Software Design Refinement
Using Design Patterns

Instructor: Dr. Hany H. Ammar

Dept. of Computer Science and
Electrical Engineering, WVU

Outline

The Requirements, Analysis, Design, and Design Refinement Models
Design refinement
Class diagram refinement using design patterns
Design patterns examples
The Facade pattern
The Strategy Pattern
The State Pattern
The Command Pattern
The Observer Pattern
The Proxy Pattern

Design Patterns Tutorials

The Requirements, Analysis, Design, and
Desgin Refiement Models

Re_qyirgments Functional/ Use Case Di_agrams/
Elicitation Nonfunctional | Stduence Diagrams
(the system level)

Process Requirements

- Analysis Class Diagrams
- State Diagrams/
Refined Sequence

The Analysis Static Analysis

FIOEEs: Dynamic Analysis piagrams (The object
level)
The Design Static Architectural | ° D€sIgn Class Diagrams
Process: Design » Design Sequence Diagrams
e Initial Design Dynamif Design |
*Design - Refined Design Class

: Design Refinement|
Refinement Diagrams

Design Refinement

It is difficult to obtain a quality design from the
Initial design

The initial design iIs refined to enhance design
quality using the software design criteria of
modularity, information hiding, complexity,
testability, and reusability.

New components (or new classes) are defined and
existing components (or classes) structures are
refined to enhance design quality

The design refinement step Is an essential step
before implementation and testing.

Class Diagram Refinement
Using Design Patterns

Design Class Diagrams are further refined to enhance
design gquality (i.e., reduce coupling, increase
cohesion, and reduce component complexity) using
design patterns

A design pattern is a documented good design
solution of a design problem

Repositories of design patterns were developed for
many application domains (communication software,
agent-based systems, web applications)

Many generic design patterns were defined and can
be used to enhance the design of systems in different
application domains

What Is a Design Pattern

What Is a Design Pattern?

A design pattern describes a design problem
which repeatedly occurred in previous designs,
and then describes the core of the solution to that
problem

Solutions are expressed In terms of classes of
objects and interfaces (object-oriented design
patterns)

A design pattern names, abstracts, and identifies
the key aspects of a high quality design structure
that make It useful for creating reusable object-
oriented designs

Defining a Design Pattern

Design Patterns are documented in the literature by a
template consisting of the following

A Design Pattern has 5 basic parts:

1. Name

2. Problem

3. Solution

4. Consequences and trade-of of application

5. Implementation: An architecture using a design class
diagram

Example of Pattern Definition: The Facade Pattern Provides
An Interface To a Subsystem

Facade

subsystem classes

The Facade Pattern

The class Facade 1s introduced as an
Interface to the whole subsystem.

Any client class needs a service from any of
the subsystem classes will be send the
request to the facade class.

All the subsystem interfaces are combined
In one class

Example of Using the Design Pattern

Design Patterns produce quality designs by reducing coupling
Example of how a Facade Pattern reduces coupling

Client A = ' CHent B
Database Cllent A .
' l Database Facade
Client B8 _
| Model
el
- ' Eloment _
Element Model Database
Before Facade Using Facade

Figure 6-4 Facade reduces the number of objects for the client.

Context

Strategy
Contextinterface()

Algorithimlinterface)

LConcretestrateg yi‘ [ConcreteStrategyB] ICOncretestrategvc—l

Another Example of Design Patterns

The Strategy Pattern: lets the algorithm vary
Independently from clients that use It

Controller Class Abstract Class
Contexl :;;::’ rategy a Strateqy
Contextinterface) Algorithminterface() | Default control
Strategy
A

ConcreteStratagyA ConcreteStrategyB ConcreteStrategyC

Algorthminterfacs!) Algorithminerace() Algorthminterfacel)

Control Strategy A Control Strategy B Control Strategy C

The Strategy Pattern

The Strategy Pattern Context class has multiple
control strategies provided by the concrete
strategy classes, or by the abstract strategy (by
default)

The pattern lets us vary the algorithm that
Implements a certain function during run time
depending on the conditions of the system

The Pattern reduces coupling by having the client
class be coupled only to the context class

Examples of Design Patterns
The Strategy Pattern

Example of using the pattern in JAVA
AWT GUI components lay out managers

Container

>

layoutManager LayoutManager

Pl SN

FlowLayout

BorderLayout

CardLayout

Examples of Design Patterns
The Strategy Pattern: another example

Situation: A GUI text component object
wants to decide at runtime what strategy It
should use to validate user input. Many
different validation strategies are possible:
numeric fields, alphanumeric fields,
telephone-number fields, etc.

TextComponent validator Validator

S
/\

Numeric Alphanumeric TelNumber

iayshsqng jo4u0)) asinir dof wvidvp ssvpy ¢ze0z ainBbjy4

«input device interface»
BooleanInputDevicelnterface

i

«state dependent
control»
StateMachine

?

Example

of using the Strategy
Pattern: SpeedControl

«input device interface» «input device «input device
CruiseControl interface» interface»
LeverInterface Brakelnterface Enginelnterface
Notifies Notifies «timen»
4 Timer
«state dependent : .
controbs Triggers Triggers
CruiseControl Controls
StateMachine tit tit
«algorithm» “Df";‘:r:: Uses ‘g:?r’ :’1’; Uses | «entity»
Acceleration Controls S 16 SR
, Uses Speed Speed Distance
, «algorithm» 1\
«algor.lthm» SN SpeedControl
Cruiser Algorithm Uses
«algorithm» Outputs to
Resumption 4 -
«output device
interfacen
ThrottleInterface
«input device interface»
CalibrationButton
Interface
Notifies .
y «input device
«state dependent interface»
control» ShaftInterface
CalibrationControl
Controls Updates
y y
«entity» Uses «entity» Uses
Calibration ShaftRotation <
Constant Count

Is the Strategy class

Another example of using the

Strategy Pattern: A Job Application
System

The complexity of class JobApplication is reduced by moving
the validate() operation

to the Strategy Pattern classes

FormValidator
(from patterns)

FersuccessMessage : String = "\nThank you for submitting your job application."

P¥Empty()
%validate()
T¥basicVvalidation()

ManagerValidator
(from patterns)

*validate()

HostValidator
(from patterns)

%validate()

ApplicantRuleFactory

(from patterns)

%getApplicantValidationRule()

BusValidator
(from patterns)

%validate()

BartenderValidator,
(from patterns)

*validate()

WaitStaffValidator

(from patterns)

%validate()

JobApplicantForm

(from patterns)

FormSuccess
(from common)

&ssuccess: boolean = false
&resultMessage : String = null

&JOB_MANAGER :int=1
&JOB_WAIT_STAFF :int=2
&JOB_BUSSER :int=3
<JOB_BARTENDER : int=4
&JOB_HOSTER :int=5
&position : int

&name : String

&phone : String

&email : String

&syearsExp : Double
&referencel : String
&reference2 : String
&reference3 : String

&legal : boolean = false

*FormSuccess()
*isSuccess()
¥setSuccess()
%getResultMessage()
¥setResultMessage()

(from common)

JobApplicantClient

%main()

@runTest()

%isLegal()
%setlegal()
%getPosition()
%setPosition()
%getName()
%setName()
%getPhone()
*setPhone()
%getEmail ()
®setEmail()
%getYearsExp()
%setYearsExp()
%getReferencel()
%setReferencel()
%getReference2()
%setReference2()
%getReference3()
%setReference3()

%validate()

Examples of Design Patterns
The State Pattern

Similar In structure (static) to the Strategy

pattern but differs in dynamics

Events are handled based on the current
state of the object

Context

Request() O

slaie

state-=Handlel)

.J State

Hanale()

£X

ConcreteState A

ConcreteStateB

Handlel)

Handle()

Examples of Design Patterns
The State Pattern

The State Pattern: is a solution to the problem of how to make
the behavior of an object depend on its state.

Context class

<<iInterface>>
The MuTtiStateOb Ftate 1 Siie Abstract State
Current State . Class
Context +CreatelnitState() N Handle()
Class Setstate() Changestate()Deletestate()
Lets a mutli state class divide its
responsibilities (Opri(),0Opr2(),
and Oprn() on multiple state
classes.
ConcreteState 1 concreteState n
For more Info, see [rrrrrrereeeeeees Handle(), Oprn()
Handle()
OprL:0pr20 N concrete state

~huston2/dp/state.html
classes

http://home.earthlink.net/

Examples of Design Patterns
The State Pattern

The State pattern is a similar in structure to the Strategy Pattern but
with different behavior or dynamics. the state objects are active one
at a time depending on the actual state of the context object.

The structure is defined as follows:

Define a "context" class to present a single interface to the
outside world.

Define a State abstract base class.

Represent the different "states" of the state machine as derived
classes of the State base class.

Define state-specific behavior in the appropriate State derived
classes.

Maintain a pointer to the current "state™ in the "context" class.

To change the state of the state machine, change the current
"state” pointer

State Transitions can be defined for each State class
To be discussed later at length in slides 10 on

Examples of Design Patterns

The context class Multistateob would create the
Initial state object to provide the services of the
Initial state (it will set its current state to its initial
state)

The Initial state object would sense the condition
for state transition to a new state, when this occurs

It would then create an object of the new state and
destroy itself

Each state object implements the transition,
actions, and activities in the state it represents

Examples of Design Patterns
The State Pattern

TCP connection example

slale

TCPConnaction — - TCPStare
Open() O----—- ! Openy)
Closa() l Giosef)
Acknowl adge]) | Acknowiledge!)
|
|
; A
state—-=0Openi) =
TCPEstablished TCPListen TCPClosed
Opain j Open() QOpen}
Closa() Clasel) Closel)
Acknowledpe(} Acknowledne] Aciknowiedge()

Examples of Design Patterns
The State Pattern

A Ceiling Fan Pull Chain Example :

Gl [Cogpe> |

[A e
fwfd/l“)
[esarenl pull ())
| g aw LY T T e
\l"’{""‘i‘*’?@"t ..dfff f‘-.;.fiit @/w) ‘ | ‘(M{
- M / CFOP w %ﬁf-ﬂ"d

Design Patterns Application Example: The
VM System

The Initial design class diagram of a Vending Machine

WirelessKeyBoard

CRT Display

+Readoperatorlnput() ()

+ShowmessagesonScreen() +SendSignalstoVMC Ontroller()

= -~ = =)
_End1 = -End10

VmController

-NPID

-End=2 -WKB

-Moneydectorswitchoff

-Money

-Productdiableswicthoff
-Moneydispenserswitchoff

- +receiveinputsignalfromMNumericPad()
+RecieveinputsignalsfromWWirelessKeyboard ()
+SendshowmessgaetoCRT()
+DisableHVWcomponents()
+sendCommandtoProductdispense()
+SendcommandtoNMoneydispenser()

+ReceiveMoneyforMoneyDectectorhw ()
| -EndS -

-End4

—End3 = Endiz2 | = . -End6& =] _
- NMoney Dispenser
NumericKeyPad —attribute 1
+Sendmoneytocustomer()
+Readcustomerselction() +Sendchangetocustomer()
+SendSignaltovViMController() +calculatechangeexactchange()

-End7 -
|
Product Dispenser
—attribute 1
+sendproducttocustomer()

-End11 -

1

DatabaseController

+getproductiD() ()
+getmoneyammount()()
+sendquieries()
+receiveresult()
+sendresponse()

The State Diagram of the VM

Controller Class

UserMode Interact with the User

Received input
Signal from Wirgless Reset
Keyboard

Interact with the

MiantenanceMode .
Maintenance Operator

Design Patterns Application Example: The
VM System

The State Pattern Applied to the 2 state VM example

Class of Objﬁects —TE
viMContotler FELE 2 VMController State Abstract State
+FCreatelnitState() \/ > Changestate(Class
Setstate() Dele test:.sz 0
Congrete State 1 Class Concrete State 2 Class
UserMode MaintenanceMode
+UpdateDatabase()

+InsertMoney()
+SelectProduc()

Recall The Consolidated Collaboration
Diagram of the ATM Client Subsystem

The diagram can be easily used
to develop the class diagram

«subsystem»
f the ATM Client Sub —
ATMTra.nsaction& T l Bank Responses .
. Dispenser
«client subsystem» P,
Card - ATMCI?ent «output device Output «external
Reader pEa AT 2| . interf; output
) Input Dispense Cash . thD‘ace» device»
«external I/O «I/O device Cash Detail : Lashllispenser . Cash
. ——p interf . (Cash Details) Interface ===
device» interface» Card Inserted, Card Ejected, / ~ Dispenser
: CardReader | € : CardReader Card Confiscated Cash 1\
Card Interface ® Withdrawatl
Reader E - Eiect Amount " Cash
A e
gzlg «state dependent Dispensed «entity»
) control» : ATMCash
Customer Events :ATMControl Start Up,
«entity» (Transaction /’ Closedown Cash
: ATMCard Details) Added Operator
& _— Update ‘l’ AN - Information
~ Transaction «user interface» >
- Status (Cash Details), Print : tor
Card Card Update PIN Status Receipt Interface <
Data Request Display \ Reosipt Operator ; Operator
Prompts Printed Input
Customer : .
Input Customer I{lforma‘tlon, Transaction : Printer | «external
») ;. Customer Selection] Data «output device Output output
—— «user interface» —_— «entity —> interface» g utput,
. — : CustomerInterface - :ATM < : ReceiptPrinter device»
CATM Display : Transaction Details Transaction Transaction Interface M
C;I_S—E:); er lnfbmlation ’ Request PrLter

Figure 12.5 Example of consolidated collaboration diagram: ATM Client subsyst

A

em

e e

Example: How can we apply

The State Pattern to the
ATM system using
This ATM controller,,

o S I Closed Down

S

N

Insufficient Cash

Star’rup g

\
Closedown

(

L Idle

LAﬁer (Elapsed Time) [Closedown Not Requested]

After (Elapsed Time)
[Closedown Was Requested]

-

-

Third Invalid, Stolen

Processing
Transaction

\(Processing

Transfer

)
)

] Processing

Query

)
)

“'-(Processing

Inserted
StateChart ?
4
Processing R
Customer
Input
i
Waiting
for PIN
Cancel
PIN Entered Invalid PIN
[Validating PIN J
Valid PIN
\
Waiting for]
Customer Choice) Teanstor
5 ~/ Selected
Query ,L
Selected
Withdrawal
Selected \

Withdrawal

IR

Figure 10.14 Example of hierarchical statechart

Terminating Transaction)
\(Terminating]
X
Card | Confiscated V Card Ejected
}L Confiscating] [Ejecting]
Rejected Receipt
Printed
S0
Transfer OK ,L Printing
Query OK
Cash
Dispensed
Withdrawal OK (Dispensing
> J
- *

Types of Design Patterns

The Gang of Four (GoF) Patterns (Gamma et al

1995)
Deésign Pattern Space
Purpose
Creational Structural Behavioral
g Factory Method Adapter (class) Interpreter
L Template Method
Q
o Abstract Factory Adapter (object) Chain of Responsibility
Builder Bridge Command
Q .
0 Prototype Composite lterator
O | 5 | Singleton Decorator Mediator
0 @ Flyweight Memento
a Facade Observer
®) Proxy State
Strategy

Visitor

Examples of Behavioral Design Patterns

The Command Pattern: operator commands or user or
customer requests are treated as a class of objects

Command object behaviorc

Intent
encapsulate the request for a service

Applicability
+ to parameterize objects with an action to perform
+ to specify, queue, and execute requests at different times
« for a history of requests
+ for multilevel undo/redo

Structure
Client Invoker el TN
axecute()
L = Target
target
action(i Concre teComman d
execute() Q= ======pF===== target.action()

The Command Pattern

Example of using the Command Pattern in a Menu
driven graphics application

Glyph

T e
arawiiinaow)

I command

Menuitem ko a] Command
clicked() axacuial)
CopyCommand PasteCommand

exacute]) exacUte])

Examples of Behavioral Design Patterns

The Observer Pattern: Multiple observer objects are
notified when changes of states subjects occur

Observer object behavioral

Intent

define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically

Applicability
+ Wwhen an abstraction has two aspects, one dependent on the other

+ when a change to one object requires changing others, and you don't know
how many objects need 1o be changed

+ when an object should notify other objects without making assumptions
about who these objects are

Structure
Subject obsewvers -.J Chserver
attach{Observer) updafe()
detachi{Observer) for all o in ohserers {'h.,
NotfYD] - = — o.update) ¢
¢ ConcreteObserver
subi Ty
ConcreteSubject | subject update) el ik thﬁajﬁ?jﬁatﬂ]
getState() o--- . T bserverState
. et retum subjectState - e

subjectState

The Observer Pattern

Example: Observer

observers
| window se— (||] Window se— |]|
a b c
x| 601 301 10
y| 50 | 30 | 20
z| 80| 10| 10
- a C
N
N

— Cchange notification
— —— - requests, modifications

subject

Examples of Structural Design Patterns
The Composite Pattern

Ccomposite object structural

Intent
treat individual objects and multiple, recursively-composed objects uniformly

Applicability

objects must be composed recursively,
and there should be no distinction between individual and composed elements,

and objects in the structure can be treated uniformly

Structure

Component

operafiion)
add{Component) |
removelCamponent)
getChidfing)

A

children
Leaf Composite I'¢

forall gin children Tt
c.operation();

operation() operation) @
addiComponent)
remove(Componeant)
getChild{int)

Examples of Design Patterns
The Composite Pattern :File System Structure

Mapping CoMPOSITE participants to file system classes:

e Leaf, Tor objects that have no children
— File, the Tile object

e« Composite, for objects that have children
— Directory, the directory object

e« Component, the uniform interface

Node F‘

childre
File Directory I&

—+ Node

Examples of Structural Design Patterns

The Proxy Pattern (used heavily in
communication software, CORBA, SOA)

Proxy structure

Subject

requesiy()
RealSubject | realSubject Proxy
request() request() ©-

e Proxy is a stand-in for RealSubject

e Proxy must match Subject interface

realSubject-=request();

N

Design Patterns Examples and Tutorials

Two tutorials by John Vlissides

Also on the design patterns CD by Gama et al

D. C. Schmidt

http://www.csee.wvu.edu/~ammar/rts/adv rts/design patterns-tutorial.pdf
http://www.csee.wvu.edu/~ammar/rts/adv rts/patterns dwp-tutorial.pdf

