
3

Chapter

1
 1 OBJECT-ORIENTED ANALYSIS

AND DESIGN

The shift of focus (to patterns) will have a profound and
enduring effect on the way we write programs.

—Ward Cunningham and Ralph Johnson

1.1 Applying UML and Patterns in OOA/D

What does it mean to have a good object design? This book is a tool to help devel-
opers and students learn core skills in object-oriented analysis and design
(OOA/D). These skills are essential for the creation of well-designed, robust, and
maintainable software using object technologies and languages such as Java,
C++, Smalltalk, and C#.

The proverb “owning a hammer doesn’t make one an architect” is especially true
with respect to object technology. Knowing an object-oriented language (such as
Java) is a necessary but insufficient first step to create object systems. Knowing
how to “think in objects” is also critical.

This is an
introduction

This is an introduction to OOA/D while applying the Unified Modeling Lan-
guage (UML), patterns, and the Unified Process. It is not meant as an advanced
text; it emphasizes mastery of the fundamentals, such as how to assign respon-
sibilities to objects, frequently used UML notation, and common design pat-

Objectives

� Compare and contrast analysis and design.

� Define object-oriented analysis and design (OOA/D).

� Illustrate a brief example.

UML and Patterns.book Page 3 Sunday, August 19, 2001 2:50 PM

1 – OBJECT-ORIENTED ANALYSIS AND DESIGN

4

terns. At the same time, primarily in later chapters, the material progresses to a
few intermediate-level topics, such as framework design.

Applying UML The book is not just about the UML. The UML is a standard diagramming nota-
tion. As useful as it is to learn notation, there are more critical object-oriented
things to learn; specifically, how to think in objects—how to design object-ori-
ented systems. The UML is not OOA/D or a method, it is simply notation. It is
not so helpful to learn syntactically correct UML diagramming and perhaps a
UML CASE tool, but then not be able to create an excellent design, or evaluate
and improve an existing one. This is the harder and more valuable skill. Conse-
quently, this book is an introduction to object design.

Yet, one needs a language for OOA/D and “software blueprints,” both as a tool of
thought and as a form of communication with others. Therefore, this book
explores how to apply the UML in the service of doing OOA/D, and covers fre-
quently used UML notation. But the emphasis is on helping people learn the art
and science of building object systems, rather than notation.

Applying patterns
and assigning
responsibilities

How should responsibilities be allocated to classes of objects? How should
objects interact? What classes should do what? These are critical questions in
the design of a system. Certain tried-and-true solutions to design problems can
be (and have been) expressed as best-practice principles, heuristics, or pat-
terns—named problem-solution formulas that codify exemplary design princi-
ples. This book, by teaching how to apply patterns, supports quicker learning
and skillful use of these fundamental object design idioms.

One case study This introduction to OOA/D is illustrated in a single case study that is fol-
lowed throughout the book, going deep enough into the analysis and design so
that some of the gory details of what must be considered and solved in a realistic
problem are considered, and solved.

Use cases and
requirements
analysis

OOA/D (and all software design) is strongly related to the prerequisite activity
of requirements analysis, which includes writing use cases. Therefore, the
case study begins with an introduction to these topics, even though they are not
specifically object-oriented.

An example
iterative process—
the Unified Process

Given many possible activities from requirements through to implementation,
how should a developer or team proceed? Requirements analysis and OOA/D
needs to be presented in the context of some development process. In this case,
the well-known Unified Process is used as the sample iterative develop-
ment process within which these topics are introduced. However, the analysis
and design topics that are covered are common to many approaches, and learn-
ing them in the context of the Unified Process does not invalidate their applica-
bility to other methods.

UML and Patterns.book Page 4 Sunday, August 19, 2001 2:50 PM

5

APPLYING UML AND PATTERNS IN OOA/D

Figure 1.1 Topics and skills covered

Many Other Skills Are Important

Building software involves myriad skills and steps beyond requirements analy-
sis, OOA/D, and object-oriented programming. For example, usability engineer-
ing and user interface design are critical to success; so is database design.

However, this introduction emphasizes OOA/D, and does not attempt to cover all
topics in software development. It is one piece of a larger picture.

In conclusion, this book helps a student or developer:

� Apply principles and patterns to create better object designs.

� Follow a set of common activities in analysis and design, based on the
Unified Process as an example.

� Create frequently used diagrams in the UML notation.

It illustrates this in the context of a single case study.

Topics and Skills

UML notation

Requirements
analysis

Principles and
guidelines

Patterns

Iterative
development with

the Unified
Process

OOA/D

UML and Patterns.book Page 5 Sunday, August 19, 2001 2:50 PM

1 – OBJECT-ORIENTED ANALYSIS AND DESIGN

6

1.2 Assigning Responsibilities

There are many possible activities and artifacts in introductory OOA/D, and a
wealth of principles and guidelines. Suppose we must choose a single practical
skill from all the topics discussed here—a “desert island” skill. What would it
be?

Why? Because it is one activity that must be performed—either while drawing a
UML diagram or programming—and it strongly influences the robustness,
maintainability, and reusability of software components.

Of course, there are other necessary skills in OOA/D, but responsibility assign-
ment is emphasized in this introduction because it tends to be a challenging
skill to master, and yet vitally important. On a real project, a developer might
not have the opportunity to perform any other analysis or design activities—the
“rush to code” development process. Yet even in this situation, assigning respon-
sibilities is inevitable.

Consequently, the design steps in this book emphasize principles of responsibil-
ity assignment.

1.3 What Is Analysis and Design?

Analysis emphasizes an investigation of the problem and requirements, rather
than a solution. For example, if a new computerized library information system
is desired, how will it be used?

“Analysis” is a broad term, best qualified, as in requirements analysis (an inves-
tigation of the requirements) or object analysis (an investigation of the domain
objects).

Design emphasizes a conceptual solution that fulfills the requirements, rather
than its implementation. For example, a description of a database schema and
software objects. Ultimately, designs can be implemented.

A critical, fundamental ability in OOA/D is to skillfully assign responsibilities
to software components.

Nine fundamental principles in object design and responsibility assignment
are presented and applied. They are organized in a learning aid called the
GRASP patterns.

UML and Patterns.book Page 6 Sunday, August 19, 2001 2:50 PM

7

WHAT IS OBJECT-ORIENTED ANALYSIS AND DESIGN?

As with analysis, the term is best qualified, as in object design or database
design.

Analysis and design have been summarized in the phase do the right thing
(analysis), and do the thing right (design).

1.4 What Is Object-Oriented Analysis and Design?

During object-oriented analysis, there is an emphasis on finding and describ-
ing the objects—or concepts—in the problem domain. For example, in the case of
the library information system, some of the concepts include Book, Library, and
Patron.

During object-oriented design, there is an emphasis on defining software
objects and how they collaborate to fulfill the requirements. For example, in the
library system, a Book software object may have a title attribute and a getChap-
ter method (see Figure 1.2).

Finally, during implementation or object-oriented programming, design objects
are implemented, such as a Book class in Java.

Figure 1.2 Object-orientation emphasizes representation of objects.

1.5 An Example

Before diving into the details of requirements analysis and
OOA/D, this section presents a birds-eye view of a few key
steps and diagrams, using a simple example—a “dice game”
in which a player rolls two die. If the total is seven, they win;
otherwise, they lose.

Book

title

public class Book
{
private String title;

public Chapter getChapter(int) {...}
}

domain concept visualization of
domain concept

representation in an
object-oriented
programming language

UML and Patterns.book Page 7 Sunday, August 19, 2001 2:50 PM

1 – OBJECT-ORIENTED ANALYSIS AND DESIGN

8

Define Use Cases

Requirements analysis may include a description of related domain processes;
these can be written as use cases.

Use cases are not an object-oriented artifact—they are simply written stories.
However, they are a popular tool in requirements analysis and are an important
part of the Unified Process. For example, here is a brief version of the Play a
Dice Game use case:

Play a Dice Game: A player picks up and rolls the dice. If the
dice face value total seven, they win; otherwise, they lose.

Define a Domain Model

Object-oriented analysis is concerned with creating a description of the domain
from the perspective of classification by objects. A decomposition of the domain
involves an identification of the concepts, attributes, and associations that are
considered noteworthy. The result can be expressed in a domain model, which
is illustrated in a set of diagrams that show domain concepts or objects.

For example, a partial domain model is shown in Figure 1.3.

Figure 1.3 Partial domain model of the dice game.

Define domain
model

Define interaction
diagrams

Define design
class diagrams

Define use cases

Define domain
model

Define interaction
diagrams

Define design
class diagrams

Define use cases

Player

name

DiceGame

Die

faceValue

Rolls

Plays

Includes

2

2

1

1

1

1

UML and Patterns.book Page 8 Sunday, August 19, 2001 2:50 PM

9

AN EXAMPLE

This model illustrates the noteworthy concepts Player, Die, and DiceGame, with
their associations and attributes.

Note that a domain model is not a description of software objects; it is a visual-
ization of concepts in the real-world domain.

Define Interaction Diagrams

Object-oriented design is concerned with defining software objects and their col-
laborations. A common notation to illustrate these collaborations is the interac-
tion diagram. It shows the flow of messages between software objects, and
thus the invocation of methods.

For example, assume that a software implementation of the dice game is
desired. The interaction diagram in Figure 1.4 illustrates the essential step of
playing, by sending messages to instances of the DiceGame and Die classes.

Figure 1.4 Interaction diagram illustrating messages between software objects.

Notice that although in the real world a player rolls the dice, in the software
design the DiceGame object “rolls” the dice (that is, sends messages to Die
objects). Software object designs and programs do take some inspiration from
real-world domains, but they are not direct models or simulations of the real
world.

Define domain
model

Define interaction
diagrams

Define design
class diagrams

Define use cases

:DiceGame

play()

die1 : Die

fv1 := getFaceValue()

die2 : Die

roll()

roll()

fv2 := getFaceValue()

UML and Patterns.book Page 9 Sunday, August 19, 2001 2:50 PM

1 – OBJECT-ORIENTED ANALYSIS AND DESIGN

10

Define Design Class Diagrams

In addition to a dynamic view of collaborating objects shown in interaction dia-
grams, it is useful to create a static view of the class definitions with a design
class diagram. This illustrates the attributes and methods of the classes.

For example, in the dice game, an inspection of the interaction diagram leads to
the partial design class diagram shown in Figure 1.5. Since a play message is
sent to a DiceGame object, the DiceGame class requires a play method, while
class Die requires a roll and getFaceValue method.

In contrast to the domain model, this diagram does not illustrate real-world con-
cepts; rather, it shows software classes.

Figure 1.5 Partial design class diagram.

Summary

The dice game is a simple problem, presented to focus on a few steps and arti-
facts in analysis and design. To keep the introduction simple, not all the illus-
trated UML notation was explained. Future chapters explore analysis and
design and these artifacts in closer detail.

1.6 The UML

To quote:

The Unified Modeling Language (UML) is a language for speci-
fying, visualizing, constructing, and documenting the artifacts of
software systems, as well as for business modeling and other
non-software systems [OMG01].

The UML has emerged as the de facto and de jure standard diagramming nota-
tion for object-oriented modeling. It started as an effort by Grady Booch and Jim
Rumbaugh in 1994 to combine the diagramming notations from their two popu-

Define domain
model

Define interaction
diagrams

Define design
class diagrams

Define use cases

2

Die

faceValue : int

getFaceValue() : int
roll()

DiceGame

die1 : Die
die2 : Die

play()

1

UML and Patterns.book Page 10 Sunday, August 19, 2001 2:50 PM

11

FURTHER READINGS

lar methods—the Booch and OMT (Object Modeling Technique) methods. They
were later joined by Ivar Jacobson, the creator of the Objectory method, and as a
group came to be known as the three amigos. Many others contributed to the
UML, perhaps most notably Cris Kobryn, a leader in its ongoing refinement.

The UML was adopted in 1997 as a standard by the OMG (Object Management
Group, an industry standards body), and has continued to be refined in new
OMG UML versions.

This book does not cover every minute aspect of the UML, which is a large body
of notation (some say, too large1). It focuses on diagrams which are frequently
used, the most commonly used features within those diagrams, and core nota-
tion that is unlikely to change in future versions of the UML.

Why Won’t We See Much UML for a Few Chapters?

This is not just a UML notation book, but one that explores the larger picture of
applying the UML, patterns, and an iterative process in the context of software
development. The UML is primarily applied during OOA/D, which is normally
preceded by requirements analysis. Therefore, the initial chapters present an
introduction to the important topics of use cases and requirements analysis,
which are then followed by chapters on OOA/D and more UML details.

1.7 Further Readings

A very readable and popular summary of essential UML notation is UML Dis-
tilled, by Martin Fowler.

A succinct and popular introduction to the Unified Process (and its refinement
in the Rational Unified Process) is The Rational Unified Process—An Introduc-
tion by Philippe Kruchten.

For a detailed discussion of UML (version 1.3) notation, The Unified Modeling
Language Reference Manual and The Unified Modeling Language User Guide,
by Booch, Jacobson, and Rumbaugh are worthwhile. Note that these texts were
not meant for learning how to do object modeling or OOA/D—they are UML dia-
gram notation references.

For a description of the current version of the UML, the on-line OMG Unified
Modeling Language Specification at www.omg.org is necessary. UML revision
work and soon-to-be released versions can be found at www.celigent.com/uml.

There are many books on software patterns, but the seminal classic is Design
Patterns, by Gamma, Helm, Johnson, and Vlissides. It is truly required reading

1. The UML 2.0 effort includes exploration of the goal of simplifying and reducing the
notation. This book presents high-use UML likely to survive future simplification.

UML and Patterns.book Page 11 Sunday, August 19, 2001 2:50 PM

1 – OBJECT-ORIENTED ANALYSIS AND DESIGN

12

for those studying object design. However, it is not an introductory text and is
best read after developing comfort with the fundamentals of object design and
programming.

UML and Patterns.book Page 12 Sunday, August 19, 2001 2:50 PM

