
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

1Copyright © 2004 David Frankel

MDA
Journal

Introduction

www.bptrends.com

David S. Frankel
David Frankel Consulting

df@DavidFrankelConsulting.com

MDA, UML, and CORBA are
Registered Trademarks of the

Object Management Group. The
logo at the top of the second page is

a Trademark of the OMG.

At the end of 2002, with the computer industry reeling amidst the near total
shutdown in corporate IT spending, IBM® was rather quietly continuing its long
standing program to use modeling technologies to enhance rigor and productivity
in software development. By this time, IBM had made important contributions to
defining key MDA® standards, including UML®, MOF™, and XMI®. It had
wired a MOF- and XMI-based metadata management engine deeply into its
development tools, and was in the process of releasing this engine in open
source as the Eclipse Modeling Framework (EMF). IBM is a big company,
however, and these developments escaped the attention of much of the IT world,
which was preoccupied with riding out the economic storm.

Then IBM acquired Rational Software for $2.1 billion in cash. To those who had
been following the company’s MDA activities, this confirmed that IBM’s top
management considers MDA an important priority. To others it was a wake up
call to start paying attention to this aspect of IBM’s business.

This month, MDA Journal hosts an article by several luminaries from IBM’s
Rational division. Grady Booch, Alan Brown, Sridhar Iyengar, Jim Rumbaugh,
and Bran Selic are involved in the ongoing work to finalize the UML 2.0 and MOF
2.0 specifications, in addition to their involvement in IBM’s MDA business. This
article is part of an ongoing discussion in the pages of MDA Journal that has
included contributions from Steve Cook of Microsoft1, Mike Guttman of the OMG’s
MDA FastStart program2, and of course some of my own remarks3. The authors
take this opportunity to lay out the highpoints of IBM’s MDA vision.

I find it noteworthy that the IBM authors believe that domain-specific languages
(DSLs) are important to MDA. As you may recall, DSLs figure prominently in
Steve Cook’s view of model based systems, as they did in last month’s MDA
Journal article by Jorn Bettin, and in my own MDA Journal writings. The discussion
about DSLs, therefore, is not about whether they are important; rather, it is about
how best to support them.

Without further delay, I turn the proceedings over to IBM.

See you next month…

David Frankel

1 MDA Journal, January 2004
2 MDA Journal, February 2004 and April 2004
3 MDA Journal, February 2004 (Introduction) and March 2004

May 2004

123456789012345678901234567890121234567890123
123456789012345678901234567890121234567890123
123456789012345678901234567890121234567890123
123456789012345678901234567890121234567890123
123456789012345678901234567890121234567890123
123456789012345678901234567890121234567890123

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

2

MDA Journal

May 2004

Copyright © 2004 IBM Corporation

www.bptrends.com

MDA Journal

Grady Booch
Alan Brown

Sridhar Iyengar
James Rumbaugh

Bran Selic

IBM Rational Software

An MDA Manifesto1

Introduction

Model Driven Architecture ® (MDA®) is a style of enterprise application
development and integration, based on using automated tools to build system-
independent models and transform them into efficient implementations. The
Object Management Group (OMG) has defined standards for representing MDA
models, but the principles and practice of MDA are still evolving. At one extreme,
MDA is little more than a front end to writing code in traditional programming
languages, such as C++ and Java. At the other extreme, some authors expect
an almost magical increase in power by simply using models. We believe that
MDA has the potential to greatly reduce development time and greatly increase
the suitability of applications; it does so not by magic, but by providing
mechanisms by which developers can capture their knowledge of the domain
and the implementation technology more directly in a standardized form and by
using this knowledge to produce automated tools that eliminate much of the
low-level work of development. More importantly, MDA has the potential to
simplify the more challenging task of integrating existing applications and data
with new systems that are developed.

IBM has been a principal developer of the Unified Modeling Language (UML), as
well as related OMG standards such as the Meta Object Facility (MOF), the
XML Metadata Interchange (XMI) format, and the Common Warehouse Metamodel
(CWM). We have also promoted open source development (www.eclipse.org/
uml2, www.eclipse.org/emf). While standards such as UML are well understood
in terms of syntax and notation, the role that they play in MDA is often
misunderstood. We at IBM believe that we must do more than define the
infrastructure of MDA. We must understand how to use MDA effectively to produce
value when developing and integrating applications that enable organizations to
optimize their processes. For example, recent MDA efforts that focused on
increasing business value include the Business Process Definition Metamodel
(grounded in the semantics of UML 2.0 Activity Diagrams) and Business Rules.

The Basic Tenets of the MDA Manifesto

In essence, the foundations of MDA consist of three complementary ideas:

1. Direct representation. Shift the focus of software development away from
the technology domain toward the ideas and concepts of the problem domain.
Reducing the semantic distance between problem domain and representation
allows a more direct coupling of solutions to problems, leading to more
accurate designs and increased productivity.

2. Automation. Use computer-based tools to mechanize those facets of
software development that do not depend on human ingenuity. One of the
primary purposes of automation in MDA is to bridge the semantic gap between

Contents

Introduction
The Basic Tenets of the MDA
 Manifesto
Direct Representation of
 Application Concepts
Automation
Open Standards
Building MDA Frameworks
The Evolution of a Domain-
 Specific Modeling Language:
 SDL
Conclusion

1 manifesto – a public declaration of principles, policies, or intentions.

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

3

An MDA Manifesto

Copyright © 2004 IBM Corporation

domain concepts and implementation technology by explicitly modeling both
domain and technology choices in frameworks and then exploiting the
knowledge built into a particular application framework.

3. Open standards. Standards have been one of the most effective boosters of
progress throughout the history of technology. Industry standards not only
help eliminate gratuitous diversity but they also encourage an ecosystem of
vendors producing tools for general purposes as well as all kinds of
specialized niches, greatly increasing the attractiveness of the whole
endeavor to users. Open source development ensures that standards are
implemented consistently and encourages the adoption of standards by
vendors. (See Figure below.)

The remainder of this article expands on these three tenets.

Direct Representation of Application Concepts

Perhaps the greatest difficulty associated with software development is the
enormous semantic gap that exists between domain-specific concepts
encountered in modern software applications, such as business process
management or telephone call processing, and standard programming
technologies used to implement them. This is true even with the use of present-
day “high-level” software frameworks, such as .NET, J2EE, or various Web-
service architectures and standards. While these frameworks do raise the level
of abstraction above that found in today’s programming languages, such as
Java or C#, they are still focused primarily on computer concepts rather than
application-level concepts. Hence, the effort required to implement complex
applications is still formidable because the semantic gap is so large.

Clearly, the more directly we can represent concepts in the application domain,
the easier it becomes to specify our systems. Conversely, the greater the distance
between the application domain and the model, the less value we get from
modeling. Thus, although it is still beneficial to model C# or Java programs
using UML–because UML hides a lot of irrelevant detail related to programming
language syntax–the full value of MDA is only achieved when the modeling

MDA

Direct
Representation

Automation Standards

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

4

An MDA Manifesto

Copyright © 2004 IBM Corporation

concepts map directly to domain concepts rather than computer technology
concepts.
Of course, there are many different application domains, often requiring very
different concepts. Furthermore, as experience and knowledge grow, these
domains become increasingly more complex and sophisticated. It does not
require much insight to realize that different domains will need different, domain-
specific languages (DSLs). [1]

Domain-specific languages have been around for a long time. Graphical User
Interface (GUI) builder systems allow developers to build interfaces by directly
selecting and manipulating buttons and other interface widgets, rather than writing
pages of repetitive code using a graphics library. Query-by-example database
systems allow users to construct simple queries by entering values in a table,
rather than writing SQL code. A WYSIWYG desktop publishing application,
such as FrameMaker® or Microsoft Word®, is a lot faster and less error-prone
than scripting a document in Unix LaTeX.

Domain-specific languages make assumptions about the domain to greatly
reduce the size of the specification by exploiting regularities. Only certain kinds
of buttons or queries can be used in a GUI. There are things that you can do in
troff that you cannot do in a WYSIWYG application. In exchange for the
restrictions, however, there is a great simplification in representation that more
than justifies the occasional limitation. In fact, the regularity imposed by a domain
framework often benefits users by ensuring that all applications use a similar
style.

Automation

Direct representation of an application problem is useful for capturing thoughts
(the “modeling language as sketch” approach), but if humans must translate the
model into an implementation language it will take a lot of time and introduce a
lot of errors. MDA increases speed and reduces errors by using automated
tools to transform domain-specific models into implementation code. This is the
same thing that compilers do for traditional programming languages. Automated
model transformations can be applied for other purposes as well. For example,
they can be used to provide custom views of complex systems from various
viewpoints. They can be used to transform a model based on one type of formalism
to a different one, perhaps one that is suitable for some kind of specialized
analysis, such as performance or schedulability analyses.

Automation can also analyze models for various flaws, for example, to verify
whether a given specification possesses desired safety and liveness properties.
Testing can also be automated through generation and execution of test cases
or through formalized analysis techniques such as model checking and theorem
proving.

Yet another important form of automation available in MDA is the ability to execute
models directly, using run-time interpreters. This is, in effect, a transformation
directly to execution.

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

5

An MDA Manifesto

Copyright © 2004 IBM Corporation

Automation is not magic. An MDA framework makes assumptions about the
application domain and the implementation environment. These assumptions
constrain the model and permit efficient mappings from the model to the execution
domain. For example, in a GUI builder, the buttons all have a regular form, and,
more importantly, they are all used in a particular way. The logic of the domain
can be built into the application framework, rather than being written by the
developer from scratch each time.

Open Standards

Industry-wide standards achieve more than just reuse; they also encourage the
emergence of an entire ecosystem of tool vendors addressing many different
needs. No single vendor can afford to address all needs. Big vendors, such as
IBM, Microsoft, and Sun, can afford the investment needed for large integrated
platforms, but they rarely cover the full spectrum of smaller niche markets that
may require highly specialized domain knowledge. Small niche vendors can
succeed in relatively small markets if they can minimize their development costs
by building specialized knowledge on top of generic platform tools. But, they
cannot succeed if their tools will not work with the generic tools or if they do not
have access to the entire population of users because the big vendors have
fragmented the market. The success of automation requires an ecosystem of a
few large vendors, many medium vendors, and hundreds of small niche vendors,
together providing much more capability to users than any one vendor could
supply alone. But this ecosystem will be attractive to vendors and users only if
standards ensure that the many tools work together. The CASE industry of the
1980’s failed in part because each vendor tried to do everything alone [2].

A good example of a software ecosystem surrounds Adobe® Photoshop®, an
application that has revolutionized graphics design. A number of independent
vendors supply add-ins, such as additional filters, that extend the power of
Photoshop. Other vendors supply images that can be used with Photoshop.
The combination of generic functionality and optional additions allows users to
tailor solutions to their needs that no vendor could afford to develop alone, because
the add-ins and images all adhere to a set of standards.

The presence of standards is generally a sign of the maturity of an industry. The
MDA standards adopted to date—in particular, the UML and MOF modeling
language standards—represent the consolidation of years of experience in the
design and usage of software modeling languages in various situations and
domains. In the future, we would expect standardization at higher levels and
across various domains as well. Proposals are under development in OMG for
the domains of Business Process Definition, Business Rules, Business
Vocabularies, Life Sciences, Health Care, and Financial Services.

Building MDA Frameworks

To gain the benefits of MDA, we must be able to implement domain-specific
languages easily and correctly. Within an application framework, both the
application domain level and the computer technology level can be modeled

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

6

An MDA Manifesto

Copyright © 2004 IBM Corporation

using UML profiles and MOF metamodels. A number of OMG specifications
address each of these levels. In addition, the mappings within and between
these levels must be specified and implemented. The MOF Query/View/
Transformation (QVT) proposal, now under development, addresses the latter
need. An application framework combines the benefit of direct representation of
domain concepts with the necessity to implement systems on specific platforms.
Construction of such domain-specific frameworks will become easier as we
gain experience.

In addition to models, we need an infrastructure with which to construct and
integrate tools. The Eclipse Modeling Framework (EMF) is an open-source tools
integration framework and project (www.eclipse.org) that supports and uses
modeling standards–UML, MOF, and XMI. A toolmaker who wants the tool to be
part of the Eclipse ecosystem uses EMF to explicitly model the information that
the tool manipulates. (The UML 2.0 Metamodel, which models the information
that a UML model manipulates, is included.) EMF uses the model of the tool’s
information to generate the programming model (such as Java APIs and XML
schemas) and code that the tool uses to manage this information. The common
programming model and implementation patterns make it possible for a suite of
tools to share models and information. Ranges of tools being implemented
include compilers, modeling tools, Web services tools, and business integration
tools.

Several members of the OMG (which is itself a member of the eclipse.org
foundation), including IBM, have been working with members of the eclipse.org
consortium to accelerate the implementation of MDA standards for a very
pragmatic reason: software development and integration is very difficult and
requires a team effort from the community of vendors building tools that cover
the spectrum of developers, architects, testers, programmers, and systems
administrators.

The Evolution of a Domain-Specific Modeling Language: SDL

The Specification and Description Language (SDL) is a visual modeling language
standardized by the International Telecommunications Union (ITU) and the SDL
Forum Society [3]. It originated in the early 1970’s as a custom tool for specifying
telecommunications protocols. It includes, as first-order language constructs,
high-level concepts that are widely used in telecoms, such as state machines,
processes, messages, and channels. Over the past three decades, SDL has
undergone significant evolution, including an upgrade to the object paradigm in
1992. By this time, it had become more than a specification language, since it
was also being used as a fully-fledged implementation language in some projects–
providing an early example of model-driven development. The reason for this is
simple: many SDL users found it very convenient to reuse the language of their
specifications as the language of their implementations.

SDL was supported by several commercial tool vendors, who provided not only
model editing tools but also run-time frameworks, code generators, model libraries,
model analyzers, and debuggers for SDL.

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

7

An MDA Manifesto

Copyright © 2004 IBM Corporation

The most recent major development in the evolution of SDL occurred shortly
following the last formal revision of the standard by the ITU in 2000. The basic
concepts of SDL and a related ITU standard for specifying interaction sequences
(the Message Sequence Chart standard) were added into UML version 2. Note
that this does not mark the end of SDL as a domain-specific language, since it
will most likely continue its evolution as a UML profile [4].

At first glance this seems a rather paradoxical and cumbersome strategy: merging
a domain-specific modeling language into a general-purpose language base from
which a domain-specific language is then extracted. The reasons behind this
are primarily driven by the reality of large-scale industrial software development.
These reasons have to do with reuse – reuse of technology and reuse of expertise.

By basing their domain-specific language on UML, SDL users can take advantage
of the major investment in diverse UML tools from numerous vendors supporting
the standard. Furthermore, they also benefit from the widespread knowledge
and experience of the language and tools (UML is now included in most
undergraduate computer science curricula). In fact, these were the same reasons
that led to the major shift towards “commercial-off-the-shelf” (COTS) technologies
in the mid-eighties, when many technology companies found that the costs of
maintaining proprietary languages and tools far outweighed the benefits.

It is important to note that the semantics of SDL did not change as a result of the
move to UML, clearly demonstrating that the concept of domain-specific
languages is not contrary to the notion of a general modeling language. As it
turns out, there is much that is common across different domain-specific
languages that can be reused. In addition to the basic notions of classes, objects
and relationships of various kinds, most languages also need some way of
representing inter-object collaborative behavior, such as is provided by the
interaction modeling framework of UML. Because real-world interactions are not
always simple – involving conditional paths, iteration, sequential and parallel
composition – this capability needs to be quite sophisticated. UML incorporates
best practices derived from several decades of experience in interaction modeling,
primarily from the telecom domain. A domain-specific language that does not
need this capability does not need to use it, but the capability is there for those
domains that do need it.

Other examples of generic modeling capability in UML include state machines
for describing discrete event-driven behavior, activity graphs for describing
computational flows, and constructs such as components, ports and connectors
for assembling large systems from modular pieces.

The designer of a domain-specific language can greatly benefit by building on
top of such a rich base rather than by recreating it individually through trial and
error. This need to reuse knowledge and experience and the need to eliminate
pointless and petty diversity were the main reasons that led to the creation of
UML and its subsequent widespread adoption.

Some have complained that UML is too complex to learn or use. It is complex—
it is intended to provide capability needed by all kinds of known and unknown

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

8

An MDA Manifesto

Copyright © 2004 IBM Corporation

frameworks that may be built on it to handle real-world problems. But, any
powerful tool is complex. English is complex. Electrical engineering is complex.
Photoshop is complex. You need complex tools to deal with the variability and
complexity of the real world. But you don’t need to know all of English, electrical
engineering, Photoshop, or UML to use them effectively. UML is structured into
separate modules with minimal interaction among most of them. You can learn
what you need and ignore the rest.

Conclusion

Model Driven Architecture gets power by building models that directly represent
domain concepts. Domain-specific languages may either be built on top of general
languages such as UML or through meta-modeling frameworks such as MOF.
By using frameworks that explicitly model assumptions about the application
domain and the implementation environment, automated tools can analyze
models for flaws and transform them into implementations, avoiding the need to
write large amounts of code and eliminating the errors caused by programming.
Not all lower-level programming will be eliminated, of course, but much highly-
repetitive boilerplate code that realizes standard implementation patterns can
be automatically generated. A marketplace of vendors of various sizes and
interests can provide a range of capabilities that no single vendor can provide –
provided standards exist so that vendors will be able to integrate with other tools
of complementary capabilities. MDA is not a vision of some future since it has
already proven itself many times over in diverse application domains; instead, it
is a map that, if we choose to follow it, will help us develop better software
systems faster.

[1] Cook, S. Domain-Specific Modeling and Model Driven Architecture, MDA
Journal, January 2004 (http://www.bptrends.com/publicationfiles/01-
04%20COL%20Dom%20Spec%20Modeling%20Frankel-Cook.pdf).

[2] Guttman, M., A Response to Steve Cook, MDA Journal, February 2004 (http://
www.omg.org/bp-corner/bp-files/MDA-Journal-Guttman.pdf).

[3] International Telecommunications Union, Specification and Description
Language (SDL) – Recommendation Z.100, August 2002.

[4] International Telecommunications Union, SDL Combined with UML –
Recommendation Z.109 (11/99), November 1999.

Authors

Grady Booch is an IBM Fellow and is recognized internationally for his innovative
work on software architecture, software engineering, and modeling. He has been
with IBM Rational as its Chief Scientist since Rational’s founding in 1981, and is
one of the original developers of UML. He is the author or coauthor of six best-
selling books.

Alan Brown is an IBM Distinguished Engineer responsible for driving the technical
strategy for the IBM Rational desktop products. He is a key part of the leadership

12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012

123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789
123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789

A BPT COLUMN

9

An MDA Manifesto

Copyright © 2004 IBM Corporation

team responsible for product strategy and architecture for the combined Rational
and WebSphere tooling. He also leads the technical team that is defining IBM’s
model-driven development vision.

Sridhar Iyengar, an IBM Distinguished Engineer, leads technical strategy for
IBM Rational on the use of models, metadata, and transformation frameworks in
integrated, standards-based software development suites. He led the definition
of the initial MOF and XMI standards and their integration with UML. He serves
on the OMG Architecture Board and Board of Directors.

James Rumbaugh is an IBM Distinguished Engineer and one of the original
designers of the Unified Modeling Language. He is considered one of the founders
of object-oriented modeling and is author or coauthor of five highly influential
books on this and related topics. He is responsible for driving IBM’s efforts in the
areas of modeling databases and model transformations.

Bran Selic is an IBM Distinguished Engineer who has been working on modeling
language design and model-driven development methods since 1987. He
pioneered the application of these methods in real-time and embedded systems
and coauthored a book on this topic. He co-chairs the OMG task force responsible
for finalizing the UML 2.0 standard.

Note, to contact the authors regarding this article, send email to
awbrown@us.ibm.com

