
127

Chapter

10
 10 DOMAIN MODEL:

VISUALIZING CONCEPTS

It’s all very well in practice, but it will never work in theory.

—anonymous management maxim

Introduction

A domain model is widely used as a source of inspiration for designing software
objects, and will be a required input to several subsequent artifacts discussed in
this book. Therefore, it is important to read this chapter if the subject of domain
modeling is unfamiliar.

A domain model illustrates meaningful (to the modelers) conceptual classes in a
problem domain; it is the most important artifact to create during object-ori-
ented analysis.1 This chapter explores introductory skills in creating domain

Objectives
� Identify conceptual classes related to the current iteration

requirements.

� Create an initial domain model.

� Distinguish between correct and incorrect attributes.

� Add specification conceptual classes, when appropriate.

� Compare and contrast conceptual and implementation views.

1. Use cases are an important requirements analysis artifact, but are not object-oriented.
They emphasize a process view of the domain.

Domain Model-Intro.fm Page 127 Thursday, August 16, 2001 10:40 PM

10 – DOMAIN MODEL: VISUALIZING CONCEPTS

128

models. The following two chapters expand on domain modeling skills—adding
attributes and associations.

Identifying a rich set of objects or conceptual classes is at the heart of object-ori-
ented analysis, and well worth the effort in terms of payoff during the design
and implementation work.

The identification of conceptual classes is part of an investigation of the problem
domain. The UML contains notation in the form of class diagrams to illustrate
domain models.

10.1 Domain Models

The quintessential object-oriented step in analysis or investigation is the decom-
position of a domain of interest into individual conceptual classes or objects—
the things we are aware of. A domain model is a visual representation of con-
ceptual classes or real-world objects in a domain of interest [MO95, Fowler96].
They have also been called conceptual models (the term used in the first edi-
tion of this book), domain object models, and analysis object models.2

The UP defines a Domain Model3 as one of the artifacts that may be created in
the Business Modeling discipline.

Using UML notation, a domain model is illustrated with a set of class dia-
grams in which no operations are defined. It may show:

� domain objects or conceptual classes

� associations between conceptual classes

� attributes of conceptual classes

For example, Figure 10.1 shows a partial domain model. It illustrates that the
conceptual class of Payment and Sale are significant in this domain, that a Pay-

Key Idea

A domain model is a representation of real-world conceptual classes, not of
software components. It is not a set of diagrams describing software classes,
or software objects with responsibilities.

2. They are also related to conceptual entity relationship models, which are capable of
showing purely conceptual views of domains, but that have been widely re-interpreted
as data models for database design. Domain models are not data models.

3. Capitalization of Domain Model is used when I wish to emphasize it as an official
model defined in the UP, vs. the general well-known concept of “domain models.”

Domain Model-Intro.fm Page 128 Thursday, August 16, 2001 10:40 PM

129

DOMAIN MODELS

ment is related to a Sale in a way that is meaningful to note, and that a Sale has
a date and time. The details of the notation are not important at this time.

Figure 10.1 Partial domain model—a visual dictionary. The numbers at each
end of the line indicate multiplicity, which is described in a subsequent chapter.

Key Idea: Domain Model—A Visual Dictionary of Abstractions

Please reflect on Figure 10.1 for a moment. It visualizes and relates some words
or conceptual classes in the domain. It also depicts an abstraction of the concep-
tual classes, because there are many things one could communicate about regis-
ters, sales, and so forth. The model displays a partial view, or abstraction, and
ignores uninteresting (to the modelers) details.

The information it illustrates (using UML notation) could alternatively have
been conveyed in prose, in statements in the Glossary or elsewhere. But it is
easy to comprehend the discrete elements and their relationships in this visual
language, since a significant percentage of the brain participates in visual pro-
cessing—it is a human strength.

Thus, the domain model may be considered a visual dictionary of the notewor-
thy abstractions, domain vocabulary, and information content of the domain.

Register

Item

Store

address
name

Sale

date
time

Payment

amount

Sales
LineItem

quantity

Stocked-in

*

Houses

1..*

Contained-in

1..*

Records-sale-of

0..1

Paid-by

1

1

1

1

1

1

1

1

Captured-on 4

concept
or domain
object

association

attributes

Domain Model-Intro.fm Page 129 Thursday, August 16, 2001 10:40 PM

10 – DOMAIN MODEL: VISUALIZING CONCEPTS

130

Domain Models Are not Models of Software Components

A domain model, as shown in Figure 10.2, is a visualization of things in the real-
world domain of interest, not of software components such as a Java or C++
class (see Figure 10.3), or software objects with responsibilities. Therefore, the
following elements are not suitable in a domain model:

� Software artifacts, such as a window or a database, unless the domain being
modeled is of software concepts, such as a model of graphical user interfaces.

� Responsibilities or methods.4

Figure 10.2 A domain model shows real-world conceptual classes, not software
classes.

Figure 10.3 A domain model does not show software artifacts or classes.

4. In object modeling, we usually speak of responsibilities related to software compo-
nents. And methods are purely a software concept. But, the domain model describes
real-world concepts, not software components. Considering object responsibilities dur-
ing design work is very important; it is just not part of this model. One valid case in
which responsibilities may be shown in a domain model is if it includes human worker
roles (such as Cashier), and the modeler wishes to record the responsibilities of these
human workers.

Sale

date
time

visualization of a real-
world concept in the
domain of interest

it is a not a picture of a
software class

SalesDatabase software artifact; not part
of domain modelavo

id

software class; not part
of domain model

Sale

date
time

print()

avo
id

Domain Model-Intro.fm Page 130 Thursday, August 16, 2001 10:40 PM

131

DOMAIN MODELS

Conceptual Classes

The domain model illustrates conceptual classes or vocabulary in the domain.
Informally, a conceptual class is an idea, thing, or object. More formally, a con-
ceptual class may be considered in terms of its symbol, intension, and extension
[MO95] (see Figure 10.4).

� Symbol—words or images representing a conceptual class.

� Intension—the definition of a conceptual class.

� Extension—the set of examples to which the conceptual class applies.

For example, consider the conceptual class for the event of a purchase transac-
tion. I may choose to name it by the symbol Sale. The intension of a Sale may
state that it “represents the event of a purchase transaction, and has a date and
time.” The extension of Sale is all the examples of sales; in other words, the set
of all sales.

Figure 10.4 A conceptual class has a symbol, intension, and extension.

When creating a domain model, it is usually the symbol and intensional view of
a conceptual class that are of most practical interest.

Sale

date
time

concept's symbol

"A sale represents the event
of a purchase transaction. It
has a date and time."

concept's intension

sale-1

sale-3
sale-2

sale-4

concept's extension

Domain Model-Intro.fm Page 131 Thursday, August 16, 2001 10:40 PM

10 – DOMAIN MODEL: VISUALIZING CONCEPTS

132

Domain Models and Decomposition

Software problems can be complex; decomposition—divide-and-conquer—is a
common strategy to deal with this complexity by division of the problem space
into comprehensible units. In structured analysis, the dimension of decompo-
sition is by processes or functions. However, in object-oriented analysis, the
dimension of decomposition is fundamentally by things or entities in the
domain.

Therefore, a primary analysis task is to identify different concepts in the prob-
lem domain and document the results in a domain model.

Conceptual Classes in the Sale Domain

For example, in the real-world domain of sales in a store, there are the concep-
tual classes of Store, Register, and Sale. Therefore, our domain model, shown in
Figure 10.5, may include Store, Register, and Sale.

Figure 10.5 Partial domain model in the domain of the store.

10.2 Conceptual Class Identification

Our goal is to create a domain model of interesting or meaningful conceptual
classes in the domain of interest (sales). In this case, that means concepts
related to the use case Process Sale.

In iterative development, one incrementally builds a domain model over several
iterations in the elaboration phase. In each, the domain model is limited to the
prior and current scenarios under consideration, rather than a “big bang” model
which early on attempts to capture all possible conceptual classes and relation-
ships. For example, this iteration is limited to a simplified cash-only Process
Sale scenario; therefore, a partial domain model will be created to reflect just
that—not more.

The central task is therefore to identify conceptual classes related to the scenar-
ios under design.

A central distinction between object-oriented and structured analysis is: divi-
sion by conceptual classes (objects) rather than division by functions.

Store Register Sale

Domain Model-Intro.fm Page 132 Thursday, August 16, 2001 10:40 PM

133

CONCEPTUAL CLASS IDENTIFICATION

The following is a useful guideline in identifying conceptual classes:

Do not think that a domain model is better if it has fewer conceptual classes;
quite the opposite tends to be true.

It is common to miss conceptual classes during the initial identification step,
and to discover them later during the consideration of attributes or associations,
or during design work. When found, they may be added to the domain model.

Do not exclude a conceptual class simply because the requirements do not indi-
cate any obvious need to remember information about it (a criterion common in
data modeling for relational database design, but not relevant to domain model-
ing), or because the conceptual class has no attributes.

It is valid to have attributeless conceptual classes, or conceptual classes which
have a purely behavioral role in the domain instead of an information role.

Strategies to Identify Conceptual Classes

Two techniques are presented in the following sections:

1. Use a conceptual class category list.

2. Identify noun phrases.

Another excellent technique for domain modeling is the use of analysis pat-
terns, which are existing partial domain models created by experts, using pub-
lished resources such as Analysis Patterns [Fowler96] and Data Model Patterns
[Hay96].

Use a Conceptual Class Category List

Start the creation of a domain model by making a list of candidate conceptual
classes. Table 10.1 contains many common categories that are usually worth
considering, though not in any particular order of importance. Examples are
drawn from the store and airline reservation domains.

It is better to overspecify a domain model with lots of fine-grained conceptual
classes than to underspecify it.

Domain Model-Intro.fm Page 133 Thursday, August 16, 2001 10:40 PM

10 – DOMAIN MODEL: VISUALIZING CONCEPTS

134

Conceptual Class Category Examples

physical or tangible objects Register
Airplane

specifications, designs, or descriptions
of things

ProductSpecification
FlightDescription

places Store
Airport

transactions Sale, Payment
Reservation

transaction line items SalesLineItem

roles of people Cashier
Pilot

containers of other things Store, Bin
Airplane

things in a container Item
Passenger

other computer or electro-mechanical
systems external to the system

CreditPaymentAuthorizationSystem
AirTrafficControl

abstract noun concepts Hunger
Acrophobia

organizations SalesDepartment
ObjectAirline

events Sale, Payment, Meeting
Flight, Crash, Landing

processes
(often not represented as a concept,
but may be)

SellingAProduct
BookingASeat

rules and policies RefundPolicy
CancellationPolicy

catalogs ProductCatalog
PartsCatalog

Domain Model-Intro.fm Page 134 Thursday, August 16, 2001 10:40 PM

135

CONCEPTUAL CLASS IDENTIFICATION

Table 10.1 Conceptual Class Category List.

Finding Conceptual Classes with Noun Phrase Identification

Another useful technique (because of its simplicity) suggested in [Abbot83] is
linguistic analysis: identify the nouns and noun phrases in textual descriptions
of a domain, and consider them as candidate conceptual classes or attributes.

Nevertheless, it is another source of inspiration. The fully dressed use cases are
an excellent description to draw from for this analysis. For example, the current
scenario of the Process Sale use case can be used.

records of finance, work, contracts,
legal matters

Receipt, Ledger, EmploymentContract
MaintenanceLog

financial instruments and services LineOfCredit
Stock

manuals, documents, reference
papers, books

DailyPriceChangeList
RepairManual

Conceptual Class Category Examples

Care must be applied with this method; a mechanical noun-to-class mapping
isn’t possible, and words in natural languages are ambiguous.

Main Success Scenario (or Basic Flow):
1. Customer arrives at a POS checkout with goods and/or services to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. System records sale line item and presents item description, price, and running

total. Price calculated from a set of price rules.
Cashier repeats steps 2-3 until indicates done.
5. System presents total with taxes calculated.
6. Cashier tells Customer the total, and asks for payment.
7. Customer pays and System handles payment.
8. System logs the completed sale and sends sale and payment information to the

external Accounting (for accounting and commissions) and Inventory systems (to
update inventory).

9. System presents receipt.
10.Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):
. . .
7a. Paying by cash:

1. Cashier enters the cash amount tendered.

Domain Model-Intro.fm Page 135 Thursday, August 16, 2001 10:40 PM

10 – DOMAIN MODEL: VISUALIZING CONCEPTS

136

The domain model is a visualization of noteworthy domain concepts and vocabu-
lary. Where are those terms found? In the use cases. Thus, they are a rich source
to mine via noun phrase identification.

Some of these noun phrases are candidate conceptual classes, some may refer to
conceptual classes that are ignored in this iteration (for example, “Accounting”
and “commissions”), and some may be attributes of conceptual classes. Please
see the subsequent section and chapter on attributes for advice on distinguish-
ing between the two.

A weakness of this approach is the imprecision of natural language; different
noun phrases may represent the same conceptual class or attribute, among
other ambiguities. Nevertheless, it is recommended in combination with the
Conceptual Class Category List technique.

10.3 Candidate Conceptual Classes for the Sales Domain

From the Conceptual Class Category List and noun phrase analysis, a list is
generated of candidate conceptual classes for the domain. The list is constrained
to the requirements and simplifications currently under consideration—the sim-
plified scenario of Process Sale.

There is no such thing as a “correct” list. It is a somewhat arbitrary collection of
abstractions and domain vocabulary that the modelers consider noteworthy.
Nevertheless, by following the identification strategies, similar lists will be pro-
duced by different modelers.

2. System presents the balance due, and releases the cash drawer.
3. Cashier deposits cash tendered and returns balance in cash to Customer.
4. System records the cash payment.

Register

Item

Store

Sale

Payment

ProductCatalog

ProductSpecification

SalesLineItem

Cashier

Customer

Manager

Domain Model-Intro.fm Page 136 Thursday, August 16, 2001 10:40 PM

137

DOMAIN MODELING GUIDELINES

Report Objects—Include Receipt in the Model?

A receipt is a record of a sale and payment and a relatively prominent concep-
tual class in the domain, so should it be shown in the model?

Here are some factors to consider:

� A receipt is a report of a sale. In general, showing a report of other informa-
tion in a domain model is not useful since all its information is derived from
other sources; it duplicates information found elsewhere. This is one reason
to exclude it.

� A receipt has a special role in terms of the business rules: it usually confers
the right to the bearer of the receipt to return bought items. This is a reason
to show it in the model.

Since item returns are not being considered in this iteration, Receipt will be
excluded. During the iteration that tackles the Handle Returns use case, it
would be justified to include it.

10.4 Domain Modeling Guidelines

How to Make a Domain Model

Apply the following steps to create a domain model:

An adjunct useful method is to learn and copy analysis patterns, which are dis-
cussed in a later chapter.

1. List the candidate conceptual classes using the Conceptual Class Cate-
gory List and noun phrase identification techniques related to the current
requirements under consideration.

2. Draw them in a domain model.

3. Add the associations necessary to record relationships for which there is a
need to preserve some memory (discussed in a subsequent chapter).

4. Add the attributes necessary to fulfill the information requirements (dis-
cussed in a subsequent chapter).

Domain Model-Intro.fm Page 137 Thursday, August 16, 2001 10:40 PM

10 – DOMAIN MODEL: VISUALIZING CONCEPTS

138

On Naming and Modeling Things: The Mapmaker

The mapmaker strategy applies to both maps and domain models.

A domain model is a kind of map of concepts or things in a domain. This spirit
emphasizes the analytical role of a domain model, and suggests the following:

� A mapmaker uses the names of the territory—they do not change the names
of cities on a map. For a domain model, this means use the vocabulary of the
domain when naming conceptual classes and attributes. For example, if
developing a model for a library, name the customer a “Borrower” or
“Patron”—the terms used by the library staff.

� A mapmaker deletes things from a map if they are not considered relevant
to the purpose of the map; for example, topography or populations need not
be shown. Similarly, a domain model may exclude conceptual classes in the
problem domain not pertinent to the requirements. For example, we may
exclude Pen and PaperBag from our domain model (for the current set of
requirements) since they do not have any obvious noteworthy role.

� A mapmaker does not show things that are not there, such as a mountain
that does not exist. Similarly, the domain model should exclude things not in
the problem domain under consideration.

The principle is also named the Use the Domain Vocabulary strategy [Coad95].

A Common Mistake in Identifying Conceptual Classes

Perhaps the most common mistake when creating a domain model is to repre-
sent something as an attribute when it should have been a concept. A rule of
thumb to help prevent this mistake is:

Make a domain model in the spirit of how a cartographer or mapmaker
works:

� Use the existing names in the territory.

� Exclude irrelevant features.

� Do not add things that are not there.

If we do not think of some conceptual class X as a number or text in the real
world, X is probably a conceptual class, not an attribute.

Domain Model-Intro.fm Page 138 Thursday, August 16, 2001 10:40 PM

139

RESOLVING SIMILAR CONCEPTUAL CLASSES—REGISTER VS. “POST”

As an example, should store be an attribute of Sale, or a separate conceptual
class Store?

In the real world, a store is not considered a number or text—the term suggests
a legal entity, an organization, and something occupies space. Therefore, Store
should be a concept.

As another example, consider the domain of airline reservations. Should desti-
nation be an attribute of Flight, or a separate conceptual class Airport?

In the real world, a destination airport is not considered a number or text—it is
a massive thing that occupies space. Therefore, Airport should be a concept.

10.5 Resolving Similar Conceptual Classes—Register vs.
“POST”

POST stands for point-of-sale terminal. In computerese, a terminal is any end-
point device in a system, such as a client PC, a wireless networked PDA, and so
forth. In earlier times, long before POSTs, a store maintained a register—a book
that logged sales and payments. Eventually, this was automated in a mechani-
cal “cash register.” Today, a POST fulfills the role of the register (see Figure
10.6).

A register is a thing that records sales and payments, but so is a POST. How-
ever, the term register seems somewhat more abstract and less implementation
oriented than POST. So, in the domain model, should the symbol Register be
used instead of POST?

If in doubt, make it a separate concept. Attributes should be fairly rare in a
domain model.

Sale Store

phoneNumber

Sale

store
or... ?

Flight Airport

name

Flight

destination
or... ?

First, as a rule of thumb, a domain model is not absolutely correct or wrong,
but more or less useful; it is a tool of communication.

Domain Model-Intro.fm Page 139 Thursday, August 16, 2001 10:40 PM

10 – DOMAIN MODEL: VISUALIZING CONCEPTS

140

By the mapmaker principle, “POST” is a term familiar in the territory, so it is a
useful symbol from the point of view of familiarity and communication. By the
goal of creating models that represent abstractions and are implementation
independent, Register is appealing and useful.5 Register may be fairly consid-
ered to represent both the conceptual class of a place to register sales, and/or an
abstraction of various kinds of terminals, such as a POST.

Both choices have merit; Register has been chosen in this case study somewhat
arbitrarily, but POST would also have been understandable to the stakeholders.

Figure 10.6 POST and register are similar conceptual classes.

10.6 Modeling the Unreal World

Some software systems are for domains that find very little analogy in natural
or business domains; software for telecommunications is an example. It is still
possible to create a domain model in these domains, but it requires a high
degree of abstraction and stepping back from familiar designs.

For example, here are some candidate conceptual classes related to a telecom-
munication switch: Message, Connection, Port, Dialog, Route, Protocol.

10.7 Specification or Description Conceptual Classes

The following discussion may at first seem related to a rare, highly specialized
issue. However, it turns out that the need for specification conceptual classes (as
will be defined) is common in many domain models. Thus, it is emphasized.

5. Note that in earlier times a register was just one possible implementation of how to
record sales. The term has acquired a generalized meaning over time.

POST Registeror?

similar concepts with
different names

Sale

Records 6

1

*
Sale

Records 6

1

*

Domain Model-Intro.fm Page 140 Thursday, August 16, 2001 10:40 PM

141

SPECIFICATION OR DESCRIPTION CONCEPTUAL CLASSES

Assume the following:

� An Item instance represents a physical item in a store; as such, it may even
have a serial number.

� An Item has a description, price, and itemID, which are not recorded any-
where else.

� Everyone working in the store has amnesia.

� Every time a real physical item is sold, a corresponding software instance of
Item is deleted from “software land.”

With these assumptions, what happens in the following scenario?

There is strong demand for the popular new vegetarian burger—ObjectBurger.
The store sells out, implying that all Item instances of ObjectBurgers are
deleted from computer memory.

Now, here is the heart of the problem: If someone asks, “How much do Object-
Burgers cost?”, no one can answer, because the memory of their price was
attached to inventoried instances, which were deleted as they were sold.

Notice also that the current model, if implemented in software as described, has
duplicate data and is space-inefficient because the description, price, and
itemID are duplicated for every Item instance of the same product.

The Need for Specification or Description Conceptual Classes

The preceding problem illustrates the need for a concept of objects that are spec-
ifications or descriptions of other things. To solve the Item problem, what is
needed is a ProductSpecification (or ItemSpecification, ProductDescription, ...)
conceptual class that records information about items. A ProductSpecification
does not represent an Item, it represents a description of information about
items. Note that even if all inventoried items are sold and their corresponding
Item software instances are deleted, the ProductSpecifications still remain.

Description or specification objects are strongly related to the things they
describe. In a domain model, it is common to state that an XSpecification
Describes an X (see Figure 10.7).

The need for specification conceptual classes is common in sales and product
domains. It is also common in manufacturing, where a description of a manufac-
tured thing is required that is distinct from the thing itself. Time and space
have been taken in motivating specification conceptual classes because they are
very common; it is not a rare modeling concept.

Domain Model-Intro.fm Page 141 Thursday, August 16, 2001 10:40 PM

10 – DOMAIN MODEL: VISUALIZING CONCEPTS

142

Figure 10.7 Specifications or descriptions about other things. The “*” means a
multiplicity of “many.” It indicates that one ProductSpecification may describe
many (*) Items.

When Are Specification Conceptual Classes Required?

The following guideline suggests when to use specifications:

Another Specification Example

As another example, consider an airline company that suffers a fatal crash of
one of its planes. Assume that all the flights are cancelled for six months pend-
ing completion of an investigation. Also assume that when flights are cancelled,
their corresponding Flight software objects are deleted from computer memory.
Therefore, after the crash, all Flight software objects are deleted.

If the only record of what airport a flight goes to is in the Flight software
instances, which represent specific flights for a particular date and time, then
there is no longer a record of what flight routes the airline has.

Item

description
price
serial number
itemID

ProductSpecification

description
price
itemID

Item

serial number

Describes Better

Worse

1 *

Add a specification or description conceptual class (for example, Prod-
uctSpecification) when:

� There needs to be a description about an item or service, independent of
the current existence of any examples of those items or services.

� Deleting instances of things they describe (for example, Item) results in a
loss of information that needs to be maintained, due to the incorrect asso-
ciation of information with the deleted thing.

� It reduces redundant or duplicated information.

Domain Model-Intro.fm Page 142 Thursday, August 16, 2001 10:40 PM

143

SPECIFICATION OR DESCRIPTION CONCEPTUAL CLASSES

To solve this problem, a FlightDescription (or FlightSpecification) is required
that describes a flight and its route, even when a particular flight is not sched-
uled (see Figure 10.8).

Figure 10.8 Specifications about other things.

Descriptions of Services

Note that the prior example is about a service (a flight) rather than a good (such
as a veggieburger). Descriptions of services or service plans are commonly
needed.

As another example, a mobile phone company sells packages such as “bronze,”
“gold,” and so forth. It is necessary to have the concept of a description of the
package (a kind of service plan describing rates per minute, wireless Internet
content, the cost, and so forth) separate from the concept of an actual sold pack-
age (such as “gold package sold to Craig Larman on Jan 1, 2002 at $55 per
month”). Marketing needs to define and record this service plan or MobileCom-
municationsPackageDescription before any are sold.

Worse

Flight

date
time

FlightDescription

number

Airport

name

Describes-flights-to

Described-by

Flight

date
number
time

Airport

name

Flies-to

Better

1*

1*

1

*

Domain Model-Intro.fm Page 143 Thursday, August 16, 2001 10:40 PM

10 – DOMAIN MODEL: VISUALIZING CONCEPTS

144

10.8 UML Notation, Models, and Methods: Multiple
Perspectives

The UP defines something called a Domain Model, which is illustrated with
UML notation. However, there is no term “Domain Model” to be found in the
official UML documentation. This points to an important insight:

For example, raw UML class diagramming notation can be used to create pic-
tures of domain conceptual classes (a domain model), software classes, rela-
tional database tables, and so forth.

Thus, do not confuse the basic UML diagram notation with its application to
visualizing various kinds of models defined by methodologists (see Figure 10.9).
This point applies not only to UML class diagrams, but to most UML notation.

As another example of raw diagrams being interpreted differently in different
models, UML sequence diagrams can be used to illustrate messaging between
software objects (as in the UP Design Model), or interaction between people and
parties in the real world (as in the UP Business Object Model).

This insight was emphasized in the Syntropy object-oriented method [CD94],
and reiterated by Martin Fowler in UML Distilled [FS00]. That is, the same dia-
gramming notation may be used for three perspectives and types of models:

1. Essential or conceptual perspective—the diagrams are interpreted as
describing things in the real world or domain of interest.

2. Specification perspective—the diagrams (using the same notation as for
essential models) are interpreted as describing software abstractions or
components with specifications and interfaces, but no commitment to a par-
ticular implementation (for example, not specifically a class in C# or Java).

3. Implementation perspective—the diagrams (using the same notation as
for essential models) are interpreted as describing software implementa-
tions in a particular technology and language (such as Java).

The UML simply describes raw diagram types, such as class diagrams and
sequence diagrams. It does not superimpose a method or modeling perspec-
tive on these. Rather, a process (such as the UP) applies raw UML in the con-
text of methodologist-defined models.

Domain Model-Intro.fm Page 144 Thursday, August 16, 2001 10:40 PM

145

UML NOTATION, MODELS, AND METHODS: MULTIPLE PERSPECTIVES

Figure 10.9 Raw UML notation is applied in different perspectives and models
defined by a process or method.

Superimposing Terminology: UML vs. Methods

In the raw UML, the rectangular boxes shown in Figure 10.9 are called classes,
but note that in the UML, this term encompasses a variety of phenomenon—
physical things, software things, events, and so forth.6 A process or method will
superimpose alternative terminology on top of the UML. For example, in the UP,
when the UML boxes are drawn in the Domain Model, they may be called
domain concepts or conceptual classes; the Domain Model offers a concep-
tual perspective. In the UP, when UML boxes are drawn in the Design Model,
they are officially called design classes; the Design Model offers a specification
or implementation perspective, as desired by the modeler.

Regardless of the definition, the bottom line is that it is useful to distinguish
between the perspective of an analyst looking at real-world concepts such as a
sale (a conceptual perspective), and software designers specifying software com-
ponents such as a Sale software class (a specification or implementation per-
spective).

The UML can be used to illustrate both perspectives with very similar notation
and terminology, so it is important to bear in mind which perspective is being
taken.

Payment

amount

Sale

date
time

Pays-for

Payment

amount: Money

getBalance(): Money
. . .

Sale

date: Date
startTime: Time

getTotal(): Money
. . .

Pays-for

UP Domain Model

Raw UML class diagram
notation used in an
essential model
visualizing real-world
concepts.

UP Design Model

Raw UML class diagram
notation used in a
specification model
visualizing software
components.

1 1

1 1

6. A UML class is a special case of the very general UML model element classifier—
something with structural features and/or behavior, including classes, actors, inter-
faces, and use cases.

Domain Model-Intro.fm Page 145 Thursday, August 16, 2001 10:40 PM

10 – DOMAIN MODEL: VISUALIZING CONCEPTS

146

10.9 Lowering the Representational Gap

Please consider Figure 10.10. Why do books and educators discussing object
design common only show the use of software classes whose names reflect
domain vocabulary? Why choose a software class name such as Sale, and what
does a Sale do?

Simply, choosing names that reflect the domain vocabulary (Sale) enhances
quick comprehension and provides a clue as to what to expect from the chunk of
code in a Sale software class. We have a mental or domain model of the domain
in question (for example, a store selling things). In the real world, we know that
a sale has a date. Consequently, if we create a Java class named Sale, and give it
the responsibility of knowing about a real sale and its date, then the Java class
Sale somewhat corresponds to our mental or domain model of the real domain;
that is, it appeals to our “intuitions” of the domain.

This relates to the issue of representational gap or semantic gap—the gap
between our mental model of the domain and its representation in software.

To keep things clear, this book will use class-related terms as follows, which is
consistent with the UML and the UP:

� Conceptual class—real-world concept or thing. A conceptual or essen-
tial perspective. The UP Domain Model contains conceptual classes.

� Software class—a class representing a specification or implementation
perspective of a software component, regardless of the process or method.

� Design class—a member of the UP Design Model. It is a synonym for
software class, but for some reason I wish to emphasize that it is a class
in the Design Model. The UP allows a design class to be either a specifica-
tion or implementation perspective, as desired by the modeler.

� Implementation class—a class implemented in an object-oriented lan-
guage such as Java.

� Class—as in the UML, the general term representing either a real-world
thing (a conceptual class) or software thing (a software class).

The Domain Model provides a visual dictionary of the domain vocabulary
and concepts from which to draw inspiration for the naming of some things
in the software design.

Domain Model-Intro.fm Page 146 Thursday, August 16, 2001 10:40 PM

147

LOWERING THE REPRESENTATIONAL GAP

Figure 10.10 In object design and programming it is common to create software
classes whose names and information is inspired from the real world domain.

At one extreme, we could directly program the NextGen POS application in raw
binary code to invoke the processor instruction set. We understand that the gap
in representations is huge, and there will be a real cost—albeit hard to quan-
tify—in software with such a large representational gap because it is hard to
comprehend or relate to the problem domain. Closer to the other end of the spec-
trum are object technologies that allow us to chunk code into classes whose
names reflect the kind of chunking we perceive in the domain. In the real world
we perceive a “chunk” (or event) called a sale, so in software land we have a soft-
ware class called Sale. This closer one-to-one mapping between the domain
vocabulary and our software vocabulary and its chunking reduces the represen-
tational gap. This speeds comprehension of existing code (because it works in
ways we expect, knowing the domain) and suggests “natural” ways to extend the
code in ways that similarly correspond to the domain, or appeal to our intuitions
of the domain. Put simply, the software model reminds us of the conceptual or
mental model, and works in predictable ways.

There is a practical advantage to software models that reduce the representa-
tional gap. Most software engineers know this is true, even if it is hard to quan-
tify. Indeed, a proof of this is that Java obfuscators make source code hard to
practically reverse-engineer from bytecode by changing the names of Java

Payment

amount

Sale

date
time

Pays-for

Payment

amount: Money

getBalance(): Money

Sale

date: Date
startTime: Time

getTotal(): Money
. . .

Pays-for

UP Domain Model
Stakeholder's view of the noteworthy concepts in the domain.

UP Design Model
The object-oriented developer has taken inspiration from the real world domain
in creating software classes.

Therefore, the representational gap between how stakeholders conceive the
domain, and its representation in software, has been lowered.

1 1

1 1

A Payment in the Domain Model
is a concept, but a Payment in
the Design Model is a software
class. They are not the same
thing, but the former inspired the
naming and definition of the
latter.

This reduces the representational
gap.

This is one of the big ideas in
object technology.

inspires
objects

and
names in

Domain Model-Intro.fm Page 147 Thursday, August 16, 2001 10:40 PM

10 – DOMAIN MODEL: VISUALIZING CONCEPTS

148

classes and methods so they are unintelligible, and thus no longer appeal to our
intuitions of the domain, even though the control and data structures are
unchanged.

Of course, object technology is also of value because it can support the design of
elegant, loosely coupled systems that scale and extend easily, as will be explored
in the remainder of the book. A lowered representational gap is useful, but argu-
ably secondary to the advantage of objects to support ease of change and exten-
sion, and their support to manage and hide complexity.

10.10 Example: The NextGen POS Domain Model

The list of conceptual classes generated for the NextGen POS domain may be
represented graphically (see Figure 10.11) to show the start of the Domain
Model.

Figure 10.11 Initial Domain Model.

Consideration of attributes and associations for the Domain Model will be
deferred to subsequent chapters.

10.11 Domain Models Within the UP

As suggested in the example of Table 10.2, a Domain Model is usually both
started and completed in elaboration.

Inception

Domain models are not strongly motivated in inception, since inception’s pur-
pose is not to do a serious investigation, but rather to decide if the project is
worth deeper investigation in an elaboration phase.

StoreRegister SaleItem

Payment

Sales
LineItem

Cashier Customer Manager

Product
Catalog

Product
Specification

Domain Model-Intro.fm Page 148 Thursday, August 16, 2001 10:40 PM

149

DOMAIN MODELS WITHIN THE UP

Table 10.2 Sample UP artifacts and timing. s - start; r - refine

Elaboration

The Domain Model is primarily created during elaboration iterations, when the
need is highest to understand the noteworthy concepts and map some to soft-
ware classes during design work.

Although ironically a significant number of pages will be devoted to explaining
domain object modeling, in experienced hands the development of a (partial,
incrementally growing) domain model in each iteration should only take a few
hours. This is further shortened by the use of predefined analysis patterns.

The UP Business Object Model vs. Domain Model

The UP Domain Model is an official variation of the less common UP Business
Object Model (BOM). The UP BOM—not to be confused with how other people
or methods may define a BOM, which is a widely used term with different mean-
ings—is a kind of enterprise model used to describe the entire business. It may
be used when doing business process engineering or reengineering, independent
of any one software application (such as the NextGen POS). To quote:

[The UP BOM] serves as an abstraction of how business workers
and business entities need to be related and how they need to
collaborate in order to perform the business. [RUP]

The BOM is represented with several different diagrams (class, activity, and
sequence) that illustrate how the entire enterprise runs (or should run). It is
most useful if doing enterprise-wide business process engineering, but that is a
less common activity than creating a single software application.

Discipline Artifact Incep. Elab. Const. Trans.
Iteration➜ I1 E1..En C1..Cn T1..T2

Business Modeling Domain Model s
Requirements Use-Case Model (SSDs) s r

Vision s r
Supplementary Specification s r
Glossary s r

Design Design Model s r
SW Architecture Document s
Data Model s r

Implementation Implementation Model s r r
Project Management SW Development Plan s r r r
Testing Test Model s r
Environment Development Case s r

Domain Model-Intro.fm Page 149 Thursday, August 16, 2001 10:40 PM

10 – DOMAIN MODEL: VISUALIZING CONCEPTS

150

Consequently, the UP defines the Domain Model as the more commonly created
subset artifact or specialization of the BOM. To quote:

You can choose to develop an “incomplete” business object model,
focusing on explaining “things” and products important to a
domain. ... This is often referred to as a domain model. [RUP]

10.12 Further Readings

Odell’s Object-Oriented Methods: A Foundation provides a solid introduction to
conceptual domain modeling. Cook and Daniel’s Designing Object Systems is
also useful.

Fowler’s Analysis Patterns offers worthwhile patterns in domain models, and is
definitely recommended. Another good book that describes patterns in domain
models is Hay’s Data Model Patterns: Conventions of Thought. Advice from data
modeling experts who understand the distinction between pure conceptual mod-
els and database schema models can be very useful for domain object modeling.

Java Modeling in Color with UML [CDL99] has more relevant domain modeling
advice than the title suggests. The authors identify common patterns in related
types and their associations; the color aspect is really a visualization of the com-
mon categories of these types, such as descriptions (blue), roles (yellow), and
moment-intervals (pink). Color is used to aid in seeing the patterns.

Since the original work by Abbot, linguistic analysis has acquired more sophisti-
cated techniques for object-oriented analysis, generally called natural language
modeling, or a variant. See [Moreno97] as an example.

Domain Model-Intro.fm Page 150 Thursday, August 16, 2001 10:40 PM

151

UP ARTIFACTS

10.13 UP Artifacts

Artifact influence emphasizing the Domain Model is shown in Figure 10.12.

Figure 10.12 Sample UP artifact influence.

Glossary

Software
Architecture Doc.

Domain
Model

Requirements

Project
Management

Business
Modeling

Design

Sample UP Artifacts Partial artifacts,
refined in each

iteration.

Test

Test
Plan

Software
Dev. Plan

. . .

Use-Case Model

text
use

cases

:System

foo(x)

system
operation
contracts

system
sequence
diagrams

terms, concepts
attributes,
associations

state changes in
domain objects,
attributes,
associations

elaboration of
some terms in
the domain
model

software classes in
the domain layer of
the design take
inspiration from the
names, attributes,
and associations in
the domain model

bar(y)

use
case

diagrams

*
*

Design Model

Environment

Development
Case

Domain Model-Intro.fm Page 151 Thursday, August 16, 2001 10:40 PM

