E1. PROJECT TITLE:

Size Measurement and Effort Estimation of Complex Real-Time
Systems

E2. Aims and Background

Software involved in many complex systems such as aircraft navigation, radio telescope control
and patient monitoring has real-time constraints. Temporal constraints, hardware interaction and
concurrency introduce considerable complexity in their development. This makes estimation of
effort required to develop such systems z great challenge. This project addresses the challenge
of reliable effort estimation in developing complex real-time systems.

Complex systems involve huge investment, and it is essential to have reliable effort estimation
methods to be able to develop them in a cost effective manner. Unrealistic project deadlines,
often caused by inaccurate effort estimation has caused delays and cost blowout for any number
of real-time systems projects. A famous example is the Denver airport automated luggage-
handling system causing 16 months delay in opening the new airport and US$ 1 million loss
every day of the delay.

E2.1 Real-Time Systems

A real-time system is one in which time" is a criterion in determining the correctness of the
behaviour of the system (Marz and Plakosh, 2001). There are generally three factors that
distinguish a real-time system from most other software systems. They are:
1) temporal properties and constraints that the system must satisfy
2) concurrency (i.e, the need for multiple processes to communicate and coordinate their
operations), and
3) interaction between hardware and software

For example (from Douglass, 1999), a remote controlled robot used in hazardous situations such
as defusing a bomb or handling dangerous chemicals may be required to move its arm closely
with the arm movement of a person wearing an “clectronic” glove standing far away. The
software part of the solution needs separate processes, one to track the person’s glove movement
and another to perform the robot’s arm movement. Furthermore, the robot’s arm movement must
be quick enough to take advantage of the person’s inherent motor-control system. If the robot
responds too slowly, the person may overreact thus creating an unstable control Joop. If we
assume a maximum finger movement speed of 10 cm/sec, the robot must track a linear motion
with no more than 50 ms delay.

The complexity that the three factors bring into the development process is significant and not
well understood. Thus, effort estimation techniques used for sequential software systems are
often insufficient to handle real-time systems. Pumam and Myers (1997) in a study of 3885
projects observed that effort required for a real-time system was always greater than the effort
required to develop a business system of the same size.

* Timeliness is next to Godliness — Douglass’ law

20

E2.2 Effort Estimation

To a great extent, development effort depends on the characteristics of the software developed; it
is common to estimate effort (or project cost) from a measure of Software Size (Ebrahimi, 1999).
For example, COCOMO (COnstructive COst MOdel) (Boehm, 1981) estimates Effort E using the
function:

E(s) = as'f.
where s is the software size measured in Kilo Delivered Source Instructions, f is an adjustment
factor, and the coefficients a and b are determined from the type of software constructed.

E2.2.1. Function Points and Full Function Points

In order to estimate effort, therefore, we need to have a reliable size measure for real-time
systems. The size measure that is widely used in the industry (next to Lines-of-Code count) is
Function Points (Albrecht, 1979; Jeffery and Lo, 1997). The function point value is determined
by classifying the functional elements of the requirements into arcas such as external input,
external output, etc. For each classification, the International Function Point Users Group Manual
provides a weight. The Function Point value is calculated as the sum of all the relevant weights
multiplied by a Value Adjustment Factor determined by the application type.

The function point technique is very much biased towards transaction-based systems. In other
systems such as compilers, control systems, and CAD systems, measuring size based on inputs
and outputs are not sufficient; much of the complexity is hidden in the algorithms, data structures
and architectures. Jeffery, Lo and Barnes (1993), Fenton and Pfleeger (1997) and others have
pointed out practical and theoretical shortcomings of Function Points. On the other hand, since
Function Points can be measured from a requirements document, the value is available early in
the Softwate Life Cycle, unlike size measures such as Lines-of-Code. Therefore Function Points
would allow estimation of effort early in the life cycle. Extensions and modifications proposed to
Function Point techniques include Feature Points (Jones, 1991), which takes algorithms in its
count, and 3D Function Points (Whitmire, 1992), which counts internal operations that transform
input to output data. Among these, Full Function Points (Abran et al,, 1997) is particularly
designed for real-time systems.

The Full Function Points (FFP) method counts functional transactions in the requirements
specifications; these transactions can be with an end user, a mechanical device or another
application program. FFP counts data movements within the application (Read and Write) and
across the boundary of the application (Entry and Exit). FFP recognizes that Real-Time Systems
often require hardware-software interaction. However, it does not seem to take into account the
influence of temporal and concurrency constraints which may not be reflected as data movements
in the specification.

Besides, as the authors of FFP admit (Abran et al., 2001), it is not yet capable of handling
software that implements complex algorithms or other complex rules and constraints.
Furthermore, FFP seems to have the same shortcomings as Function Points in satisfying the
scientific theories of measurement. To our knowledge no work has been reported demonstrating
the theoretical validity of FFP.

“Software Engineering” is still in many aspects a craft. While significant progress has been made
in the understanding of software measurement, the complexity of problems that require software
sclutions has increased over the years. This "moving of the goal post” has been an additional
impediment for measurement experts to develop measures that satisfy the scientific principles of
measurement and are empirically validated. Sofiware Engineering being a relatively young

21

disciplire, is experiencing changes and innovation in a much more rapid.fashion than some of the
mature fields of engineering. Change introduces new attributes and properties, and consequently
new measures need to be developed to understand and use them.

This project aims to improve effort estimation of real-time software by developing better effort
prediction models based on sound and valid software size measures.

We will use the approach of estimating effort from size, however, our aim is to locate all
significant variables that influence effort and measure their properties in calculating software
size.

E3. Significance and Innovation

Reliable prediction of-effort is still one of the great challenges of Software Engineering. The
abstract nature of software, unavailability of well-formed measures and recurring changes in
requirements during the development process make accurate measurement of properties and
reliable prediction of effort very difficult.

The aims of this project are to:

o develop a well-formed software size measure and an_effort prediction model for complex
real-time saftware systems, and

e formally and empirically validate the measures.

E3.1 Software Effort Measures

From the mathematical point of view, a cost measure for a software project consists of a function
C:D 2R, ’
where D is a domain of software projects and R is the positive real numbers, so that for a given
project d, C(d) is the cost of d. The function should satisfy some fundamental mathematical rules;
for example, if 4, and d, are two disjoint “subprojects” and d is the “combination” of d; and d>
then C(d) < C(d;)+C(d2) + H, where H is a constant. The cost is often indirectly determined from
a direct measure of Software Size S:
§:D 2R
An effort measure
E:R 2R,
such as the COCOMO model above, can be used to map the software size S(d} to effort.

This project is concerned with both the map from the project to software size, and the map

Jrom software size to effort in the domain of real-time systems.

E3.2 Using the Unified Modeling Language (UML)

Selic {1999) explains that the object-oriented paradigm is an excellent fit to Real-Time Systems
since in such systems the structure (i.e., the system) is constant and the behaviour (i.e., functions)
necessarily needs to change with time. For a model to be predictive, however, it is not sufficient
to model the structure and behaviour of the software, but also we need to model the logical and
physical resources the software is dependent on (Selic, 1999). This requirement distingnishes
modeling real-time systems from other software systems. Recently, the Unified Modeling
Language (UML) has emerged as the industry standard for requirements modeling and design of
object-oriented systems. UML is now accepted as the design standard by the Object Management

22

Analysis of schedulability, performance etc. .

Requirements
modeling in UML

Reguirements >
capture ___’ o

Detailed Design
in UML

Size
Measure-

Actual
Estimated Effort
Effort

I
L
£

Estimation

o

Project Management

Figure 1, Measurement and estimation in real-time software life cycle
(Thick arrows show main flow of information; thin arrows show feedback)

Group, a consortium of over 2500 world-wide IT institutions, including companies such as
Microsoft, IBM, Sun, Cisco, Hewlett-Packard, Oracle, Motorola, Lucent, Fujitsu, SAP, and
Object-Oriented. UML is widespread and provides formalism through aspects such as Object
Constraint Language (OCL); OCL facilitates precise specification of the semantics of the
requirements. It opens the possibility of developing scientifically rigorous size measures that are
useful to the worldwide community of software engineers.

We propose to investigate the use of UML artifacts as the domain for size measures.

The benefit of UML is that not only it is useful in capturing and modeling the requirements in a
precise manner, but the same notation can be used to complete the design from the captured
requirements as shown in Figure 1. The Figure also shows how Size Measurement and Effort
Estimation fit into the software lifé cycle; size measurement is done directly from the
requirements model. Our hypothesis is that the effort required to develop a requirements
specification using UML is not significantly greater than what is required for a natural language
specification, but using UML and its associated formal notations such as Object Constraint
Language will significantly improve the accuracy of estimating post requirements effort.

Several approaches to modeling real-time systems using UML have been proposed. Examples are
McLaughlin and Moore (1998), Selic and Rumbaugh (1998), and Douglass (1998). Many of
these approaches are combined into the Object Management Group’s (2002) profile for modeling
key aspects of real-time systems. The profile emphasizes schedulability, time and performance
specification. At the core of the framework is the notion of Quality of Service (QoS), which
provides a uniform basis for attaching quantitative information to UML models. The profile uses

23

UML stereotypes' to derive new (meta) classes for handling real-time requirements. Examples
are RTtime, CRconcurrent (a concurrent unit), SAction (a scheduling behaviour characterized by
its own required Quality of Service characteristics) etc. The report points out that the techniques
have been already used successfully in several real-time systems projects. This gives us further
confidence in using UML to measure software size.

E3.4 Multidimensional Size Functions

Large real-time systems need hundreds, even, thousands of components. Software Engineers need
to know the size of components, subsystems as well as the whole system. Further, there are
different aspects to the size function such as functionality and complexity of the system.
Henderson-Sellers (1996) discusses computational, representational, problem and structural
complexities in addition to programmer characteristics. The implication is that the size function
has a multidimensional range:

S:D>R™. _
Here the domain D is composed of subprojects of some kind (for example, UML documents
describing classes or components), and R*" is a set of k-tuples of n-tuples of real numbers. The jth
element of S(d) is the size of the jth subproject. This size is measured as an n-tuple of real
numbers, each measuring an aspect. To estimate the total cost of a project, the engineer needs an
effort model

E: R 3R,
and the cost function is the combination of § and E.

The summary of our approach is in Figure 2. Size § - Fffort £

Here the domain is UML, the size is a vector of | UML —» R "l R

length kn, and the cost is the composition of the ————— Cost O >
0s

size and effort functions.

Figure 2

E3.5. ARC’s Designated Priority Area of
Research :

The Australian Research Council has designated Complex Systems as a priority area. Among the
indicated fields of research (Australian Research Council, 2002), this project comes under
Software Engineering of Complex Systems. Just as it is “difficult to understand, predict and
manage” the behaviour of complex systems, it is also difficult to predict and manage the
development processes of systems with such complex behaviour. This research project will
enhance the degree of understanding of the effort required to produce complex software systems
that have real-time constraints, hardware-software interaction and concurrency; this will be
achieved by developing and validating measurement and effort estimation models for such
systems.

E4. Approach

Our methodology is primarily empirical: we will design and then test size measures and effort
estimation models. We will design a range of hypotheses for measures, apply them to data (see
Empirical Evaluation below), and compare the measures to the actual project efforts.

' A stereotype is derived from an existing meta-class in the UML metamodel. t's an elegant way of exiending the
modeling language for specific needs.

24

We intend to develop objective measures for Software Size S, based on the internal
characteristics of real-time systems. In order to compute effort E from software size, we will
develop a prognostic model (Henderson-Sellers, 1995) that is empirically testable.

To develop these models, we will analyze the key characteristics of real-time systems in order to
identify the parameters of a size measure. We will avoid failures of measures such as Function
Points by taking various complexity factors into consideration. Our earlier work in this regard
(this year funded by an ARC-discovery grant) studied sequential systems, but emphasized their
problem complexity (Hastings and Sajeev, 1997; Hastings and Sajeev, 2001). We expressed Size
as a two dimensional vector of functionality and problem-complexity (Graph 1) measured in
terms of operational units (OPs) in the signature and axiom sections, respectively, of algebraic
specifications. In Graph 1, we have two vectors representing the size of twe components; C2
provides lesser functionality, but has a higher complexity than C1.

& so y = 0.9800x + 33.650
Q 40 —C1
b 0 — it I Rty 2 Y
£ 27 ® Se el
o 20 e (02 3 .]
- : [+]
£ 10 z
o]
© 0 g

0 10 20 30 40 S0 £

Functionality (OPs) E‘;
0 2000 4000 600G 8000 10000
Graph 1. Vector Size Measure Actuals (Hours)

Graph 2. Actual Effort vs. Estimated Effort

We will identify the different aspects of the Unified Modeling Language and determine how they
contribute to the size of the software. The Unified Modeling Language provides several features
to express the semantics of the requirements. The Object Constraint Language (OCL) associated
with UML is used for specifying constraints of the various elements of the system. UML has
several features, from use-cases to Statecharts, to specify the behavior. The recent Real-Time
profile produced by OMG introduces real-time specific stereotypes. We will extract various
complexity factors from the specification of system behavior and constraints. By formulating a

measure of these characteristics, we will be able to calculate the complexity component of
software size.

For software engineers, a primary measure such as Software Size is useful for project planning,
and, significantly, to estimate secondary measures such as Effort. We aim to develop a prediction
model for effort estimation based on Software Size. The model will take into consideration the
fact that the effort required for a component is not entirely dependent on its size in a component
based system; it is also dependent on the nature of the component (e.g., whether it is custom built
or being reused). The effort required to search component libraries, integrate components etc.
also need to be taken into consideration. We will study the parameters involved in these
variations, and derive cost-drivers based on empirical data.

25

In our initial study? we used two cost drivers: the magnitude and gradient of the size vector. An
experiment involving eight industrial projects showed a strong correlation between estimated and
actual effort (See Graph 2).

We will conduct theoretical and empirical validation of thc size measure and effort prediction
model:

1.

Theoretical validation to ensure that the measure is in accordance with measurement theory
will be conducted within the framework of Kitchenham er al. (1995). The Kitchenham
framework identifies four criteria that need to be satisfied:

e For an attribute to be measurable, it must allow different entities to be distinguished from
one another.

s A valid measure must obey the Representation Condition. The representation condition is
that: “To measure the attribute we need to have corresponding relations in some number
system; then measurement is the assignment of numbers to the entities in such a way that
these relations are preserved” (Fenton and Pfleeger, 1997).

o Each unit of an attribute contributing to a valid measure is equivalent.

» Different entities can have the same attribute value (within limits of measurement error).

Empirical evaluation. We will collect data from two sources. One is sources that are
reported in the literature (e.g., Putnam and Myers (1997)). The other is Australian software
companies that develop real-time systems. BAE Systems (one of the largest aerospace
companies in the world after the merger of British Aerospace and GEC Marconi Systems) has
significant operations in Williamtown in Newcastle. BAE Systems at the local]evel has
agreed to make available parts of their projects to test our effort prediction models®. We are
negotiating with two other companies {one in health monitoring systems and the other in
control systems) in order to mcrease the diversity of industrial projects from which data is
collected.

Mulitiple regression analysis will be used for empirical evaluation. Data (requirements and
design documents, and documentation of actual effort on all project tasks) will come from
project databases. We are particularly interested in using regression analysis to determine
which aspects of size contribute most to the total overall effort.

We will conduct two levels of empirical testmg an initial post-hoc empirical evaluation, and
a full empirical validation.

An initial empirical evaluation will involve post-hoc (after the fact) statistical analysis of
completed projects. This cannot confirm a causal relationship, but is a quick and appropriate
method for a preliminary study. Our main emphasis will be to compare our approach with
other measures such as Full Function Points. Software requirements will form the baseline for
the validation. A measurement tool will be developed to assist in measuring the attributes
from UML requirement specifications. For each project, the requirements (if not already in
UML) will be reengineered into UML and product attributes will be measured. The process
attributes (effort, duration, team size etc.) will be collected from project documentation.

2 This model was developed for traditional systems and based on algebraic specifications; sec (Hastings and Sajeev,
2001).

* This consent, as is usual in such cases, is subject 1o security clearance and corporate clearance.

26

Based on the outcomes of the initial evaluation, we will re-evaluate the model and make any
modifications necessary. Then, a full empirical validation is planned in cooperation with
industries mentioned above. We will track appropriately scoped projects (or defined parts of
it) from requirements modeling to project completion. We will do statistical analysis to
determine correlation between actual and predicted effort, their statistical significance and
€ITOT margin.

E4.1 Timing

The tasks involved in the project are:

T1: Analysis of characteristics of real-time systems and their relations in UML
T2: Collection of preliminary project data

T3: Design of size measure

T4: Development of effort estimation model

T5: Theoretical validation and initial empirical testing

T6: Thesis completion

T7: Reevaluation of models

T38: Empirical validation

The table below shows the timing and people involved in various tasks. Apart from the chief
investigator (CI) there is a PhD student and a research assistant (RA).

Half Tasks
Year T1 T2 T3 T4 TS T6 T7 T8
Analysis | Data Size Effort Initial Thesis Model Empirical
Collection | Measure Model Validation Re- Validation
evaluation
2003/1 CI, RA, CI
PhD
2003/2 CI, PhD
2004/1 CIL PhD | CIL PhD
2004/2 CI, PhD
2005/1 CI, PhD
200572 CLPhD |FhD,CI | CI CL RA
2006/1 CL RA
200672 CILRA

E5. National Benefit

E5.1 Expected Outcomes

e A new size measure and prediction model for Complex Real-Time Software Systems

27

s Empirical evaluation of size measure and prediction model
e A PhD graduate with expertise in Software Metrics and Real-Time Systems
e Refereed journal and conference publications

E5.2 Benefit to Economy

Software is a key element of the US$ 2 trillion global spending on Information and
Communications Technologies (ICT) (World Information and Technology Services and
Alliances, 2000). Complex software systems are often the costliest to develop. Unreliable models
for estimation of development effort of such systems have cost the economy dearly. For example,
when the software behind the tolling system in Melbourne’s CityLink project was delayed, it cost
the toll way operator $1.4 million a week in lost revenue; motorists had a free ride on the newly
built road system for months (Australian Broadcasting Corporation, 1999).

Successful completion of this project is expected to significantly improve the reliability of
estimating development effort for complex real-time software systems, thus reducing cost
explosion from over-promising and under-resourcing. Since Australia is one of the top ten
countries in the world (in both GDP and per-capita terms) in Information and Communications
Technologies spending, benefit to Australian economy will be proportionately high.

E6. Communication of Results

The methods and techniques will be made available to Australian Software industry (in particular,
partners who supply the data for testing) to adopt in their software process.

The results will be published in nationa) and international journals and conferences thus giving
international recognition for an Australian research cutcome.

E7. Description of Personnef

The chief investigator will take intellectual responsibility for the project, its conception, all
strategic decisions, and the communication of the results. In all stages, he will provide the
research directions and ideas.

Tasks T1 (Analysis), T4 (Size Measurement), T7 (Model Revaluation), which have a large
conceptual component, will be investigated by the CL

The CI will supervise a research assistant in data collection and storage aspects (Task T2).

The sequence of tasks T3 - T6 (Size Measure, Effort Estimation Model, Theoretical Validation
and Empirical Testing) has the right scope for a PhD project. Task T7 (Empirical Validation) will
be conducted by the CI with the help of a research assistant; the RI will collect the data, do
periodic monitoring of progress and help the CI do the analysis.

E8. References

Abran, A., Maya, M., Desharnais, J. M. and St-Perre, D. {(1997): Adapting Function Points to
Real-Time Software, American Programmer, 10(11), pp. 32-43.

Abran, A. et al. (2001): COSMIC Full Function Points, Version 2.1, Common software
measurement international consortium, www.cosmicon.com/

28

Albrecht, A. J. (1979): Measuring application development productivity, in Proceedings of IBM
Applications Development Symposium, 83-92.

Australian Broadcasting Corporation (1999), Melbourne’s Citylink Toliway Near Completion,
7.30 report, October 24,

Australian Research Council (2002): Discovery Projects: Guidelines for Appllcants for Funding
Commencing in 2003, www arc.gov.au/negp/discovery/projects/default. htmi

Boehm, B. W. (1981): Software Engineering Economics, Prentice-Hall.

Douglass, B. P. (1998): Real-Time UML: Developing Efficient Objects for Embedded Systems,
Addison-Wesley.

Douglass, B. P. (1999): Doing Hard Time: Developing Real-Time Systems with UML, Objects,
Frameworks and Patterns, Addison-Wesley.

Ebrahimi, N. B. (1999): How to Improve Calibration of Cost Models, JEEE Transactions on
Software Engineering, 25(1), Jan/Feb.

Fenton, N. E. and Pfleeger, S. L. (1997): Software Metrics: A Rigorous and Practical Approach,
2nd Edition. London: PWS Publishing Company.

Hastings, T. E. and Sajeev, A. S. M. (1997): A Vector Based Software Size Measure, in
Proceedings of the Australian Software Engineering Conference, Sydney, Australia, IEEE
Computier Society, 7-15.

Hastings, T. E. and Sajeev, A. S. M. (2001): A Vector Based Approach to Software Size
Measurement and Effort Estimation, IEEE Transactions on Software Engineering, 27(4),
April, pp. 337-350.

Henderson-Sellers, B. (1995): OO Metrics Programme, Object Magazine, Oct., 73-79.

Henderson-Sellers, B. (1996): Object-Oriented Metrics: Measures of Complexity, Prentice Hall.

Jeffery, D. R., Low, G. C. and Barnes, M. (1993): A Comparison of Function Point Counting
Techniques, IEEE Transactions on Software Engineering, 19(5), 528-332.

Jeffery, D. R. and Low, G. C. (1997): Function Points and their Use, Australian Computer
Journal, 29 (4), 148-156.

Jones, C. (1991): Applied Software Measurement. New York, NY: McGraw-Hill.

Kitchenham, B., Pfleeger, S. L. and Fenton, N. (1995): Towards a Framework for Software
Measurement Validation, [EEE Transactions on Software Engineering, 21(12), 929-944.
McLaughlin, M. J and Moore, A. (1998): Real-Time Extensions to UML, Dr. Dobb’s Journal,

December.

Marz, T. F. and Plakosh, D. (2001): Real-Time Systems Engineering: Lessons Leamned from
Independent Technical Assessments, Technical Note, CMU/SEI-2001-TN-004, Software
Engineering Institnte.

Object Management Group (2002): UML Profile for Schedulability, Performance and Time-
Specification, ptc/2002-01-20, www.omg.org

Putnam, L. H. and Myers, W. (1997): Industrial Strength Software: Effective Management using
Measurement, [IEEE Computer Society Press.

Selic, B. (1999): Turning Clockwise: Using UML in the Real-Time Domain, Communications of
the ACM, 42(10), October, pp. 46-54.

Selic, B. and Rumbaugh, J. (1998): Using UML for Modeling Complex Real-Time Systems,
Whitepaper, Rational (www rational.com/products/whitepapers/UML-rt.pdf)

Whitmire, S. A. {1992): 3D Function Points: Scientific and Real-Time Extensions to Function
Points, Proc. Pacific Northwest Software Quality Conference. ’

World Information and Technology Services and Alliance (2000), Digitial Planet 2000: The
Global Information Economy Executive Summary, www.witsa.org, 2001,

29

