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One of the largest growing fields in computer engineering is the development of embedded systems.  This may range from the development of high-speed routers , hubs, or cable modems for computer networking to the designing of pocket pagers and web-enhanced cellular phones.  As the demands for more computing power increases in these applications, we find that the required processing power increases and the power requirements become more and more stringent.  Ideally, we shoot for a device that is capable of delivering the most processing power, but can survive for hours, or possibly days on just battery power.  The ARM 940T is a 32-bit RISC based processor suitable for many high-performance, low-power, embedded applications.  
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ARM Ltd. is an industry leader in providing 16/32 bit embedded RISC solutions.  Their microprocessors are not marketed and sold for use like Intel’s or AMD’s.  ARM licenses their intellectual property and sells their processors as virtual components to be integrated with other manufacturer’s designs.  Re-using developed technology, these OEM vendors save time and research. Companies like Cirrus Logic, IBM, and Sharp are among a long list of manufactures that have seen the wisdom in doing this kind of business.


The Figure1, below shows the overall block diagram of the ARM940T.

The ARM940T consists of the prodessor core, data and instruction cache, busses for data and cache, co-processor interface, a protection unit and the AMBA Interface.
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Figure 2

Figure 2 above shows the ARM9TDMI processor core. The whole ARM 9 family uses the Harvard architecture in its design.  Instead of the Von Neumann architecture, which uses a single memory to store both instructions and data, the Harvard architecture uses two separate memories (one for instructions and one for data).  The ARM940T also comes standard with 32 registers.  Thirty-one are general purpose and one is the program counter.  16 of these general-purpose registers are visible at any point.  While any of these general-purpose registers are able to be used for anything they are usually, by convention, used for certain things.  The ARM 940T, like many other embedded systems, does not use virtual addressing.


The ALU for this processor is integer based.  It does not support floating-point operations.  This is synthesized using a fixed-point algorithm.  If true floating-point operations are desired, a co-processor must added.  There is, however, a 16X32-bit multiply-accumulate (MAC) unit.  Because of the lack of a floating-point unit, there is also a lack of division.  Division must be achieved via synthetic methods.


Three different clocking methods can be used on the ARM940T.  To begin, there are two different clock input pins.  One is the FCLK and the other is BCLK.  

The first method is called “Fastbus”.  This method is usually used for systems with high-speed memory.  In this case, the BCLK controls the core, cache operations AMBA and bus.  The FCLK is simply ignored. 
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 The second clocking method is called “Synchronous”.  In this mode, the BCLK controls the bus; the FCLK controls the core and the cache.  Under this methodology, two simple rules must be followed.  First, the FCLK must be faster than the BCLK.  Secondly, BCLK transitions must occur only when the FCLK is high.  Figure 3 below demonstrates this concept. 

Both clocks shown.

Both clocks and the result is the ECLK

 The third clock configuration is called “Asynchronous”.  This mode is similar to the “Synchronous” mode except that the BCLK transition can occur when the FCLK is either high or low.

Figure 4 shows these two clocks and the resulting  ECLK.
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Figure 4.  Clocks for Asynchronous along with ECLK.


The cache for the data and instruction are both 4kB.  Each is divided into four fully associative 1kB segments and each segment is composed of 64 rows, each row contains 4 bytes (32 bits).  The cache is capable of single cycle reads and single or double writes, depending on the instruction sequence.  The cache also uses the familiar “dirty” and “valid” bits to determine which sections of the cache have been changed.  There is also a write-back buffer that may contain up to eight works of data and 4 separate (non-sequential) addresses.   Data (or instructions) in the cache are updated via a “Read-on-miss-replacement policy” and they are replaced by a randomly clocked cycle, unless they are marked as being protected.  Any of the cache can be enabled/disabled via software (using the protection unit) on startup and each row (any row of the four sets) may be “locked-down” to prevent the replacement of such items as interrupt routines, which may be time critical in real-time systems.  The following diagram (Figure 5) illustrates the cache organization for the data and the instruction cache.
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Figure 5.  Cache layout
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The ARM940T has a simple, 5-stage pipeline consisting of: Fetch, Decode, Execution, Memory, and Write-back.  Pipeline hazards are handled using forwarding and bubble insertion.  Figure 6 demonstrates an implementation of a bubble add.

Figure 6.  Implementation of bubble insertion.


Alone with the ARM 32-bit instruction set, the 940T can also use the Thumb instruction set.  The Thumb instruction consists of a 16-bit subset of 32 subset of the ARM subset’s most frequently used instructions.  This can be achieved because some of the information in the ARM instruction set may be redundant and other parts of the instruction may be looked up via a look-up table.    In Figure 7, we see the major op code being directly mapped into ARM instruction code, while the other parts ard mapped via the lookup table.
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Figure 7. Thumb to ARM decompression.

Being able to implement this 16-bit code in place of the 32-bit, aids in the development of code where memory may be limited.  In several tests, on average, the instructions could be reduced on average by 30% compared to using the 32-bit instructions alone.  This is done with no loss in performance.  The Thumb instructions are fed through the pipeline, past the Thumb module.  This module makes the decompression via hardware, saving time.  The resulting 32-bit instruction is then fed along the pipeline for execution.


Recently, ARM has added the option to append the ARM9 with yet another instruction set called Jazelle.  Being an embedded processor makes the ARM9s a perfect candidate for any application that may be running Java.  It makes perfect sense to try to aim the acceleration of an embedded processor towards a language that was meant for the embedded applications.  Historically, Java source is compiled into Java byte code on a machine.  Any machine wanting to run the application must then convert that byte code into native instructions via a Java Virtual Machine.  As one might imagine, converting this byte code to machine instructions are a time consuming process.  On a high-end processor, this makes little significance, however, on a low-power, low-end system, this conversion can be very time consuming.  One can see the advantage of using hardware to convert the byte code.  Others use a co-processor to run Java code, but this adds to the cost of a system and adds space also.   By using the Jazelle technology, the ARM is cheaper, faster and more compact than other methods available.  This was all achieved with the addition of only about 12,000 gates.  When the processor runs across a new instruction that ARM has added to these Jazelle-enhanced processors, the program counter is saved, and is set equal to a specified location.  Once the jump executes, the processor goes into Java mode and starts the execution of the Java code.  


We have seen high-performance, low-power microprocessors combined with advanced instruction sets.  There is no reason to believe that ARM will not continue this trend and bring consumers even more of this embedded solutions to the embedded world in the future.
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