Pacemaker Model Brief Description

A cardiac Pacemaker is an implanted device that assists cardiac functions when the underlying pathologies make the intrinsic heartbeats low. The Pacemaker runs in either a programming mode or in one of operational modes. During programming, the programmer specifies the type of the operation mode in which the device will work. The operation mode depends on whether the Atrium (A), Ventricle (V), or both are being monitored or paced. The programmer also specifies whether the pacing is inhibit (I), triggered (T), or dual (D). The first operation mode to discuss is AVI operation mode. In this mode, the Atrial portion (A) of the heart is paced (shocked), the Ventricular portion (V) of the heart is sensed (monitored), and the Atrial is only paced when a Ventricular sense does not occur; i.e., inhibited (I). Figure 1 shows the Pacemaker design model using a Real-Time Object Oriented Modeling (ROOM) actor diagram. ObjecTime simulation environment is used to implement executable models, which are necessary to validate the timing and deadline constraints and gather simulation statistics. Actors are used in ROOM to represent the structure of the model while a ROOMchart, which is based on statechart notation and semantics, models the behavior of each actor. Figure 2 shows the ROOMchart for the Atrial_Model. Sequence diagrams will be used to describe several operation scenarios for the Pacemaker: The programming mode, The AVI operation mode, The AAI operation mode, The AAT operation mode, The VVI operation mode and The VVT operation mode.

The Pacemaker consists of the following classes:

Reed_Switch (RS): A magnetically activated switch that must be closed before programming the device. The switch is used to avoid accidental programming by electric noise.

Coil_Driver (CD): Receives/sends pulses from/to the device programmer. These pulses are counted and then interpreted as a bit of value zero or one. These bits are then grouped into bytes and sent to the communication gnome. Positive and negative acknowledgments as well as programming bits are sent back to the programmer to confirm whether the device has been correctly programmed and the commands are validated. Figure 3 shows the ROOMChart.

Communication_Gnome (CG): Receives bytes from the coil driver, verifies these bytes as commands, and sends the commands to the Ventricular and Atrial models. It sends the positive and negative acknowledgments to the coil driver to verify command processing. Figure 4 shows the ROOMChart.

Ventricular_Model (VT) and Atrial_Model (AR): These two actors are similar in operation. They both could pace the heart and/or sense heartbeats. The AVI mode is a complicated mode, as it requires coordination between the Atrial and Ventricular models. Once the Pacemaker is programmed the magnet is removed from the Reed_Switch. The Atrial_Model and Ventricular_Model communicate together without further intervention. Only battery decay or some medical maintenance reasons force reprogramming.

Timing information

 Timing constraints are introduced as timeouts form several timers. Timeouts control the outputs generation and the state changes. In case of the AVI operation mode the concerned inputs are the heartbeats, the sensed and the expected but not sensed. The expected but not sensed heartbeat is interpreted as a timeout in a timer named V-heart. This timer is set to 100 epochs where an epoch is set to represent 10 msec. The heartbeat is simulated at 90 epochs and the pacing timeout (a-pace = 20 epochs) allows for pacing pulse width. Refractory timer (v-refract) is set to 30 epochs. In the Programming mode P-delay timer (1200 epochs) spaces the bits sent from the simulated programmer on the programming port, while the coil driver (byte constructor) timers are adjusted as follows:

Coil-Driver-bit-time = 800 epochs representing expected delays between bits

Coil-Drive-byte-time = 5000 epochs representing byte delimiter

Our concern is to study the behavior of the paces versus the sensed and expected but not sensed heartbeats for all modes and assure adequate synchronization and the observability of all heartbeats to the pacemaker.

Figure 1 Actor diagram for the Pacemaker.

[image: image11.png]magnet | REED_SWITCH

maghet

commEnableColl

commEnableColl

COIL DRIVER

rogramming

programming

commEnable G
‘commEnable_G

COMMUNICATION_ GNOME

commChamber

coilComm commChamber_V

Jeommehamber

ATRIAL_MODEL VENTRICULAR MODEL

atrialVentricular B—sb atrailVentricular

heart

[image: image12.png]Enable_Communication

initialize
Hereza_Byte

true one_Transbyte
Pulse_ctr| zero

Byte_Timeout Recelving Bit

Pulse_ctr_inc

Pulse_Ctr_F

Bit_Tirpeout

Vaiting for Bit

Disable_Communication

Waiting to Transmit

TransBit_Ti

Transmitting Bit

[image: image13.png]initialize

Disable_Communication

Enable_Communication

[image: image14.png]@ Enable_Communication Disable_Communication

initialize

Msg_Timeout

Transmit Bytes

falseNAK

Enqueue_Byte

trueValid

Receive Byte

[image: image15.png]Enqueue_Byte

initialize

Waiting for Byte Enqueue_Byte

Byte_Timeout

Data_Check

Validating

Valid_Data

Processing

[image: image16.png]Msg_Timeout

Msg_TIimeout

Waiting for Msg Timeout

Waiting to Send Next Byte

Done_transmit_Byte

[image: image17.png]initialize

Figure 2 ROOMchart for Atrial_Model

[image: image18.png]

[image: image19.png]initialize

Refractory

A_Pace_Pulse_Done

V_Refract_Done_Received

V_Sense_Received

Figure 3 ROOMchart for Coil Driver

Figure 4 ROOMchart for Communication Gnome
1- Sequence diagram for programming mode.

In this scenario the programmer sets the operation mode of the device. The programmer applies a magnet to enable communication with the device, and then he sends pulses to the device, which in turn interprets these pulses into programming bits. The device then send back the data to acknowledge valid/invalid program.

[image: image1.wmf]Programmer

ReedSwitch

CoilDriver

Communication

Gnome

Atrial

Ventricular

ApplyMagnet

EnableComm

EnableComm

Pulse

Receiving

IDLE

Pulse

Count++,

ResetTimer

BitTimeout

Decode(Count)

Store Bit in Byte

Byte Full?

enqueue(byte)

Yes

ByteTimeOut

Waiting for

Bit

IDLE

Count = 1, SetTimer

Pulse

Count =0

Receiving

ByteTimeOut

OR

IDLE

Waiting For

Byte

Validating

IsValid?

Processing

ToAVI

ToON

ToON

ToAVI

Yes

HerezaByte(ACK)

No

HerezaByte(NAK)

Waiting to

Transmit

Waiting to Send

Next Byte

WaitPeriodTimeOut

Transmitting

ReceivedBit

IsDone?

DoneTransByte

Yes

is IN(mycoil->IDLE)?

Yes

HerezaByte(Byte)

LOOP for All bits in ACK or NAK

LOOP for all Bytes in the Message

IsDone?

Wait for Message

Timeout

IDLE

IDLE

2- Sequence diagrams AVI operation
In this scenario, the Ventricular_Model monitors the heart. When a heartbeat is not sensed, the Artial_Model paces the heart and a refractory period is then in effect.

a- Program Atrial_Molel and Ventricular_Model to AVI mode.

[image: image2.wmf]Communication

Gnome

Atrial

Ventricular

Heart

ToON

ToON

ToAVI

ToAVI

Refactoring

Refactoring

b- Sequence in case of sensing a heartbeat at the Ventricular “Got V Sense”.

[image: image3.wmf]Atrial

Ventricular

Heart

Waiting

Waiting

RefTimeOut

V Refract Done

V Sense

Got V Sense

Waiting

Reset Sense Timer

c- Sequence in case of not sensing a heartbeat at the Ventricular “sense timeout”.

[image: image4.wmf]Atrial

Ventricular

Heart

Waiting

Waiting

Pacing

Pacing

Refactoring

Refactoring

Pace

PaceTimeOut

RefTimeOut

V Refract Done

A Pace Start

A Pace Done

Atrial

Ventricular

Heart

Sense Timeout

3- Sequence diagrams AAI operation
In this scenario, the Ventricular_Model Idle and the Artial_Model senses the heart. When a heartbeat is not sensed, the Artial_Model paces the heart and a refractory period is then in effect.

a- Program Atrial_Molel and Ventricular_Model to AAI mode.

[image: image5.wmf]

Communication

Gnome

Atrial

Ventricular

Heart

Refactoring

I

Waiting

Pacing

Refactoring

ToON

ToAAI

SensTimeOut

ToON

ToAAI

RefTimeOut

Got A Sense

Waiting

A Pace Start

Pacing

Pace Pulse Width

b- Sequence in case of sensing a heartbeat at the Atrial “Got A Sense”.

[image: image6.wmf]Atrial

Ventricular

Heart

Idle

Waiting

RefTimeOut

Got A Sense

Waiting

c- Sequence in case of not sensing a heartbeat at the Atrial “sense timeout”.

[image: image7.wmf]Atrial

Ventricular

Heart

Idle

Waiting

Pacing

RefTimeOut

A Pace Start

SensTimeOut

Pace Timeout

Refactoring

4- Sequence diagrams AAT operation
In this scenario, the Ventricular_Model Idle and the Artial_Model senses and paces the heart. When a heartbeat is sensed or not sensed, the Artial_Model paces the heart and a refractory period is then in effect.

a- Program Atrial_Molel and Ventricular_Model to AAT mode.

[image: image8.wmf]Communication

Gnome

Atrial

Ventricular

Heart

Refactoring

Idle

Waiting

Pacing

Refactoring

RefTimeOut

Got A Sense

A Pace Start

Pacing

Pace Timeout

ToON

ToAAT

SensTimeOut

ToON

ToAAT

Pacing

b- Sequence in case of sensing a heartbeat at the Atrial “Got A Sense”.

[image: image9.wmf]Atrial

Ventricular

Heart

Waiting

Pacing

Refactoring

RefTimeOut

Got A Sense

A Pace Start

Pace Timeout

c- Sequence in case of not sensing a heartbeat at the Atrial “sense timeout”.

[image: image10.wmf]Atrial

Ventricular

Heart

Waiting

Pacing

Refactoring

RefTimeOut

A Pace Start

Pace Timeout

Sense Timeout

_1013344879.doc

Communication

Gnome

Atrial

Ventricular

Heart

Refactoring

I

Waiting

Pacing

Refactoring

ToON

ToAAI

SensTimeOut

ToON

ToAAI

RefTimeOut

Got A Sense

Waiting

A Pace Start

Pacing

Pace Pulse Width

