sync Services, 441, 462

benefits and considerations, 464
Aggregator pattern, 132
Agile Modeling, 54
Analytics pattern, 415, 420
appendices, 435–50See also data

access technology matrix;
integration technology
matrix; Microsoft application
platform; patterns & practices
Enterprise Library; patterns
& practices Pattern Catalog;
workflow technology matrix

data access technology matrix,
461–469

integration technology matrix,
471–475

Microsoft application platform,
437–448

patterns & practices Enterprise
Library, 483–497

patterns & practices Pattern
Catalog, 499–507

presentation technology matrix,
449–459

workflow technology matrix,
477–481

application archetypes, 239–434
choosing, 265
summary, 266–267

application blocks described, 485
Application Controller pattern, 81,

143, 316, 338, 356
application façade components, 84

guidelines, 139
Application Façade pattern, 93,

142
Application Generated Documents

pattern, 411, 421
figures, 411

Application-Managed Data Copies
pattern, 501

applications
layers, 13
mobile applications design, 348
overview, 44–45
request processing, 280–281

Application servers style, 22
application type selection, 15,

265–274
application archetypes sum-

mary, 266–267
mobile application archetype,

268–269
rich client application arche-

type, 269–270
Rich Internet Application arche-

type, 271–272
service archetype, 272–274
web application archetype,

274–276

appropriate technologies, 16
archetypes. See application arche-

types
architectural spike, 51
architecture. See also techniques

additional resources, 8
application layers, 13
components, modules, and

functions, 13–14
crosscutting concerns, 48
defined, 3–4
described, 3–8
designing for issue mitigation,

48–50
design practices, 12
design principles, 7–8
goals of, 5–6
identifying objectives, 41–42
importance of, 4–5
key issues, 47–50
key principles, 7–14
key styles summary, 20
landscape, 6
patterns and styles, 19–35

additional resources, 35
quality attributes, 47
reviewing, 52–53
scope and time, 42
significant use cases, 43–44
styles combined, 21
styles overview, 19–20
what to do next, 52
whiteboarding, 46

architecture design
4+1 , 54
Agile Modeling, 54
IEEE 1471, 54
representing and communicat-

ing, 53–54
Unified Modeling Language

(UML), 54

	 Contents

Index	
509

Index510

Architecture Level Modifiability
Analysis (ALMA), 53

Architecture Tradeoff Analysis
Method (ATAM), 53

ASMX, 237
ASP.NET Dynamic Data, 445, 451

benefits and considerations, 455
ASP.NET for Mobile, 442, 450

benefits and considerations, 452
ASP.NET MVC, 445, 451

benefits and considerations, 455
ASP.NET Web Forms, 445, 451
ASP.NET Web Forms with AJAX,

445, 451
benefits and considerations, 455

ASP.NET Web Forms with Silver-
light Controls, 445, 451

benefits and considerations, 455
ASP.NET Web services (ASMX),

443
Asynchronous Callback pattern,

81, 316, 337
Asynchronous Data Transfer pat-

tern, 400
asynchronous vs. synchronous

communication, 230
Atomic Transactions pattern, 375
audience, xxviii
authentication, 17

business layer guidelines, 87
crosscutting concerns, 207
mobile application design,

342–343
service application design, 364
service layer guidelines, 119
Web application design, 282

authorization, 17
business layer guidelines, 88
crosscutting concerns, 208
mobile application design,

342–343
service application design, 364
service layer guidelines,

119–120
Web application design, 282

B
Base Class Library (BCL), 440
baseline architecture, 51
batching, 99–100
Behavior pattern, 132, 377
benefits and considerations matrix

application types, 266–267
data access technology matrix,

463–466
disconnected and offline, 464
integration technology matrix,

472–474
isolation and sharing models,

386
mobile applications, 452
n-tier and general, 465–466
object-relational data access, 463
rich client applications, 453
Rich Internet Applications

(RIA), 454
SOA/service scenarios, 464
Web applications, 455
workflow, 478–479

big design upfront (BDUF), 11, 50
binary large objects (BLOBs), 100
binding. See data binding
BizTalk. See Microsoft BizTalk
Bounded Contexts, 171
Brokered Authentication pattern,

262
Brokered Authentication patterns,

506
Broker pattern, 400, 502
brownfield scenario defined, 110
build and buy scenarios, 393–394
building block service defined, 381
business component design,

159–166
identify business components

your application will use,
159–160

make key decisions for business
components, 160–161

choose appropriate transaction
support, 162–163

identify how business rules are
handled, 163–164

identify patterns that fit the
requirements, 164–165

additional resources, 166
Business Data Catalog (BDC), 428
Business Entity components, 85

guidelines, 140
business entity design, 167–172

choose the representation, 168
choose a design for business

entities, 168–169
determine serialization support,

170
additional resources, 172
Domain Driven Design (DDD),

170–172
business layer

component guidelines, 139–141
rich client application design,

300–301
service application design,

364–365
business layer guidelines, 83–94

additional resources, 94
application façade components,

84
business entity components, 85
business logic components, 85
business workflow components,

85
components, 84–85
coupling and cohesion, 89
deployment considerations, 91
design steps for the business

layer, 92
general design considerations,

86
patterns & practices offerings,

94
relevant design patterns, 93
specific design issues, 87–91

authentication, 87
authorization, 88
caching, 88–89

Index 511

coupling and cohesion, 89
exception management,

89–90
logging, auditing, and

instrumentation, 90
validation, 99

Business Logic components, 85
component guidelines, 140–141

Business Workflow components,
85

component guidelines, 140

C
Cache Dependency pattern, 80,

224, 294
caching, 17

business layer guidelines, 88–89
crosscutting concerns, 209
design steps for, 214–218
mobile applications design,

343–344
presentation layer guidelines,

70–71
Web application design, 283

Caching Application Block,
486–487

described, 485
candidate architecture, 51
candidate solutions step, 50–51

architectural spike, 51
baseline architecture, 51
candidate architecture, 51
overview, 50–51

Canonical Data Mapper pattern,
132, 376

Capture Transaction Details pat-
tern, 113, 500

Chain of Responsibility pattern,
81, 93, 142

Channel Adapter pattern, 130
chunky vs. chatty, 71, 210, 244
Claim Check pattern, 132, 376
claims-based identity model, 391
Click Once deployment, 315, 420
Client-Queue-Client systems, 22
client/server deployment, 313

client-server pattern, 245–246
Client/Server style, 21–23

Application servers, 22
benefits, 22–23
Client-Queue-Client systems, 22
described, 20
Peer-to-Peer (P2P) applications,

22
cloud application benefits, 382–38.

See also hosted and cloud
services design

additional resources, 401–402
design issues, 384–400

data isolation and sharing,
384–385

data security, 386–387
data storage and extensibil-

ity, 387–389
identity management,

389–391
multi-tenancy, 392–394
on-premises or off-premis-

es, build or buy, 393–394
performance, 394–395
service composition,

395–397
service integration, 397–399
service management,

399–400
enterprise service consumers,

383
ISVs and service hosts, 382–383
relevant design patterns,

400–401
vs. RDBMS, 387

cloud-based storage, 387
cloud computing. See cloud ap-

plication benefits; hosted and
cloud services design

cloud-hosting environment de-
fined, 381

Coarse Grained Lock pattern, 113
cohesion and coupling, 89
collaboration applications, 417
Collaboration pattern, 417,

419–420

Command Message pattern, 130,
375

Command pattern, 81, 93, 142, 337
Common Language Runtime

(CLR), 440
communication, 17

crosscutting concerns, 210
mobile applications design,

344–345
presentation layer guidelines,

71
rich client application design,

301–302
Rich Internet Application (RIA)

design, 324–325
service application design, 365
service layer guidelines, 120

communication and messaging,
227–237

additional resources, 237
general design guidelines, 228
message-based communication

guidelines, 229–233
asynchronous vs. synchro-

nous communication, 230
contract first design, 234
coupling and cohesion, 231
data formats, 231–232
interoperability, 232
performance, 233
state management, 233

security considerations, 235–236
message security, 235–236
transport security, 235

technology options, 236–237
ASMX, 237
WCF, 236–237

Communicator pattern, 356
community support, xxix
Competing Consumer pattern,

131, 376
component architecture, 24
Component-Based Architecture

style, 22–25
benefits, 24–25
described, 20

Index512

component guidelines, 133–144
additional resources, 144
application façade components,

139
business entity components, 140
business layer components,

139–141
business logic components,

140–141
business workflow components,

140
crosscutting components, 142
data access components, 141
data layer components, 141
figure, 137
general guidelines for, 135–136
layered component distribution,

136–137
patterns & practices offerings,

144
presentation entity components,

138
presentation layer components,

138–139
presentation logic components,

138
presenter, controller, presenta-

tion model, and viewmodel
components, 138

relevant design patterns,
142–144

service agents, 141
services layer components, 139
user interface components, 138

components, modules, and func-
tions, 13–14

Composite Application Guidance
for WPF, 499

Composite Client Application
Guidance for WPF, 447

Composite UI applications,
414–415

Composite View pattern, 81, 294,
316, 337

composition
presentation layer guidelines,

71–72
rich client application design,

302
Rich Internet Application (RIA)

design, 325
Composition pattern, 400
configuration management

crosscutting concerns, 210–211
mobile applications design, 345
rich client application design,

303
connections, 100–101
constituent part, 24
Container pattern, 132, 377
Content-Based Router pattern, 132
Content Enricher pattern, 132, 376
Content Filter pattern, 132, 376
Context Driven Composite User

Interface pattern, 414, 420
Context Object pattern, 316
contract first design, 129, 234
contributors and reviewers, xxx
controls, 24
Cooperating Document Workflow

pattern, 413, 421
copyright, ii
Cost Benefit Analysis Method

(CBAM), 53
coupling and cohesion, 89
crosscutting component guide-

lines, 142
crosscutting concerns, 17, 64,

205–225
additional resources, 225–226
authentication, 207
authorization, 208
caching, 209
communication, 210
configuration management,

210–211
design steps for caching,

214–218
determine what to cache,

214

determine where to cache,
214–215

determine the format to
cache, 216

determine a cache manage-
ment strategy, 216–217

determine how to load the
cache, 217–218

design steps for exception man-
agement, 218–222

identify exceptions to
handle, 218

determine exception detec-
tion strategy, 218

determine exception propa-
gation strategy, 219

determine custom exception
strategy, 219–220

determine appropriate in-
formation to gather, 220

determine exception log-
ging strategy, 221

determine exception notifi-
cation strategy, 221

determine how to handle
unhandled exceptions,
222

design steps for validating input
and data, 222–224

identify trust boundaries,
222–223

identify key scenarios, 223
determine where to vali-

date, 223
identify validation strate-

gies, 224
exception management, 211–212
logging and instrumentation,

212
patterns & practices solution

assets, 225
relevant design patterns, 224
specific design issues, 207–214
state management, 213
validation, 213–214

Index 513

Cross-service Transactions pattern,
375

Cryptography Application Block,
488

described, 485
Custom XML objects pattern, 169

D
data

concurrency, 310
format, 101
storage and extensibility in the

cloud, 387–389
data access

mobile applications design,
345–346

rich client application design,
303–304

Rich Internet Application (RIA)
design, 326

Data Access Application Block, 489
described, 485

Data Access components, 96
guidelines, 141

data access technologies, 440–441
data access technology matrix,

461–469
additional resources, 469
benefits and considerations

matrix, 463–466
disconnected and offline,

464
n-tier and general, 465–466
object-relational data access,

463
SOA/service scenarios, 464

common scenarios and solu-
tions, 467–468

data access technology matrix,
461–462

general recommendations,
466–467

LINQ to SQL considerations,
468

mobile considerations, 469

database models, 384–385
database server - SQL Server,

Microsoft application plat-
form, 446

data binding, 310
figure, 155

data caching, 309
data component design, 181–189

choose a data access technol-
ogy, 182

choose how to retrieve and
persist business objects from
the data store, 183

determine how to connect to the
data source, 184–187

connection pooling, 185
connections, 184–185
transactions and concur-

rency, 186–187
determine strategies for

handling data source errors,
187–189

exceptions, 188
retry logic, 188
timeouts, 189

design service agent objects,
189

additional resources, 189
Data Confidentiality pattern, 131,

376, 506
Data Consolidation pattern,

415–416
Data Contract pattern, 132, 377
Data-Driven Workflow pattern, 93,

143, 434
data-driven workflow style, 174
Data Integration pattern, 505
Data Integrity pattern, 131, 376
data layer

component guidelines, 141
service application design, 366

data layer guidelines, 95–113
additional resources, 113
connections, 100–101
deployment considerations, 110
design steps for the data layer,

110–112

create an overall design for
data access layer, 110

choose entity types needed,
111

choose data access technol-
ogy, 111

design data access compo-
nents, 112

design service agents, 112
general design considerations,

97–99
performance considerations,

109
queries, 103
relevant design patterns,

112–113
security considerations, 109
specific design issues, 99–107

batching, 99–100
binary large objects

(BLOBs), 100
connections, 100–101
data format, 101
exception management,

101–102
object relational mapping,

102–103
queries, 103
stored procedures, 103–104
stored procedures vs.

Dynamic SQL, 104–105
transactions, 105–106
validation, 107
XML, 107

stored procedures, 103–104
technology considerations, 108

Data Mapper pattern, 112
Data Movement patterns, 500–501
Data Origin Authentication pat-

tern, 131, 376, 507
Data Replication pattern, 500
Data Transfer Object pattern, 112,

502
Dependency Injection pattern, 499
Deployment Plan pattern, 262, 501
deployment strategy, 15

Index514

design
considerations, 14–17
fundamentals, 37
practices, 12
principles, 9–17

device specifics in mobile applica-
tions, 346–347

Direct Authentication pattern, 262
Direct Integration pattern, 408, 421

figure, 409
direct integration vs. mediated

integration pattern, 418
Direct Task Synchronization pat-

tern, 417–418, 421
Discovery Navigation pattern, 420
distributed deployment

figure, 243
patterns, 245–248

document and content storage, 429
Document Message pattern, 130,

375
Domain Driven Design (DDD)

style, 22, 25–26
benefits, 26
described, 20

Domain Model pattern, 93, 112,
142, 169, 356

Don’t repeat yourself (DRY) prin-
ciple, 11

Duplex pattern, 130, 375
Durable Subscriber pattern, 131,

376
Dynamic Router pattern, 132
Dynamic SQL vs. stored proce-

dures, 104–105

E
Embedded LOB Information pat-

tern, 421
Embedded LOB Template pattern,

421
enterprise content management,

406
Enterprise Library. See patterns &

practices Enterprise Library
Enterprise Service Bus (ESB), 29

enterprise service consumers, 383
Enterprise Solution patterns,

501–503
patterns & practices Pattern

Catalog, 501–503
Entity Aggregation pattern, 504
Entity pattern, 132, 377
Entity Translator pattern, 93, 142,

356
Envelope Wrapper pattern, 132,

376
Event Message pattern, 130, 375
Excel Services, 430
Exception Handling Application

Block, 490–491
described, 485

exception management, 17
crosscutting concerns, 211–212
data layer guidelines, 101–102
design steps for, 218–222
mobile applications design, 347
presentation layer guidelines,

72–73
rich client application design,

304–305, 326–327
service application design,

366–367
service layer guidelines, 120–121
Web application design, 283

exception management mecha-
nism, 326–327

Exception Shielding pattern, 81,
131, 294, 316, 376, 506

Experience First pattern, 401
Expression Studio, 447
Extended Reach Channel applica-

tions, 408
Extract-Transform-Load pattern,

501

F
Façade pattern, 132, 143, 295, 377
Failover Cluster pattern, 262, 401,

502
Family Architecture Assessment

Method (FAAM), 53

Fault Contract pattern, 377
Fault Contracts pattern, 132
Federation pattern, 131, 376
feedback

my story, xxxi
and support, xxix

figures
Application Generated Docu-

ments pattern, 411
BizTalk Server, 177–178
business layer guidelines, 84
claims-based identity model

based on a federated identity
service, 391

common application architec-
ture, 10

component guidelines, 137
data binding, 155
Data Consolidation pattern, 416
data layer guidelines, 96
Direct Integration pattern, 409
distributed deployment, 243
enterprise content management,

406
incorporating a services layer in

an application, 59
Intelligent Documents/Embed-

ded LOB Information pattern,
412

Intelligent Documents/Embed-
ded LOB Template pattern,
412

iterative steps for core architec-
ture design activities, 41

launching a LOB process, 416
logical architecture view of a

layered system, 57
Mediated Integration pattern,

410
mobile application archetype,

269
mobile applications design, 340
nondistributed deployment, 242
office business applications

(OBA), 404
presentation entities, 154

Index 515

presentation layer, 68
protocols and authentication

methods, 46
rich client application arche-

type, 270
rich client application design,

298
Rich Internet Application (RIA)

archetype, 272
Rich Internet Application (RIA)

design, 320
security issues, 50
service application design, 360
service archetype, 273
service composition, 396
service layer guidelines, 116
SharePoint LOB applications,

424
user, business, and system

goals, 4
Web application archetype, 275
Web application design, 278

File Transfer pattern, 400
File Transfer Protocol (FTP) Ser-

vice, 445
Fire and Forget pattern, 130, 375
Form-based Tasks and Notifica-

tions pattern, 418, 421
 4-tier pattern, 247
Front Controller pattern, 81, 295,

503
Functional Integration pattern, 505

G
Gateway pattern, 316, 505
Gopher Service, 446
greenfield scenario defined, 110
guide, how to use, xxviii–xxix
Guthrie, Scott, xxvi

H
Hill, David, xxi–xxiii
home-built applications defined,

381

hosted and cloud services design,
379–40. See also cloud applica-
tion benefits

vocabulary, 381–382
hosted applications

build or buy scenarios, 393–394
defined, 381

Host Integration Server. See Micro-
soft Host Integration Server

how to use this guide, xxviii–xxix
Human Workflow pattern, 93, 143,

434

I
Idempotent Receiver pattern, 131,

376
identity management, 389–391
IEEE 1471, 54
Impersonation and Delegation pat-

tern, 262
impersonation/delegation, 254
Implicit Lock pattern, 113
index, 509
InfoPath Form Services, 430–431
inputs, outputs, and design steps,

39–41
instrumentation 17; logging and

instrumentation
Integration patterns, 504–505
integration technology matrix,

471–475
additional resources, 475
benefits and considerations

matrix, 472–474
common scenarios and solu-

tions, 474–475
summary, 471–472

Integration with ASP.NET, 446
Intelligent Documents/Embedded

LOB Information pattern,
411–412

figure, 412
Intelligent Documents/Embedded

LOB Template pattern, 412
figure, 412

Intelligent Documents/LOB
Information Recognizer pat-
tern, 413

Intelligent Tasks and Notifications
pattern, 418, 421

Intercepting Filter pattern, 224,
295, 503

Internet, Microsoft technical infor-
mation on, 438–439

Internet Database Connector, 446
Internet Information Services (IIS),

445–446
Internet Service Bus (ISB), 29
Internet Service Manager Server,

446
introduction, xxvii–xxxi
Inversion of Control pattern, 337,

499
inverted pyramid of reuse, 26
issues mitigation, 48–50
ISVs, 382–383

K
key issues step, 47
key scenarios step, 43–44

architecturally significant use
cases, 43–44

overview, 43

L
landscape, 6
Language Integrated Query

(LINQ), 441, 462
Layered Application pattern, 262,

501
layered applications, 55–66

business layer described, 58
data layer described, 58
design steps for, 60–66

choose the layering strategy,
60–61

determine the layers
required, 62

decide how to distribute
layers and components,
62

Index516

layered applications (continued)
determine whether to col-

lapse layers, 63
determine rules for interac-

tion between layers, 63
identify cross-cutting con-

cerns, 64
define the interfaces be-

tween layers, 64–65
abstract interface, 64
common design type ap-

proach, 64
dependency inversion

approach, 65
message-based ap-

proach, 65
choose the deployment

strategy, 66
choose communication

protocols, 66
define the interfaces

between layers, abstract
interface approach, 64

logical layered design, 56–58
presentation, business, and data

layers, 56–58
presentation layer described, 58
services layer, 58–60

layered architecture, 60–66
Layered Architecture style, 22,

26–28
benefits, 28
described, 20

layered component guidelines,
136–137

layers vs. tiers, 55
layout, 285
Lazy Acquisition pattern, 356
LINQ to Data Services, 464
LINQ to DataSet, 464
LINQ to Entities, 463
LINQ to Objects, 466
LINQ to SQL, 441, 462

benefits and considerations,
463, 466

data access technology matrix,
468

LINQ to XML, 466
Load-Balanced Cluster pattern,

262, 401, 502
LOB Information Recognizer pat-

tern, 421
LOB Initiated Document Workflow

pattern, 413
LOB process, 416
logging

mobile applications design,
347–348

Rich Internet Application (RIA)
design, 327

logging, auditing, and instrumen-
tation, 90

logging and instrumentation, 17
crosscutting concerns, 212
Web application design, 284

Logging Application Block, 491–492
described, 485

Long-running Transactions pat-
tern, 375

loose interaction, 63

M
maintainability, 305
Maintain Data Copies pattern,

400, 501
managed applications, 440
Master-Master Replication pattern,

500
Master-Master Row-Level Syn-

chronization pattern, 500
Master-Subordinate Cascading

Replication pattern, 500
Master-Subordinate Replication

pattern, 500
Master-Subordinate Snapshot

Replication pattern, 500
Master-Subordinate Transactional

Incremental Replication pat-
tern, 500

media and graphics, 327–328
Mediated Integration pattern,

409–410, 421
figure, 410
vs. direct integration, 418

Mediated Task Synchronization
pattern, 418, 421

Mesh Composite View pattern,
414, 420

Message Broker (Hub and Spoke)
pattern, 132

Message Broker pattern, 504
Message Bus pattern, 130, 504
Message Bus style, 22, 29–30

benefits, 30
described, 20

message construction
service application design, 367
service layer guidelines, 121

Message Dispatcher pattern, 131,
376

message endpoint
service application design,

367–368
service layer guidelines, 122

Message Exchange Pattern, 369
Message Filter pattern, 132
message protection

service application design, 368
service layer guidelines, 122–123

Message Queuing. See Microsoft
Message Queuing

Message Replay Detection pattern,
506

message routing, 123
message transformation

service application design, 369
service layer guidelines, 123

Message Types components, 139
Message Validator pattern, 507
messaging. See communication

and messaging
Messaging Bridge pattern, 130
messaging channels, 121
Messaging Gateway pattern, 131,

376
Messaging Mapper pattern, 131,

376
Microsoft, technical information

on the Web, 438–439

Index 517

Microsoft application platform
additional resources, 448
Common Language Runtime

(CLR), 440
data access technologies, 440–441
database server - SQL Server, 446
finding information and

resources, 438–439
Microsoft Developer

Network (MSDN), 439
Microsoft TechNet, 440

mobile applications, 442
.NET Framework, 440
other tools and libraries, 447
patterns & practices solution

assets, 447
rich client applications, 442–443
Rich Internet Applications

(RIA), 443
service-based applications, 443
table, 438
Visual Studio Team System, 446
Web applications, 445
Web server - Internet Informa-

tion Services (IIS), 445–446
workflows, 444

Microsoft Azure storage, 387–389
Microsoft BizTalk ESB Toolkit,

472–475
benefits and considerations, 474

Microsoft BizTalk Server, 177–178,
444, 471–475, 478

benefits and considerations,
472, 479

figures, 177–178
Microsoft BizTalk with ESB,

179–180
Microsoft Developer Network

(MSDN), 439
Microsoft Host Integration Server,

471–475
benefits and considerations

matrix, 473
Microsoft Message Queuing,

472–475
benefits and considerations

matrix, 473

Microsoft .NET Compact
Framework, 442, 449

Microsoft Office SharePoint Ser-
vices (MOSS), 444, 478

benefits and considerations, 479
Microsoft Silverlight for Mobile,

442, 450
Microsoft TechNet, 440
Microsoft Windows Communi-

cation Foundation (WCF),
332–333

minimize upfront design principle,
11

mitigation, 48–50
mobile, 328
mobile application archetype,

269–270
figure, 270

mobile applications
benefits and considerations

matrix, 452
common scenarios and solu-

tions, 456
Microsoft application platform,

442
presentation layer guidelines, 75
presentation technologies

guidelines, 456–457
presentation technologies sum-

mary, 449–450
mobile applications design,

339–357
additional resources, 357
deployment considerations, 355
figure, 340
general design considerations,

341–342
porting, 348
power management, 349
relevant design patterns, 356
specific design issues, 342–351

authentication and authori-
zation, 342–343

caching, 343–344
communication, 344–345
configuration management,

345

data access, 345–346
device specifics, 346–347
exception management, 347
logging, 347–348
porting applications, 348
power management, 349
synchronization, 349–350
testing, 350
user interface, 350–351
validation, 351

technology considerations,
352–354

Microsoft Silverlight for
Mobile, 352

.NET Compact Framework,
352–353

Windows Embedded, 354
Windows Mobile, 353–354

testing, 350
Mobile Device Manager (MDM),

354
Model-View-Controller (MVC)

pattern, 143, 294, 356, 503
Model-View-Presenter (MVP)

pattern, 143, 294, 316, 356
Model-View-ViewModel pattern,

143, 316
MOSS. See Microsoft Office

SharePoint Services (MOSS)
MSDN, 439
multiple trusted service identities,

256
multi-tenancy, 392–393
my story, xxxi

N
navigation

presentation layer guidelines, 73
Web application design, 284–285

.NET Compact Framework, 442,
449

benefits and considerations, 452
mobile applications design,

352–353
.NET Framework, 440
newsgroup support, xxix

Index518

nondistributed deployment, 242
Normalizer pattern, 132, 376
Notifications and Tasks pattern,

417–418
N-Tier / 3-Tier style, 22, 30–31

benefits, 31
described, 20

N-Tier deployment, 314
N-Tier pattern, 246

O
OASIS standards group, 369
objectives identification steps

overview, 41–42
scope and time, 43

Object-oriented architecture, 22
Object-Oriented style, 32–33

benefits, 33
described, 20

object relational mapping, 102–103
Observer pattern, 503
office business applications (OBA)

design, 403–422
additional resources, 422
collaboration applications, 417
common OBA patterns, 408–418

Application Generated
Documents pattern, 411

collaboration applications,
417

Composite UI applications,
414–415

Data Consolidation applica-
tions, 415
Data Consolidation pat-

tern, 415–416
launching a LOB pro-

cess, 416
Direct Integration pattern,

408
Document Integration ap-

plications, 410–411
Document Workflow ap-

plications, 413
Extended Reach Channel

applications, 408

Intelligent Documents/
Embedded LOB Informa-
tion pattern, 411–412

Intelligent Documents/
Embedded LOB Template
pattern, 412

Intelligent Documents/LOB
Information Recognizer
pattern, 413

Mediated Integration pat-
tern, 409–410

Notifications and Tasks
pattern, 417–418

deployment considerations, 420
figure, 404
general design considerations,

418–419
key scenarios for office business

applications, 405–407
business intelligence, 407
enterprise content manage-

ment, 406–407
unified messaging, 407

OBA components, 404–405
relevant design patterns,

420–421
security considerations, 419

optimistic concurrency defined,
106, 310

Optimistic Offline Lock pattern,
113

orchestration, 478

P
packaged application defined, 381
Page Cache pattern, 80, 224, 294,

503
Page Controller pattern, 81, 295,

503
page rendering, 286
Pagination pattern, 356
Parallel Processing pattern, 112
Partitioning pattern, 112
Passive View pattern, 143, 294

Pattern Catalog. See patterns &
practices Pattern Catalog

patterns. See also patterns &
practices Pattern Catalog;
relevant design patterns

business components, 165
security patterns, 254–256

patterns & practices Enterprise
Library, 447, 483–497

additional resources, 497
application blocks, 485
Caching Application Block,

486–487
Cryptography Application

Block, 488
Data Access Application Block,

489
Exception Handling Application

Block, 490–491
Logging Application Block,

491–492
Policy Injection Application

Block, 492–493
Security Application Block, 494
Unity Application Block, 495
Validation Application Block,

496
what’s included, 484

patterns & practices offerings
component guidelines, 144
presentation layer guidelines, 82

patterns & practices Pattern
Catalog, 499–507

additional resources, 507
Composite Application

Guidance for WPF, 499
data movement patterns,

500–501
Enterprise Solution patterns,

501–503
Integration patterns, 504–505
Web Services Security patterns,

506–507
Peer-to-Peer (P2P) applications, 22

Client/Server style, 22

Index 519

Perimeter Service Router pattern,
507

pessimistic concurrency defined,
106, 310

Pessimistic Offline Lock pattern,
113

physical tiers and deployment,
241–263

additional resources, 263
distributed and nondistributed

deployment, 242–245
distributed deployment,

242–243
locating components,

244–245
performance and design

considerations, 243–244
distributed deployment pat-

terns, 245–248
2-tier pattern, 246
3-tier pattern, 246–247
4-tier pattern, 247
Client-Server pattern,

245–246
N-Tier pattern, 246
rich client application de-

ployment, 248–249
Rich Internet Application

(RIA) deployment, 248
web application deploy-

ment, 248
manageability considerations,

261
multiple trusted service identi-

ties, 256
network infrastructure security,

260–261
nondistributed deployment, 242
performance patterns, 249–252

affinity and user sessions,
252

application farms, 252
load-balanced cluster,

249–251

relevant design patterns,
262–263

reliability patterns, 252–253
failover cluster, 252–253

scaling up and out, 257–260
considerations for scaling

up, 257
data and database partition-

ing, 259–260
design implications and

tradeoffs, 258–260
design to support scale out,

258
stateless components, 259

security patterns, 254–256
impersonation/delegation,

254
multiple trusted service

identities, 256
trusted subsystem, 255

Pipes and Filters pattern, 224, 505
Platform as a Service (PaaS)

defined, 382
Point-to-Point Channel pattern,

130
Policy Injection Application Block,

492–493
described, 485

Polling Consumer pattern, 131,
376

Polling pattern, 400
portability, 328–329
Portal Integration pattern, 400,

504
power management, 349
presentation component design,

145–158
understand the UI require-

ments, 145–146
determine the UI type required,

146–147
choose the UI technology,

147–150

design the presentation compo-
nents, 150–154

presentation entities,
153–154

presentation logic compo-
nents, 151

presentation model compo-
nents, 151–152

UI components, 150–151
determine the binding require-

ments, 155–156
determine the error handling

strategy, 156–157
determine the validation strat-

egy, 157–158
additional resources, 158
patterns & practices offerings,

158
presentation entities figure, 154

Presentation Entity components,
138

Presentation Integration pattern,
505

presentation layer
component guidelines, 138–139
described, 58
rich client application design,

306
presentation layer guidelines,

67–82
additional resources, 82
design steps for, 78–80

identify client type, 78
choose presentation layer

technology, 78
design user interface, 79
determine data validation

strategy, 79
determine the business logic

strategy, 79
determine strategy for com-

munication with other
layers, 80

Index520

general design considerations,
69–70

mobile applications, 75
patterns & practices offerings,

82
performance considerations,

77–78
relevant design patterns, 80–81
rich client applications, 76
Rich Internet Applications

(RIA), 76
specific design issues, 70–75

caching, 70–71
communication, 71
composition, 71–72
exception management, 72–73
navigation, 73
user experience, 73–74
user interface, 74
validation, 75

technology considerations,
75–77

Web applications, 77
Presentation Logic components, 68

guidelines, 138
Presentation Model pattern, 81,

143, 316, 338, 499
presentation of RIAs, 329
presentation technology matrix,

449–459
additional resources, 459
benefits and considerations

matrix
mobile applications, 452
rich client applications, 453
Rich Internet Applications

(RIA), 454
Web applications, 455

common scenarios and solu-
tions, 456–458

mobile applications, 456
rich client applications,

456–457
Rich Internet Applications

(RIA), 457
Web applications, 458

summary, 449–451
mobile applications,

449–450
rich client applications,

450–451
Rich Internet Applications

(RIA), 451
Web applications, 451

Presenter, Controller, Presentation
Model, and ViewModel com-
ponents, 138

Process Integration pattern, 504
Process Manager pattern, 132
Provider pattern, 262, 294, 316
Publish-Subscribe Channel pat-

tern, 130
Publish/Subscribe pattern, 400,

504
Push pattern, 400

Q
quality attributes, 16, 191–204

additional resources, 204
availability, 194–195
common attributes, 192–193
conceptual integrity, 195
interoperability, 196
maintainability, 196–197
manageability, 197–198
performance, 198–199
reliability, 199
reusability, 200
scalability, 200–201
security, 201
supportability, 202
testability, 202–203
user experience / usability, 203

queries, 103
Query Object pattern, 112

R
read-only reference data, 309
relational database management

systems (RDBMS), 387

relevant design patterns
business layer guidelines, 93
cloud application benefits,

400–401
component guidelines, 142–144
crosscutting concerns, 224
data layer guidelines, 112–113
mobile applications design, 356
office business applications

(OBA) design, 420–421
physical tiers and deployment,

262–263
presentation layer guidelines,

80–81
rich client application design,

315–317
Rich Internet Application (RIA)

design, 337–338
service application design,

375–378
service layer guidelines, 130–133
SharePoint LOB applications,

434
Web application design,

294–295
relevant technologies, 45–46
reliability patterns, 252–253
Reliable Sessions pattern, 130, 356,

375
Remote Façade pattern, 132, 143,

377
Replay Protection pattern, 131, 376
Repository pattern, 112
Representational State Transfer

(REST). See REST
Request-Reply pattern, 130, 375
Request Response pattern, 130,

375
REST

service application design,
370–371

service layer guidelines, 126
reviewers, xxx
rich client application archetype,

269–270
figure, 270

Index 521

rich client application design,
297–317

additional resources, 317
data handling considerations,

309–310
data binding, 310
data caching, 309
data concurrency, 310

deployment considerations,
313–315

client/server deployment,
313

deployment technologies,
315

N-Tier deployment, 314
stand-alone deployment,

313
figure, 298
general design considerations,

299–300
maintainability, 305
offline/occasionally connected

considerations, 311
relevant design patterns,

315–317
security considerations, 308
specific design issues, 300–307

business layer, 300–301
communication, 301–302
composition, 302
configuration management,

303
data access, 303–304
exception management,

304–305, 326–327
maintainability, 305
presentation layer, 306
state management, 307
workflow, 307

stand-alone deployment, 313
technology considerations, 312

rich client applications
benefits and considerations

matrix, 453
common scenarios and solu-

tions, 456–457

deployment, 248–249
physical tiers and deploy-

ment, 248–249
Microsoft application platform,

442–443
presentation layer guidelines, 76
presentation technologies sum-

mary, 450–451
Rich Internet Application (RIA)

archetype, 271–272
figure, 272

Rich Internet Application (RIA)
design

additional resources, 338
data handling considerations,

331
caching, 324

deployment considerations,
334–337

distributed deployment, 335
installing RIA plug-in, 334
load balancing, 336

exception management mecha-
nism, 326–327

figure, 320
general design considerations,

321–322
media and graphics, 327–328
relevant design patterns,

337–338
security considerations, 330–331
specific considerations

portability, 328–329
presentation, 329
state management, 329–330
validation, 330

specific design issues, 323–330
business layer, 323–324
communication, 324–325
composition, 325
data access, 326
exception management

mechanism, 326–327
logging, 327
media and graphics,

327–328
mobile, 328

state management, 329–330
technology considerations,

332–333
validation, 330

Rich Internet Applications (RIA)
benefits and considerations

matrix, 454
common scenarios and solu-

tions, 457
deployment, 248
design, 319–338
Microsoft application platform,

443
presentation layer guidelines, 76
presentation technologies

guidelines, 456–457
presentation technologies sum-

mary, 451
Row Data Gateway pattern, 112
RSS and Web Services Composi-

tion pattern, 415, 420

S
scaling up and out, 257–260
scenario-based evaluations, 52–53
scenario defined, 43
Secure Database Tables pattern,

386
Secure Sockets Layer (SSL) Client/

Server, 446
Security Application Block, 494

described, 485
security patterns, 254–256
Selective Consumer pattern, 131,

376
Separated Presentation pattern,

27–28, 499
separation of concerns principle,

11
Sequential Workflow pattern, 93,

143, 434
sequential workflow style, 174
Server Clustering pattern, 262,

401, 502
Service Activator pattern, 131, 376

Index522

Service Agent and Proxy pattern,
316

service agents, 97
component guidelines, 141

service application design,
359–378

additional resources, 378
deployment considerations, 374
figure, 360
general design considerations,

361–363
relevant design patterns,

375–378
service layer, 371–372
specific design issues, 363–373

authentication, 364
authorization, 364
business layer, 364–365
communication, 365
data layer, 366
exception management,

366–367
message construction, 367
message endpoint, 367–368
Message Exchange Pattern,

369
message protection, 368
message transformation,

369
Representational State

Transfer (REST), 370–371
service layer, 371–372
SOAP, 372–373
validation, 373

technology considerations,
373–374

service archetype, 273
service composition, 396
Service Contract pattern, 132, 377
service defined, 359
Service Gateway pattern, 502
service hosts, 382–383
service interface, 124
Service Interface pattern, 132, 143,

224, 295, 316, 377, 502
Service Interfaces components, 139

service layer, 371–372
service layer guidelines, 115–133

additional resources, 133
deployment considerations, 128
design considerations, 117–118
design considerations for REST,

126
design considerations for SOAP,

127
design steps for, 129
figure, 116
message types described, 117
relevant design patterns,

130–133
REST and SOAP, 1
service interface described, 116
specific design issues, 117–124

authentication, 119
authorization, 119–120
communication, 120
exception management,

120–121
message construction, 121
message endpoint, 122
message protection, 122–123
message routing, 123
message transformation,

123
messaging channels, 121
service interface, 124
validation, 124

technology considerations,
127–128

Service Layer pattern, 337
Service Locator pattern, 316, 499
Service-Oriented Architecture

(SOA), 22
benefits, 34
described, 20
style, 33–34

Service-Oriented Integration pat-
tern, 505

services layer component guide-
lines, 139

session management, 286
Shared Database pattern, 400

SharePoint LOB applications,
423–434

additional resources, 434
Business Data Catalog (BDC),

428
deployment considerations, 433
document and content storage,

429
figure, 424
general design considerations,

427
InfoPath Form Services, 430–431
key scenarios and features, 426
logical layers, 424–425
physical tier deployment, 425
relevant design patterns, 434
SharePoint object model, 431
specific design issues, 428–432

Business Data Catalog
(BDC), 428

document and content stor-
age, 429

Excel Services, 430
InfoPath Form Services,

430–431
SharePoint object model,

431
Web Parts, 431–432
workflows, 432–433

technology considerations, 433
SharePoint object model, 431
Silverlight, 443, 451

benefits and considerations, 454
technology discussion, 332–333

Silverlight for Mobile, 442
benefits and considerations, 452

Silverlight with AJAX, 443, 451
benefits and considerations, 454

Simple Task and Notification De-
livery pattern, 417, 421

Single Responsibility principle, 11
Singleton pattern, 502
SOAP

service application design,
372–373

service layer guidelines, 127

Index 523

software architecture. See architecture
Software Architecture Analysis

Method (SAAM), 52
Software as a Service (SaaS) de-

fined, 382
Software Factories, 447
SOLID design principles, 135
Somasegar, S., xxv
SQL Server, 446
stand-alone deployment, 313
State-Driven Workflow pattern, 93,

143, 434
stateless components, 259
state machine workflow style, 174
state management

crosscutting concerns, 213
rich client application design,

307
Rich Internet Application (RIA)

design, 329–330
stored procedures

data layer guidelines, 103–104
vs. Dynamic SQL, 104–105

Store pattern, 132, 377
strict interaction, 63
Supervising Controller pattern,

143, 294, 499
Supervising Presenter pattern, 143,

294, 338, 499
support, xxix
synchronization, 349–350
Synchronization pattern, 356
Synchronous Data Transfer pat-

tern, 400
synchronous vs. asynchronous

communication, 230
System Center, 447

T
Table Data Gateway pattern, 112
Table Module pattern, 93, 112, 142,

169
team, xxx
TechNet, 440
technical support, xxix

techniques, 39–54
Active Design Review (ADR),

53
Active Reviews of Intermediate

Designs (ARID), 53
additional resources, 54
Architecture Level Modifiability

Analysis (ALMA), 53
Architecture Tradeoff Analysis

Method (ATAM), 53
Cost Benefit Analysis Method

(CBAM), 53
crosscutting concerns, 48
Family Architecture Assessment

Method (FAAM), 53
key issues, 43–44
quality attributes, 47
scenario-based evaluations,

52–53
Software Architecture Analysis

Method (SAAM), 52
technologies, appropriate, 16
Template View pattern, 81, 294,

316
Tenant Data Encryption pattern,

386–387
Tenant Data Filter pattern, 387
testability described, 289
testing, 350
3-tier pattern, 246–247
Three-Layered Services Applica-

tion pattern, 262, 501
Three-Tiered Distribution pattern,

262, 501
Tiered Distribution pattern, 262,

501
tiers vs. layers, 55
top-down interaction, 63
Topologies for Data Copies pat-

tern, 501
Transactional Client pattern, 131,

376
Transaction pattern, 132, 377
transactions, 105–106
Transaction Script pattern, 113, 356

Transform View pattern, 81, 294
transient data, 309
Trusted Database Connections

pattern, 386
trusted subsystem, 255
Trusted Subsystem pattern, 262,

506
2-tier pattern, 246
Two-Step View pattern, 81, 294,

316

U
Unified Modeling Language

(UML), 54
Unity Application Block, 447, 495

described, 485
Universal Web pattern, 401
use case defined, 43–44
user, business, and system goals, 4
user experience, 73–74
user interface

mobile applications design,
350–351

presentation layer guidelines, 74
User Interface components, 68, 138

V
validation

business layer guidelines, 99
crosscutting concerns, 213–214
data layer guidelines, 107
mobile applications design, 351
presentation layer guidelines, 75
Rich Internet Application (RIA)

design, 330
service application design, 373
service layer guidelines, 124
Web application design, 287

Validation Application Block, 496
described, 485

Validation pattern, 131, 376
View Flow pattern, 316
View Helper pattern, 316
Visual Studio Team System, 446

W
W3C standards group, 369
Web, technical information on,

438–439
Web application archetype, 275
Web application design

additional resources, 296
deployment considerations,

290–293
distributed deployment, 291
load balancing, 292–293
nondistributed deployment,

290–291
design considerations for layers,

287–289
business layer, 288
data layer, 288
presentation layer, 287
service layer, 288–289

figure, 278
general design considerations,

279–280
layout, 285
relevant design patterns,

294–295
specific design issues, 280–287

application request process-
ing, 280–281

authentication, 282
authorization, 282
caching, 283
exception management, 283
layout, 285
logging and instrumenta-

tion, 284
navigation, 284–285
page rendering, 286
session management, 286
validation, 287

technology considerations,
289–290

testing and testability consider-
ations, 289

Web applications
benefits and considerations

matrix, 455
common scenarios and solu-

tions, 458
deployment, 248
design, 277–296
Microsoft application platform,

445
presentation layer guidelines, 77
presentation technologies

guidelines, 458
presentation technologies sum-

mary, 451
Web Parts, 431–432
Web server - Internet Information

Services (IIS), 445–446
Web Services Security patterns,

506–507
Windows Communication Foun-

dation (WCF), 236–237, 443
Windows Embedded, 354
Windows Forms, 442, 450

benefits and considerations, 452
Windows Forms with WPF User

Controls, 442, 450
benefits and considerations, 452

Windows Installer (.MSI) deploy-
ment, 315, 420

Windows Mobile, 353–354
Windows Presentation Foundation

(WPF). See WPF
Windows Workflow Foundation

(WF), 444, 477
benefits and considerations, 478
workflow component design,

177
workflow component design,

173–180
identify the workflow style us-

ing scenarios, 174
choose an authoring mode,

174–175
determine how rules will be

handled, 175

choose a workflow solution,
175–176

design business components to
support workflow, 176–177

additional resources, 180
BizTalk Server, 177–178
BizTalk with ESB, 179–180
WF and BizTalk together, 177
Windows Workflow Foundation

(WF), 177
Work Flow pattern, 316
workflows, 307

Microsoft application platform,
444

SharePoint LOB applications,
432–433

Workflow Services, 444, 477
benefits and considerations, 479

workflow technology matrix,
477–481

additional resources, 481
common scenarios and solu-

tions, 480
human workflow vs. system

workflow, 478
summary, 477–478

World Wide Web Service, 445
WPF applications, 442, 450
WPF with Windows Forms User

Controls, 442–443, 450
benefits and considerations, 453

X
XAML Browser Application

(XBAP) using WPF, 443, 450
XBAP deployment, 315
XBAP using WPF, 453
XCOPY deployment, 315
XML, 107

Y
You ain’t gonna need it (YAGNI),

11

	Cover

	Copyright page

	Contents
	Foreword by S. Somasegar
	Foreword by Scott Guthrie
	Preface by David Hill
	Introducing the Guide
	Software Architecture and Design
	Chapter 1:
What Is Software Architecture?
	Why Is Architecture Important?
	The Goals of Architecture
	The Architectural Landscape

	The Principles of Architecture Design
	Key Architecture Principles
	Additional Resources

	Chapter 2:
Key Principles of Software
Architecture
	Overview
	Key Design Principles
	Key Design Considerations
	Determine the Application Type
	Determine the Deployment Strategy
	Determine the Appropriate Technologies
	Determine the Quality Attributes
	Determine the Crosscutting Concerns

	Chapter 3:
Architectural Patterns and Styles
	Overview
	What Is an Architectural Style?
	Summary of Key Architectural Styles
	Combining Architectural Styles

	Client/Server Architectural Style
	Component-Based Architectural Style
	Domain Driven Design Architectural Style
	Layered Architectural Style
	Message Bus Architectural Style
	N-Tier / 3-Tier Architectural Style
	Object-Oriented Architectural Style
	Service-Oriented Architectural Style
	Additional Resources

	Chapter 4: A Technique for Architecture and Design
	Overview
	Inputs, Outputs, and Design Steps
	Identify Architecture Objectives
	Scope and Time

	Key Scenarios
	Architecturally Significant Use Cases

	Application Overview
	Relevant Technologies
	Whiteboard Your Architecture

	Key Issues
	Quality Attributes
	Crosscutting Concerns
	Designing for Issue Mitigation

	Candidate Solutions
	Baseline and Candidate Architectures
	Architectural Spikes

	What to Do Next
	Reviewing Your Architecture
	Scenario-Based Evaluations

	Representing and Communicating Your Architecture Design
	Additional Resources

	Design Fundamentals
	Chapter 5:
Layered Application Guidelines
	Overview
	Logical Layered Design
	Presentation, Business, and Data Layers

	Services and Layers
	Services Layer

	Design Steps for a Layered Structure
	Step 1 – Choose Your Layering Strategy
	Step 2 – Determine the Layers You Require
	Step 3 – Decide How to Distribute Layers and Components
	Step 4 – Determine If You Need to Collapse Layers
	Step 5 – Determine Rules for Interaction Between Layers
	Step 6 – Identify Cross Cutting Concerns
	Step 7 – Define the Interfaces between Layers
	Step 8 – Choose Your Deployment Strategy
	Step 9 – Choose Communication Protocols

	Chapter 6:
Presentation Layer Guidelines
	Overview
	General Design Considerations
	Specific Design Issues
	Caching
	Communication
	Composition
	Exception Management
	Navigation
	User Experience
	User Interface
	Validation

	Technology Considerations
	Mobile Applications
	Rich Client Applications
	Rich Internet Applications
	Web Applications

	Performance Considerations
	Design Steps for the Presentation Layer
	Relevant Design Patterns
	patterns & practices Offerings
	Additional Resources

	Chapter 7:
Business Layer Guidelines
	Overview
	General Design Considerations
	Specific Design Issues
	Authentication
	Authorization
	Caching
	Coupling and Cohesion
	Exception Management
	Logging, Auditing, and Instrumentation
	Validation

	Deployment Considerations
	Design Steps for the Business Layer
	Relevant Design Patterns
	patterns & practices Offerings
	Additional Resources

	Chapter 8:
Data Layer Guidelines
	Overview
	General Design Considerations
	Specific Design Issues
	Batching
	Binary Large Objects
	Connections
	Data Format
	Exception Management
	Object Relational Mapping
	Queries
	Stored Procedures
	Stored Procedures vs. Dynamic SQL
	Transactions
	Validation
	XML

	Technology Considerations
	Performance Considerations
	Security Considerations
	Deployment Considerations
	Design Steps for the Data Layer
	Relevant Design Patterns
	Additional Resources

	Chapter 9:
Service Layer Guidelines
	Overview
	Design Considerations
	Specific Design Issues
	Authentication
	Authorization
	Communication
	Exception Management
	Messaging Channels
	Message Construction
	Message Endpoint
	Message Protection
	Message Routing
	Message Transformation
	Service Interface
	Validation

	REST and SOAP
	Design Considerations for REST
	Design Considerations for SOAP

	Technology Considerations
	Deployment Considerations
	Design Steps for the Service Layer
	Relevant Design Patterns
	Additional Resources

	Chapter 10:
Component Guidelines
	Overview
	General Guidelines for Component Design
	Layered Component Distribution
	Presentation Layer Components
	Services Layer Components
	Business Layer Components
	Data Layer Components
	Crosscutting Components
	Relevant Design Patterns
	patterns & practices Offerings
	Additional Resources

	Chapter 11: Designing Presentation Components
	Overview
	Step 1 – Understand the UI Requirements
	Step 2 – Determine the UI Type Required
	Step 3 – Choose the UI Technology
	Step 4 – Design the Presentation Components
	User Interface Components
	Presentation Logic Components
	Presentation Model Components

	Step 5 – Determine the Binding Requirements
	Step 6 – Determine the Error Handling Strategy
	Step 7 – Determine the Validation Strategy
	patterns & practices Offerings
	Additional Resources

	Chapter 12:
Designing Business Components
	Overview
	Step 1 – Identify Business Components Your Application
Will Use
	Step 2 – Make Key Decisions for Business Components
	Step 3 – Choose Appropriate Transaction Support
	Step 4 – Identify How Business Rules Are Handled
	Step 5 – Identify Patterns That Fit the Requirements
	Additional Resources

	Chapter 13:
Designing Business Entities
	Overview
	Step 1 – Choose the Representation
	Step 2 – Choose a Design for Business Entities
	Step 3 – Determine Serialization Support
	Domain Driven Design
	Additional Resources

	Chapter 14:
Designing Workflow Components
	Overview
	Step 1 – Identify the Workflow Style Using Scenarios
	Step 2 – Choose an Authoring Mode
	Step 3 – Determine How Rules Will Be Handled
	Step 4 – Choose a Workflow Solution
	Step 5 – Design Business Components to Support Workflow
	Windows Workflow Foundation
	BizTalk Server
	BizTalk with ESB
	Using Windows Workflow Foundation and BizTalk Together

	Additional Resources

	Chapter 15:
Designing Data Components
	Overview
	Step 1 – Choose a Data Access Technology
	Step 2 – Choose How to Retrieve and Persist Business Objects from the Data Store
	Step 3 – Determine How to Connect to the Data Source
	Connections
	Connection Pooling
	Transactions and Concurrency

	Step 4 – Determine Strategies for Handling Data Source Errors
	Exceptions
	Retry Logic
	Timeouts

	Step 5 – Design Service Agent Objects (Optional)
	Additional Resources

	Chapter 16:
Quality Attributes
	Overview
	Common Quality Attributes
	Availability
	Conceptual Integrity
	Interoperability
	Maintainability
	Manageability
	Performance
	Reliability
	Reusability
	Scalability
	Security
	Supportability
	Testability
	User Experience / Usability

	Additional Resources

	Chapter 17:
Crosscutting Concerns
	Overview
	General Design Considerations
	Specific Design Issues
	Authentication
	Authorization
	Caching
	Communication
	Configuration Management
	Exception Management
	Logging and Instrumentation
	State Management
	Validation

	Design Steps for Caching
	Step 1 – Determine the Data to Cache
	Step 2 – Determine Where to Cache Data
	Step 3 – Determine the Format of Your Data to Cache
	Step 4 – Determine a Suitable Cache Management Strategy
	Step 5 – Determine How to Load the Cache Data

	Design Steps for Exception Management
	Step 1 – Identify Exceptions That You Want to Handle
	Step 2 – Determine Your Exception Detection Strategy
	Step 3 – Determine Your Exception Propagation Strategy
	Step 4 – Determine Your Custom Exception Strategy
	Step 5 – Determine Appropriate Information to Gather
	Step 6 – Determine Your Exception Logging Strategy
	Step 7 – Determine Your Exception Notification Strategy
	Step 8 – Determine How to Handle Unhandled Exceptions

	Design Steps for Validating Input and Data
	Step 1 – Identify your Trust Boundaries
	Step 2 – Identify Key Scenarios
	Step 3 – Determine Where to Validate
	Step 4 – Identify Validation Strategies

	Relevant Design Patterns
	patterns & practices Solution Assets
	Additional Resources

	Chapter 18:
Communication and Messaging
	Overview
	General Design Guidelines
	Message-Based Communication Guidelines
	Asynchronous vs. Synchronous Communication
	Coupling and Cohesion
	Data Formats
	Interoperability
	Performance
	State Management

	Contract First Design
	Security Considerations
	Transport Security
	Message Security

	Technology Options
	WCF Technology Options
	ASMX Technology Options

	Additional Resources

	Chapter 19:
Physical Tiers and Deployment
	Overview
	Distributed and Nondistributed Deployment
	Nondistributed Deployment
	Distributed Deployment
	Performance and Design Considerations for Distributed Environments
	Recommendations for Locating Components within a Distributed
Deployment

	Distributed Deployment Patterns
	Client-Server Deployment
	n-Tier Deployment
	2-Tier Deployment
	3-Tier Deployment
	4-Tier Deployment
	Web Application Deployment
	Rich Internet Application Deployment
	Rich Client Application Deployment

	Performance Patterns
	Load-balanced Cluster
	Affinity and User Sessions
	Application Farms

	Reliability Patterns
	Failover Cluster

	Security Patterns
	Impersonation/Delegation
	Trusted Subsystem
	Multiple Trusted Service Identities

	Scale Up and Scale Out
	Considerations for Scaling Up
	Designing to Support Scale Out
	Design Implications and Tradeoffs

	Network Infrastructure Security Considerations
	Manageability Considerations
	Relevant Design Patterns
	Additional Resources

	Application Archetypes
	Chapter 20:
Choosing an Application Type
	Overview
	Application Archetypes Summary
	Application Type Considerations

	Mobile Application Archetype
	Rich Client Application Archetype
	Rich Internet Application Archetype
	Service Archetype
	Web Application Archetype

	Chapter 21:
Designing Web Applications
	Overview
	General Design Considerations
	Specific Design Issues
	Application Request Processing
	Authentication
	Authorization
	Caching
	Exception Management
	Logging and Instrumentation
	Navigation
	Page Layout
	Page Rendering
	Session Management
	Validation

	Design Considerations for Layers
	Presentation Layer
	Business Layer
	Data Layer
	Service Layer

	Testing and Testability Considerations
	Technology Considerations
	Deployment Considerations
	Nondistributed Deployment
	Distributed Deployment
	Load Balancing

	Relevant Design Patterns
	Additional Resources

	Chapter 22:
Designing Rich Client
Applications
	Overview
	General Design Considerations
	Specific Design Issues
	Business Layer
	Communication
	Composition
	Configuration Management
	Data Access
	Exception Management
	Maintainability
	Presentation Layer
	State Management
	Workflow

	Security Considerations
	Data Handling Considerations
	Caching Data
	Data Concurrency
	Data Binding

	Offline/Occasionally Connected Considerations
	Technology Considerations
	Deployment Considerations
	Stand-alone Deployment
	Client/Server Deployment
	N-Tier Deployment
	Deployment Technologies

	Relevant Design Patterns
	Additional Resources

	Chapter 23: Designing Rich Internet Applications
	Overview
	General Design Considerations
	Specific Design Issues
	Business Layer
	Caching
	Communication
	Composition
	Data Access
	Exception Management
	Logging
	Media and Graphics
	Mobile
	Portability
	Presentation
	State Management
	Validation

	Security Considerations
	Data Handling Considerations
	Technology Considerations
	Deployment Considerations
	Installation of the RIA Plug-In
	Distributed Deployment
	Load Balancing
	Web Farm Considerations

	Relevant Design Patterns
	Additional Resources

	Chapter 24:
Designing Mobile Applications
	Overview
	General Design Considerations
	Specific Design Issues
	Authentication and Authorization
	Caching
	Communication
	Configuration Management
	Data Access
	Device Specifics
	Exception Management
	Logging
	Porting Applications
	Power Management
	Synchronization
	Testing
	User Interface
	Validation

	Technology Considerations
	Microsoft Silverlight for Mobile
	.NET Compact Framework
	Windows Mobile
	Windows Embedded

	Deployment Considerations
	Relevant Design Patterns
	Additional Resources

	Chapter 25:
Designing Service Applications
	Overview
	General Design Considerations
	Specific Design Issues
	Authentication
	Authorization
	Business Layer
	Communication
	Data Layer
	Exception Management
	Message Construction
	Message Endpoint
	Message Protection
	Message Transformation
	Message Exchange Patterns
	Representational State Transfer
	Service Layer
	SOAP
	Validation

	Technology Considerations
	Deployment Considerations
	Relevant Design Patterns
	Additional Resources

	Chapter 26: Designing Hosted and Cloud Services
	Overview
	Cloud Computing
	Common Vocabulary for Hosted and Cloud Services

	Benefits of Cloud Applications
	Benefits for ISVs and Service Hosts
	Benefits for Enterprise Service Consumers

	Design Issues
	Data Isolation and Sharing
	Data Security
	Data Storage and Extensibility
	Identity Management
	Multi-tenancy
	On-premises or Off-premises, Build or Buy
	Performance
	Service Composition
	Service Integration
	Service Management

	Relevant Design Patterns
	Additional Resources

	Chapter 27: Designing Office Business Applications
	Overview
	Components of an Office Business Application

	Key Scenarios for Office Business Applications
	Enterprise Content Management
	Business Intelligence
	Unified Messaging

	Common OBA Patterns
	Extended Reach Channel
	Document Integration
	Document Workflow
	Composite UI
	Data Consolidation (Discovery Navigation)
	Collaboration
	Notifications and Tasks

	General Design Considerations
	Security Considerations
	Deployment Considerations
	Relevant Design Patterns
	Additional Resources

	Chapter 28:
Designing SharePoint LOB Applications
	Overview
	Logical Layers of a SharePoint LOB Application
	Physical Tier Deployment

	Key Scenarios and Features
	General Design Considerations
	Specific Design Issues
	Business Data Catalog
	Document and Content Storage
	Excel Services
	InfoPath Form Services
	SharePoint Object Model
	Web Parts
	Workflow

	Technology Considerations
	Deployment Considerations
	Relevant Design Patterns
	Additional Resources

	Appendices
	Appendix A: The Microsoft Application Platform
	Overview
	Finding Information and Resources
	How Microsoft Organizes Technical Information on the Web
	Microsoft Developer Network
	Microsoft TechNet

	The .NET Framework
	Common Language Runtime
	Data Access
	Mobile Applications
	Rich Client
	Rich Internet Application
	Services
	Workflow
	Web Applications
	Web Server – Internet Information Services
	Database Server – SQL Server
	Visual Studio Development Environment
	Other Tools and Libraries
	patterns & practices Solution Assets

	Additional Resources

	Appendix B: Presentation Technology Matrix
	Overview
	Presentation Technologies Summary
	Mobile Applications
	Rich Client Applications
	Rich Internet Applications
	Web Applications

	Benefits and Considerations Matrix
	Mobile Applications
	Rich Client Applications
	Rich Internet Applications
	Web Applications

	Common Scenarios and Solutions
	Mobile Applications
	Rich Client Applications
	Rich Internet Applications
	Web Applications

	Additional Resources

	Appendix C: Data Access Technology Matrix
	Overview
	Data Access Technologies Summary
	Benefits and Considerations Matrix
	Object-Relational Data Access
	Disconnected and Offline
	SOA/Service Scenarios
	N-Tier and General

	General Recommendations
	Common Scenarios and Solutions
	LINQ to SQL Considerations
	Mobile Considerations
	Additional Resources

	Appendix D: Integration Technology Matrix
	Overview
	Integration Technologies Summary
	Benefits and Considerations Matrix
	Common Scenarios and Solutions
	Additional Resources

	Appendix E: Workflow Technology Matrix
	Overview
	Workflow Technologies Summary
	Human Workflow vs. System Workflow
	Benefits and Considerations Matrix
	Common Scenarios and Solutions
	Additional Resources

	Appendix F: patterns & practices Enterprise Library
	Overview
	Goals of Enterprise Library
	What’s Included in Enterprise Library
	Application Blocks

	Caching Application Block
	Key Scenarios
	When to Use
	Considerations

	Cryptography Application Block
	Key Scenarios
	When to Use
	Considerations

	Data Access Application Block
	Key Scenarios
	When to Use
	Considerations

	Exception Handling Application Block
	Key Scenarios
	When to Use

	Logging Application Block
	Key Scenarios
	When to Use
	Considerations

	Policy Injection Application Block
	Key Scenarios
	When to Use
	Considerations

	Security Application Block
	Key Scenarios
	When to Use
	Considerations

	Unity Application Block
	Key Scenarios
	When to Use
	Considerations

	Validation Application Block
	Key Scenarios
	When to Use
	Considerations

	Additional Resources

	Appendix G: patterns & practices Pattern
Catalog
	Composite Application Guidance for WPF and Silverlight
	Data Movement Patterns
	Enterprise Solution Patterns
	Integration Patterns
	Web Services Security Patterns
	Additional Resources

	Index

